1
|
Zhang Y, Zhong C, Shu X, Liu Q, Jiang Y. Estrogen Enhances FDFT1 Expression in Theca Cells of Chicken Hierarchical Ovarian Follicles by Increasing LSD1Ser54p Level Through GSK3β Phosphorylation at 216th Tyrosine. Biomolecules 2024; 14:1343. [PMID: 39595520 PMCID: PMC11591973 DOI: 10.3390/biom14111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
The development of chicken ovarian follicles involves two key stages of primordial follicle recruitment and follicle selection that are tightly regulated by multiple reproductive hormones and cytokines. Our previous study revealed an estrogen-stimulated increase in the phosphorylation level of serine at position 54 of lysine demethylase 1A (LSD1Ser54p) in the theca cells of chicken hierarchical ovarian follicles (Post-TCs). In this study, we further found that the upregulation of LSD1Ser54p by estrogen was performed by glycogen synthase kinase 3 beta (GSK3β) and that GSK3β promoted LSD1Ser54p levels by directly binding to the SWIRM and AOL1 domains of LSD1. Upon estrogen stimulation, the phosphorylation level of tyrosine at position 216 of GSK3β (GSK3βTyr216p) increased, which enhanced the binding between LSD1 and GSK3β. The subsequent transcriptome sequencing on chicken Post-TCs treated with estrogen and CUT&RUN sequencing against the LSD1Ser54p protein revealed that the expression of the farnesyl-diphosphate farnesyltransferase 1 (FDFT1) gene was simultaneously upregulated by estrogen, GSK3β, and LSD1Ser54p. Moreover, the overexpression of FDFT1 further promoted cholesterol biosynthesis in chicken Post-TCs. In short, the findings of this study suggest that estrogen-induced tyrosine phosphorylation at position 216 of GSK3β can upregulate the level of LSD1Ser54p, leading to the activation of FDFT1 expression and subsequently promoting cholesterol biosynthesis in chicken Post-TCs, which may in turn enhance estrogen synthesis.
Collapse
Affiliation(s)
- Yanhong Zhang
- College of Life Science, Shandong Agricultural University, Tai’an 271018, China;
| | - Conghao Zhong
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xinmei Shu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China;
| | - Qingxin Liu
- College of Life Science, Shandong Agricultural University, Tai’an 271018, China;
| | - Yunliang Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China;
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Tai’an 271017, China
| |
Collapse
|
2
|
Catalán-Salas V, Sagredo P, Melgarejo W, Donoso MV, Cárdenas JC, Zakarian A, Valdés D, Acuña-Castillo C, Huidobro-Toro JP. 17-β-estradiol and phytoestrogens elicit NO production and vasodilatation through PI3K, PKA and EGF receptors pathways, evidencing functional selectivity. Eur J Pharmacol 2024; 975:176636. [PMID: 38729417 DOI: 10.1016/j.ejphar.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells express multiple receptors mediating estrogen responses; including the G protein-coupled estrogen receptor (GPER). Past studies on nitric oxide (NO) production elicited by estrogens raised the question whether 17-β-estradiol (E2) and natural phytoestrogens activate equivalent mechanisms. We hypothesized that E2 and phytoestrogens elicit NO production via coupling to distinct intracellular pathways signalling. To this aim, perfusion of E2 and phytoestrogens to the precontracted rat mesentery bed examined vasorelaxation, while fluorescence microscopy on primary endothelial cells cultures quantified single cell NO production determined following 4-amino-5-methylamino-2',7'-difluoroescein diacetate (DAF) incubation. Daidzein (DAI) and genistein (GEN) induced rapid vasodilatation associated to NO production. Multiple estrogen receptor activity was inferred based on the reduction of DAF-NO signals; G-36 (GPER antagonist) reduced 75 % of all estrogen responses, while fulvestrant (selective nuclear receptor antagonist) reduced significantly more the phytoestrogens responses than E2. The joint application of both antagonists abolished the E2 response but not the phytoestrogen-induced DAF-NO signals. Wortmannin or LY-294002 (PI3K inhibitors), reduced by 90% the E2-evoked signal while altering significantly less the DAI-induced response. In contrast, H-89 (PKA inhibitor), elicited a 23% reduction of the E2-induced signal while blocking 80% of the DAI-induced response. Desmethylxestospongin-B (IP3 receptor antagonist), decreased to equal extent the E2 or the DAI-induced signal. Epidermal growth factor (EGF) induced NO production, cell treatment with AG-1478, an EGF receptor kinase inhibitor reduced 90% DAI-induced response while only 53% the E2-induced signals; highlighting GPER induced EGF receptor trans-modulation. Receptor functional selectivity may explain distinct signalling pathways mediated by E2 and phytoestrogens.
Collapse
Affiliation(s)
- Vicente Catalán-Salas
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Pablo Sagredo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Williams Melgarejo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - M Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - J Cesar Cárdenas
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, 8580745, Chile; Buck Institute for Research on Aging, Novato, CA, 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Daniel Valdés
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Claudio Acuña-Castillo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - J Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile; Unidad de Nanoseguridad, Centro de Nanociencia y Nanotecnología, CEDNNA, Santiago, Chile.
| |
Collapse
|
3
|
Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, R T, Nguyen HT, Pugazhendhi A. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. ENVIRONMENTAL RESEARCH 2024; 241:117385. [PMID: 37838203 DOI: 10.1016/j.envres.2023.117385] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Anshu Priya
- SRF-ICMR, CSIR-Institute of Genomics and Integrative Biology (IGIB), South Campus, New Delhi, 110025, India
| | - R Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thanushree A Hegde
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Thangamani R
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain's Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023; 13:1405. [PMID: 37759805 PMCID: PMC10526964 DOI: 10.3390/biom13091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| |
Collapse
|
5
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
6
|
Jiang Y, Horkeby K, Henning P, Wu J, Lawenius L, Engdahl C, Gupta P, Movérare-Skrtic S, Nilsson KH, Levin E, Ohlsson C, Lagerquist MK. Membrane estrogen receptor α signaling modulates the sensitivity to estradiol treatment in a dose- and tissue- dependent manner. Sci Rep 2023; 13:9046. [PMID: 37270592 DOI: 10.1038/s41598-023-36146-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.05 μg/mouse/day (low); 0.6 μg/mouse/day (medium)) or supraphysiological (6 μg/mouse/day (high)) doses of E2 (17β-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mERα signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mERα, suggesting a protective effect of mERα signaling in this tissue against supraphysiological E2 levels.
Collapse
Affiliation(s)
- Yiwen Jiang
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Karin Horkeby
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden.
