1
|
Torres VO, Turchan-Cholewo J, Colson MK, Yanev P, Britsch DRS, Cotter KM, McAtee AM, Ujas TA, Mercurio D, Kong X, Plautz EJ, Joshi CR, Matsui TK, Mori E, Cajigas-Hernandez A, Zuurbier K, Estus S, Goldberg MP, Monson NL, Stowe AM. B cells upregulate NMDARs, respond to extracellular glutamate, and express mature BDNF to protect the brain from ischemic injury. Neurobiol Dis 2025; 207:106819. [PMID: 39900302 PMCID: PMC11948303 DOI: 10.1016/j.nbd.2025.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Following stroke, B cells enter brain regions outside of the ischemic injury to mediate functional recovery. Although B cells produce neurotrophins that support remote plasticity, including brain-derived neurotrophic factor (BDNF), it remains unclear which signal(s) activate B cells in the absence of infarct-localized pro-inflammatory cues. Activation of N-methyl-d-aspartate (NMDA)-type receptor (NMDAR) subunits on neurons can upregulate mature BDNF (mBDNF) production from a pro-BDNF precursor, but whether this occurs in B cells is unknown. We identified GluN2A and GluN2B NMDAR subunits on B cells that respond to glutamate and mediate nearly half of the glutamate-induced Ca2+ responses in activated B cell subsets. Ischemic stroke recruits GluN2A+ B cells into the ipsilesional hemisphere and both stroke and neurophysiologic levels of glutamate regulate gene and surface expression. Regardless of injury, pro-BDNF+ B cells localize to spleen/circulation whereas mBDNF+ B cells localize to the brain, including in aged male and female mice. We confirmed B cell-derived BDNF was required for in vitro and in vivo B cell-mediated neuroprotection. Lastly, GluN2A, GluN2B, glutamate-induced Ca2+ responses, and BDNF expression were all clinically confirmed in B cells from healthy donors, with BDNF+ B cells present in post-stroke human parenchyma. These data suggest that B cells express functional NMDARs that respond to glutamate, enhance NMDAR signaling with activation, and upregulate mature BDNF expression within the brain. This study identifies potential glutamate-induced neurotrophic roles for B cells in the brain; an immune response to neurotransmitters unique from established pro-inflammatory stimuli and relevant to any CNS-localized injury or disease.
Collapse
Affiliation(s)
- Vanessa O Torres
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jadwiga Turchan-Cholewo
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Mary K Colson
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Pavel Yanev
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Daimen R S Britsch
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Katherine M Cotter
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Annabel M McAtee
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Thomas A Ujas
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Domenico Mercurio
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Xiangmei Kong
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA
| | - Erik J Plautz
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA
| | - Chaitanya R Joshi
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA
| | - Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; Department of Future Basic Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Nara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Nara, Japan
| | - Ambar Cajigas-Hernandez
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Kielen Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, 741 S. Limestone, BBSRB B243, Lexington, KY 40536, USA
| | - Mark P Goldberg
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Department of Neurology, Institute for Integration of Medicine and Science, UT Health San Antonio, 7703 Floyd Curl Drive, MSC 7883, San Antonio, TX 78229, USA
| | - Nancy L Monson
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Department of Immunology, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd., Dallas, TX 75390-9093, USA
| | - Ann M Stowe
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Jonsdottir AB, Sveinbjornsson G, Thorolfsdottir RB, Tamlander M, Tragante V, Olafsdottir T, Rognvaldsson S, Sigurdsson A, Eggertsson HP, Aegisdottir HM, Arnar DO, Banasik K, Beyter D, Bjarnason RG, Bjornsdottir G, Brunak S, Topholm Bruun M, Dowsett J, Einarsson E, Einarsson G, Erikstrup C, Fridriksdottir R, Ghouse J, Gretarsdottir S, Halldorsson GH, Hansen T, Helgadottir A, Holm PC, Ivarsdottir EV, Iversen KK, Jensen BA, Jonsdottir I, Knight S, Knowlton KU, Kristmundsdottir S, Larusdottir AE, Magnusson OT, Masson G, Melsted P, Mikkelsen C, Moore KHS, Oddsson A, Olason PI, Palsson F, Pedersen OB, Schwinn M, Sigurdsson EL, Skaftason A, Stefansdottir L, Stefansson H, Steingrimsdottir T, Sturluson A, Styrkarsdottir U, Sørensen E, Teitsdottir UD, Thorgeirsson TE, Thorisson GA, Thorsteinsdottir U, Ulfarsson MO, Ullum H, Vikingsson A, Walters GB, Nadauld LD, Bundgaard H, Ostrowski SR, Helgason A, Halldorsson BV, Norddahl GL, Ripatti S, Gudbjartsson DF, Thorleifsson