1
|
Lewis C, Rafi E, Dobbs B, Barton T, Hatipoglu B, Malin SK. Tailoring Exercise Prescription for Effective Diabetes Glucose Management. J Clin Endocrinol Metab 2025; 110:S118-S130. [PMID: 39836084 DOI: 10.1210/clinem/dgae908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Physical activity, exercise, or both are a staple of lifestyle management approaches both for type 1 diabetes mellitus (T1DM) and type 2 diabetes (T2DM). While the current literature supports both physical activity and exercise for improving glycemic control, reducing cardiovascular risk, maintaining proper weight, and enhancing overall well-being, the optimal prescription regimen remains debated. EVIDENCE ACQUISITION We searched PubMed and Google Scholar databases for relevant studies on exercise, insulin sensitivity, and glycemic control in people with T1DM and T2DM. EVIDENCE SYNTHESIS In patients with T1DM, exercise generally improves cardiovascular fitness, muscle strength, and glucose levels. However, limited work has evaluated the effect of aerobic plus resistance exercise compared to either exercise type alone on glycemic outcomes. Moreover, less research has evaluated breaks in sedentary behavior with physical activity. When considering the factors that may cause hypoglycemic effects during exercise in T1DM, we found that insulin therapy, meal timing, and neuroendocrine regulation of glucose homeostasis are all important. In T2DM, physical activity is a recommended therapy independent of weight loss. Contemporary consideration of timing of exercise relative to meals and time of day, potential medication interactions, and breaks in sedentary behavior have gained recognition as potentially novel approaches that enhance glucose management. CONCLUSION Physical activity or exercise is, overall, an effective treatment for glycemia in people with diabetes independent of weight loss. However, additional research surrounding exercise is needed to maximize the health benefit, particularly in "free-living" settings.
Collapse
Affiliation(s)
- Claudia Lewis
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Ebne Rafi
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Brandi Dobbs
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
| | - Tanner Barton
- Department of Athletics, John Carroll University, University Heights, OH 44118, USA
| | - Betul Hatipoglu
- Department of Endocrinology, University Hospitals Diabetes and Metabolic Care Center, Cleveland, OH 44106, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Moser O, Zaharieva DP, Adolfsson P, Battelino T, Bracken RM, Buckingham BA, Danne T, Davis EA, Dovč K, Forlenza GP, Gillard P, Hofer SE, Hovorka R, Jacobs PG, Mader JK, Mathieu C, Nørgaard K, Oliver NS, O'Neal DN, Pemberton J, Rabasa-Lhoret R, Sherr JL, Sourij H, Tauschmann M, Yardley JE, Riddell MC. The use of automated insulin delivery around physical activity and exercise in type 1 diabetes: a position statement of the European Association for the Study of Diabetes (EASD) and the International Society for Pediatric and Adolescent Diabetes (ISPAD). Diabetologia 2025; 68:255-280. [PMID: 39653802 PMCID: PMC11732933 DOI: 10.1007/s00125-024-06308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Regular physical activity and exercise (PA) are cornerstones of diabetes care for individuals with type 1 diabetes. In recent years, the availability of automated insulin delivery (AID) systems has improved the ability of people with type 1 diabetes to achieve the recommended glucose target ranges. PA provide additional health benefits but can cause glucose fluctuations, which challenges current AID systems. While an increasing number of clinical trials and reviews are being published on different AID systems and PA, it seems prudent at this time to collate this information and develop a position statement on the topic. This joint European Association for the Study of Diabetes (EASD)/International Society for Pediatric and Adolescent Diabetes (ISPAD) position statement reviews current evidence on AID systems and provides detailed clinical practice points for managing PA in children, adolescents and adults with type 1 diabetes using AID technology. It discusses each commercially available AID system individually and provides guidance on their use in PA. Additionally, it addresses different glucose responses to PA and provides stratified therapy options to maintain glucose levels within the target ranges for these age groups.
Collapse
Affiliation(s)
- Othmar Moser
- Department of Exercise Physiology and Metabolism (Sportsmedicine), University of Bayreuth, Bayreuth, Germany.
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.
| | - Dessi P Zaharieva
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Peter Adolfsson
- Department of Pediatrics, Kungsbacka Hospital, Kungsbacka, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Medical Center, University Children's Hospital, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, UK
| | - Bruce A Buckingham
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas Danne
- Breakthrough T1D (formerly JDRF), New York, NY, USA
- Centre for Paediatric Endocrinology, Diabetology and Clinical Research, Auf Der Bult Children's Hospital, Hannover, Germany
| | - Elizabeth A Davis
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Klemen Dovč
- Department of Endocrinology, Diabetes and Metabolism, University Medical Center, University Children's Hospital, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregory P Forlenza
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Denver, CO, USA
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Sabine E Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Roman Hovorka
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Peter G Jacobs
- Artificial Intelligence for Medical Systems, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kirsten Nørgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nick S Oliver
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - David N O'Neal
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Australian Centre for Accelerating Diabetes Innovations, Melbourne, VIC, Australia
| | - John Pemberton
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Rémi Rabasa-Lhoret
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier de l'Université de Montréal Endocrinology Division and CHUM Research Center, Montréal, QC, Canada
| | - Jennifer L Sherr
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jane E Yardley
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Molveau J, Myette-Côté É, Guédet C, Tagougui S, St-Amand R, Suppère C, Heyman E, Messier V, Boudreau V, Legault L, Rabasa-Lhoret R. Impact of pre- and post-exercise strategies on hypoglycemic risk for two modalities of aerobic exercise among adults and adolescents living with type 1 diabetes using continuous subcutaneous insulin infusion: A randomized controlled trial. DIABETES & METABOLISM 2025; 51:101599. [PMID: 39653075 DOI: 10.1016/j.diabet.2024.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE We investigated strategies to mitigate hypoglycemic risk during and after different aerobic exercises in people with type 1 diabetes (pwT1D) using continuous subcutaneous insulin infusion. RESEARCH DESIGN AND METHODS Thirty-seven pwT1D (21 adults, 16 adolescents; HbA1c = 7.5 ± 1.0 %) participated in two post-absorptive (4-h post-meal) exercise sessions (60-min continuous moderate intensity [CONT] vs. intermittent [INT]). Pre-exercise basal rate reduction (BRR) was either 40 % or 80 %, 90 min before exercise. Post-exercise, participants undertook either a 20 % BRR for 10 h with 20 % reduced dinner bolus (INS) or a 45 g post-exercise carbohydrate (CHO) snack with a 50 % insulin bolus, and a 30 g bedtime CHO snack without bolus (snack). RESULTS While a similar number of hypoglycemic events (31 vs. 28) were observed between exercise modalities, CONT led to a greater decrease in blood glucose during exercise compared to INT (-3.1 ± 2.3, CONT vs. -2.7 ± 2.2 mmol/l, INT, P = 0.005). Changes in blood glucose during exercise (-3.0 ± 2.4, 40 %BRR vs. -2.8 ± 2.1 mmol/l, 80 %BRR, P = 0.076) and the number of hypoglycemic events (35 vs. 24) were similar between 40 % and 80 %BRR. Time in hyperglycemia was lower with INS compared to snack in the first 30 min after exercise, but no differences were observed for late recovery period or nighttime. CONCLUSION Compared to INT, CONT led to greater blood glucose decline without increasing hypoglycemia risk. A larger pre-exercise BRR did not further reduce hypoglycemia risk during exercise. Post-exercise INS and snack strategies led to comparable glucose profiles in pwT1D.
Collapse
Affiliation(s)
- Joséphine Molveau
- Institut de recherches cliniques de Montréal, Canada; Département de Nutrition, Faculté de Médecine, Université de Montréal, Canada; Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France
| | - Étienne Myette-Côté
- Institut de recherches cliniques de Montréal, Canada; Department of Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Canada
| | - Capucine Guédet
- Institut de recherches cliniques de Montréal, Canada; Département de Kinésiologie, Faculté de Médecine, Université de Montréal, Canada; Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France
| | - Sémah Tagougui
- Institut de recherches cliniques de Montréal, Canada; Département de Nutrition, Faculté de Médecine, Université de Montréal, Canada; Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France
| | | | | | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France; Institut Universitaire de France, Paris, France
| | | | | | - Laurent Legault
- Montreal Children's Hospital, McGill University Health Centre, Canada
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, Canada; Département de Nutrition, Faculté de Médecine, Université de Montréal, Canada; Endocrinology Division and Montreal Diabetes Research Center, Canada.
| |
Collapse
|
4
|
Sevilla-Lorente R, Marmol-Perez A, Gonzalez-Garcia P, Rodríguez-Miranda MDLN, Riquelme-Gallego B, Aragon-Vela J, Martinez-Gálvez JM, Molina-Garcia P, Alcantara JMA, Garcia-Consuegra J, Cogliati S, Salmeron LM, Huertas JR, Lopez LC, Ruiz JR, Amaro-Gahete FJ. Sexual dimorphism on the acute effect of exercise in the morning vs. evening: A randomized crossover study. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:101021. [PMID: 39716617 PMCID: PMC11930212 DOI: 10.1016/j.jshs.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Mammalian cells possess molecular clocks, the adequate functioning of which is decisive for metabolic health. Exercise is known to modulate these clocks, potentially having distinct effects on metabolism depending on the time of day. This study aimed to investigate the impact of morning vs. evening moderate-intensity aerobic exercise on glucose regulation and energy metabolism in healthy men and women. It also aimed to elucidate molecular mechanisms within skeletal muscle. METHODS Using a randomized crossover design, healthy men (n = 18) and women (n = 17) performed a 60-min bout of moderate-intensity aerobic exercise in the morning and evening. Glucose regulation was continuously monitored starting 24 h prior to the exercise day and continuing until 48 h post-exercise for each experimental condition. Energy expenditure and substrate oxidation were measured by indirect calorimetry during exercise and at rest before and after exercise for 30 min. Skeletal muscle biopsies were collected immediately before and after exercise to assess mitochondrial function, transcriptome, and mitochondrial proteome. RESULTS Results indicated similar systemic glucose, energy expenditure, and substrate oxidation during and after exercise in both sexes. Notably, transcriptional analysis, mitochondrial function, and mitochondrial proteomics revealed marked sexual dimorphism and time of day variations. CONCLUSION The sexual dimorphism and time of day variations observed in the skeletal muscle in response to exercise may translate into observable systemic effects with higher exercise-intensity or chronic exercise interventions. This study provides a foundational molecular framework for precise exercise prescription in the clinical setting.