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Lina Lawenius
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Priti Gupta
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Ellis Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| |
Collapse
|
7
|
Mazid S, Waters EM, Lopez-Lee C, Poultan Kamakura R, Rubin BR, Levin ER, McEwen BS, Milner TA. Both Nuclear and Membrane Estrogen Receptor Alpha Impact the Expression of Estrogen Receptors and Plasticity Markers in the Mouse Hypothalamus and Hippocampus. BIOLOGY 2023; 12:632. [PMID: 37106832 PMCID: PMC10135777 DOI: 10.3390/biology12040632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Estrogens via estrogen receptor alpha (ERα) genomic and nongenomic signaling can influence plasticity processes in numerous brain regions. Using mice that express nuclear only ERα (NOER) or membrane only ERα (MOER), this study examined the effect of receptor compartmentalization on the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus. The absence of nuclear and membrane ERα expression impacted females but not males in these two brain areas. In the PVN, quantitative immunohistochemistry showed that the absence of nuclear ERα increased nuclear ERβ. Moreover, in the hippocampus CA1, immuno-electron microscopy revealed that the absence of either nuclear or membrane ERα decreased extranuclear ERα and pTrkB in synapses. In contrast, in the dentate gyrus, the absence of nuclear ERα increased pTrkB in synapses, whereas the absence of membrane ERα decreased pTrkB in axons. However, the absence of membrane only ERα decreased the sprouting of mossy fibers in CA3 as reflected by changes in zinc transporter immunolabeling. Altogether these findings support the idea that both membrane and nuclear ERα contribute overlapping and unique actions of estrogen that are tissue- and cellular-specific.
Collapse
Affiliation(s)
- Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Chloe Lopez-Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Renata Poultan Kamakura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Batsheva R. Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Ellis R. Levin
- Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Wnuk A, Przepiórska K, Pietrzak BA, Kajta M. Emerging Evidence on Membrane Estrogen Receptors as Novel Therapeutic Targets for Central Nervous System Pathologies. Int J Mol Sci 2023; 24:ijms24044043. [PMID: 36835454 PMCID: PMC9968034 DOI: 10.3390/ijms24044043] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Nuclear- and membrane-initiated estrogen signaling cooperate to orchestrate the pleiotropic effects of estrogens. Classical estrogen receptors (ERs) act transcriptionally and govern the vast majority of hormonal effects, whereas membrane ERs (mERs) enable acute modulation of estrogenic signaling and have recently been shown to exert strong neuroprotective capacity without the negative side effects associated with nuclear ER activity. In recent years, GPER1 was the most extensively characterized mER. Despite triggering neuroprotective effects, cognitive improvements, and vascular protective effects and maintaining metabolic homeostasis, GPER1 has become the subject of controversy, particularly due to its participation in tumorigenesis. This is why interest has recently turned toward non-GPER-dependent mERs, namely, mERα and mERβ. According to available data, non-GPER-dependent mERs elicit protective effects against brain damage, synaptic plasticity impairment, memory and cognitive dysfunctions, metabolic imbalance, and vascular insufficiency. We postulate that these properties are emerging platforms for designing new therapeutics that may be used in the treatment of stroke and neurodegenerative diseases. Since mERs have the ability to interfere with noncoding RNAs and to regulate the translational status of brain tissue by affecting histones, non-GPER-dependent mERs appear to be attractive targets for modern pharmacotherapy for nervous system diseases.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| | | | | | - Małgorzata Kajta
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| |
Collapse
|
9
|
Davis D, Vajaria R, Delivopoulos E, Vasudevan N. Localisation of oestrogen receptors in stem cells and in stem cell-derived neurons of the mouse. J Neuroendocrinol 2023; 35:e13220. [PMID: 36510342 PMCID: PMC10909416 DOI: 10.1111/jne.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Oestrogen receptors (ER) transduce the effects of the endogenous ligand, 17β-estradiol in cells to regulate a number of important processes such as reproduction, neuroprotection, learning and memory and anxiety. The ERα or ERβ are classical intracellular nuclear hormone receptors while some of their variants or novel proteins such as the G-protein coupled receptor (GPCR), GPER1/GPR30 are reported to localise in intracellular as well as plasma membrane locations. Although the brain is an important target for oestrogen with oestrogen receptors expressed differentially in various nuclei, subcellular organisation and crosstalk between these receptors is under-explored. Using an adapted protocol that is rapid, we first generated neurons from mouse embryonic stem cells. Our immunocytochemistry approach shows that the full length ERα (ERα-66) and for the first time, that an ERα variant, ERα-36, as well as GPER1 is present in embryonic stem cells. In addition, these receptors typically decrease their nuclear localisation as neuronal maturation proceeds. Finally, although these ERs are present in many subcellular compartments such as the nucleus and plasma membrane, we show that they are specifically not colocalised with each other, suggesting that they initiate distinct signalling pathways.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
10
|
Michael P, Roversi G, Brown K, Sharifi N. Adrenal Steroids and Resistance to Hormonal Blockade of Prostate and Breast Cancer. Endocrinology 2023; 164:bqac218. [PMID: 36580423 PMCID: PMC10091490 DOI: 10.1210/endocr/bqac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer and breast cancer are sex-steroid-dependent diseases that are driven in major part by gonadal sex steroids. Testosterone (T) is converted to 5α-dihydrotestosterone, both of which stimulate the androgen receptor (AR) and prostate cancer progression. Estradiol is the major stimulus for estrogen receptor-α (ERα) and proliferation of ERα-expressing breast cancer. However, the human adrenal provides an alternative source for sex steroids. A number of different androgens are produced by the adrenals, the most abundant of which is dehydroepiandrosterone (DHEA) and DHEA sulfate. These precursor steroids are subject to metabolism by peripherally expressed enzymes that are responsible for the synthesis of potent androgens and estrogens. In the case of prostate cancer, the regulation of one of these enzymatic steps occurs at least in part by way of a germline-encoded missense in 3β-hydroxysteroid dehydrogenase-1 (3βHSD1), which regulates potent androgen biosynthesis and clinical outcomes in men with advanced prostate cancer treated with gonadal T deprivation. The sex steroids that drive prostate cancer and breast cancer require a common set of enzymes for their generation. However, the pathways diverge once 3-keto, Δ4-androgens are generated and these steroids are either turned into potent androgens by steroid-5α-reductase, or into estrogens by aromatase. Alternative steroid receptors have also emerged as disease- and treatment-resistance modifiers, including a role for AR in breast cancer and glucocorticoid receptor both in breast and prostate cancer. In this review, we integrate the commonalities of adrenal steroid physiology that regulate both prostate and breast cancer while recognizing the clear distinctions between these diseases.
