1
|
Mahida RY, Lax S, Bassford CR, Scott A, Parekh D, Hardy RS, Naidu B, Matthay MA, Stewart PM, Cooper MC, Perkins GD, Thickett DR. Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS. Front Immunol 2023; 14:1159831. [PMID: 37180160 PMCID: PMC10172463 DOI: 10.3389/fimmu.2023.1159831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a devastating pulmonary inflammatory disorder, commonly precipitated by sepsis. Glucocorticoids are immunomodulatory steroids that can suppress inflammation. Their anti-inflammatory properties within tissues are influenced by their pre-receptor metabolism and amplification from inactive precursors by 11β-hydroxysteroid dehydrogenase type-1 (HSD-1). We hypothesised that in sepsis-related ARDS, alveolar macrophage (AM) HSD-1 activity and glucocorticoid activation are impaired, and associated with greater inflammatory injury and worse outcomes. Methods We analysed broncho-alveolar lavage (BAL) and circulating glucocorticoid levels, AM HSD-1 reductase activity and Receptor for Advanced Glycation End-products (RAGE) levels in two cohorts of critically ill sepsis patients, with and without ARDS. AM HSD-1 reductase activity was also measured in lobectomy patients. We assessed inflammatory injury parameters in models of lung injury and sepsis in HSD-1 knockout (KO) and wild type (WT) mice. Results No difference in serum and BAL cortisol: cortisone ratios are shown between sepsis patients with and without ARDS. Across all sepsis patients, there is no association between BAL cortisol: cortisone ratio and 30-day mortality. However, AM HSD-1 reductase activity is impaired in patients with sepsis-related ARDS, compared to sepsis patients without ARDS and lobectomy patients (0.075 v 0.882 v 0.967 pM/hr/106 AMs, p=0.004). Across all sepsis patients (with and without ARDS), impaired AM HSD-1 reductase activity is associated with defective efferocytosis (r=0.804, p=0.008) and increased 30-day mortality. AM HSD-1 reductase activity negatively correlates with BAL RAGE in sepsis patients with ARDS (r=-0.427, p=0.017). Following intra-tracheal lipopolysaccharide (IT-LPS) injury, HSD-1 KO mice demonstrate increased alveolar neutrophil infiltration, apoptotic neutrophil accumulation, alveolar protein permeability and BAL RAGE concentrations compared to WT mice. Caecal Ligation and Puncture (CLP) injury in HSD-1 KO mice results in greater peritoneal apoptotic neutrophil accumulation compared to WT mice. Conclusions AM HSD-1 reductase activity does not shape total BAL and serum cortisol: cortisone ratios, however impaired HSD-1 autocrine signalling renders AMs insensitive to the anti-inflammatory effects of local glucocorticoids. This contributes to the decreased efferocytosis, increased BAL RAGE concentrations and mortality seen in sepsis-related ARDS. Upregulation of alveolar HSD-1 activity could restore AM function and improve clinical outcomes in these patients.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Siân Lax
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher R. Bassford
- Department of General Critical Care, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine, and Department of Anaesthesia, University of California San Francisco, San Francisco, California, CA, United States
| | - Paul M. Stewart
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark C. Cooper
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
3
|
Anderson AJ, Andrew R, Homer NZM, Hughes KA, Boyle LD, Nixon M, Karpe F, Stimson RH, Walker BR. Effects of Obesity and Insulin on Tissue-Specific Recycling Between Cortisol and Cortisone in Men. J Clin Endocrinol Metab 2021; 106:e1206-e1220. [PMID: 33270115 PMCID: PMC7947841 DOI: 10.1210/clinem/dgaa896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT 11β-Hydroxysteroid dehydrogenase 1 (11βHSD1) reduces inert cortisone into active cortisol but also catalyzes reverse dehydrogenase activity. Drivers of cortisol/cortisone equilibrium are unclear. With obesity, 11βHSD1 transcripts are more abundant in adipose, but the consequences for oxidation vs reduction remain unknown. OBJECTIVE This work aimed to determine whether 11βHSD1 equilibrium in metabolic tissues is regulated by insulin and obesity. METHODS A 2-phase, randomized, crossover, single-blinded study in a clinical research facility was conducted of 10 lean and obese healthy men. 11β-Reductase and 11β-dehydrogenase activities were measured during infusion of 9,11,12,12-[2H]4-cortisol and 1,2-[2H]2-cortisone, respectively, on 2 occasions: once during saline infusion and once during a hyperinsulinemic-euglycemic clamp. Arterialized and venous samples were obtained across forearm skeletal muscle and abdominal subcutaneous adipose. Steroids were quantified by liquid chromatography-tandem mass spectrometry and adipose tissue transcripts by quantitative polymerase chain reaction. RESULTS Neither whole-body nor tissue-specific rates of production of cortisol or cortisone differed between lean and obese men, however insulin attenuated the diurnal decrease. Whole-body 11β-HSD1 reductase activity tended to be higher in obesity (~ 10%) and was further increased by insulin. Across adipose tissue, 11β-reductase activity was detected in obese individuals only and increased in the presence of insulin (18.99 ± 9.62 vs placebo 11.68 ± 3.63 pmol/100 g/minute; P < .05). Across skeletal muscle, 11β-dehydrogenase activity was reduced by insulin in lean men only (2.55 ± 0.90 vs 4.50 ± 1.42 pmol/100 g/minute, P < .05). CONCLUSIONS Regeneration of cortisol is upregulated by insulin in adipose tissue but not skeletal muscle. In obesity, the equilibrium between 11β-reductase and 11β-dehydrogenase activities likely promotes cortisol accumulation in adipose, which may lead to adverse metabolic consequences.