Collapse
Affiliation(s)
- Raquel Sevilla-Lorente
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre "José Mataix", University of Granada, Granada 18071, Spain; Department of Physiology, University of Granada, Granada 18071, Spain
| | - Andres Marmol-Perez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pilar Gonzalez-Garcia
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain
| | - María de Las Nieves Rodríguez-Miranda
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Blanca Riquelme-Gallego
- Faculty of Health Science, University of Granada, Ceuta 51005, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain
| | - Jerónimo Aragon-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaen 23071, Spain
| | - Juan Manuel Martinez-Gálvez
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain; Biofisika Institute (Spanish National Research Council, University of the Basque Country/ Euskal Herriko Unibertsitatea) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa 48940, Spain
| | | | - Juan Manuel A Alcantara
- Department of Health Sciences, Institute for Innovation & Sustainable Food Chain Development, Public University of Navarre, Pamplona 31006, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain
| | - José Garcia-Consuegra
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Sara Cogliati
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Luis Miguel Salmeron
- Department of Surgery and Its Specialties, University Hospital Clínico San Cecilio, Granada 18007, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre "José Mataix", University of Granada, Granada 18071, Spain; Department of Physiology, University of Granada, Granada 18071, Spain
| | - Luis C Lopez
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain.
| | - Francisco José Amaro-Gahete
- Department of Physiology, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain
| |
Collapse
|
5
|
Moser O, Zaharieva D, Adolfsson P, Battelino T, Bracken RM, Buckingham BA, Danne T, Davis EA, Dovc K, Forlenza GP, Gillard P, Hofer SE, Hovorka R, Jacobs PJ, Mader JK, Mathieu C, Nørgaard K, Oliver NS, O'Neal DN, Pemberton J, Rabasa-Lhoret R, Sherr JL, Sourij H, Tauschmann M, Yardley JE, Riddell MC. The Use of Automated Insulin Delivery around Physical Activity and Exercise in Type 1 Diabetes: A Position Statement of the European Association for the Study of Diabetes (EASD) and the International Society for Pediatric and Adolescent Diabetes (ISPAD). Horm Res Paediatr 2024:1-28. [PMID: 39657609 DOI: 10.1159/000542287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Regular physical activity and exercise (PA) are cornerstones of diabetes care for individuals with type 1 diabetes. In recent years, the availability of automated insulin delivery (AID) systems has improved the ability of people with type 1 diabetes to achieve the recommended glucose target ranges. PA provides additional health benefits but can cause glucose fluctuations, which challenges current AID systems. While an increasing number of clinical trials and reviews are being published on different AID systems and PA, it seems prudent at this time to collate this information and develop a position statement on the topic. This joint European Association for the Study of Diabetes (EASD)/International Society for Pediatric and Adolescent Diabetes (ISPAD) position statement reviews current evidence on AID systems and provides detailed clinical practice points for managing PA in children, adolescents and adults with type 1 diabetes using AID technology. It discusses each commercially available AID system individually and provides guidance on its use in PA. Additionally, it addresses different glucose responses to PA and provides stratified therapy options to maintain glucose levels within the target ranges for these age groups.
Collapse
Affiliation(s)
- Othmar Moser
- Department of Exercise Physiology and Metabolism (Sportsmedicine), University of Bayreuth, Bayreuth, Germany
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Dessi Zaharieva
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Peter Adolfsson
- Department of Pediatrics, Kungsbacka Hospital, Kungsbacka, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Medical Center, University Children's Hospital, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, UK
| | - Bruce A Buckingham
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Thomas Danne
- Breakthrough T1D (formerly JDRF), New York, New York, USA
- Centre for Paediatric Endocrinology, Diabetology and Clinical Research, Auf Der Bult Children's Hospital, Hannover, Germany
| | - Elizabeth A Davis
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Nedlands, Washington, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Washington, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Washington, Australia
| | - Klemen Dovc
- Department of Endocrinology, Diabetes and Metabolism, University Medical Center, University Children's Hospital, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregory P Forlenza
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Denver, Colorado, USA
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Sabine E Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Roman Hovorka
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Peter J Jacobs
- Artificial Intelligence for Medical Systems, Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kirsten Nørgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nick S Oliver
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - David N O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
- Australian Centre for Accelerating Diabetes Innovations, Melbourne, Victoria, Australia
| | - John Pemberton
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Remi Rabasa-Lhoret
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
- Centre Hospitalier de l'Université de Montréal Endocrinology Division and CHUM Research Center, Montreal, Québec, Canada
| | - Jennifer L Sherr
- Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jane E Yardley
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Dighriri A, Timraz M, Rosaini ND, Aba Alkhayl FF, Boyle JG, Logan G, Gray SR. The impact of the time of day on metabolic responses to exercise in adults: A systematic and meta-analysis review. Chronobiol Int 2024; 41:1377-1388. [PMID: 39445650 DOI: 10.1080/07420528.2024.2419867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The aim of the current study is to investigate whether the time of day at which exercise is performed affects metabolic, glucose and insulin responses to exercise in adults. Databases were searched for randomised controlled (parallel and crossover) trials with participants aged from 18 to 65 year, an intervention of any exercise carried out at a specific time of the day and compared to any exercise carried out at a different time of the day. From 2458 screened articles, 12 studies were included in the systematic review of which 5 studies were included in the meta-analyses which compared 24 h continuous glucose monitoring (CGM) data, between morning and afternoon/evening exercise, on the day exercise was performed (SMD = 0.12 [-0.22-0.46] p = 0.76) and the day after exercise (SMD = -0.02 [-0.36-0.33] p = 0.94. Similar findings were observed in the wider systematic review with a general unclear risk of bias and a low certainty in these data. The results indicate that there is no clear effect of the time of the day on metabolic responses to exercise and exercise at any time of day should be the goal of public health strategies.
Collapse
Affiliation(s)
- Anas Dighriri
- Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Maha Timraz
- Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Nur Dania Rosaini
- Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - James G Boyle
- Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Greig Logan
- Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Stuart R Gray
- Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Chaieb IA, Kacem FH, Mnif M, Turki M, Heyman E, Hammouda O, Taleb N, Abid M, Zouari M, Rabasa-Lhoret R, Bouzid MA, Tagougui S. Investigating the Impact of Time of Day on Glycaemia in Response to Postprandial Supramaximal Sprints in Adults With Type 1. Can J Diabetes 2024; 48:480-485. [PMID: 38950773 DOI: 10.1016/j.jcjd.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES In this study, we explore the impact of postprandial exercise timing (morning vs evening) on glycemia in individuals with type 1 diabetes (T1D) during short all-out sprints on a cycle ergometer. METHODS Ten healthy, physically sedentary male (n=7) and female (n=3) volunteers with T1D, 22.8±2.8 years of age, and with a diabetes duration of 9.7±5.5 years and glycated hemoglobin level of 8.6±1.2%, underwent comprehensive screening and assessment of their physical health and fitness status before study participation, under the guidance of a physician. Each participant underwent 2 postprandial exercise sessions on separate days: the first in the morning at 8:00 AM and the second in the evening at 8:00 PM, both conducted 60 minutes after a standardized meal. RESULTS Morning exercise showed a less pronounced reduction in plasma glucose (PG) levels compared with evening exercise (-2.01±1.24 vs -3.56±1.6 mmol/L, p=0.03). In addition, higher cortisol levels were observed in the morning vs evening (128.59±34 vs 67.79±26 ng/mL, p<0.001). CONCLUSIONS Morning repeated sprint exercise conducted in the postprandial state consistent with the protective effect of higher cortisol levels resulted in a smaller reduction in PG levels compared with evening exercise. This highlights the potential influence of exercise timing on glycemic responses and cortisol secretion in the management of T1D.
Collapse
Affiliation(s)
- Ilyess Aouin Chaieb
- Research Laboratory, Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia; High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Faten Hadj Kacem
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mouna Mnif
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mouna Turki
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Elsa Heyman
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369, Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France; Institut Universitaire de France, Paris, France
| | - Omar Hammouda
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France
| | - Nadine Taleb
- Centre de recherche de l'Université de Montréal, Montréal, Québec, Canada
| | - Mohamed Abid
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mariem Zouari
- Research Laboratory, Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia; High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Mohamed Amine Bouzid
- Research Laboratory, Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia; High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Sémah Tagougui
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369, Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France.
| |
Collapse
|
8
|
McClure RD, Carr ALJ, Boulé NG, Yardley JE. An Aerobic Cooldown After Morning, Fasted Resistance Exercise Has Limited Impact on Post-exercise Hyperglycemia in Adults With Type 1 Diabetes: A Randomized Crossover Study. Can J Diabetes 2024; 48:387-393.e2. [PMID: 38735638 DOI: 10.1016/j.jcjd.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Expert guidelines recommend an aerobic cooldown to lower blood glucose for the management of post-exercise hyperglycemia. This strategy has never been empirically tested. Our aim in this study was to compare the glycemic effects of performing an aerobic cooldown vs not performing a cooldown after a fasted resistance exercise session. We hypothesized that the cooldown would lower blood glucose in the 30 minutes after exercise and would result in less time in hyperglycemia in the 6 hours after exercise. METHODS Participants completed 2 identical resistance exercise sessions. One was followed by a low-intensity (30% of peak oxygen consumption) 10-minute cycle ergometer cooldown, and the other was followed by 10 minutes of sitting. We compared the changes in capillary glucose concentration during these sessions and continuous glucose monitoring (CGM) outcomes over 24 hours post-exercise. RESULTS Sixteen participants completed the trial. Capillary glucose was similar between conditions at the start of exercise (p=0.07). Capillary glucose concentration decreased by 0.6±1.0 mmol/L during the 10-minute cooldown, but it increased by 0.7±1.3 mmol/L during the same time in the no-cooldown condition. The resulting difference in glucose trajectory led to a significant interaction (p=0.02), with no effect from treatment (p=0.7). Capillary glucose values at the end of recovery were similar between conditions (p>0.05). There were no significant differences in CGM outcomes. CONCLUSIONS An aerobic cooldown reduces glucose concentration in the post-exercise period, but the small and brief nature of this reduction makes this strategy unlikely to be an effective treatment for hyperglycemia occurring after fasted exercise.