Collapse
Affiliation(s)
- Patrick Michael
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Gustavo Roversi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Kristy Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
11
|
Negi A, Kesari KK, Voisin-Chiret AS. Estrogen Receptor-α Targeting: PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharmaceutics 2022; 14:pharmaceutics14112523. [PMID: 36432713 PMCID: PMC9699327 DOI: 10.3390/pharmaceutics14112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Targeting selective estrogen subtype receptors through typical medicinal chemistry approaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules are developed in order to inhibit the protein of interest (POI), and their popularity is based on their virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar range binding affinity and continuous dosage after a time interval for sustained inhibition of POI. These shortcomings were addressed by event-driven pharmacology-based approaches, which degrade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras), which has become one of the highly successful strategies of event-driven pharmacology (pharmacology that does the degradation of POI and diminishes its functions). The selective targeting of estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists. Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance commonly developed against these therapies, which led to selective estrogen receptor degrader (SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on the mechanism of degradation of ER-α, various types of strategies of developed.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University UNICAEN, 14000 Caen, France
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| |
Collapse
|
12
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
14
|
Chromatin modifiers – Coordinators of estrogen action. Biomed Pharmacother 2022; 153:113548. [DOI: 10.1016/j.biopha.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
|
15
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
16
|
Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, Gustafsson JA, Marroqui L, Nadal A. G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. ENVIRONMENT INTERNATIONAL 2022; 164:107250. [PMID: 35461094 DOI: 10.1016/j.envint.2022.107250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
17β-estradiol protects pancreatic β-cells from apoptosis via the estrogen receptors ERα, ERβ and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERβ, or in dispersed islet cells from ERβ knockout (BERKO) mice. However, the ERα and ERβ agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERβ form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERβ as well as GPER activation by G1 decreased ERαβ heterodimers. We propose that ERαβ heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαβ heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.
Collapse
Affiliation(s)
- Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Atenea A Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - José-Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
17
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
18
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
19
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
20
|
Zhao X, Li X, Liu P, Li P, Xu X, Chen Y, Cheng Y, Zhu D, Fu X. 17β-estradiol promotes angiogenesis through non-genomic activation of Smad1 signaling in endometriosis. Vascul Pharmacol 2021; 142:106932. [PMID: 34763099 DOI: 10.1016/j.vph.2021.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
17β-estradiol (E2) plays a key role in endometriosis through regulation of angiogenesis. Smad1 has been reported to be up-regulated in patients with endometriosis. However, the role of Smad1 in E2-mediated angiogenesis during the development of endometriosis remains to be determined. This study aimed to explore the role of Smad1 in E2-mediated angiogenesis during endometriosis and its underlying mechanisms. Immunofluorescence staining and Western blotting were performed to examine the expression of p-Smad1 in ectopic and control endometrium. Western blotting was used to examine activation of Smad1 signaling in NMECs, EMECs and HUVECs. Tube formation assay was performed to examine the effect of E2 on angiogenesis. Cell proliferation and migration was determined using in real-time by xCELLigence RTCA DP instrument. We found that the expression of p-Smad1 was significantly up-regulated in ectopic endometrium and ectopic intima microvascular endothelial cells. E2 non-genomically stimulated phosphorylation of Smad1 in HUVECs. c-Src and p44/42 MAPK(ERK1/2) signaling pathways are required for E2's induction on Smad1 phosphorylation. Moreover, caveolae is involved in E2-induced Smad1 phosphorylation in vascular endothelial cells. E2 promoted tube formation of vascular endothelial cells through c-Src/ERK1/2/Smad1 signaling pathway. Knockdown of Smad1 expression attenuated E2-induced proliferation and migration of HUVECs. In conclusion, E2 promotes proliferation, migration and tube formation of HUVECs through c-Src/ERK1/2/Smad1 signaling pathway. Our data shed new lights on the mechanisms through which E2 contributes to endometriosis, and may provide novel strategies to treat endometriosis.
Collapse
Affiliation(s)
- Xinran Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, PR China
| | - Pei Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Ping Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Xingyan Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yiwen Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Municipal First People's Hospital of Guangzhou, Guangzhou 510180, PR China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| |
Collapse
|
21
|
Kareva I, Brown JS. Estrogen as an Essential Resource and the Coexistence of ER+ and ER– Cancer Cells. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.673082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diagnosis of estrogen sensitivity in breast cancer is largely predicated on the ratio of ER+ and ER– cancer cells obtained from biopsies. Estrogen is a growth factor necessary for cell survival and division. It can also be thought of as an essential resource that can act in association with other nutrients, glucose, glutamine, fatty acids, amino acids, etc. All of these nutrients, collectively or individually, may limit the growth of the cancer cells (Liebig’s Law of the Minimum). Here we model estrogen susceptibility in breast cancer as a consumer-resource interaction: ER+ cells require both estrogen and glucose as essential resources, whereas ER– only require the general resource. The model predicts that when estrogen is the limiting factor, other nutrients may go unconsumed and available at higher levels, thus permitting the invasion of ER– cells. Conversely, when ER– cells are less efficient on glucose than ER+ cells, then ER– cells limited by glucose may be susceptible to invasion by ER+ cells, provided that sufficient levels of estrogen are available. ER+ cells will outcompete ER– cells when estrogen is abundant, resulting in low concentrations of interstitial glucose within the tumor. In the absence of estrogen, ER– cells will outcompete ER+ cells, leaving a higher concentration of interstitial glucose. At intermediate delivery rates of estrogen and glucose, ER+ and ER– cells are predicted to coexist. In modeling the dynamics of cells in the same tumor with different resource requirements, we can apply concepts and terms familiar to many ecologists. These include: resource supply points, R∗, ZNGI (zero net growth isoclines), resource depletion, and resource uptake rates. Based on the circumstances favoring ER+ vs. ER– breast cancer, we use the model to explore the consequences of therapeutic regimens that may include hormonal therapies, possible roles of diet in changing cancer cell composition, and potential for evolutionarily informed therapies. More generally, the model invites the viewpoint that cancer’s eco-evolutionary dynamics are a consumer-resource interaction, and that other growth factors such as EGFR or androgens may be best viewed as essential resources within these dynamics.
Collapse
|
22
|
Lakshmanan Mangalath D, Hassan Mohammed SA. Ligand Binding Domain of Estrogen Receptor Alpha Preserve a Conserved Structural Architecture Similar to Bacterial Taxis Receptors. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It remains a mystery why estrogen hormone receptors (ERs), which are highly specific toward its endogenous hormones, are responsive to chemically distinct exogenous agents. Does it indicate that ERs are environmentally regulated? Here, we speculate that ERs would have some common structural features with prokaryotic taxis receptor responsive toward environmental signals. This study addresses the low specificity and high responsiveness of ERs toward chemically distinct exogenous substances, from an evolutionary point of view. Here, we compared the ligand binding domain (LBD) of ER alpha (α) with the LBDs of prokaryotic taxis receptors to check if LBDs share any structural similarity. Interestingly, a high degree of similarity in the domain structural fold architecture of ERα and bacterial taxis receptors was observed. The pharmacophore modeling focused on ligand molecules of both receptors suggest that these ligands share common pharmacophore features. The molecular docking studies suggest that the natural ligands of bacterial chemotaxis receptors exhibit strong interaction with human ER as well. Although phylogenetic analysis proved that these proteins are unrelated, they would have evolved independently, suggesting a possibility of convergent molecular evolution. Nevertheless, a remarkable sequence divergence was seen between these proteins even when they shared common domain structural folds and common ligand-based pharmacophore features, suggesting that the protein architecture remains conserved within the structure for a specific function irrespective of sequence identity.