Collapse
Affiliation(s)
- Anna J Anderson
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Correspondence: Ruth Andrew, PhD, Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, EH16 4TJ Edinburgh, Scotland, UK.
| | - Natalie Z M Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katherine A Hughes
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Luke D Boyle
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark Nixon
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, University of Oxford, Headington, Oxford, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Suzuki T, Satoh F, Sasano H. Pathology of Aldosterone Biosynthesis and its Action. TOHOKU J EXP MED 2021; 254:1-15. [PMID: 34011803 DOI: 10.1620/tjem.254.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aldosterone plays pivotal roles in renin-angiotensin-aldosterone system in order to maintain the equilibrium of liquid volume and electrolyte metabolism. Aldosterone action is mediated by both mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Its excessive actions directly induced tissue injuries in its target organs such as myocardial and vascular fibrosis in addition to chronic kidney diseases. Excessive aldosterone actions were also reported to be involved in unbalanced electrolyte metabolism in inflammatory bowel disease and development of pulmonary diseases. Hyperaldosteronism is tentatively classified into primary and secondary types. Primary aldosteronism is more frequent and has been well known to result in secondary hypertension with subsequent cardiovascular damages. Primary aldosteronism is also further classified into distinctive subtypes and among those, aldosterone-producing adenoma is the most frequent one accounting for the great majority of unilateral primary aldosteronism cases. In bilateral hyperaldosteronism, aldosterone-producing diffuse hyperplasia and aldosterone-producing micronodules or nodules are the major subtypes. All these aldosterone-producing lesions were reported to harbor somatic mutations including KCNJ5, CACNA1D, ATP1A1 and ATP2B3, which were all related to excessive aldosterone production. Among those mutations above, somatic mutation of KCNJ5 is the most frequent in aldosterone-producing adenoma and mostly composed of clear cells harboring abundant aldosterone synthase expression. In contrast, CACNA1D-mutated aldosterone-producing micronodules or aldosterone-producing nodules were frequently detected not only in primary aldosteronism patients but also in the zona glomerulosa of normal adrenal glands, which could eventually lead to an autonomous aldosterone production resulting in normotensive or overt primary aldosteronism, but their details have remained unknown.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University, Graduate School of Medicine
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University, Graduate School of Medicine
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Hironobu Sasano
- Department of Pathology, Tohoku University, Graduate School of Medicine
| |
Collapse
|
5
|
Abstract
The first mineralocorticoid receptor (MR) antagonist, spironolactone, was developed almost 60 years ago to treat primary aldosteronism and pathological edema. Its use waned in part because of its lack of selectivity. Subsequently, knowledge of the scope of MR function was expanded along with clinical evidence of the therapeutic importance of MR antagonists to prevent the ravages of inappropriate MR activation. Forty-two years elapsed between the first and MR-selective second generation of MR antagonists. Fifteen years later, despite serious shortcomings of the existing antagonists, a third-generation antagonist has yet to be marketed. Progress has been slowed by the lack of appreciation of the large variety of cell types that express the MR and its diverse cell-type-specific actions, and also its unique complex interaction actions at the molecular level. New MR antagonists should preferentially target the inflammatory and fibrotic effects of MR and perhaps its excitatory effects on sympathetic nervous system, but not the renal tubular epithelium or neurons of the cortex and hippocampus. This review briefly describes efforts to develop a third-generation MR antagonist and why fourth generation antagonists and selective agonists based on structural determinants of tissue and ligand-specific MR activation should be contemplated.
Collapse
|
6
|
Máčová L, Sosvorová L, Vítků J, Bičíková M, Hill M, Zamrazilová H, Sedláčková B, Stárka L. Steroid hormones related to 11beta-hydroxysteroid dehydrogenase type 1 in treated obesity. Physiol Res 2015; 64:S121-33. [PMID: 26680473 DOI: 10.33549/physiolres.933073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The local concentration of glucocorticoids is intensively regulated by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD 1). Human 11beta-HSD 1 also reversibly catalyzes the inter-conversion of 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) into 7-oxo-DHEA. The cohort of 282 obese adolescents, 154 girls (median age 15.31 years, range 14.17-16.68 years) and 128 boys (median age 14.95 years, range 13.87-16.16 years), BMI (Body Mass Index) >90th percentile was examined. In samples collected before and after one month of reductive diet therapy, circulating levels of steroids were analyzed by liquid chromatography-tandem mass spectrometry and radioimmunoassay methods. The model of the treatment efficacy prediction was calculated. A significant reduction in circulating levels of cortisone, E2 and increased levels of 7beta-hydroxy-DHEA after the reductive treatment was observed. Levels of cortisol, DHEA, DHT sustained without any significant change. The predictive Orthogonal Projections to Latent Structures (OPLS) model explained 20.1 % of variability of BMI, z-score change by the basal levels of 7alpha-hydroxy-DHEA, DHEA, cortisol and E2 as the strongest predictors. Reduced levels of circulating cortisone and reduced ratios of oxygenated/reduced metabolites reflect increased reductase activity of 11beta-HSD 1 with reduced BMI, z-score. We hypothesize whether these changes can be attributed to the altered activity of 11beta-HSD 1 in the liver.
Collapse
Affiliation(s)
- L Máčová
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fafián-Labora J, Fernández-Pernas P, Fuentes I, De Toro J, Oreiro N, Sangiao-Alvarellos S, Mateos J, Arufe M. Influence of age on rat bone-marrow mesenchymal stem cells potential. Sci Rep 2015; 5:16765. [PMID: 26581954 PMCID: PMC4652164 DOI: 10.1038/srep16765] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells promising role in cell-based therapies and tissue engineering appears to be limited due to a decline of their regenerative potential with increasing donor age. Six age groups from bone marrow mesenchymal stem cells of Wistar rats were studied (newborn, infant, young, pre-pubertal, pubertal and adult). Quantitative proteomic assay was performance by iTRAQ using an 8-plex iTRAQ labeling and the proteins differentially expressed were grouped in pluripotency, proliferative and metabolism processes. Proliferation makers, CD117 and Ki67 were measure by flow cytometry assay. Real time polymerase chain reaction analysis of pluripotency markers Rex1, Oct4, Sox2 and Nanog were done. Biological differentiation was realized using specific mediums for 14 days to induce osteogenesis, adipogenesis or chondrogenesis and immunostain analysis of differentiated cell resulting were done. Enzimoimmunoassay analysis of several enzymes as L-lactate dehydrogenase and glucose-6-phosphate isomerase were also done to validate iTRAQ data. Taking together these results indicate for the first time that mesenchymal stem cells have significant differences in their proliferative, pluripotency and metabolism profiles and those differences are age depending.