G, Steinthorsdottir V, Holm H, Sulem P, Stefansson K. Missense variants in FRS3 affect body mass index in populations of diverse ancestries. Nat Commun 2025; 16:2694. [PMID: 40133257 PMCID: PMC11937519 DOI: 10.1038/s41467-025-57753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Obesity is associated with adverse effects on health and quality of life. Improved understanding of its underlying pathophysiology is essential for developing counteractive measures. To search for sequence variants with large effects on BMI, we perform a multi-ancestry meta-analysis of 13 genome-wide association studies on BMI, including data derived from 1,534,555 individuals of European ancestry, 339,657 of Asian ancestry, and 130,968 of African ancestry. We identify an intergenic 262,760 base pair deletion at the MC4R locus that associates with 4.11 kg/m2 higher BMI per allele, likely through downregulation of MC4R. Moreover, a rare FRS3 missense variant, p.Glu115Lys, only found in individuals from Finland, associates with 1.09 kg/m2 lower BMI per allele. We also detect three other low-frequency FRS3 missense variants that associate with BMI with smaller effects and are enriched in different ancestries. We characterize FRS3 as a BMI-associated gene, encoding an adaptor protein known to act downstream of BDNF and TrkB, which regulate appetite, food intake, and energy expenditure through unknown signaling pathways. The work presented here contributes to the biological foundation of obesity by providing a convincing downstream component of the BDNF-TrkB pathway, which could potentially be targeted for obesity treatment.
Collapse
Affiliation(s)
- Andrea B Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | | | | | - Max Tamlander
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Hildur M Aegisdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Division of Cardiology, Cardiovascular Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Karina Banasik
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ragnar G Bjarnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Medical Center, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Søren Brunak
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jonas Ghouse
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter C Holm
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper Karmark Iversen
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Adalheidur E Larusdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Emil L Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Healthcare in Iceland, Primary Health Care of the Capital Area, Reykjavik, Iceland
| | | | | | | | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | - Arnor Vikingsson
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Hazra JD, Shrivastava K, Wüstner LS, Anunu R, Chervinsky E, Hazra S, Beuter S, Kriebel M, Maroun M, Volkmer H, Richter-Levin G. Effects of TrkB-related induced metaplasticity within the BLA on anxiety, extinction learning, and plasticity in BLA-modulated brain regions. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:4. [PMID: 40033342 DOI: 10.1186/s12993-025-00267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Neuronal plasticity within the basolateral amygdala (BLA) is fundamental for fear learning. Metaplasticity, the regulation of plasticity states, has emerged as a key mechanism mediating the subsequent impact of emotional and stressful experiences. After mRNA knockdown of synaptic plasticity-related TrkB, we examined the impact of chronically altered activity in the rat BLA (induced metaplasticity) on anxiety-like behavior, fear memory-related behaviors, and neural plasticity in brain regions modulated by the BLA. These effects were investigated under both basal conditions and following exposure to acute trauma (UWT). RESULTS Under basal conditions, TrkB knockdown increased anxiety-like behavior and impaired extinction learning. TrkBKD also reduced LTP in the vSub-mPFC pathway but not in the dentate gyrus. Compared with those of control animals, acute trauma exposure led to increased anxiety-like behavior and impaired extinction learning in both the trauma-exposed group (CTR-UWT) and the trauma-exposed group on the background of TrkB knockdown (TrkBKD-UWT). However, the deficit in extinction learning was more pronounced in the TrkBKD-UWT group than in the CTR-UWT group. Accordingly, TrkBKD-UWT, but not CTR-UWT, resulted in impaired LTP in the vSub- mPFC pathway. Since LTP in this pathway is independent of BLA involvement, this result suggests that lasting intra-BLA-induced metaplasticity may also lead to transregional metaplasticity within the mPFC, as suggested previously. CONCLUSIONS Taken together, these findings reveal the dissociative involvement of BLA function, on the one hand, in anxiety, which is affected by the knockdown of TrkB, and, on the other hand, in extinction learning, which is more significantly affected by the combination of intra-BLA-induced metaplasticity and exposure to emotional trauma.