Collapse
|
23
|
Quigley JA, Logsdon MK, Turner CA, Gonzalez IL, Leonardo NB, Becker JB. Sex differences in vulnerability to addiction. Neuropharmacology 2021; 187:108491. [PMID: 33567305 PMCID: PMC7979496 DOI: 10.1016/j.neuropharm.2021.108491] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
This article reviews evidence for sex differences in vulnerability to addiction with an emphasis on the neural mechanisms underlying these differences. Sex differences in the way that the gonadal hormone, estradiol, interacts with the ascending telencephalic dopamine system results in sex differences in motivated behaviors, including drug-seeking. In rodents, repeated psychostimulant exposure enhances incentive sensitization to a greater extent in females than males. Estradiol increases females' motivation to attain psychostimulants and enhances the value of drug related cues, which ultimately increases their susceptibility towards spontaneous relapse. This, along with females' dampened ability to alter decisions regarding risky behaviors, enhances their vulnerability for escalation of drug use. In males, recent evidence suggests that estradiol may be protective against susceptibility towards drug-preference. Sex differences in the actions of estradiol are reviewed to provide a foundation for understanding how future research might enhance understanding of the mechanisms of sex differences in addiction-related behaviors, which are dependent on estradiol receptor (ER) subtype and the region of the brain they are acting in. A comprehensive review of the distribution of ERα, ERβ, and GPER1 throughout the rodent brain are provided along with a discussion of the possible ways in which these patterns differentially regulate drug-taking between the sexes. The article concludes with a brief discussion of the actions of gonadal hormones on the circuitry of the stress system, including the hypothalamic pituitary adrenal axis and regulation of corticotropin-releasing factor. Sex differences in the stress system can also contribute to females' enhanced vulnerability towards addiction.
Collapse
Affiliation(s)
- Jacqueline A Quigley
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Molly K Logsdon
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Christopher A Turner
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Ivette L Gonzalez
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - N B Leonardo
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Jill B Becker
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA.
| |
Collapse
|
24
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
25
|
Marroqui L, Martinez-Pinna J, Castellano-Muñoz M, Dos Santos RS, Medina-Gali RM, Soriano S, Quesada I, Gustafsson JA, Encinar JA, Nadal A. Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. CHEMOSPHERE 2021; 265:129051. [PMID: 33250229 DOI: 10.1016/j.chemosphere.2020.129051] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic β-cells from wild type (WT) and estrogen receptor β (ERβ) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in β-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in β-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERβ pathways. Molecular dynamics simulations indicated differences in ERβ ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERβ whose activation alters three key cellular events in β-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.
Collapse
Affiliation(s)
- Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - José A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
26
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
28
|
Niwa T, Takanobu J, Suzuki K, Sato Y, Yamaguchi Y, Hayashi SI. Characterization of a membrane-associated estrogen receptor in breast cancer cells and its contribution to hormone therapy resistance using a novel selective ligand. J Steroid Biochem Mol Biol 2020; 201:105671. [PMID: 32289430 DOI: 10.1016/j.jsbmb.2020.105671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
The estrogen receptor (ER) plays a role in the progression of hormone-dependent breast cancer and is a hormone therapy target. Estrogen acts as a transcription factor (genomic action) and also produces a quick non-genomic reaction through intracellular signaling pathways. The membrane associated ER (mER) may regulate both these signals and hormone therapy resistance. However, the details remain unclear because a reliable method to distinguish the signals induced by the estradiol (E2)-mER and E2-nuclear ER complex has not been established. In the present study, we prepared the novel ligand Qdot-6-E2, selective for mER, by coupling E2 with insoluble quantum dot nano-beads. We investigated the characteristics of mER signaling pathways and its contribution to hormone therapy resistance using different cell lines including estrogen depletion resistant (EDR) cells with different mechanisms. Qdot-6-E2 stimulated proliferation of nuclear ER-positive cells, but nuclear ER-negative cells showed no response. In addition, Qdot-6-E2 indirectly activated nuclear ER and increased mRNA expression of target genes. We confirmed that E2 was not dissociated from Qdot-6-E2 using a mammalian one-hybrid assay. We visually demonstrated that Qdot-6-E2 acts from the outside of cells. The gene expression profile induced by Qdot-6-E2-mER was different from that induced by E2-nuclear ER. The effect of anti-ER antibody, the GFP-ER fusion protein localization, and the effect of palmitoyl acyltransferase inhibitor also indicated the existence of mER. Regarding intracellular phosphorylation signaling pathways, the MAPK (Erk 1/2) and the PI3K/Akt pathways were both activated by Qdot-6-E2. In EDR cells, only nuclear ER-positive cells showed increased cell proliferation with increased localization of ERα to the membrane fraction. These findings suggested that Qdot-6-E2 reacts with ERα surrounding the cell membrane and that mER signals help the cells to survive under estrogen-depleted conditions by re-localizing the ER to use trace amounts of E2 more effectively. We expect that Qdot-6-E2 is a useful tool for studying the mER.
Collapse
Affiliation(s)
- Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Junko Takanobu
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kanae Suzuki
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuta Sato
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuri Yamaguchi
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
29
|
Ferreira Almeida C, Oliveira A, João Ramos M, Fernandes PA, Teixeira N, Amaral C. Estrogen receptor-positive (ER +) breast cancer treatment: Are multi-target compounds the next promising approach? Biochem Pharmacol 2020; 177:113989. [PMID: 32330493 DOI: 10.1016/j.bcp.2020.113989] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Endocrine therapy is currently the main therapeutic approach for estrogen receptor-positive (ER+) breast cancer, the most frequent subtype of breast cancer in women worldwide. For this subtype of tumors, the current clinical treatment includes aromatase inhibitors (AIs) and anti-estrogenic compounds, such as Tamoxifen and Fulvestrant, being AIs the first-line treatment option for post-menopausal women. Moreover, the recent guidelines also suggest the use of these compounds by pre-menopausal women after suppressing ovaries function. However, besides its therapeutic efficacy, the prolonged use of this type of therapies may lead to the development of several adverse effects, as well as, endocrine resistance, limiting the effectiveness of such treatments. In order to surpass this issues and clinical concerns, during the last years, several studies have been suggesting alternative therapeutic approaches, considering the function of aromatase, ERα and ERβ. Here, we review the structural and functional features of these three targets and their importance in ER+ breast cancer treatment, as well as, the current treatment strategies used in clinic, emphasizing the importance of the development of multi-target compounds able to simultaneously modulate these key targets, as a novel and promising therapeutic strategy for this type of cancer.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Oliveira
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
30
|
Majumdar S, Rinaldi JC, Malhotra NR, Xie L, Hu DP, Gauntner TD, Grewal HS, Hu WY, Kim SH, Katzenellenbogen JA, Kasper S, Prins GS. Differential Actions of Estrogen Receptor α and β via Nongenomic Signaling in Human Prostate Stem and Progenitor Cells. Endocrinology 2019; 160:2692-2708. [PMID: 31433456 PMCID: PMC6804489 DOI: 10.1210/en.2019-00177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
Abstract
Human prostate stem and progenitor cells express estrogen receptor (ER)α and ERβ and exhibit proliferative responses to estrogens. In this study, membrane-initiated estrogen signaling was interrogated in human prostate stem/progenitor cells enriched from primary epithelial cultures and stem-like cell lines from benign and cancerous prostates. Subcellular fractionation and proximity ligation assays localized ERα and ERβ to the cell membrane with caveolin-1 interactions. Exposure to 17β-estradiol (E2) for 15 to 60 minutes led to sequential phosphorylation of signaling molecules in MAPK and AKT pathways, IGF1 receptor, epidermal growth factor receptor, and ERα, thus documenting an intact membrane signalosome that activates diverse downstream cascades. Treatment with an E2-dendrimer conjugate or ICI 182,870 validated E2-mediated actions through membrane ERs. Overexpression and knockdown of ERα or ERβ in stem/progenitor cells identified pathway selectivity; ERα preferentially activated AKT, whereas ERβ selectively activated MAPK cascades. Furthermore, prostate cancer stem-like cells expressed only ERβ, and brief E2 exposure activated MAPK but not AKT cascades. A gene subset selectively regulated by nongenomic E2 signaling was identified in normal prostate progenitor cells that includes BGN, FOSB, FOXQ1, and MAF. Membrane-initiated E2 signaling rapidly modified histone methyltransferases, with MLL1 cleavage observed downstream of phosphorylated AKT and EZH2 phosphorylation downstream of MAPK signaling, which may jointly modify histones to permit rapid gene transcription. Taken together, the present findings document ERα and ERβ membrane-initiated signaling in normal and cancerous human prostate stem/progenitor cells with differential engagement of downstream effectors. These signaling pathways influence normal prostate stem/progenitor cell homeostasis and provide novel therapeutic sites to target the elusive prostate cancer stem cell population.