Collapse
Affiliation(s)
- J. Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - P. Fernández-Pernas
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - I. Fuentes
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - J. De Toro
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - N. Oreiro
- Grupo de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatologia. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC). As Xubias, 15006. A Coruña, España
| | - S. Sangiao-Alvarellos
- Grupo Fisiopatología Endocrina, Nutricional y Médica (FENM-CHUAC). Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - J. Mateos
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - M.C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| |
Collapse
|
8
|
Woods C, Tomlinson JW. The Dehydrogenase Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids 2014; 91:20-31. [PMID: 25173821 PMCID: PMC4302001 DOI: 10.1016/j.steroids.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
Abstract
Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell interact at the molecular and functional level and these functions may be complementary or opposing depending on the cell type. Thus the balance between MR and GR expression and activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase required to generate the requisite cofactor for reductase activity, thus it acts as a dehydrogenase. MR antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a better therapeutic goal.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
10
|
Simerman AA, Hill DL, Grogan TR, Elashoff D, Clarke NJ, Goldstein EH, Manrriquez AN, Chazenbalk GD, Dumesic DA. Intrafollicular cortisol levels inversely correlate with cumulus cell lipid content as a possible energy source during oocyte meiotic resumption in women undergoing ovarian stimulation for in vitro fertilization. Fertil Steril 2014; 103:249-57. [PMID: 25439840 DOI: 10.1016/j.fertnstert.2014.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine whether follicular fluid (FF) cortisol levels affect cumulus cell (CC) lipid content during oocyte meiotic resumption, and whether CCs express genes for glucocorticoid action. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENT(S) Thirty-seven nonobese women underwent ovarian stimulation for in vitro fertilization (IVF). INTERVENTION(S) At oocyte retrieval, FF was aspirated from the first follicle (>16 mm in size) of each ovary and pooled CCs were collected. MAIN OUTCOME MEASURE(S) Follicular fluid cortisol and cortisone analysis was performed with the use of liquid chromatography-tandem mass spectrometry. CCs were stained with lipid fluorescent dye Bodipy FL C16 to determine lipid content with the use of confocal microscopy. Quantitative real-time polymerase chain reaction was used to detect CC gene expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2, glucocorticoid receptor (NR3C1), lipoprotein lipase (LPL), and hormone-sensitive lipase (HSL). RESULT(S) Adjusting for maternal age, FF cortisol levels negatively correlated with CC lipid content and positively correlated with numbers of total and mature oocytes. CCs expressed genes for 11β-HSD type 1 as the predominant 11β-HSD isoform, NR3C1, LPL, and HSL. CONCLUSION(S) FF cortisol levels may regulate CC lipolysis during oocyte meiotic resumption and affect oocyte quality during IVF.
Collapse
Affiliation(s)
- Ariel A Simerman
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - David L Hill
- ART Reproductive Center, Beverly Hills, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - David Elashoff
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - Nigel J Clarke
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Ellen H Goldstein
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Alexa N Manrriquez
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
11
|
Pang S, Wu H, Wang Q, Cai M, Shi W, Shang J. Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS One 2014; 9:e98283. [PMID: 24854026 PMCID: PMC4031121 DOI: 10.1371/journal.pone.0098283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Chronic stress can affect skin function, and some skin diseases might be triggered or aggravated by stress. Stress can activate the central hypothalamic–pituitary–adrenocortical (HPA) axis, which causes glucocorticoid levels to increase. The skin has HPA axis elements that react to environmental stressors to regulate skin functions, such as melanogenesis. This study explores the mechanism whereby chronic stress affects skin pigmentation, focusing on the HPA axis, and investigates the role of glucocorticoids in this pathway. We exposed C57BL/6 male mice to two types of chronic stress, chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Mice subjected to either stress condition showed reduced melanogenesis. Interestingly, CRS and CUMS triggered reductions in the mRNA expression levels of key factors involved in the HPA axis in the skin. In mice administered corticosterone, decreased melanin synthesis and reduced expression of HPA axis elements were observed. The reduced expression of HPA axis elements and melanogenesis in the skin of stressed mice were reversed by RU486 (a glucocorticoid receptor antagonist) treatment. Glucocorticoids had no significant inhibitory effect on melanogenesis in vitro. These results suggest that, high levels of serum corticosterone induced by chronic stress can reduce the expression of elements of the skin HPA axis by glucocorticoid-dependent negative feedback. These activities can eventually result in decreased skin pigmentation. Our findings raise the possibility that chronic stress could be a risk factor for depigmentation by disrupting the cutaneous HPA axis and should prompt dermatologists to exercise more caution when using glucocorticoids for treatment.