Collapse
Affiliation(s)
- Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Kuldeep Shrivastava
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Lisa-Sophie Wüstner
- Department Molecular-Neurobiology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Erez Chervinsky
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Somoday Hazra
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Simone Beuter
- Department Molecular-Neurobiology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Martin Kriebel
- Department Molecular-Neurobiology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Mouna Maroun
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Hansjuergen Volkmer
- Department Molecular-Neurobiology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel.
- Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
4
|
Liu L, Hao M, Yu H, Tian Y, Yang C, Fan H, Zhao X, Geng F, Mo D, Xia L, Liu H. The associations of brain-derived neurotrophic factor (BDNF) levels with psychopathology and lipid metabolism parameters in adolescents with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01984-3. [PMID: 39998568 DOI: 10.1007/s00406-025-01984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Brain-derived neurotrophic factor (BDNF) is crucial for the growth, differentiation and maintenance of neuronal systems, which is closely associated with major depressive disorder (MDD). The objective of this study was to investigate the BDNF levels and their associations with psychopathology and lipid metabolism parameters in adolescents with MDD. From January to December 2021, the study included 141 adolescents with MDD and 90 healthy controls (HCs). The Center for Epidemiological Studies Depression Scale (CES-D), the Insomnia Severity Index Scale (ISI), the Epworth Sleepiness Scale (ESS) and the Positive and Negative Suicidal Ideation Scale (PANSI) were used to assess depressive symptoms, insomnia, excessive daytime sleepiness, and suicidal ideation, respectively. BDNF levels and lipid metabolism parameters were also measured. Compared to HCs, adolescents with MDD had significantly lower BDNF levels (p < 0.001). In patients, BDNF levels were positively correlated with age, BMI, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C); and negatively correlated with the scores of CES-D and ISI (all p < 0.05). The results of the multivariate linear regression analyses indicated that BDNF levels were positively associated with age (β = 0.198, t = 2.447, p = 0.016), first-episode MDD (β = 0.176, t = 2.234, p = 0.027) and TC level (β = 0.240, t = 3.048, p = 0.003), and negatively associated with the scores of ESS (β = -0.171, t = -2.203, p = 0.029) and ISI (β = -0.231, t = -2.996, p = 0.003). Of note, the associations between BDNF and psychopathology were observed only in female and first-episode patients. BDNF levels were decreased in adolescents with MDD. Patients with low BDNF levels were in a more severe psychiatric state and had changes in lipid metabolism parameters. This study provided preliminary evidence that BDNF may play a role in the onset and progression of MDD.
Collapse
Affiliation(s)
- Lewei Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Mingru Hao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Haiyun Yu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Yinghan Tian
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Cheng Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Haojie Fan
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Xin Zhao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Daming Mo
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, Anhui Province, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, Anhui Province, China.