Collapse
Affiliation(s)
- Shyama Majumdar
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaqueline C Rinaldi
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Neha R Malhotra
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Timothy D Gauntner
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Harinder S Grewal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | | | - Susan Kasper
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
31
|
Gebreslasie AT, Faggad A, Zaki HY, Abdalla BE. Association of ESR1 polymorphisms (rs3020314 and rs1514348) with breast cancer in Sudanese women. A pilot study. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Silva TM, Moretto FCF, Sibio MTD, Gonçalves BM, Oliveira M, Olimpio RMC, Oliveira DAM, Costa SMB, Deprá IC, Namba V, Nunes MT, Nogueira CR. Triiodothyronine (T3) upregulates the expression of proto-oncogene TGFA independent of MAPK/ERK pathway activation in the human breast adenocarcinoma cell line, MCF7. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:142-147. [PMID: 30916164 PMCID: PMC10522138 DOI: 10.20945/2359-3997000000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To verify the physiological action of triiodothyronine T3 on the expression of transforming growth factor α (TGFA) mRNA in MCF7 cells by inhibition of RNA Polymerase II and the MAPK/ERK pathway. MATERIALS AND METHODS The cell line was treated with T3 at a physiological dose (10-9M) for 10 minutes, 1 and 4 hour (h) in the presence or absence of the inhibitors, α-amanitin (RNA polymerase II inhibitor) and PD98059 (MAPK/ERK pathway inhibitor). TGFA mRNA expression was analyzed by RT-PCR. For data analysis, we used ANOVA, complemented with the Tukey test and Student t-test, with a minimum significance of 5%. RESULTS T3 increases the expression of TGFA mRNA in MCF7 cells in 4 h of treatment. Inhibition of RNA polymerase II modulates the effect of T3 treatment on the expression of TGFA in MCF7 cells. Activation of the MAPK/ERK pathway is not required for T3 to affect the expression of TGFA mRNA. CONCLUSION Treatment with a physiological concentration of T3 after RNA polymerase II inhibition altered the expression of TGFA. Inhibition of the MAPK/ERK pathway after T3 treatment does not interfere with the TGFA gene expression in a breast adenocarcinoma cell line.
Collapse
Affiliation(s)
- Tabata M. Silva
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Fernanda C. F. Moretto
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Maria T. De Sibio
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Bianca M. Gonçalves
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Miriane Oliveira
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Regiane M. C. Olimpio
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Diego A. M. Oliveira
- Universidade Estadual PaulistaUniversidade Estadual PaulistaBotucatuSPBrasilUniversidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Sarah M. B. Costa
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Igor C. Deprá
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Vickeline Namba
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Maria T. Nunes
- Universidade de São PauloUniversidade de São PauloInstituto de Ciências BiomédicasDepartamento de Fisiologia e BiofísicaSão PauloSPBrasilDepartamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Célia R. Nogueira
- Universidade Estadual PaulistaUniversidade Estadual PaulistaFaculdade de Medicina de BotucatuDepartamento de Medicina InternaBotucatuSPBrasilDepartamento de Medicina Interna, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| |
Collapse
|
33
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 513] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
34
|
Fabbrocini A, Coccia E, D’Adamo R, Faggio C, Paolucci M. Mifepristone affects fertility and development in the sea urchin
Paracentrotus lividus. Mol Reprod Dev 2019; 86:1348-1356. [DOI: 10.1002/mrd.23112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Adele Fabbrocini
- National Research Council (CNR) Institute of Marine Sciences, UOS Napoli, Calata Porta di Massa Napoli Italy
- Institute for Biological Resources and Marine BiotechnologiesUOS Lesina Lesina (FG) Italy
| | - Elena Coccia
- Department of Sciences and TechnologyUniversity of Sannio Benevento Italy
| | - Raffaele D’Adamo
- National Research Council (CNR) Institute of Marine Sciences, UOS Napoli, Calata Porta di Massa Napoli Italy
- Institute for Biological Resources and Marine BiotechnologiesUOS Lesina Lesina (FG) Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesViale Ferdinando Stagno d'Alcontres Messina Italy
| | - Marina Paolucci
- Department of Sciences and TechnologyUniversity of Sannio Benevento Italy
- National Research Council (CNR) Institute of Food Science Avellino Italy
| |
Collapse
|
35
|
Thompson RR, Mangiamele LA. Rapid sex steroid effects on reproductive responses in male goldfish: Sensory and motor mechanisms. Horm Behav 2018; 104:52-62. [PMID: 29777656 DOI: 10.1016/j.yhbeh.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Although we have learned a great deal about the molecular mechanisms through which sex steroids rapidly affect cellular physiology, we still know little about the links between those mechanisms and behavioral output, nor about their functional consequences in natural contexts. In this review, we first briefly discuss the contexts associated with rapid effects of sex steroids on reproductive behaviors and their likely functional outcomes, as well the sensory, motor, and motivational mechanisms associated with those effects. We then discuss our recent studies on the rapid effects of testosterone in goldfish. Those studies indicate that testosterone, through its aromatization and the subsequent activation of estrogen receptors, rapidly stimulates physiological processes related to the release of milt/sperm through likely influences on motor pathways, as well as behavioral responses to female visual stimuli that may reflect, in part, influences on early stages of sensory processing. Such motor and sensory mechanism are likely important for sperm competition and mate detection / tracking, respectively, in competitive mating contexts. We also present preliminary data on rapid effects of testosterone on responses to pheromones that may not involve estrogen receptors, suggesting a dissociation in the receptor mechanisms that mediate behavioral responses in different sensory modalities. Lastly, we briefly discuss the implications of our work on unresolved questions about rapid sex steroid neuromodulation in fish.