Collapse
Affiliation(s)
- Silin Pang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huali Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qian Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Minxuan Cai
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weimin Shi
- Shanghai First People Hospital, Shanghai, China
| | - Jing Shang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- * E-mail:
| |
Collapse
|
12
|
Mitić T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, Webster SP, Hadoke PWF, Walker BR, Andrew R. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem Pharmacol 2013; 86:146-53. [PMID: 23415904 PMCID: PMC3694296 DOI: 10.1016/j.bcp.2013.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 01/19/2023]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11βHSD1; EC 1.1.1.146) generates active glucocorticoids from inert 11-keto metabolites. However, it can also metabolize alternative substrates, including 7β-hydroxy- and 7-keto-cholesterol (7βOHC, 7KC). This has been demonstrated in vitro but its consequences in vivo are uncertain. We used genetically modified mice to investigate the contribution of 11βHSD1 to the balance of circulating levels of 7KC and 7βOHC in vivo, and dissected in vitro the kinetics of the interactions between oxysterols and glucocorticoids for metabolism by the mouse enzyme. Circulating levels of 7KC and 7βOHC in mice were 91.3 ± 22.3 and 22.6 ± 5.7 nM respectively, increasing to 1240 ± 220 and 406 ± 39 nM in ApoE−/− mice receiving atherogenic western diet. Disruption of 11βHSD1 in mice increased (p < 0.05) the 7KC/7βOHC ratio in plasma (by 20%) and also in isolated microsomes (2 fold). The 7KC/7βOHC ratio was similarly increased when NADPH generation was restricted by disruption of hexose-6-phosphate dehydrogenase. Reduction and oxidation of 7-oxysterols by murine 11βHSD1 proceeded more slowly and substrate affinity was lower than for glucocorticoids. in vitro 7βOHC was a competitive inhibitor of oxidation of corticosterone (Ki = 0.9 μM), whereas 7KC only weakly inhibited reduction of 11-dehydrocorticosterone. However, supplementation of 7-oxysterols in cultured cells, secondary to cholesterol loading, preferentially slowed reduction of glucocorticoids, rather than oxidation. Thus, in mouse, 11βHSD1 influenced the abundance and balance of circulating and tissue levels of 7βOHC and 7KC, promoting reduction of 7KC. In health, 7-oxysterols are unlikely to regulate glucocorticoid metabolism. However, in hyperlipidaemia, 7-oxysterols may inhibit glucocorticoid metabolism and modulate signaling through corticosteroid receptors.
Collapse
Affiliation(s)
- Tijana Mitić
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Skobowiat C, Sayre RM, Dowdy JC, Slominski AT. Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br J Dermatol 2013; 168:595-601. [PMID: 23363016 DOI: 10.1111/bjd.12096] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), and glucocorticoids (GC) and their receptor (GR) play a key role in tissue-specific regulation of GC action. OBJECTIVES To determine the expression of genes encoding 11β-HSD1 (HSD11B1), 11β-HSD2 (HSD11B2) and GR (GRα; also known as NC3R1) and their protein products, and levels of cortisol in human skin explants and/or cocultured keratinocytes/melanocytes after treatment with ultraviolet (UV) A, B or C wavebands. METHODS Skin from foreskins and/or cocultured human keratinocytes/melanocytes were irradiated with UVA, UVB or UVC (skin) and incubated for 12 and 24 h. Methods of reverse transcription-polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay and immunohistochemistry (IHC) were used to determine expression and localization of corresponding genes or antigens. RESULTS UVB enhanced the HSD11B1 gene and protein expression in a dose-dependent manner, while UVA had no effect. Similarly, UVC increased 11β-HSD1 protein product as measured by IHC. UVB and UVC enhanced cortisol production and decreased epidermal GR expression, while UVA had no detectable effects. Although both UVA and UVB stimulated HSD11B2 gene expression, only UVA increased 11β-HSD2 protein product levels with UVB and UVC having no effect. CONCLUSIONS We suggest that these differential, waveband-dependent effects of UV radiation on the expression of cutaneous HSD11B1, HSD11B2 and GRα genes and their corresponding protein products, and cortisol production are to protect and/or restore the epidermal barrier homeostasis against disruption caused by the elevated cortisol level induced by UVB and UVC.
Collapse
Affiliation(s)
- C Skobowiat
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
14
|
Hughes KA, Manolopoulos KN, Iqbal J, Cruden NL, Stimson RH, Reynolds RM, Newby DE, Andrew R, Karpe F, Walker BR. Recycling between cortisol and cortisone in human splanchnic, subcutaneous adipose, and skeletal muscle tissues in vivo. Diabetes 2012; 61:1357-64. [PMID: 22511204 PMCID: PMC3357308 DOI: 10.2337/db11-1345] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/04/2012] [Indexed: 12/17/2022]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) is a therapeutic target in metabolic syndrome because it catalyses reductase regeneration of cortisol from cortisone in adipose and liver. 11βHSD1 can also catalyze the reverse dehydrogenase reaction in vitro (e.g., if cofactor is limited). We used stable isotope tracers to test the hypothesis that both 11βHSD1-reductase and -dehydrogenase activities occur in human metabolic tissues in vivo. 1,2-[(2)H](2)-Cortisone (d2-cortisone) was validated as a tracer for 11β-dehydrogenase activity and its inhibition by licorice. d2-Cortisone and 9,11,12,12-[(2)H](4)-cortisol (d4-cortisol) (to measure 11β-reductase activity) were coinfused and venous samples obtained from skeletal muscle, subcutaneous adipose (n = 6), and liver (n = 4). Steroids were measured by liquid chromatography-tandem mass spectrometry and arteriovenous differences adjusted for blood flow. Data are means ± SEM. 11β-Reductase and -dehydrogenase activities were detected in muscle (cortisol release 19.7 ± 4.1 pmol/100 mL/min, d3-cortisol 5.9 ± 1.8 pmol/100 mL/min, and cortisone 15.2 ± 5.8 pmol/100 mL/min) and splanchnic (cortisol 64.0 ± 11.4 nmol/min, d3-cortisol 12.9 ± 2.1 nmol/min, and cortisone 19.5 ± 2.8 nmol/min) circulations. In adipose, dehydrogenase was more readily detected than reductase (cortisone release 38.7 ± 5.8 pmol/100 g/min). Active recycling between cortisol and cortisone in metabolic tissues in vivo may facilitate dynamic control of intracellular cortisol but makes consequences of dysregulation of 11βHSD1 transcription in obesity and diabetes unpredictable. Disappointing efficacy of 11βHSD1 inhibitors in phase II studies could be explained by lack of selectivity for 11β-reductase.