Collapse
Affiliation(s)
- Reid D McClure
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | | | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | - Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada; Augustana Faculty, University of Alberta, Camrose, Alberta, Canada; Women and Children's Health Research Institute, Edmonton, Alberta, Canada; Ecole de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Young G, Dodier R, Youssef JE, Castle JR, Wilson L, Riddell MC, Jacobs PG. Design and In Silico Evaluation of an Exercise Decision Support System Using Digital Twin Models. J Diabetes Sci Technol 2024; 18:324-334. [PMID: 38390855 PMCID: PMC10973845 DOI: 10.1177/19322968231223217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
BACKGROUND Managing glucose levels during exercise is challenging for individuals with type 1 diabetes (T1D) since multiple factors including activity type, duration, intensity and other factors must be considered. Current decision support tools lack personalized recommendations and fail to distinguish between aerobic and resistance exercise. We propose an exercise-aware decision support system (exDSS) that uses digital twins to deliver personalized recommendations to help people with T1D maintain safe glucose levels (70-180 mg/dL) and avoid low glucose (<70 mg/dL) during and after exercise. METHODS We evaluated exDSS using various exercise and meal scenarios recorded from a large, free-living study of aerobic and resistance exercise. The model inputs were heart rate, insulin, and meal data. Glucose responses were simulated during and after 30-minute exercise sessions (676 aerobic, 631 resistance) from 247 participants. Glucose outcomes were compared when participants followed exDSS recommendations, clinical guidelines, or did not modify behavior (no intervention). RESULTS exDSS significantly improved mean time in range for aerobic (80.2% to 92.3%, P < .0001) and resistance (72.3% to 87.3%, P < .0001) exercises compared with no intervention, and versus clinical guidelines (aerobic: 82.2%, P < .0001; resistance: 80.3%, P < .0001). exDSS reduced time spent in low glucose for both exercise types compared with no intervention (aerobic: 15.1% to 5.1%, P < .0001; resistance: 18.2% to 6.6%, P < .0001) and was comparable with following clinical guidelines (aerobic: 4.5%, resistance: 8.1%, P = N.S.). CONCLUSIONS The exDSS tool significantly improved glucose outcomes during and after exercise versus following clinical guidelines and no intervention providing motivation for clinical evaluation of the exDSS system.
Collapse
Affiliation(s)
- Gavin Young
- School of Medicine, Oregon Health &
Science University, Portland, OR, USA
- Artificial Intelligence for Medical
Systems Lab, Department of Biomedical Engineering, Oregon Health & Science
University, Portland, OR, USA
| | - Robert Dodier
- Artificial Intelligence for Medical
Systems Lab, Department of Biomedical Engineering, Oregon Health & Science
University, Portland, OR, USA
| | - Joseph El Youssef
- Harold Schnitzer Diabetes Health
Center, Division of Endocrinology, Oregon Health & Science University, Portland,
OR, USA
| | - Jessica R. Castle
- Harold Schnitzer Diabetes Health
Center, Division of Endocrinology, Oregon Health & Science University, Portland,
OR, USA
| | - Leah Wilson
- Harold Schnitzer Diabetes Health
Center, Division of Endocrinology, Oregon Health & Science University, Portland,
OR, USA
| | - Michael C. Riddell
- School of Kinesiology & Health
Science and The Muscle Health Research Centre, York University, Toronto, ON,
Canada
| | - Peter G. Jacobs
- Artificial Intelligence for Medical
Systems Lab, Department of Biomedical Engineering, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
10
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Abramoff KJ, De Souza LL, Maloney SK, Davis EA, Jones TW, Fournier PA. Effect of Neck-Deep Immersion in Cool or Thermoneutral Water on Blood Glucose Levels in Individuals With Type 1 Diabetes. J Endocr Soc 2023; 7:bvad128. [PMID: 37942293 PMCID: PMC10628817 DOI: 10.1210/jendso/bvad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 11/10/2023] Open
Abstract
Context It is unclear whether immersion in cool water, typical of many beaches, increases the concentration of blood glucose in individuals with type 1 diabetes mellitus (T1DM). Objective To test the hypothesis in individuals with T1DM that immersion neck-deep in cool water (COOL) causes an increase in blood glucose concentration, but not exposure to thermoneutral water (THERMO) or thermoneutral air. Methods Eight overnight-fasted participants with T1DM were exposed for 60 minutes on separate days to 3 experimental conditions: cool water (COOL, 23 °C); thermoneutral water (THERMO, 33.5 °C); or thermoneutral air (24 °C). They then recovered for 60 minutes on land at 24 °C. At time intervals, we measured: blood glucose and plasma insulin concentration, rate of carbohydrate and fat oxidation, skin and core temperature, subcutaneous blood flow, and shivering via electromyography. Results There was no change in blood glucose concentration during the 3 experimental conditions (P > .05). During recovery after COOL, blood glucose increased (P < .05) but did not change in the other 2 conditions. The rate of carbohydrate oxidation during and early after COOL was higher than in the other 2 conditions (P < .05), and COOL led to a decrease in subcutaneous blood flow and the concentration of plasma insulin (P < .05). Conclusion Cool or thermoneutral neck-deep immersion in water does not cause a change in the concentration of blood glucose in people with T1DM, but on-land recovery from COOL causes an increase in blood glucose that may be due, at least in part, to the accompanying decrease in plasma insulin.
Collapse
Affiliation(s)
- Kristina J Abramoff
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Anatomy Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Children's Diabetes Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Lauren L De Souza
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Shane K Maloney
- Department of Anatomy Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elizabeth A Davis
- Children's Diabetes Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Timothy W Jones
- Children's Diabetes Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Paul A Fournier
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Children's Diabetes Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
| |
Collapse
|
12
|
Shen B, Ma C, Wu G, Liu H, Chen L, Yang G. Effects of exercise on circadian rhythms in humans. Front Pharmacol 2023; 14:1282357. [PMID: 37886134 PMCID: PMC10598774 DOI: 10.3389/fphar.2023.1282357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The biological clock system is an intrinsic timekeeping device that integrates internal physiology and external cues. Maintaining a healthy biological clock system is crucial for life. Disruptions to the body's internal clock can lead to disturbances in the sleep-wake cycle and abnormalities in hormone regulation, blood pressure, heart rate, and other vital processes. Long-term disturbances have been linked to the development of various common major diseases, including cardiovascular diseases, metabolic disorders, tumors, neuropsychiatric conditions, and so on. External factors, such as the diurnal rhythm of light, have a significant impact on the body's internal clock. Additionally, as an important non-photic zeitgeber, exercise can regulate the body's internal rhythms to a certain extent, making it possible to become a non-drug intervention for preventing and treating circadian rhythm disorders. This comprehensive review encompasses behavioral, physiological, and molecular perspectives to provide a deeper understanding of how exercise influences circadian rhythms and its association with related diseases.
Collapse
Affiliation(s)
- Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Changxiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Guanlin Wu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Haibin Liu
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
13
|
Al Ozairi E, ElSamad A, Al Kandari J, Hamdan Y, Taliping D, Gray SR. The effect of timing of remotely supervised exercise on glucose control in people with type 1 diabetes during Ramadan: A randomised crossover study. Diabetes Metab Syndr 2023; 17:102845. [PMID: 37591044 DOI: 10.1016/j.dsx.2023.102845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
AIM The aim of the current study was to compare glucose responses when remotely supervised exercise was performed before or after breaking the fast, during Ramadan, in people with type 1 diabetes. METHODS People with type 1 diabetes were recruited to this randomised cross over design study, which took place in Kuwait during Ramadan in 2021-2022. Interstitial glucose was measured using continuous glucose monitors during a baseline week of normal activity and during weeks where remotely supervised exercise was performed, three times per week, either before (afternoon) or after (evening) breaking the fast, in a randomised crossover design. Exercise involved resistance and aerobic exercise and was supervised during a video call. RESULTS Thirty-two participants were recruited to the study (age 34(9) years and BMI 26(4)kg/m2). Mean interstitial glucose levels were lower on exercise days, compared to equivalent days in the baseline week, during both afternoon (8.6(1.8) mmol/L vs 9.1(1.4) mmol/L, p = 0.035) and evening (8.7(1.8) mmol/L vs 9.6(1.8) mmol/L, p < 0.001) exercise weeks. Mean glucose levels were lower the day after exercise, relative to both baseline (p < 0.001) and exercise (p = 0.011) days, in the evening exercise week only. CONCLUSIONS Remotely supervised exercise performed during Ramadan can safely reduce interstitial glucose levels and may be of greater benefit when performed in the evening, further work is required to confirm this in a larger trial.
Collapse
Affiliation(s)
- Ebaa Al Ozairi
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait; Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait
| | - Abeer ElSamad
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait
| | | | - Yasmine Hamdan
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait
| | | | - Stuart R Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom.
| |
Collapse
|
14
|
Helleputte S, Yardley JE, Scott SN, Stautemas J, Jansseune L, Marlier J, De Backer T, Lapauw B, Calders P. Effects of postprandial exercise on blood glucose levels in adults with type 1 diabetes: a review. Diabetologia 2023; 66:1179-1191. [PMID: 37014379 DOI: 10.1007/s00125-023-05910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023]
Abstract
People with type 1 diabetes experience challenges in managing blood glucose around exercise. Previous studies have examined glycaemic responses to different exercise modalities but paid little attention to participants' prandial state, although this is an important consideration and will enhance our understanding of the effects of exercise in order to improve blood glucose management around activity. This review summarises available data on the glycaemic effects of postprandial exercise (i.e. exercise within 2 h after a meal) in people with type 1 diabetes. Using a search strategy on electronic databases, literature was screened until November 2022 to identify clinical trials evaluating acute (during exercise), subacute (≤2 h after exercise) and late (>2 h to ≤24 h after exercise) effects of postprandial exercise in adults with type 1 diabetes. Studies were systematically organised and assessed by exercise modality: (1) walking exercise (WALK); (2) continuous exercise of moderate intensity (CONT MOD); (3) continuous exercise of high intensity (CONT HIGH); and (4) interval training (intermittent high-intensity exercise [IHE] or high-intensity interval training [HIIT]). Primary outcomes were blood glucose change and hypoglycaemia occurrence during and after exercise. All study details and results per outcome were listed in an evidence table. Twenty eligible articles were included: two included WALK sessions, eight included CONT MOD, seven included CONT HIGH, three included IHE and two included HIIT. All exercise modalities caused consistent acute glycaemic declines, with the largest effect size for CONT HIGH and the smallest for HIIT, depending on the duration and intensity of the exercise bout. Pre-exercise mealtime insulin reductions created higher starting blood glucose levels, thereby protecting against hypoglycaemia, in spite of similar declines in blood glucose during activity between the different insulin reduction strategies. Nocturnal hypoglycaemia occurred after higher intensity postprandial exercise, a risk that could be diminished by a post-exercise snack with concomitant bolus insulin reduction. Research on the optimal timing of postprandial exercise is inconclusive. In summary, individuals with type 1 diabetes exercising postprandially should substantially reduce insulin with the pre-exercise meal to avoid exercise-induced hypoglycaemia, with the magnitude of the reduction depending on the exercise duration and intensity. Importantly, pre-exercise blood glucose and timing of exercise should be considered to avoid hyperglycaemia around exercise. To protect against late-onset hypoglycaemia, a post-exercise meal with insulin adjustments might be advisable, especially for exercise in the evening or with a high-intensity component.