Collapse
Affiliation(s)
- Richmond R Thompson
- Department of Psychology, Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States.
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, North Hampton, MA 01063, United States
| |
Collapse
|
36
|
Kow LM, Pfaff DW. Can distinctly different rapid estrogen actions share a common mechanistic step? Horm Behav 2018; 104:156-164. [PMID: 29476777 DOI: 10.1016/j.yhbeh.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This paper reviews early evidence for the existence of rapid, non-genomic effects of estrogens on neurons, and, further, proposes that these rapid effects are often synergistic with later, genomic effects. Finally, suggestions about potential molecular mechanisms underlying the rapid effects of estrogens are offered. A mechanistic step we propose to be common among rapid estrogenic actions includes membrane ER's binding to histamine, and NMDA receptors and subsequent dimerization, and clustering (respectively) in a manner that enhances histamine and NMDA actions.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| |
Collapse
|
37
|
Tsuji M, Tanaka T, Nagashima R, Sagisaka Y, Tousen Y, Nishide Y, Ishimi Y, Ishimi Y. Effect of daidzein and equol on DNA replication in MCF-7 cells. J Biochem 2018; 163:371-380. [PMID: 29346578 DOI: 10.1093/jb/mvy006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
Abstract
It has been reported that daidzein and equol stimulate DNA replication and proliferation of MCF-7 cells. However, their molecular mechanisms of action are still unclear. We examined the effects of daidzein and equol on DNA replication of MCF-7 cells, focusing on MCM2-7 proteins, which function as the replicative helicase. In the presence of either 1 μM of daidzein or equol, the number of cells in S-phase, which was determined by detecting bromodeoxyuridine incorporated into replicated DNA, almost doubled. The total amounts of MCM7 protein and chromatin-bound MCM7 protein increased in the presence of daidzein. The data suggest that phytoestrogens facilitate cell cycle progression in G1-phase by increasing the level of MCM proteins. In the presence of phytoestrogens, phosphorylation of Rb and levels of MCM2, 3 and 7 mRNA increased, suggesting that stimulation of MCM2-7 transcription is involved in the cell cycle progression. Under the same conditions, double-stranded DNA breakage in logarithmically growing MCF-7 cells, which was detected using anti-γ-H2AX antibodies, did not increase in the presence of equol.
Collapse
Affiliation(s)
- Mako Tsuji
- Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | | | | | | | - Yuko Tousen
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yoriko Nishide
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yoshiko Ishimi
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yukio Ishimi
- Ibaraki University, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
38
|
Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins (Basel) 2018; 10:toxins10050184. [PMID: 29724047 PMCID: PMC5983240 DOI: 10.3390/toxins10050184] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis.
Collapse
|
39
|
Acute effects of sex steroids on visual processing in male goldfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:17-29. [PMID: 29080952 DOI: 10.1007/s00359-017-1220-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
Elevations of sex steroids induced by social cues can rapidly modulate social behavior, but we know little about where they act within the nervous system to produce such effects. In male goldfish, testosterone (T) rapidly increases approach responses to the visual cues of females through its conversion to estradiol. Because aromatase is expressed in the retina, we tested if T can acutely influence retina responses to visual stimuli, and investigated the receptor mechanisms that may mediate such effects. Specifically, we measured FOS protein immunoreactivity to determine if T affects cellular responses to visual stimuli that include females, and used electrophysiology to investigate whether T can generally affect light sensitivity. We found that T acutely increased FOS responses to the simultaneous onset of light and the presence of female visual stimuli, both of which would normally be associated with early morning spawning, and increased electrophysiological responses to low intensity light pulses. Both effects were blocked by an estrogen receptor beta (ERβ) antagonist, indicating that T is likely being converted to estradiol (E2) and acting through an ERβ mediated mechanism to acutely modulate visual processing. Changes in sensory processing could subsequently influence approach behavior to increase reproductive success in competitive mating environments.
Collapse
|
40
|
17β-Estradiol Dysregulates Innate Immune Responses to Pseudomonas aeruginosa Respiratory Infection and Is Modulated by Estrogen Receptor Antagonism. Infect Immun 2017; 85:IAI.00422-17. [PMID: 28784925 DOI: 10.1128/iai.00422-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023] Open
Abstract
Females have a more severe clinical course than males in terms of several inflammatory lung conditions. Notably, females with cystic fibrosis (CF) suffer worse outcomes, particularly in the setting of Pseudomonas aeruginosa infection. Sex hormones have been implicated in experimental and clinical studies; however, immune mechanisms responsible for this sex-based disparity are unknown and the specific sex hormone target for therapeutic manipulation has not been identified. The objective of this study was to assess mechanisms behind the impact of female sex hormones on host immune responses to P. aeruginosa We used wild-type and CF mice, which we hormone manipulated, inoculated with P. aeruginosa, and then examined for outcomes and inflammatory responses. Neutrophils isolated from mice and human subjects were tested for responses to P. aeruginosa We found that female mice inoculated with P. aeruginosa died earlier and showed slower bacterial clearance than males (P < 0.0001). Ovariectomized females supplemented with 17β-estradiol succumbed to P. aeruginosa challenge earlier than progesterone- or vehicle-supplemented mice (P = 0.0003). 17β-Estradiol-treated ovariectomized female mice demonstrated increased lung levels of inflammatory cytokines, and when rendered neutropenic the mortality difference was abrogated. Neutrophils treated with 17β-estradiol demonstrated an enhanced oxidative burst but decreased P. aeruginosa killing and earlier cell necrosis. The estrogen receptor (ER) antagonist ICI 182,780 improved survival in female mice infected with P. aeruginosa and restored neutrophil function. We concluded that ER antagonism rescues estrogen-mediated neutrophil dysfunction and improves survival in response to P. aeruginosa ER-mediated processes may explain the sex-based mortality gap in CF and other inflammatory lung illnesses, and the ER blockade represents a rational therapeutic strategy.
Collapse
|
41
|
Steagall RJ, Yao F, Shaikh SR, Abdel-Rahman AA. Estrogen receptor α activation enhances its cell surface localization and improves myocardial redox status in ovariectomized rats. Life Sci 2017; 182:41-49. [PMID: 28599865 PMCID: PMC5535783 DOI: 10.1016/j.lfs.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
AIMS Little is known about the role of subcellular trafficking of estrogen receptor (ER) subtypes in the acute estrogen (E2)-mediated alleviation of oxidative stress. We tested the hypothesis that ERα migration to the cardiac myocyte membrane mediates the acute E2-dependent improvement of cellular redox status. MAIN METHODS Myocardial distribution of subcellular ERα, ERβ and G-protein coupled estrogen receptor (GPER) was determined in proestrus sham-operated (SO) and in ovariectomized (OVX) rats, acutely treated with E2 (1μg/kg) or a selective ERα (PPT), ERβ (DPN) or GPER (G1) agonist (10μg/kg), by immunofluorescence and Western blot. We measured ROS and malondialdehyde (MDA) levels, and catalase and superoxide dismutase (SOD) activities to evaluate myocardial antioxidant/redox status. KEY FINDINGS Compared with SO, OVX rats exhibited higher myocardial ROS and MDA levels, reduced catalase and SOD activities, along with diminished ERα, and enhanced ERβ and GPER, localization at cardiomyocyte membrane. Acute E2 or an ERα (PPT), but not ERβ (DPN) or GPER (G1), agonist reversed these responses in OVX rats and resulted in higher ERα/ERβ and ERα/GPER ratios at the cardiomyocytes membrane. PPT or DPN enhanced myocardial Akt phosphorylation. We present the first evidence that preferential aggregation of ERα at the cardiomyocytes plasma membrane is ERα-dependent, and underlies E2-mediated reduction in oxidative stress, at least partly, via the enhancements of myocardial catalase and SOD activities in OVX rats. SIGNIFICANCE The findings highlight ERα agonists as potential therapeutics for restoring the myocardial redox status following E2 depletion in postmenopausal women.