Collapse
Affiliation(s)
- Katherine A Hughes
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Czegle I, Csala M, Mandl J, Benedetti A, Karádi I, Bánhegyi G. G6PT-H6PDH-11βHSD1 triad in the liver and its implication in the pathomechanism of the metabolic syndrome. World J Hepatol 2012; 4:129-38. [PMID: 22567185 PMCID: PMC3345537 DOI: 10.4254/wjh.v4.i4.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/16/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome, one of the most common clinical conditions in recent times, represents a combination of cardiometabolic risk determinants, including central obesity, glucose intolerance, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease and hypertension. Prevalence of the metabolic syndrome is rapidly increasing worldwide as a consequence of common overnutrition and consequent obesity. Although a unifying picture of the pathomechanism is still missing, the key role of the pre-receptor glucocorticoid activation has emerged recently. Local glucocorticoid activation is catalyzed by a triad composed of glucose-6-phosphate-transporter, hexose-6-phosphate dehydrogenase and 11β-hydroxysteroid dehydrogenase type 1 in the endoplasmic reticulum. The elements of this system can be found in various cell types, including adipocytes and hepatocytes. While the contribution of glucocorticoid activation in adipose tissue to the pathomechanism of the metabolic syndrome has been well established, the relative importance of the hepatic process is less understood. This review summarizes the available data on the role of the hepatic triad and its role in the metabolic syndrome, by confronting experimental findings with clinical observations.
Collapse
Affiliation(s)
- Ibolya Czegle
- Ibolya Czegle, István Karádi, 3rd Department of Internal Medicine, Semmelweis University, 1125 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Veyrat-Durebex C, Deblon N, Caillon A, Andrew R, Altirriba J, Odermatt A, Rohner-Jeanrenaud F. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS One 2012; 7:e34002. [PMID: 22479501 PMCID: PMC3316512 DOI: 10.1371/journal.pone.0034002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/24/2012] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.
Collapse
Affiliation(s)
- Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Blouin K, Nadeau M, Mailloux J, Daris M, Lebel S, Luu-The V, Tchernof A. Pathways of adipose tissue androgen metabolism in women: depot differences and modulation by adipogenesis. Am J Physiol Endocrinol Metab 2009; 296:E244-55. [PMID: 18984855 DOI: 10.1152/ajpendo.00039.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective was to examine pathways of androgen metabolism in abdominal adipose tissue in women. Abdominal subcutaneous (SC) and omental (OM) adipose tissue samples were surgically obtained in women. Total RNA was isolated from whole adipose tissue samples and from primary preadipocyte cultures before and after induction of differentiation. Expression levels of several steroid-converting enzyme transcripts were examined by real-time RT-PCR. Androgen conversion rates were also measured. We found higher expression levels in SC compared with OM adipose tissue for type 1 3beta-hydroxysteroid dehydrogenase (3beta-HSD-1; P < 0.05), for aldo-keto reductase 1C3 (AKR1C3; P < 0.0001), for AKR1C2 (P < 0.0001), and for the androgen receptor (P < 0.0001). 17beta-HSD-2 mRNA levels were lower in SC adipose tissue (P < 0.05). Induction of adipocyte differentiation led to significantly increased expression levels in SC cultures for AKR1C3 (4.7-fold, P < 0.01), 11-cis-retinol dehydrogenase (6.9-fold, P < 0.02), AKR1C2 (5.6-fold, P < 0.004), P-450 aromatase (5.7-fold, P < 0.02), steroid sulfatase (3.1-fold, P < 0.02), estrogen receptor-beta (11.8-fold, P < 0.01), and the androgen receptor (4.0-fold, P < 0.0005). Generally similar but nonsignificant trends were obtained in OM cultures. DHT inactivation rates increased with differentiation, this effect being mediated by dexamethasone alone, through a glucocorticoid receptor-dependent mechanism. In conclusion, higher mRNA levels of enzymes synthesizing and inactivating androgens are found in differentiated adipocytes, consistent with higher androgen-processing rates in these cells. Glucocorticoid-induced androgen inactivation may locally modulate the exposure of adipose cells to active androgens.
Collapse
Affiliation(s)
- Karine Blouin
- Molecular Endocrinology and Oncology Research Ctr., Laval University Medical Research Ctr., 2705 Laurier Blvd. (T3-67 Québec, QC, Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
18
|
Balachandran A, Guan H, Sellan M, van Uum S, Yang K. Insulin and dexamethasone dynamically regulate adipocyte 11beta-hydroxysteroid dehydrogenase type 1. Endocrinology 2008; 149:4069-79. [PMID: 18467433 PMCID: PMC2488250 DOI: 10.1210/en.2008-0088] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The adipocyte enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) amplifies local glucocorticoid action by generating active glucocorticoids from inactive metabolites and has emerged as a key player in the pathogenesis of central obesity and metabolic syndrome. However, the regulation of adipocyte 11beta-HSD1 is incompletely understood. Therefore, the present study was designed to investigate the effects of insulin and glucocorticoid as well as their underlying molecular mechanisms on 11beta-HSD1 activity and expression in 3T3-L1 adipocytes and determine whether the in vitro findings could be confirmed in vivo. Our main in vitro findings are 1) insulin stimulated whereas dexamethasone inhibited 11beta-HSD1 activity and expression in a time- and concentration-dependent manner; 2) the effect of dexamethasone was mimicked by both cortisol and corticosterone but blocked by the glucocorticoid receptor antagonist RU486; 3) the p38 MAPK inhibitor SB220025, but not the ERK inhibitor U0126 or the phosphatidylinositol 3-kinase inhibitor LY294002, prevented insulin stimulation of 11beta-HSD1 activity; and 4) although dexamethasone did not alter the half-life of 11beta-HSD1 mRNA, insulin doubled it. Taken together, these in vitro results demonstrate that insulin stimulates adipocyte 11beta-HSD1 through a posttranscriptional mechanism that involves activation of the p38 MAPK signaling pathway, whereas dexamethasone exerts an opposite effect by a glucocorticoid receptor-mediated transcriptional mechanism. In contrast, both insulin and dexamethasone augmented 11beta-HSD1 activity and expression in rat white adipose tissue in vivo, thus confirming the role of insulin but revealing a fundamental difference regarding the role of dexamethasone in regulating adipocyte 11beta-HSD1 between the two model systems.