Collapse
Affiliation(s)
- Simon Helleputte
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- Fonds Wetenschappelijk Onderzoek (FWO) Vlaanderen, Flanders, Belgium.
| | - Jane E Yardley
- Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, Edmonton, Alberta, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Sam N Scott
- Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Jan Stautemas
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laura Jansseune
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Joke Marlier
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tine De Backer
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Patrick Calders
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Bishop FK, Addala A, Corbin KD, Muntis FR, Pratley RE, Riddell MC, Mayer-Davis EJ, Maahs DM, Zaharieva DP. An Overview of Diet and Physical Activity for Healthy Weight in Adolescents and Young Adults with Type 1 Diabetes: Lessons Learned from the ACT1ON Consortium. Nutrients 2023; 15:nu15112500. [PMID: 37299463 DOI: 10.3390/nu15112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of overweight and obesity in young people with type 1 diabetes (T1D) now parallels that of the general population. Excess adiposity increases the risk of cardiovascular disease, which is already elevated up to 10-fold in T1D, underscoring a compelling need to address weight management as part of routine T1D care. Sustainable weight management requires both diet and physical activity (PA). Diet and PA approaches must be optimized towards the underlying metabolic and behavioral challenges unique to T1D to support glycemic control throughout the day. Diet strategies for people with T1D need to take into consideration glycemic management, metabolic status, clinical goals, personal preferences, and sociocultural considerations. A major barrier to weight management in this high-risk population is the challenge of integrating regular PA with day-to-day management of T1D. Specifically, exercise poses a substantial challenge due to the increased risk of hypoglycemia and/or hyperglycemia. Indeed, about two-thirds of individuals with T1D do not engage in the recommended amount of PA. Hypoglycemia presents a serious health risk, yet prevention and treatment often necessitates the consumption of additional calories, which may prohibit weight loss over time. Exercising safely is a concern and challenge with weight management and maintaining cardiometabolic health for individuals living with T1D and many healthcare professionals. Thus, a tremendous opportunity exists to improve exercise participation and cardiometabolic outcomes in this population. This article will review dietary strategies, the role of combined PA and diet for weight management, current resources for PA and glucose management, barriers to PA adherence in adults with T1D, as well as findings and lessons learned from the Advancing Care for Type 1 Diabetes and Obesity Network (ACT1ON).
Collapse
Affiliation(s)
- Franziska K Bishop
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Karen D Corbin
- AdventHealth, Translational Research Institute, Orlando, FL 32804, USA
| | - Franklin R Muntis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard E Pratley
- AdventHealth, Translational Research Institute, Orlando, FL 32804, USA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
- Stanford Diabetes Research Center, Stanford, CA 94305, USA
| | - Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
16
|
Riddell MC, Turner LV, Patton SR. Is There an Optimal Time of Day for Exercise? A Commentary on When to Exercise for People Living With Type 1 or Type 2 Diabetes. Diabetes Spectr 2023; 36:146-150. [PMID: 37193212 PMCID: PMC10182965 DOI: 10.2337/dsi22-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exercise is a cornerstone of diabetes self-care because of its association with many health benefits. Several studies that have explored the best time of day to exercise to inform clinical recommendations have yielded mixed results. For example, for people with prediabetes or type 2 diabetes, there may be benefits to timing exercise to occur after meals, whereas people with type 1 diabetes may benefit from performing exercise earlier in the day. One common thread is the health benefits of consistent exercise, suggesting that the issue of exercise timing may be secondary to the goal of helping people with diabetes establish an exercise routine that best fits their life.
Collapse
Affiliation(s)
- Michael C. Riddell
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Corresponding author: Michael C. Riddell,
| | - Lauren V. Turner
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Susana R. Patton
- Center for Healthcare Delivery Science, Nemours Children’s Specialty Clinic, Jacksonville, FL
| |
Collapse
|
17
|
Armstrong M, Colberg SR, Sigal RJ. Where to Start? Physical Assessment, Readiness, and Exercise Recommendations for People With Type 1 or Type 2 Diabetes. Diabetes Spectr 2023; 36:105-113. [PMID: 37193205 PMCID: PMC10182968 DOI: 10.2337/dsi22-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exercise plays an important role in the management of diabetes and is associated with many benefits such as decreased morbidity and mortality. For people exhibiting signs and symptoms of cardiovascular disease, pre-exercise medical clearance is warranted; however, requiring broad screening requirements can lead to unnecessary barriers to initiating an exercise program. Robust evidence supports the promotion of both aerobic and resistance training, with evidence emerging on the importance of reducing sedentary time. For people with type 1 diabetes, there are special considerations, including hypoglycemia risk and prevention, exercise timing (including prandial status), and differences in glycemic responses based on biological sex.
Collapse
Affiliation(s)
- Marni Armstrong
- Medicine Strategic Clinical Network, Alberta Health Services, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sheri R. Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA
| | - Ronald J. Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Ivandic M, Cigrovski Berkovic M, Ormanac K, Sabo D, Omanovic Kolaric T, Kuna L, Mihaljevic V, Canecki Varzic S, Smolic M, Bilic-Curcic I. Management of Glycemia during Acute Aerobic and Resistance Training in Patients with Diabetes Type 1: A Croatian Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4966. [PMID: 36981876 PMCID: PMC10049388 DOI: 10.3390/ijerph20064966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: The increased risk of developing hypoglycemia and worsening of glycemic stability during exercise is a major cause of concern for patients with type 1 diabetes mellitus (T1DM). (2) Aim: This pilot study aimed to assess glycemic stability and hypoglycemic episodes during and after aerobic versus resistance exercises using a flash glucose monitoring system in patients with T1DM. (3) Participants and Methods: We conducted a randomized crossover prospective study including 14 adult patients with T1DM. Patients were randomized according to the type of exercise (aerobic vs. resistance) with a recovery period of three days between a change of groups. Glucose stability and hypoglycemic episodes were evaluated during and 24 h after the exercise. Growth hormone (GH), cortisol, and lactate levels were determined at rest, 0, 30, and 60 min post-exercise period. (4) Results: The median age of patients was 53 years, with a median HbA1c of 7.1% and a duration of diabetes of 30 years. During both training sessions, there was a drop in glucose levels immediately after the exercise (0'), followed by an increase at 30' and 60', although the difference was not statistically significant. However, glucose levels significantly decreased from 60' to 24 h in the post-exercise period (p = 0.001) for both types of exercise. Glycemic stability was comparable prior to and after exercise for both training sessions. No differences in the number of hypoglycemic episodes, duration of hypoglycemia, and average glucose level in 24 h post-exercise period were observed between groups. Time to hypoglycemia onset was prolonged after the resistance as opposed to aerobic training (13 vs. 8 h, p = NS). There were no nocturnal hypoglycemic episodes (between 0 and 6 a.m.) after the resistance compared to aerobic exercise (4 vs. 0, p = NS). GH and cortisol responses were similar between the two sessions, while lactate levels were significantly more increased after resistance training. (5) Conclusion: Both exercise regimes induced similar blood glucose responses during and immediately following acute exercise.
Collapse
Affiliation(s)
- Marul Ivandic
- Department of Internal Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | | | - Klara Ormanac
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dea Sabo
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tea Omanovic Kolaric
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljevic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Martina Smolic
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ines Bilic-Curcic
- Department of Internal Medicine, University Hospital Osijek, 31000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
19
|
McClure RD, Alcántara-Cordero FJ, Weseen E, Maldaner M, Hart S, Nitz C, Boulé NG, Yardley JE. Systematic Review and Meta-analysis of Blood Glucose Response to High-intensity Interval Exercise in Adults With Type 1 Diabetes. Can J Diabetes 2023; 47:171-179. [PMID: 36549943 DOI: 10.1016/j.jcjd.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Exercise-induced hyperglycemia is recognized in type 1 diabetes (T1D) clinical guidelines, but its association with high-intensity intermittent exercise (HIIE) in acute studies is inconsistent. In this meta-analysis, we examined the available evidence of blood glucose responses to HIIE in adults with T1D. The secondary, aim was to examine predictors of blood glucose responses to HIIE. We hypothesized that there would be no consistent effect on blood glucose from HIIE, unless examined in the context of participant prandial status. METHODS We conducted a literature search using key words related to T1D and HIIE. Studies were required to include at least 6 participants with T1D with a mean age >18 years, involve an HIIE intervention, and contain pre- and postexercise measures of blood glucose. Analyses of extracted data were performed using a general inverse variance statistical method with a random effects model and a weighted multiple regression. RESULTS Nineteen interventions from 15 reports were included in the analysis. A mean overall blood glucose decrease of -1.3 mmol/L (95% confidence interval [CI], -2.3 to -0.2 mmol/L) was found during exercise, albeit with high heterogeneity (I2=84%). When performed after an overnight fast, exercise increased blood glucose by +1.7 mmol/L (95% CI, 0.4 to 3.0 mmol/L), whereas postprandial exercise decreased blood glucose by -2.1 mmol/L (95% CI, -2.8 to -1.4 mmol/L), with a statistically significant difference between groups (p<0.0001). No associations with fitness (p=0.4), sex (p=0.4), age (p=0.9), exercise duration (p=0.9), or interval duration (p=0.2) were found. CONCLUSION The effect of HIIE on blood glucose is inconsistent, but partially explained by prandial status.