Collapse
Affiliation(s)
- Rebecca J Steagall
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Fanrong Yao
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
42
|
Russell N, Cheung A, Grossmann M. Estradiol for the mitigation of adverse effects of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R297-R313. [PMID: 28667081 DOI: 10.1530/erc-17-0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/01/2023]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men. Conventional endocrine treatment for PCa leads to global sex steroid deprivation. The ensuing severe hypogonadism is associated with well-documented adverse effects. Recently, it has become apparent that many of the biological actions attributed to androgens in men are in fact not direct, but mediated by estradiol. Available evidence supports a primary role for estradiol in vasomotor stability, skeletal maturation and maintenance, and prevention of fat accumulation. Hence there has been interest in revisiting estradiol as a treatment for PCa. Potential roles for estradiol could be in lieu of conventional androgen deprivation therapy or as low-dose add-back treatment while continuing androgen deprivation therapy. These strategies may limit some of the side effects associated with conventional androgen deprivation therapy. However, although available data are reassuring, the potential for cardiovascular risk and pro-carcinogenic effects on PCa via estrogen receptor signalling must be considered.
Collapse
Affiliation(s)
- Nicholas Russell
- Department of EndocrinologyAustin Health, Heidelberg, Victoria, Australia
- Department of Medicine (Austin Health)The University of Melbourne, Heidelberg, Victoria, Australia
| | - Ada Cheung
- Department of EndocrinologyAustin Health, Heidelberg, Victoria, Australia
- Department of Medicine (Austin Health)The University of Melbourne, Heidelberg, Victoria, Australia
| | - Mathis Grossmann
- Department of EndocrinologyAustin Health, Heidelberg, Victoria, Australia
- Department of Medicine (Austin Health)The University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
43
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
44
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|
45
|
Iwabuchi E, Miki Y, Ono K, Onodera Y, Suzuki T, Hirakawa H, Ishida T, Ohuchi N, Sasano H. In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA). J Steroid Biochem Mol Biol 2017; 165:159-169. [PMID: 27264933 DOI: 10.1016/j.jsbmb.2016.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 01/20/2023]
Abstract
Estrogen receptor (ER) is required for carcinoma cell proliferation in the great majority of breast cancer and also functions as a dimer. ER dimeric proteins have been largely identified by BRET/FRET analyses but their in situ visualization have not yet been reported. Recently, in situ Proximity Ligation Assay (PLA) has been developed as the methods detecting protein interactions in situ. Therefore, in this study we firstly demonstrated the dimerization of ERα in breast carcinoma cell lines and tissues using PLA. The human breast carcinoma cell lines MCF-7, T-47D and MDA-MB-231 were used in this study. Cells were treated with ER agonist or antagonist and fixed in 4% PFA, and ER dimers were subsequently detected using PLA. The evaluation of ER dimers in breast carcinoma cell lines were quantified by measuring the area of dots localized in the nuclei using image analysis. We also firstly demonstrated the visualization of ER dimer patterns in 10% formalin-fixed paraffin-embedded tissues of breast cancer using PLA technique. Estradiol (E2) administration induced ERα homodimers in the nuclei of MCF-7 and T-47D but not in ER-negative MDA-MB-231. 4-OH tamoxifen also induced ERα homodimers but the subcellular localization of these ERα homodimers was predominant in cytoplasm instead of the nuclei induced by E2 treatment. ICI182,780 treatment did decrease the number of formation of ERα homodimers in MCF-7. In breast cancer patients, ERα PLA score was significantly correlated positively with ERα- or PgR (progesterone receptor) immunohistochemical scores and inversely with Ki-67-labeling index, respectively. We also demonstrated the ERα/β heterodimer as well as ERα homodimers in both breast carcinoma cell lines and surgical pathology specimens. In summary, we did firstly succeed in the visualization of ER dimeric proteins using PLA method. The evaluation of ER dimer patterns could provide pivotal information as to the prediction of response to endocrine therapy of breast cancer patients.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai, Japan
| | - Katsuhiko Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takanori Ishida
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriaki Ohuchi
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
46
|
Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 2016; 16:4-20. [PMID: 29259445 PMCID: PMC5715874 DOI: 10.1002/rmb2.12006] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
17β‐Estradiol (E2), as the main circulating estrogen hormone, regulates many tissue and organ functions in physiology. The effects of E2 on cells are mediated by the transcription factors and estrogen receptor (ER)α and ERβ that are encoded by distinct genes. Localized at the peri‐membrane, mitochondria, and the nucleus of cells that are dependent on estrogen target tissues, the ERs share similar, as well as distinct, regulatory potentials. Different intracellular localizations of the ERs result in dynamically integrated and finely tuned E2 signaling cascades that orchestrate cellular growth, differentiation, and death. The deregulation of E2–ER signaling plays a critical role in the initiation and progression of target tissue malignancies. A better understanding of the complex regulatory mechanisms that underlie ER actions in response to E2 therefore holds a critical trajectory for the development of novel prognostic and therapeutic approaches with substantial impacts on the systemic management of target tissue diseases.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Gamze Ayaz
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Sırma Damla User
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Gizem Güpür
- Department of Biological Sciences Middle East Technical University Ankara Turkey.,Present address: Cell and Molecular Biology Program Duke University Durham North Carolina USA
| | - Mesut Muyan
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
47
|
Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol 2016; 17:783-797. [PMID: 27729652 PMCID: PMC5649368 DOI: 10.1038/nrm.2016.122] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Steroid hormone receptors mediate numerous crucial biological processes and are classically thought to function as transcriptional regulators in the nucleus. However, it has been known for more than 50 years that steroids evoke rapid responses in many organs that cannot be explained by gene regulation. Mounting evidence indicates that most steroid receptors in fact exist in extranuclear cellular pools, including at the plasma membrane. This latter pool, when engaged by a steroid ligand, rapidly activates signals that affect various aspects of cellular biology. Research into the mechanisms of signalling instigated by extranuclear steroid receptor pools and how this extranuclear signalling is integrated with responses elicited by nuclear receptor pools provides novel understanding of steroid hormone signalling and its roles in health and disease.