Collapse
Affiliation(s)
- Aran Balachandran
- Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Bujalska IJ, Gathercole LL, Tomlinson JW, Darimont C, Ermolieff J, Fanjul AN, Rejto PA, Stewart PM. A novel selective 11beta-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis. J Endocrinol 2008; 197:297-307. [PMID: 18434359 PMCID: PMC2315694 DOI: 10.1677/joe-08-0050] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/26/2008] [Accepted: 03/04/2008] [Indexed: 01/22/2023]
Abstract
Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11beta-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11beta-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1.0 microM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11beta-HSD1 inhibitor PF-877423. 11beta-HSD1 mRNA expression increased across adipocyte differentiation (P<0.001, n=4), which was paralleled by an increase in 11beta-HSD1 oxo-reductase activity (from nil on day 0 to 5.9+/-1.9 pmol/mg per h on day 16, P<0.01, n=7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P<0.001) and glycerol-3-phosphate dehydrogenase 47-fold (P<0.001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11beta-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11beta-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS.
Collapse
Affiliation(s)
| | | | | | - C Darimont
- Nestle Research CenterPO Box 44, Vers-Chez-Les-Blanc, 1000, Lausanne 26Switzerland
| | - J Ermolieff
- Pfizer Global Research and DevelopmentLa Jolla Laboratories10646 Science Center Drive, San Diego, California, 92121USA
| | - A N Fanjul
- Pfizer Global Research and DevelopmentLa Jolla Laboratories10646 Science Center Drive, San Diego, California, 92121USA
| | - P A Rejto
- Pfizer Global Research and DevelopmentLa Jolla Laboratories10646 Science Center Drive, San Diego, California, 92121USA
| | - P M Stewart
- (Correspondence should be addressed to P M Stewart;
)
| |
Collapse
|
20
|
Nashev LG, Chandsawangbhuwana C, Balazs Z, Atanasov AG, Dick B, Frey FJ, Baker ME, Odermatt A. Hexose-6-phosphate dehydrogenase modulates 11beta-hydroxysteroid dehydrogenase type 1-dependent metabolism of 7-keto- and 7beta-hydroxy-neurosteroids. PLoS One 2007; 2:e561. [PMID: 17593962 PMCID: PMC1891437 DOI: 10.1371/journal.pone.0000561] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 05/27/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11beta-HSD1 activity has to be considered for understanding both glucocorticoid and neurosteroid action in different tissues.
Collapse
Affiliation(s)
- Lyubomir G. Nashev
- Institute of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | - Charlie Chandsawangbhuwana
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Zoltan Balazs
- Institute of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | - Atanas G. Atanasov
- Division of Immunopathology, Institute of Pathology, University of Berne, Berne, Switzerland
| | - Bernhard Dick
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | - Felix J. Frey
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | - Michael E. Baker
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Alex Odermatt
- Institute of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Abstract
Cushing's syndrome is a consequence of primary or, more commonly, secondary oversecretion of cortisol. Cardiovascular disease is the major cause of morbidity and mortality in Cushing's syndrome, and excess risk remains even in effectively treated patients. The cardiovascular consequences of cortisol excess are protean and include, inter alia, elevation of blood pressure, truncal obesity, hyperinsulinemia, hyperglycemia, insulin resistance, and dyslipidemia. This review analyses the relationship of cortisol excess, both locally and at tissue level, to these cardiovascular risk factors, and to putative mechanisms for hypertension. Previous studies have examined correlations between cortisol, blood pressure, and other parameters in the general population and in Cushing's syndrome. This review also details changes induced by short-term cortisol administration in normotensive healthy men.
Collapse
Affiliation(s)
- Judith A Whitworth
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
22
|
Nammi S, Dembele K, Nyomba BLG. Increased 11β-hydroxysteroid dehydrogenase type-1 and hexose-6-phosphate dehydrogenase in liver and adipose tissue of rat offspring exposed to alcohol in utero. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1101-9. [PMID: 17122334 DOI: 10.1152/ajpregu.00255.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat offspring prenatally exposed to alcohol display features of metabolic syndrome characterized by a low birth weight, catch-up growth, dyslipidemia, and insulin-resistant diabetes with increased gluconeogenesis, during adult life. Gluconeogenesis is partly regulated by cyclic AMP- and glucocorticoid-dependent mechanisms. Glucocorticoid action at the receptor level depends on its circulating concentrations and is amplified at the prereceptor level by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which regenerates active glucocorticoids from inactive forms. To determine whether 11β-HSD1 is dysregulated in this rat model, we examined the expression and enzyme activity of 11β-HSD1 and its regulator enzyme hexose-6-phosphate dehydrogenase (H6PD) in the liver of postnatal day 7 (neonatal) and 3-mo-old (adult) rat offspring prenatally exposed to alcohol. Measurements of 11β-HSD1 and H6PD were also performed in the omental fat of adult rat offspring. In both neonatal and adult rats, prenatal alcohol exposure resulted in increased tissue corticosterone concentrations, increased expression, and oxoreductase activity of 11β-HSD1, and a parallel increase of H6PD expression. The data suggest that due to both transcriptional and posttranscriptional dysregulations, rats exposed to alcohol early in life have increased 11β-HSD1 activity, which may explain insulin-resistant diabetes in these animals later in life.
Collapse
Affiliation(s)
- Srinivas Nammi
- John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, Manitoba, Canada R3E3P4
| | | | | |
Collapse
|
23
|
Bujalska IJ, Durrani OM, Abbott J, Onyimba CU, Khosla P, Moosavi AH, Reuser TTQ, Stewart PM, Tomlinson JW, Walker EA, Rauz S. Characterisation of 11beta-hydroxysteroid dehydrogenase 1 in human orbital adipose tissue: a comparison with subcutaneous and omental fat. J Endocrinol 2007; 192:279-88. [PMID: 17283228 PMCID: PMC1994563 DOI: 10.1677/joe-06-0042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0 x 001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0 x 05; protein, P<0 x 001). In addition, there was higher expression of glucocorticoid receptor (GR)alpha mRNA in the OF whole tissue depot (P<0 x 05). Conversely, 11beta-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11beta-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11beta-HSD1 but abundant GRalpha compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease.