Collapse
Affiliation(s)
- Reid D McClure
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | | | - Emma Weseen
- Alberta Diabetes Institute, Edmonton, Alberta, Canada; Augustana Faculty, University of Alberta, Camrose, Alberta, Canada
| | - Miranda Maldaner
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | - Sarah Hart
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | - Corbin Nitz
- Alberta Diabetes Institute, Edmonton, Alberta, Canada; Augustana Faculty, University of Alberta, Camrose, Alberta, Canada
| | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | - Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada; Augustana Faculty, University of Alberta, Camrose, Alberta, Canada; Women and Children's Health Research Institute, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Sevilla-Lorente R, Carneiro-Barrera A, Molina-Garcia P, Ruiz JR, Amaro-Gahete FJ. Time of the day of exercise impact on cardiovascular disease risk factors in adults: a systematic review and meta-analysis. J Sci Med Sport 2023; 26:169-179. [PMID: 36973109 DOI: 10.1016/j.jsams.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES To compare the effect of a single bout of morning vs. evening exercise on cardiovascular risk factors in adults. DESIGN Systematic review and meta-analysis. METHODS A systematic search of studies was conducted using PubMed and Web of Science from inception to June 2022. Selected studies accomplished the following criteria: crossover design, acute effect of exercise, blood pressure, blood glucose, and/or blood lipids as the study's endpoint, a washout period of at least 24 h, and adults. Meta-analysis was performed by analyzing: 1) separated effect of morning and evening exercise (pre vs. post); and 2) comparison between morning and evening exercise. RESULTS A total of 11 studies were included for systolic and diastolic blood pressure and 10 studies for blood glucose. Meta-analysis revealed no significant difference between morning vs. evening exercise for systolic blood pressure (g ∆ = 0.02), diastolic blood pressure (g ∆ = 0.01), or blood glucose (g ∆ = 0.15). Analysis of moderator variables (age, BMI, sex, health status, intensity and duration of exercise, and hour within the morning or evening) showed no significant morning vs. evening effect. CONCLUSIONS Overall, we found no influence of the time of the day on the acute effect of exercise on blood pressure neither on blood glucose.
Collapse
Affiliation(s)
- R Sevilla-Lorente
- Department of Physiology, Faculty of Pharmacy, University of Granada, Spain.
| | | | - P Molina-Garcia
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Spain
| | - J R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - F J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
21
|
Myette-Côté É, Molveau J, Wu Z, Raffray M, Devaux M, Tagougui S, Rabasa-Lhoret R. A Randomized Crossover Pilot Study Evaluating Glucose Control During Exercise Initiated 1 or 2 h After a Meal in Adults with Type 1 Diabetes Treated with an Automated Insulin Delivery System. Diabetes Technol Ther 2023; 25:122-130. [PMID: 36399114 PMCID: PMC9894601 DOI: 10.1089/dia.2022.0338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aims: To assess the safety and efficacy of two exercise sessions performed 60- and 120-min postmeal with a combination of meal bolus reduction and increased glucose target to the automated insulin delivery (AID) system. Methods: A randomized crossover trial in 13 adult participants (6 females) living with type 1 diabetes using AID (A1c = 7.9% ± 0.6%, age = 53.5 ± 15.5 years, T1D duration = 29.0 ± 16.0 years) was conducted. Just before breakfast, at the time of meal bolus, the AID glucose target was increased from 6 to 9 mmol/L, and a meal bolus reduction of 33% was applied. Two 60-min exercise sessions (60% of VO2 peak) were undertaken either 60 min (60EX) or 120 min (120EX) after a standardized breakfast, followed by a 90-min recovery period. Results: The mean reduction in plasma glucose (PG) levels from prebreakfast to postexercise (-0.8 ± 2.4 mmol/L vs. +0.3 ± 2.3 mmol/L, P = 0.082) were similar between 60EX and 120EX. From prebreakfast to postexercise, PG times in range (3.9-10.0 mmol/L; 63.4% ± 43.1% 60EX vs. 51.9% ± 29.7% 120EX, P = 0.219) and time above range (>10.0 mmol/L; 36.3% ± 43.3% 60EX vs. 48.1% ± 29.7% 120EX, P = 0.211) did not differ between interventions. The 60EX attenuated the glucose rise between premeal to pre-exercise (+1.8 ± 2.1 mmol/L 60EX vs. +3.9 ± 2.1 mmol/L 120EX, P = 0.001). No hypoglycemic events (<3.9 mmol/L) occurred during the study. Conclusion: Premeal announcement combining meal bolus reduction and increased glucose target was effective and safe during 60 min of moderate-intensity aerobic exercise, whether exercise onset was 60 or 120 min following a meal. Clinical Trial Registration No.: NCT04031599.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- Montreal Clinical Research Institute, Montreal, Canada
- Department of Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Charlottetown, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Joséphine Molveau
- Montreal Clinical Research Institute, Montreal, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Zekai Wu
- Montreal Clinical Research Institute, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Marie Raffray
- Montreal Clinical Research Institute, Montreal, Canada
| | - Marie Devaux
- Montreal Clinical Research Institute, Montreal, Canada
| | - Sémah Tagougui
- Montreal Clinical Research Institute, Montreal, Canada
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Rémi Rabasa-Lhoret
- Montreal Clinical Research Institute, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| |
Collapse
|
22
|
Esefeld K, Kress S, Behrens M, Zimmer P, Stumvoll M, Thurm U, Gehr B, Halle M, Brinkmann C. Diabetes, Sports and Exercise. Exp Clin Endocrinol Diabetes 2023; 131:51-60. [PMID: 36638806 DOI: 10.1055/a-1946-3768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Katrin Esefeld
- Department of Preventive Sports Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (Deutsches Zentrum für Herzkreislaufforschung - DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany
| | - Stephan Kress
- Diabetes, Sport and Physical Activity Working Group of the DDG.,Department of Internal Medicine I, Vinzentius Hospital Landau, Landau, Germany
| | - Meinolf Behrens
- Diabetes, Sport and Physical Activity Working Group of the DDG.,Diabetes Center Minden, Minden, Germany
| | - Peter Zimmer
- Diabetes, Sport and Physical Activity Working Group of the DDG
| | - Michael Stumvoll
- Department of Internal Medicine III, University Hospital Leipzig, Leipzig, Germany
| | - Ulrike Thurm
- Diabetes, Sport and Physical Activity Working Group of the DDG
| | - Bernhard Gehr
- Diabetes, Sport and Physical Activity Working Group of the DDG.,m&i specialized clinic Bad Heilbrunn, Bad Heilbrunn, Germany
| | - Martin Halle
- Department of Preventive Sports Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (Deutsches Zentrum für Herzkreislaufforschung - DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany.,Diabetes, Sport and Physical Activity Working Group of the DDG
| | - Christian Brinkmann
- Diabetes, Sport and Physical Activity Working Group of the DDG.,Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany.,IST University of Applied Sciences Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Abstract
Regular physical activity improves cardiometabolic and musculoskeletal health, helps with weight management, improves cognitive and psychosocial functioning, and is associated with reduced mortality related to cancer and diabetes mellitus. However, turnover rates of glucose in the blood increase dramatically during exercise, which often results in either hypoglycaemia or hyperglycaemia as well as increased glycaemic variability in individuals with type 1 diabetes mellitus (T1DM). A complex neuroendocrine response to an acute exercise session helps to maintain circulating levels of glucose in a fairly tight range in healthy individuals, while several abnormal physiological processes and limitations of insulin therapy limit the capacity of people with T1DM to exercise in a normoglycaemic state. Knowledge of the acute and chronic effects of exercise and regular physical activity is critical for the formulation of clinical strategies for the management of insulin and nutrition for active patients with T1DM. Emerging diabetes-related technologies, such as continuous glucose monitors, automated insulin delivery systems and the administration of solubilized glucagon, are demonstrating efficacy for preserving glucose homeostasis during and after exercise in this population of patients. This Review highlights the beneficial effects of regular exercise and details the complex endocrine and metabolic responses to different types of exercise for adults with T1DM. An overview of basic clinical strategies for the preservation of glucose homeostasis using emerging technologies is also provided.
Collapse
Affiliation(s)
- Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
- LMC Diabetes and Endocrinology, Toronto, Ontario, Canada.
| | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Sigal RJ, Yardley JE, Perkins BA, Riddell MC, Goldfield GS, Donovan L, Malcolm J, Hadjiyannakis S, Edwards AL, Gougeon R, Wells GA, Pacaud D, Woo V, Ford GT, Coyle D, Phillips P, Doucette S, Khandwala F, Kenny GP. The Resistance Exercise in Already Active Diabetic Individuals (READI) Randomised Clinical Trial. J Clin Endocrinol Metab 2022; 108:e63-e75. [PMID: 36459469 DOI: 10.1210/clinem/dgac682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To evaluate the incremental impact of resistance training on HbA1c, fitness, body composition and cardiometabolic risk factors in aerobically-active people with type 1 diabetes. RESEARCH DESIGN AND METHODS The Resistance Exercise in Already-active Diabetic Individuals (READI) trial (NCT00410436) was a four-centre randomized parallel-group trial. After a 5-week run-in period with diabetes management optimization, 131 aerobically-active individuals with type 1 diabetes were randomized to resistance exercise (n = 71, intervention - INT) or control (n = 60, CON) for 22 additional weeks. Both groups maintained their aerobic activities and were provided dietary counselling throughout. Exercise training was three times per week at community-based facilities. The primary outcome was HbA1c, and secondary outcomes included fitness (peak oxygen consumption, muscle strength), body composition (anthropometrics, dual-energy X-ray absorptiometry, computed tomography) and cardiometabolic risk markers (lipids, apolipoproteins). Assessors were blinded to group allocation. RESULTS There were no significant differences in HbA1c change between INT and CON. Declines in HbA1c [INT: 7.75 ± 0.10% (61.2 ± 1.1 mmol/mol) to 7.55 ± 0.10% (59 ± 1.1 mmol/mol); CON: 7.70 ± 0.11% (60.7 ± 1.2 mmol/mol) to 7.57 ± 0.11% (59.6 ± 1.3 mmol/mol); intergroup difference in change -0.07 [95% CI -0.31, 0.18]. Waist circumference decreased more in INT than CON after six months (p = 0.02). Muscular strength increased more in INT than in CON (p < 0.001). There were no intergroup differences in hypoglycemia or any other variables. CONCLUSIONS Adding resistance training did not impact glycemia, but it increased strength and reduced waist circumference, in aerobically active individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Ronald J Sigal
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Canada
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Jane E Yardley
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
- University of Alberta, Augustana Faculty, Camrose, Canada
- Alberta Diabetes Institute, Edmonton, Canada
| | - Bruce A Perkins
- Mount Sinai Hospital and Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Gary S Goldfield
- Healthy Active Living & Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Lois Donovan
- Departments of Medicine, Obstetrics and Gynecology, Alberta Children's Hospital Research Institute, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Janine Malcolm
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Stasia Hadjiyannakis
- Healthy Active Living & Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Alun L Edwards
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Canada
| | - Réjeanne Gougeon
- Crabtree Nutrition Laboratories, Research Institute and Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - George A Wells
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Danièle Pacaud
- Alberta Children's Hospital, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Vincent Woo
- Section of Endocrinology and Metabolism, Health Sciences Centre, University of Manitoba, Winnipeg, Canada
| | - Gordon T Ford
- Department of Medicine, Cumming School of Medicine, University of Calgary, Canada
| | - Doug Coyle
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | - Penny Phillips
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Steve Doucette
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Canada
| | - Farah Khandwala
- Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - Glen P Kenny
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
25
|
Morrison D, Paldus B, Zaharieva DP, Lee MH, Vogrin S, Jenkins AJ, Gerche AL, MacIsaac RJ, McAuley SA, Ward GM, Colman PG, Smart CEM, Seckold R, Grosman B, Roy A, King BR, Riddell MC, O'Neal DN. Late Afternoon Vigorous Exercise Increases Postmeal but Not Overnight Hypoglycemia in Adults with Type 1 Diabetes Managed with Automated Insulin Delivery. Diabetes Technol Ther 2022; 24:873-880. [PMID: 36094458 DOI: 10.1089/dia.2022.0279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim: To compare evening and overnight hypoglycemia risk after late afternoon exercise with a nonexercise control day in adults with type 1 diabetes using automated insulin delivery (AID). Methods: Thirty adults with type 1 diabetes using AID (Minimed 670G) performed in random order 40 min high intensity interval aerobic exercise (HIE), resistance (RE), and moderate intensity aerobic exercise (MIE) exercise each separated by >1 week. The closed-loop set-point was temporarily increased 2 h pre-exercise and a snack eaten if plasma glucose was ≤126 mg/dL pre-exercise. Exercise commenced at ∼16:00. A standardized meal was eaten at ∼20:40. Hypoglycemic events were defined as a continuous glucose monitor (CGM) reading <70 mg/dL for ≥15 min. Four-hour postevening meal and overnight (00:00-06:00) CGM metrics for exercise were compared with the prior nonexercise day. Results: There was no severe hypoglycemia. Between 00:00 and 06:00, the proportion of nights with hypoglycemia did not differ postexercise versus control for HIE (18% vs. 11%; P = 0.688), RE (4% vs. 14%; P = 0.375), and MIE (7% vs. 14%; P = 0.625). Time in range (TIR) (70-180 mg/dL), >75% for all nights, did not differ between exercise conditions and control. Hypoglycemia episodes postmeal after exercise versus control did not differ for HIE (22% vs. 7%; P = 0.219) and MIE (10% vs. 14%; P > 0.999), but were greater post-RE (39% vs. 10%; P = 0.012). Conclusions: Overnight TIR was excellent with AID without increased hypoglycemia postexercise between 00:00 and 06:00 compared with nonexercise days. In contrast, hypoglycemia risk was increased after the first meal post-RE, suggesting the importance of greater vigilance and specific guidelines for meal-time dosing, particularly with vigorous RE. ACTRN12618000905268.
Collapse
Affiliation(s)
- Dale Morrison
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Barbora Paldus
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Dessi P Zaharieva
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Canada
| | - Melissa H Lee
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Sara Vogrin
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Alicia J Jenkins
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney
| | - André La Gerche
- Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Richard J MacIsaac
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| | - Sybil A McAuley
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Glenn M Ward
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Peter G Colman
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - Carmel E M Smart
- Department of Endocrinology, John Hunter Children's Hospital, Newcastle, Australia
- Department of Endocrinology, Hunter Medical Research Institute, Newcastle, Australia
| | - Rowen Seckold
- Department of Endocrinology, John Hunter Children's Hospital, Newcastle, Australia
- Department of Endocrinology, Hunter Medical Research Institute, Newcastle, Australia
| | | | | | - Bruce R King
- Department of Endocrinology, John Hunter Children's Hospital, Newcastle, Australia
- Department of Endocrinology, Hunter Medical Research Institute, Newcastle, Australia
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Canada
| | - David Norman O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| |
Collapse
|
26
|
Yardley JE. Reassessing the evidence: prandial state dictates glycaemic responses to exercise in individuals with type 1 diabetes to a greater extent than intensity. Diabetologia 2022; 65:1994-1999. [PMID: 35978179 DOI: 10.1007/s00125-022-05781-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Recent guidelines suggest that adding anaerobic (high intensity or resistance) activity to an exercise session can prevent blood glucose declines that occur during aerobic exercise in individuals with type 1 diabetes. This theory evolved from earlier study data showing that sustained, anaerobic activity (high intensity cycling) increases blood glucose levels in these participants. However, studies involving protocols where anaerobic (high intensity interval) and aerobic exercise are combined have extremely variable glycaemic outcomes, as do resistance exercise studies. Scrutinising earlier studies will reveal that, in addition to high intensity activity (intervals or weight lifting), these protocols had another common feature: participants were performing exercise after an overnight fast. Based on these findings, and data from recent exercise studies, it can be argued that participant prandial state may be a more dominant factor than exercise intensity where glycaemic changes in individuals with type 1 diabetes are concerned. As such, a reassessment of study outcomes and an update to exercise recommendations for those with type 1 diabetes may be warranted.
Collapse
Affiliation(s)
- Jane E Yardley
- Augustana Faculty, University of Alberta, Camrose, AB, Canada.
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, Edmonton, AB, Canada.
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Larocque JC, Gardy S, Sammut M, McBey DP, Melling CWJ. Sexual dimorphism in response to repetitive bouts of acute aerobic exercise in rodents with type 1 diabetes mellitus. PLoS One 2022; 17:e0273701. [PMID: 36083870 PMCID: PMC9462568 DOI: 10.1371/journal.pone.0273701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to examine sex-specific differences in the blood glucose (BG) response to recurrent aerobic exercise in type 1 diabetes rats. Specifically, we examined the role of peak estrogen (E2) concentrations during proestrus on BG response to prolonged repetitive aerobic exercise. To do so, nineteen Sprague-Dawley rats were assigned to four exercised groups: control female (CXF; n = 5), control male (CXM; n = 5), diabetic female (DXF, n = 5) and diabetic male (DXM, n = 4). Diabetes was induced in DX groups via subcutaneous multiple injections of low dose streptozotocin (20mg/day for 7 days). After four days of exercise, muscle and liver glycogen content, liver gluconeogenic enzyme content, muscle Beta oxidation activity and BG responses to exercise were compared. The final bout of exercise took place during proestrus when E2 concentrations were at their highest in the female rats. During days 1–3 DXM had significantly lower BG concentrations during exercise than DXF. While both T1DM and non-T1DM females demonstrated higher hepatic G6Pase expression and muscle beta oxidation activity levels on day 4 exercise, no differences in BG response between the male and female T1DM rats were evident. Further, no differences in liver and muscle glycogen content following day 4 of exercise were seen between the sexes. These results would suggest that heightened E2 levels during proestrus may not be an important factor governing glucose counter regulatory response to exercise in female T1DM rats. Rather, the pre-exercise blood glucose levels are likely to be a large determinant of the blood glucose response to exercise in both male and female rats.
Collapse
Affiliation(s)
| | - Silar Gardy
- School of Kinesiology, Western University, London, ON, Canada
| | - Mitchell Sammut
- School of Kinesiology, Western University, London, ON, Canada
| | - David P. McBey
- School of Kinesiology, Western University, London, ON, Canada
| | - C. W. James Melling
- School of Kinesiology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
- * E-mail:
| |
Collapse
|
28
|
de Abreu de Lima V, de Menezes FJ, da Rocha Celli L, França SN, Cordeiro GR, Mascarenhas LPG, Leite N. Effects of resistance training on the glycemic control of people with type 1 diabetes: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:533-540. [PMID: 35758833 PMCID: PMC10697639 DOI: 10.20945/2359-3997000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Resistance training has shown the potential to contribute to better glycemic control in people with Type 1 Diabetes (T1D), however, there are contradictory results in this regard and a need to clarify the effects of isolated resistance training on glycemic control in T1D. The aim was to verify the effects of resistance training on the glycemic control of people with T1D. Original articles were selected, randomized and non-randomized clinical trials that aimed to verify chronic responses, through the concentrations of glycated hemoglobin (HbA1c), to a structured program of resistance exercise in the glycemia of patients with T1D. The following databases were searched; MEDLINE, PubMed, Web of Science, Scopus, ScienceDirect, LILACS, and SciELO. Five studies were included in the review. A reduction in HbA1c was observed (SMD = -0.568 ± 0.165 [95% CI = -0.891 to -0.246]; p = 0.001; I2 = 82%) in patients undergoing resistance training, when compared to the control group (SMD = 1.006 ± 0.181 [95% CI = 0.653 to 1.360]; p <0.001). Two studies, with children and adolescents and longer interventions, demonstrated a significant reduction in HbA1c, increased strength, and an improved lipid profile. Resistance training was efficient for assisting in glycemic control in people with T1D and should be incorporated in treatment plans.