Collapse
Affiliation(s)
- Ellis R. Levin
- Department of Medicine and Biochemistry, University of California,
Irvine and the Long Beach VA Medical Center, California 90822, USA
| | - Stephen R. Hammes
- Departments of Medicine and Pharmacology, University of Rochester,
Rochester, New York 14642, USA
| |
Collapse
|
48
|
Wang X, Chen Q, Huang X, Zou F, Fu Z, Chen Y, Li Y, Wang Z, Liu L. Effects of 17β-estradiol and tamoxifen on gastric cancer cell proliferation and apoptosis and ER-α36 expression. Oncol Lett 2016; 13:57-62. [PMID: 28123522 PMCID: PMC5244966 DOI: 10.3892/ol.2016.5424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the effects of 17β-estradiol and tamoxifen, an agonist and inhibitor of the estrogen receptor (ER), respectively, on the proliferation and apoptosis of gastric cancer cells, as well as the messenger (m)RNA expression levels of ER-α36. Nested reverse transcription-polymerase chain reaction (RT-PCR) confirmed that ER-α36 was expressed in the BGC823, MKN45 and SGC7901 human gastric cancer cell lines. Subsequently, the BGC823 cell line was stimulated with various concentrations of 17β-estradiol or tamoxifen for 24 or 48 h, and the proliferation, apoptosis and mRNA expression levels of ER-α36 were determined by water-soluble tetrazolium (WST)-1 assay, flow cytometry and RT-quantitative PCR, respectively. The activity of BGC823 cells was significantly increased following treatment with 10−12 mol/l 17β-estradiol for 24 h (P=0.013), as compared with the control, and reached a peak at 48 h (P=0.002). Notably, the activity of BGC823 cells was decreased with increasing concentrations of 17β-estradiol, although it remained higher compared with that of the control. In the tamoxifen-treated groups, the cell activity decreased as the drug concentration increased. The apoptosis rate was markedly reduced in the 17β-estradiol group after 24 h (10−12 mol/l, P=0.013; 10−11 mol/l, P=0.023; and 10−10 mol/l, P=0.017) and after 48 h (10−12 mol/l, P=0.002; 10−11 mol/l, P=0.011; and 10−10 mol/l, P=0.033), whereas the rate of apoptosis increased as the tamoxifen concentration increased (24 h: 5×10−6 mol/l, P=0.002; and 10−5 mol/l, P=0.001; and 48 h: 5×10−6 mol/l, P=0.014 and 10−5 mol/l, P=0.0021), as compared with the control group. The mRNA expression levels of ER-α36 were significantly increased after 24 h of treatment with 10−12 mol/l (P=0.024), 10−11 mol/l (P=0.0113) and 10−10 mol/l (P=0.0037) 17β-estradiol compared with the control group when the concentration of 17β-estradiol was low, and the same was observed after 48 h of treatment 10−12 mol/l (P=0.0164), 10−11 mol/l (P=0.0342) and 10−10 mol/l (P=0.0198) 17β-estradiol. The mRNA expression levels of ER-α36 were significantly decreased with increasing concentrations of tamoxifen after 24 h (5×10−6 mol/l, P=0.0233; and 10−5 mol/l, P=0.007) and after 48 h (5×10−6 mol/l, P=0.001; and 10−5 mol/l, P=0.0153). In addition, the ability of tamoxifen to inhibit the growth of gastric cancer cells was concentration-dependent. The results of the present study suggested that gastric cancer cells were sensitive to the effects of 17β-estradiol and tamoxifen, and that tamoxifen is able to induce gastric cancer cell apoptosis. The expression levels of ER-α36 were upregulated, and the growth of gastric cancer cells was increased, following treatment with 17β-estradiol, thus suggesting that gastric cancer tumors are stimulated by estrogen.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Qiuyue Chen
- Department of Pathology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xuan Huang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Feng Zou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhaoyi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE 68178, USA
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
49
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
50
|
Leclercq G, Laïos I, Elie-Caille C, Leiber D, Laurent G, Lesniewska E, Tanfin Z, Jacquot Y. ERα dimerization: a key factor for the weak estrogenic activity of an ERα modulator unable to compete with estradiol in binding assays. J Recept Signal Transduct Res 2016; 37:149-166. [PMID: 27400858 DOI: 10.1080/10799893.2016.1203940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Estrothiazine (ESTZ) is a weak estrogen sharing structural similarities with coumestrol. ESTZ failed to compete with [3H]17β-estradiol ([3H]17β-E2) for binding to the estrogen receptor α (ERα), questioning its ability to interact with the receptor. However, detection by atomic force spectroscopy (AFS) of an ESTZ-induced ERα dimerization has eliminated any remaining doubts. The effect of the compound on the proliferation of ERα-positive and negative breast cancer cells confirmed the requirement of the receptor. The efficiency of ESTZ in MCF-7 cells was weak without any potency to modify the proliferation profile of estradiol and coumestrol. Growth enhancement was associated with a proteasomal degradation of ERα without substantial recruitment of LxxLL coactivators. This may be related to an unusual delay between the acquisition by the receptor of an ERE-binding capacity and the subsequent estrogen-dependent transcription. A complementary ability to enhance TPA-induced AP-1 transcription was observed, even at concentrations insufficient to activate the ERα, suggesting a partly independent mechanism. ESTZ also rapidly and transiently activated ERK1/2 likely through membrane estrogenic pathways provoking a reorganization of the actin network. Finally, the systematic absence of biological responses with an ESTZ derivative unable to induce ERα dimerization stresses the importance of this step in the action of the compound, as reported for conventional estrogens. In view of the existence of many other ERα modulators (endocrine disruptors such as, for example, pesticides, environmental contaminants or phytoestrogens) with extremely weak or similar apparent lack of binding ability, our work may appear as pilot investigation for assessing their mechanism of action.
Collapse
Affiliation(s)
- Guy Leclercq
- a Laboratoire J.-C. Heuson de Cancérologie Mammaire , Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet , Brussels , Belgium
| | - Ioanna Laïos
- a Laboratoire J.-C. Heuson de Cancérologie Mammaire , Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet , Brussels , Belgium
| | - Céline Elie-Caille
- b Institut FEMTO-ST, CNRS UMR 6174, Université de Bourgogne Franche-Comté , Besançon , France
| | - Denis Leiber
- c Laboratoire Signalisation et Régulations Cellulaires , Institut de Biochimie et de Biologie Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud , Orsay Cedex , France.,d INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers , Angers , France
| | - Guy Laurent
- e Service d'Histologie et de Cytologie Expérimentale, Faculté de Médecine et de Pharmacie , Université de Mons-Hainaut , Mons , Belgium
| | - Eric Lesniewska
- f ICB, CNRS UMR 6303, Université de Bourgogne Franche-Comté , Dijon , France
| | - Zahra Tanfin
- c Laboratoire Signalisation et Régulations Cellulaires , Institut de Biochimie et de Biologie Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud , Orsay Cedex , France
| | - Yves Jacquot
- g Département de Chimie, CNRS UMR 7203 LBM , Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure, PSL Research University , Paris , France
| |
Collapse
|