Collapse
Affiliation(s)
- Iwona J Bujalska
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Omar M Durrani
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | - Joseph Abbott
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | - Claire U Onyimba
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | - Pamela Khosla
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
| | | | | | - Paul M Stewart
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Jeremy W Tomlinson
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Elizabeth A Walker
- Department of Endocrinology, Division of Medical Sciences, University of BirminghamBirminghamUK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of BirminghamBirminghamUK
- (Requests for offprints should be addressed to S Rauz Academic; )
| |
Collapse
|
24
|
Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev 2006; 38:89-116. [PMID: 16684650 PMCID: PMC2423429 DOI: 10.1080/03602530600569877] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dehydroepiandrosterone has been thought to have physiological functions other than as an androgen precursor. The previous studies performed have demonstrated a number of biological effects in rodents, such as amelioration of disease in diabetic, chemical carcinogenesis, and obesity models. To date, activation of the peroxisome proliferators activated receptor alpha, pregnane X receptor, and estrogen receptor by DHEA and its metabolites have been demonstrated. Several membrane-associated receptors have also been elucidated leading to additional mechanisms by which DHEA may exert its biological effects. This review will provide an overview of the receptor multiplicity involved in the biological activity of this sterol.
Collapse
Affiliation(s)
- Stephanie J Webb
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, KY 40292, USA
| | | | | | | |
Collapse
|
25
|
Wake DJ, Walker BR. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 in obesity. Endocrine 2006; 29:101-8. [PMID: 16622297 DOI: 10.1385/endo:29:1:101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/30/1999] [Accepted: 10/20/2005] [Indexed: 11/11/2022]
Abstract
Excessive glucocorticoid exposure (Cushing's syndrome) results in increased adiposity associated with dysmetabolic features (including insulin resistance, hyperlipidaemia, and hypertension). Circulating cortisol levels are not elevated in idiopathic obesity, although cortisol production and clearance are increased. However, tissue glucocorticoid exposure may be altered independently of circulating levels by 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1), an enzyme which generates active glucocorticoid within tissues, including in adipose tissue. Transgenic overexpression of 11HSD1 in mice causes obesity. In human obesity, 11HSD1 is altered in a tissue-specific manner with reduced levels in liver but elevated levels in adipose, which may lead to glucocorticoid receptor activation and contribute to the metabolic phenotype. The reasons for altered 11HSD1 in obesity are not fully understood. Although some polymorphisms have been demonstrated in intronic and upstream regions of the HSD11B1 gene, the functional significance of these is not clear. In addition, there is mounting evidence that 11HSD1 may be dysregulated secondarily to factors that are altered in obesity, including substrates for metabolism, hormones, and inflammatory mediators. 11HSD1 is a potential therapeutic target for the treatment of the metabolic syndrome. 11HSD1 knockout mice are protected from diet-induced obesity and associated metabolic dysfunction. Although many specific inhibitors of 11HSD1 have now been developed, and published data support their efficacy in the liver to reduce glucose production, their efficacy in enhancing insulin sensitivity in adipose tissue remains uncertain. The therapeutic potential of 11HSD1 in human obesity therefore remains highly promising but as yet unproven.
Collapse
Affiliation(s)
- Deborah J Wake
- University of Edinburgh, Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh EH16 4TJ
| | | |
Collapse
|
26
|
Paterson JM, Seckl JR, Mullins JJ. Genetic manipulation of 11β-hydroxysteroid dehydrogenases in mice. Am J Physiol Regul Integr Comp Physiol 2005; 289:R642-52. [PMID: 16105819 DOI: 10.1152/ajpregu.00017.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
11β-Hydroxysteroid dehydrogenases (HSDs) interconvert active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto derivatives (cortisone, 11-dehydrocorticosterone). 11β-HSD type 1 is a predominant reductase that regenerates active glucocorticoids in expressing cells, thus amplifying local glucocorticoid action, whereas 11β-HSD type 2 catalyzes rapid dehydrogenation, potently inactivating intracellular glucocorticoids. Both isozymes thus regulate receptor activation by substrate availability. Spatial and temporal regulation of expression are important determinants of the physiological roles of 11β-HSDs, with each isozyme exhibiting a distinct, tissue-restricted pattern together with dynamic regulation during development and in response to environmental challenges, including diet and stress. Transgenic approaches in the mouse have contributed significantly toward an understanding of the importance of these prereceptor regulatory mechanisms on corticosteroid receptor activity and have highlighted its potential relevance to human health and disease. Here we discuss current ideas of the physiological roles of 11β-HSDs, with emphasis on the key contributions made by studies of 11β-HSD gene manipulation in vivo.