Collapse
Affiliation(s)
- Valderi de Abreu de Lima
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Núcleo de Qualidade de Vida, Curitiba, PR, Brasil,
| | - Francisco José de Menezes
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Núcleo de Qualidade de Vida, Curitiba, PR, Brasil
| | - Luana da Rocha Celli
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Núcleo de Qualidade de Vida, Curitiba, PR, Brasil
| | - Suzana Nesi França
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Unidade de Endocrinologia Pediátrica, Curitiba, PR, Brasil
| | - Gabriel Ribeiro Cordeiro
- Universidade Estadual do Centro-Oeste (Unicentro), Departamento de Educação Física, Programa de Pós-graduação Interdisciplinar em Desenvolvimento Comunitário, Irati, PR, Brasil
| | - Luis Paulo Gomes Mascarenhas
- Universidade Estadual do Centro-Oeste (Unicentro), Departamento de Educação Física, Programa de Pós-graduação Interdisciplinar em Desenvolvimento Comunitário, Irati, PR, Brasil
| | - Neiva Leite
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Núcleo de Qualidade de Vida, Curitiba, PR, Brasil
| |
Collapse
|
29
|
Fitzpatrick R, Davison G, Wilson JJ, McMahon G, McClean C. Exercise, type 1 diabetes mellitus and blood glucose: The implications of exercise timing. Front Endocrinol (Lausanne) 2022; 13:1021800. [PMID: 36246914 PMCID: PMC9555792 DOI: 10.3389/fendo.2022.1021800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
The scientific literature shows that exercise has many benefits for individuals with type 1 diabetes. Yet, several barriers to exercise in this population exist, such as post-exercise hypoglycaemia or hyperglycaemia. Several studies suggest that the timing of exercise may be an important factor in preventing exercise-induced hypoglycaemia or hyperglycaemia. However, there is a paucity of evidence solely focused on summarising findings regarding exercise timing and the impact it has on glucose metabolism in type 1 diabetes. This report suggests that resistance or high-intensity interval exercise/training (often known as HIIT) may be best commenced at the time of day when an individual is most likely to experience a hypoglycaemic event (i.e., afternoon/evening) due to the superior blood glucose stability resistance and HIIT exercise provides. Continuous aerobic-based exercise is advised to be performed in the morning due to circadian elevations in blood glucose at this time, thereby providing added protection against a hypoglycaemic episode. Ultimately, the evidence concerning exercise timing and glycaemic control remains at an embryonic stage. Carefully designed investigations of this nexus are required, which could be harnessed to determine the most effective, and possibly safest, time to exercise for those with type 1 diabetes.
Collapse
|
30
|
Paldus B, Morrison D, Zaharieva DP, Lee MH, Jones H, Obeyesekere V, Lu J, Vogrin S, La Gerche A, McAuley SA, MacIsaac RJ, Jenkins AJ, Ward GM, Colman P, Smart CEM, Seckold R, King BR, Riddell MC, O'Neal DN. A Randomized Crossover Trial Comparing Glucose Control During Moderate-Intensity, High-Intensity, and Resistance Exercise With Hybrid Closed-Loop Insulin Delivery While Profiling Potential Additional Signals in Adults With Type 1 Diabetes. Diabetes Care 2022; 45:194-203. [PMID: 34789504 DOI: 10.2337/dc21-1593] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare glucose control with hybrid closed-loop (HCL) when challenged by high intensity exercise (HIE), moderate intensity exercise (MIE), and resistance exercise (RE) while profiling counterregulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. RESEARCH DESIGN AND METHODS This study was an open-label multisite randomized crossover trial. Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic MiniMed 670G) with a temporary target set 2 h prior to and during exercise and 15 g carbohydrates if pre-exercise glucose was <126 mg/dL to prevent hypoglycemia. Primary outcome was median (interquartile range) continuous glucose monitoring time-in-range (TIR; 70-180 mg/dL) for 14 h post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counterregulatory hormones were measured for 280 min post-exercise commencement. RESULTS Median TIR was 81% (67, 93%), 91% (80, 94%), and 80% (73, 89%) for 0-14 h post-exercise commencement for HIE, MIE, and RE, respectively (n = 30), with no difference between exercise types (MIE vs. HIE; P = 0.11, MIE vs. RE, P = 0.11; and HIE vs. RE, P = 0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases, respectively, in noradrenaline (P = 0.01 and P = 0.004), cortisol (P < 0.001 and P = 0.001), lactate (P ≤ 0.001 and P ≤ 0.001), and heart rate (P = 0.007 and P = 0.015). During HIE compared with MIE, there were greater increases in growth hormone (P = 0.024). CONCLUSIONS Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counterregulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery.
Collapse
Affiliation(s)
- Barbora Paldus
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dale Morrison
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Dessi P Zaharieva
- 3School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Melissa H Lee
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Hannah Jones
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Varuni Obeyesekere
- 2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Jean Lu
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sara Vogrin
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - André La Gerche
- 4Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.,5Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sybil A McAuley
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Alicia J Jenkins
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,6NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Glenn M Ward
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Colman
- 7Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Carmel E M Smart
- 8John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Rowen Seckold
- 8John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Bruce R King
- 8John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Michael C Riddell
- 3School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - David N O'Neal
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Yardley JE, Sigal RJ. Glucose management for exercise using continuous glucose monitoring: should sex and prandial state be additional considerations? Diabetologia 2021; 64:932-934. [PMID: 33409571 DOI: 10.1007/s00125-020-05373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jane E Yardley
- Augustana Faculty, University of Alberta, Camrose, AB, Canada.
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| | - Ronald J Sigal
- Department of Medicine, Cumming School of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
33
|
A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods. SENSORS 2021; 21:s21020479. [PMID: 33445438 PMCID: PMC7828017 DOI: 10.3390/s21020479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Continuous Glucose Monitoring (CGM) has been a springboard of new diabetes management technologies such as integrated sensor-pump systems, the artificial pancreas, and more recently, smart pens. It also allows patients to make better informed decisions compared to a few measurements per day from a glucometer. However, CGM accuracy is reportedly affected during exercise periods, which can impact the effectiveness of CGM-based treatments. In this review, several studies that used CGM during exercise periods are scrutinized. An extensive literature review of clinical trials including exercise and CGM in type 1 diabetes was conducted. The gathered data were critically analysed, especially the Mean Absolute Relative Difference (MARD), as the main metric of glucose accuracy. Most papers did not provide accuracy metrics that differentiated between exercise and rest (non-exercise) periods, which hindered comparative data analysis. Nevertheless, the statistic results confirmed that CGM during exercise periods is less accurate.
Collapse
|
34
|
Moser O, Riddell MC, Eckstein ML, Adolfsson P, Rabasa-Lhoret R, van den Boom L, Gillard P, Nørgaard K, Oliver NS, Zaharieva DP, Battelino T, de Beaufort C, Bergenstal RM, Buckingham B, Cengiz E, Deeb A, Heise T, Heller S, Kowalski AJ, Leelarathna L, Mathieu C, Stettler C, Tauschmann M, Thabit H, Wilmot EG, Sourij H, Smart CE, Jacobs PG, Bracken RM, Mader JK. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Diabetologia 2020; 63:2501-2520. [PMID: 33047169 DOI: 10.1007/s00125-020-05263-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (i.e. before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Othmar Moser
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria.
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany.
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Max L Eckstein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Peter Adolfsson
- Department of Pediatrics, The Hospital of Halland, Kungsbacka, Sweden
- Sahlgrenska Academy at University of Gothenburg, Institution of Clinical Sciences, Gothenburg, Sweden
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Endocrinology Division Centre Hospitalier Universitaire de Montréal, Montréal, QC, Canada
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Centre, Montréal, QC, Canada
| | | | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Nick S Oliver
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, London, UK
| | - Dessi P Zaharieva
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, USA
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Carine de Beaufort
- Department of Pediatric Diabetes and Endocrinology, Centre Hospitalier Luxembourg, Luxembourg, Luxembourg
- Department of Pediatrics, Free University Brussels (VUB), Brussels, Belgium
| | | | - Bruce Buckingham
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, USA
| | - Eda Cengiz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Bahçeşehir Üniversitesi, Istanbul, Turkey
| | - Asma Deeb
- Paediatric Endocrinology Division, Shaikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | | | - Simon Heller
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Lalantha Leelarathna
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Hood Thabit
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma G Wilmot
- Diabetes Department, Royal Derby Hospital, University Hospitals of Derby and Burton NHSFT, Derby, UK
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Carmel E Smart
- School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia
- Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Peter G Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UK
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| |
Collapse
|
35
|
Moser O, Riddell MC, Eckstein ML, Adolfsson P, Rabasa‐Lhoret R, van den Boom L, Gillard P, Nørgaard K, Oliver NS, Zaharieva DP, Battelino T, de Beaufort C, Bergenstal RM, Buckingham B, Cengiz E, Deeb A, Heise T, Heller S, Kowalski AJ, Leelarathna L, Mathieu C, Stettler C, Tauschmann M, Thabit H, Wilmot EG, Sourij H, Smart CE, Jacobs PG, Bracken RM, Mader JK. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes 2020; 21:1375-1393. [PMID: 33047481 PMCID: PMC7702152 DOI: 10.1111/pedi.13105] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes.