Collapse
Affiliation(s)
- Janice M Paterson
- Univ. of Edinburgh, Molecular Physiology Group, Centre for Cardiovascular Science, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, UK.
| | | | | |
Collapse
|
27
|
Andrew R, Westerbacka J, Wahren J, Yki-Järvinen H, Walker BR. The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans. Diabetes 2005; 54:1364-70. [PMID: 15855321 DOI: 10.2337/diabetes.54.5.1364] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cortisol is regenerated from cortisone by 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1), amplifying glucocorticoid action in adipose tissue and liver. 11HSD1 inhibitors are being developed for type 2 diabetes and may be most effective in obesity, where adipose 11HSD1 is increased. However, the magnitude of regeneration of cortisol in different tissues in humans is unknown, hindering understanding of the pathophysiological and therapeutic importance of 11HSD1. In eight healthy men, we infused 9,11,12,12-(2)H4-cortisol and measured tracer enrichment in the hepatic vein as an indicator of total splanchnic cortisol generation. Oral cortisone (25 mg) was then given to measure first-pass hepatic cortisol generation. In steady state, splanchnic cortisol production was 45 +/- 11 nmol/min when arterialized plasma cortisone concentration was 92 +/- 7 nmol/l. Extrapolation from hepatic cortisol generation after oral cortisone suggested that, at steady state, the liver contributes 15.2 nmol/min and extrahepatic splanchnic tissue contributes 29.8 nmol/min to the total splanchnic cortisol production. We conclude that tissues draining into the portal vein, including visceral adipose tissue, contribute substantially to the regeneration of cortisol. Thus, in addition to free fatty acids and adipokines, the portal vein delivers cortisol to the liver, and inhibition of 11HSD1 in visceral adipose tissue may indeed be valuable in ameliorating insulin resistance in obesity.
Collapse
Affiliation(s)
- Ruth Andrew
- Endocrinology Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | | | | | | | | |
Collapse
|
28
|
Blouin K, Blanchette S, Richard C, Dupont P, Luu-The V, Tchernof A. Expression and activity of steroid aldoketoreductases 1C in omental adipose tissue are positive correlates of adiposity in women. Am J Physiol Endocrinol Metab 2005; 288:E398-404. [PMID: 15494612 DOI: 10.1152/ajpendo.00312.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined expression and activity of steroid aldoketoreductase (AKR) 1C enzymes in adipose tissue in women. AKR1C1 (20alpha-hydroxysteroid dehydrogenase; 20alpha-HSD), AKR1C2 (3alpha-HSD-3), and AKR1C3 (17beta-HSD-5) are involved mainly in conversion of progesterone to 20alpha-hydroxyprogesterone and inactivation of dihydrotestosterone to 5alpha-androstane-3alpha,17beta-diol. Abdominal subcutaneous and omental adipose tissue biopsies were obtained during abdominal hysterectomies in seven women with low visceral adipose tissue (VAT) area and seven age- and total body fat mass-matched women with visceral obesity. Women with elevated VAT areas were characterized by significantly higher omental adipose tissue 20alpha-HSD and 3alpha-HSD-3 mRNA abundance compared with women with low VAT accumulations (1.4- and 1.6-fold differences, respectively; P < 0.05). Omental and subcutaneous adipose tissue 3alpha-HSD activities were significantly higher in women with high vs. low VAT areas (P < 0.05 for both comparisons). Total and visceral adiposities were positively associated with omental 20alpha-HSD mRNA level (r = 0.75, P < 0.003 for fat mass; r = 0.57, P < 0.04 for VAT area) and omental 3alpha-HSD-3 mRNA level (r = 0.68, P < 0.01 for fat mass; r = 0.74, P < 0.003 for VAT area). Enzyme activities in both depots were also positively correlated with adiposity measures. Omental adipose tissue enzyme expression and activity were positively associated with omental adipocyte size and LPL activity. In conclusion, mRNA abundance and activity of AKR1C enzymes in abdominal adipose tissue compartments are positive correlates of adiposity in women. Increased progesterone and/or dihydrotestosterone reduction in abdominal adipose tissue may impact locally on fat cell metabolism.
Collapse
Affiliation(s)
- Karine Blouin
- Molecular Endocrinology and Oncology Research Center, Dept. of Nutrition, Laval University Medical Center, 2705 Laurier Boulevard, Rm. T3-67, Quebec City, Prov. Quebec, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
29
|
Stulnig TM, Waldhäusl W. 11beta-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes. Diabetologia 2004; 47:1-11. [PMID: 14652720 DOI: 10.1007/s00125-003-1284-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 10/29/2003] [Indexed: 10/26/2022]
Abstract
Obesity and Type 2 diabetes mellitus are associated with abnormal regulation of glucocorticoid metabolism that are highlighted by clinical similarities between the sequelae of insulin resistance and Cushing's syndrome, as well as glucocorticoids' functional antagonism to insulin. 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates functionally inert glucocorticoid precursors (cortisone) to active glucocorticoids (cortisol) within insulin target tissues, such as adipose tissue, thereby regulating local glucocorticoid action. Recent data, mainly from rodents, provide considerable evidence for a causal role of 11beta-HSD1 for the development of visceral obesity and Type 2 diabetes though data in humans are not unequivocal. This review summarizes current evidence on a possible role of 11beta-HSD1 for development of the metabolic syndrome, raising the possibility of novel therapeutic options for the treatment of Type 2 diabetes by inhibition or down-regulation of 11beta-HSD1 activity.
Collapse
Affiliation(s)
- T M Stulnig
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | |
Collapse
|
30
|
Paulmyer-Lacroix O, Boullu-Ciocca S, Oliver C, Dutour A, Grino M. [Glucocorticoids, 11 beta-hydroxysteroid dehydrogenase type 1, and visceral obesity]. Med Sci (Paris) 2003; 19:473-6. [PMID: 12836221 DOI: 10.1051/medsci/2003194473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glucocorticoids are implicated as a pathophysiological mediator of obesity and its accompanying metabolic and cardiovascular complications. Obese patients exhibit normal circulating cortisol levels, related to increased glucocorticoid production and degradation. However, it has been demonstrated that local production of active cortisol from inactive cortisone driven by 11 beta-hydroxysteroid dehydrogenase type 1 is exaggerated in adipose tissue of obese subjects. Such local hypercortisolism may be responsible for increased adipocyte differentiation and enhanced secretion of free fatty acids and other substances involved in the metabolic and cardiovascular complications observed in obesity.
Collapse
Affiliation(s)
- Odile Paulmyer-Lacroix
- Laboratoire des Interactions fonctionnelles en Neuroendocrinologie, UFR de Médecine secteur Nord, Institut Jean Roche, Université de la Méditerranée, boulevard Pierre Dramard, 13916 Marseille, France
| | | | | | | | | |
Collapse
|