Collapse
Affiliation(s)
- Othmar Moser
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of BayreuthBayreuthGermany
| | - Michael C. Riddell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Max L. Eckstein
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
| | - Peter Adolfsson
- Department of PediatricsThe Hospital of HallandKungsbackaSweden
- Sahlgrenska Academy at University of GothenburgInstitution of Clinical SciencesGothenburgSweden
| | - Rémi Rabasa‐Lhoret
- Institut de recherches Cliniques de MontréalMontréalQCCanada
- Endocrinology division Centre Hospitalier Universitaire de MontréalMontréalQCCanada
- Nutrition Department, Faculty of MedicineUniversité de MontréalMontréalQCCanada
- Montreal Diabetes Research CentreMontréalQCCanada
| | | | - Pieter Gillard
- Department of EndocrinologyUniversity Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Kirsten Nørgaard
- Steno Diabetes Center CopenhagenUniversity of CopenhagenCopenhagenDenmark
| | - Nick S. Oliver
- Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial CollegeLondonLondonUK
| | - Dessi P. Zaharieva
- Department of Pediatric Endocrinology and DiabetesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC ‐ University Children’s HospitalUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Carine de Beaufort
- Department of Pediatric Diabetes and EndocrinologyCentre Hospitalier LuxembourgLuxembourgLuxembourg
- Department of Pediatrics, Free University Brussels (VUB)BrusselsBelgium
| | | | - Bruce Buckingham
- Department of Pediatric Endocrinology and DiabetesStanford University School of MedicineStanfordCaliforniaUSA
| | - Eda Cengiz
- Department of Pediatrics, Yale School of MedicineNew HavenConnecticutUSA
- Bahçeşehir Üniversitesi, IstanbulTurkey
| | - Asma Deeb
- Paediatric Endocrinology DivisionShaikh Shakhbout Medical CityAbu DhabiUnited Arab Emirates
| | | | - Simon Heller
- Department of Oncology & Metabolism, The Medical SchoolUniversity of SheffieldSheffieldUK
- Sheffield Teaching Hospitals NHS Foundation Trust, SheffieldUK
| | | | - Lalantha Leelarathna
- Manchester Diabetes Centre, Manchester University NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Chantal Mathieu
- Department of EndocrinologyUniversity Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Hood Thabit
- Manchester Diabetes Centre, Manchester University NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
| | - Emma G. Wilmot
- Diabetes Department, Royal Derby Hospital, University Hospitals of Derby and Burton NHSFTDerbyUK
- Faculty of Medicine & Health SciencesUniversity of NottinghamNottinghamUK
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
| | - Carmel E. Smart
- School of Health Sciences, University of NewcastleCallaghanNew South WalesAustralia
- Department of Paediatric Diabetes and EndocrinologyJohn Hunter Children’s HospitalNewcastleNew South WalesAustralia
| | - Peter G. Jacobs
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandOregonUSA
| | - Richard M. Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A‐STEM), College of EngineeringSwansea UniversitySwanseaUK
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
| |
Collapse
|
36
|
Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des 2020; 26:946-957. [PMID: 31912769 DOI: 10.2174/1381612826666200108113002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is characterized by an autoimmune β-cell destruction resulting in endogenous insulin deficiency, potentially leading to micro- and macrovascular complications. Besides an exogenous insulin therapy and continuous glucose monitoring, physical exercise is recommended in adults with type 1 diabetes to improve overall health. The close relationship between physical exercise, inflammation, muscle contraction, and macronutrient intake has never been discussed in detail about type 1 diabetes. The aim of this narrative review was to detail the role of physical exercise in improving clinical outcomes, physiological responses to exercise and different nutrition and therapy strategies around exercise. Physical exercise has several positive effects on glucose uptake and systemic inflammation in adults with type 1 diabetes. A new approach via personalized therapy adaptations must be applied to target beneficial effects on complications as well as on body weight management. In combination with pre-defined macronutrient intake around exercise, adults with type 1 diabetes can expect similar physiological responses to physical exercise, as seen in their healthy counterparts. This review highlights interesting findings from recent studies related to exercise and type 1 diabetes. However, there is limited research available accompanied by a proper number of participants in the cohort of type 1 diabetes. Especially for this group of patients, an increased understanding of the impact of physical exercise can improve its effectiveness as an adjuvant therapy to move (forward).
Collapse
Affiliation(s)
- Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel J West
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| |
Collapse
|
37
|
Yardley JE. Fasting May Alter Blood Glucose Responses to High-Intensity Interval Exercise in Adults With Type 1 Diabetes: A Randomized, Acute Crossover Study. Can J Diabetes 2020; 44:727-733. [PMID: 33160882 DOI: 10.1016/j.jcjd.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES In individuals with type 1 diabetes (T1D), changes in blood glucose (BG) during high-intensity interval exercise (HIIE) are smaller than those observed during aerobic exercise. Study outcomes, however, have been variable, with some demonstrating significant BG decreases and others showing BG increases. This study compared BG outcomes between fasting (AME) and postprandial (PME) HIIE in T1D to test the hypothesis that AME would produce a BG increase, yet PME would cause BG to decline. METHODS Twelve (6 men and 6 women) physically active individuals with T1D performed two 45-minute exercise sessions (AME at 7:00 AM, PME at 5:00 PM) in random order, separated by at least 48 hours. Sessions consisted of a 10-minute warmup (50%VO2peak), followed by 10-second sprints every 2 minutes for 24 minutes, and then an 11-minute cooldown. Capillary glucose was measured pre- and postexercise, and then 60 minutes postexercise. Interstitial glucose was recorded for 24 hours postexercise using continuous glucose monitoring. RESULTS AME caused capillary glucose to increase (from 7.6±1.4 to 9.2±2.9 mmol/L during exercise, and 9.9±2.8 mmol/L in recovery), whereas PME produced a decline in capillary glucose (from 9.9±3.1 to 9.5±3.4 mmol/L during exercise and 8.9±2.7 mmol/L during recovery; time × treatment interaction, p=0.014). PME was associated with a higher frequency of hyperglycemic events in the 6 hours and overnight (midnight to 6:00 AM) after exercise. CONCLUSIONS Fasting HIIE results in a different BG trajectory than postprandial exercise in T1D, and may be beneficial for hypoglycemia avoidance during exercise.
Collapse
Affiliation(s)
- Jane E Yardley
- Augustana Faculty, University of Alberta, Camrose, Alberta, Canada; Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, Canada; Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada; Women's and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
38
|
Sandig D, Grimsmann J, Reinauer C, Melmer A, Zimny S, Müller-Korbsch M, Forestier N, Zeyfang A, Bramlage P, Danne T, Meissner T, Holl RW. Continuous Glucose Monitoring in Adults with Type 1 Diabetes: Real-World Data from the German/Austrian Prospective Diabetes Follow-Up Registry. Diabetes Technol Ther 2020; 22:602-612. [PMID: 32522039 DOI: 10.1089/dia.2020.0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: To analyze key indicators of metabolic control in adults with type 1 diabetes (T1D) using real-time or intermittent scanning continuous glucose monitoring (rtCGM/iscCGM) during real-life care, based on the German/Austrian/Swiss Prospective Diabetes Follow-up (DPV) registry. Methods: Cross-sectional analysis including 233 adults with T1D using CGM. We assessed CGM metrics by gender, age group (18 to <30 years vs. ≥30 years), insulin delivery method (multiple daily injections vs. continuous subcutaneous insulin infusion [CSII]) and sensor type (iscCGM vs. rtCGM), working days versus weekends, and daytime versus night-time using multivariable linear regression models (adjusted for demographic variables) or Wilcoxon signed-rank test. Results: Overall, 79/21% of T1D patients used iscCGM/rtCGM. Those aged ≥30 years spent more time in range (TIR [70-180 mg/dL] 54% vs. 49%) and hypoglycemic range <70 mg/dL (7% vs. 5%), less time in hyperglycemic range >180 mg/dL (38% vs. 46%) and had a lower glucose variability (coefficient of variation [CV] 36% vs. 37%) compared with adults aged <30 years. We found no significant differences between genders. Multivariable regression models revealed the highest Time In Range (TIR) and lowest time with sensor glucose >250 mg/dL, CV and daytime-night-time differences in those treated with CSII and rtCGM. Glucose profiles were slightly more favorable on working days. Conclusions: In our real-world data, rtCGM versus iscCGM was associated with a higher percentage of TIR and improved metabolic stability. Differences in ambulatory glucose profiles on working and weekend days may indicate lifestyle habits affecting glycemic stability. Real-life CGM results should be included in benchmarking reports in addition to hemoglobin A1c (HbA1c) and history of hypoglycemia.
Collapse
Affiliation(s)
| | - Julia Grimsmann
- Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christina Reinauer
- Department of Pediatrics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas Melmer
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stefan Zimny
- Department of General Internal Medicine, Endocrinology and Diabetology, Helios Clinic Schwerin, Schwerin, Germany
| | | | | | - Andrej Zeyfang
- Department of Internal Medicine, Medius-Clinic, Ostfildern-Ruit, Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Thomas Danne
- Diabetes Center for Children and Adolescents, Kinder-und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Thomas Meissner
- Department of Pediatrics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| |
Collapse
|
39
|
Yardley JE. Exercise and the Artificial Pancreas: Trying to Predict the Unpredictable in Patients With Type 1 Diabetes? Can J Diabetes 2020; 44:119-120. [DOI: 10.1016/j.jcjd.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Zaharieva DP, McGaugh S, Davis EA, Riddell MC. Advances in Exercise, Physical Activity, and Diabetes. Diabetes Technol Ther 2020; 22:S109-S118. [PMID: 32069147 DOI: 10.1089/dia.2020.2508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dessi P Zaharieva
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sarah McGaugh
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Elizabeth A Davis
- Children's Diabetes Centre, Perth Children's Hospital, Perth, WA, Australia
- University of Western Australia Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- LMC Diabetes & Endocrinology, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Yardley JE. The Athlete with Type 1 Diabetes: Transition from Case Reports to General Therapy Recommendations. Open Access J Sports Med 2019; 10:199-207. [PMID: 31827338 PMCID: PMC6902845 DOI: 10.2147/oajsm.s149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
Fear of hypoglycemia is a common barrier to exercise and physical activity for individuals with type 1 diabetes. While some of the earliest studies in this area involved only one or two participants, the link between exercise, exogenous insulin, and hypoglycemia was already clear, with the only suggested management strategies being to decrease insulin dosage and/or consume carbohydrates before and after exercise. Over the past 50 years, a great deal of knowledge has been developed around the impact of different types and intensities of exercise on blood glucose levels in this population. Recent decades have also seen the development of technologies such as continuous glucose monitors, faster-acting insulins and commercially available insulin pumps to allow for the real-time observation of interstitial glucose levels, and more precise adjustments to insulin dosage before, during and after activity. As such, there are now evidence-based exercise and physical activity guidelines for individuals with type 1 diabetes. While the risk of hypoglycemia has not been completely eliminated, therapy recommendations have evolved considerably. This review discusses the evolution of the knowledge and the technology related to type 1 diabetes and exercise that have allowed this evolution to take place.
Collapse
Affiliation(s)
- Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, Edmonton, Canada.,Augustana Faculty, University of Alberta, Camrose, Canada.,Women's and Children's Research Institute, Edmonton, Canada
| |
Collapse
|