| |
Collapse
|
5
|
Kim HJ, Lee K, Yoo K, Kim JE, Kim H, Lim CS, Park YS, Kim HK. Critical Role of Rho Guanine Nucleotide Exchange Factor 4 in Brain Function. Mol Neurobiol 2025:10.1007/s12035-025-04734-7. [PMID: 39920439 DOI: 10.1007/s12035-025-04734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Although Rho guanine nucleotide exchange factor 4 (Arhgef4) is highly expressed in the brain, its function remains poorly understood. Our previous study showed that Arhgef4 negatively regulates excitatory postsynaptic regional activity. This study investigated the effects of Arhgef4 deletion in postnatal forebrain-specific knockout mice on brain function, synaptic proteins, and behaviors. We generated a knockout mouse with Arhgef4 deleted from the forebrain and analyzed gene expression and protein levels by RT-PCR and western blot. Synaptic function was assessed through electrophysiological recordings, and behavioral tests evaluated memory and anxiety. In these conditional knockout (cKO) mice, we observed a significant decrease in the expression of a 75-kDa brain-enriched isoform of Arhgef4 in the forebrain. In KO mice, pre- and post-synaptic protein levels were unchanged. However, in cultured hippocampal neurons from KO mice, the levels of postsynaptic density protein 95 (PSD-95) in the postsynaptic regions were significantly increased from the pre-mature stage to the fully mature stage during neuronal development. In contrast, the number of dendritic protrusions decreased during the early mature stage of the cultured neurons. Electrophysiological recordings of hippocampal neurons from KO mice showed a significant increase in miniature excitatory postsynaptic currents (mEPSC) frequency. Furthermore, Arhgef4 KO mice exhibited enhanced long-term memory and reduced anxiety-related behaviors. These findings suggest that Arhgef4 plays a role in regulating brain functions such as learning, memory, and anxiety.
Collapse
Affiliation(s)
- Hee Jeong Kim
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, Chungbuk National University, Rm #421, 194-15, Osongsaengmyeong 1-Ro, Heungdeok-Gu, Cheongju, 28160, Republic of Korea
| | - Kina Lee
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, Chungbuk National University, Rm #421, 194-15, Osongsaengmyeong 1-Ro, Heungdeok-Gu, Cheongju, 28160, Republic of Korea
| | - Kiseo Yoo
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, Chungbuk National University, Rm #421, 194-15, Osongsaengmyeong 1-Ro, Heungdeok-Gu, Cheongju, 28160, Republic of Korea
| | - Jeong Eun Kim
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, Chungbuk National University, Rm #421, 194-15, Osongsaengmyeong 1-Ro, Heungdeok-Gu, Cheongju, 28160, Republic of Korea
| | - Heeju Kim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Young Seok Park
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea
- Department of Neurosurgery, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyong Kyu Kim
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, Chungbuk National University, Rm #421, 194-15, Osongsaengmyeong 1-Ro, Heungdeok-Gu, Cheongju, 28160, Republic of Korea.
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
6
|
McLachlan CA, Lee DG, Kwon O, Delgado KM, Manjrekar N, Yao Z, Zeng H, Tasic B, Chen JL. Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex. Cell Rep 2025; 44:115175. [PMID: 39792551 PMCID: PMC11920904 DOI: 10.1016/j.celrep.2024.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Task learning involves learning associations between stimuli and outcomes and storing these relationships in memory. While this information can be reliably decoded from population activity, individual neurons encoding this representation can drift over time. The circuit or molecular mechanisms underlying this drift and its role in learning are unclear. We performed two-photon calcium imaging in the perirhinal cortex during task training. Using post hoc spatial transcriptomics, we measured immediate-early gene (IEG) expression and assigned monitored neurons to excitatory or inhibitory subtypes. We discovered an IEG-defined network spanning multiple subtypes that form stimulus-outcome associations. Targeted deletion of brain-derived neurotrophic factor in the perirhinal cortex disrupted IEG expression and impaired task learning. Representational drift slowed with prolonged training. Pre-existing representations were strengthened while stimulus-reward associations failed to form. Our findings reveal the cell types and molecules regulating long-term network stability that is permissive for task learning and memory allocation.
Collapse
Affiliation(s)
- Caroline A McLachlan
- Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA
| | - David G Lee
- Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Osung Kwon
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Kevin M Delgado
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jerry L Chen
- Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA.
| |
Collapse
|
7
|
Miksza U, Bauer W, Roszkowska J, Moroz M, Buczynska A, Wiatr A, Gorska M, Adamska-Patruno E, Kretowski A. The BDNF Protein is Associated With Glucose Homeostasis and Food Intake in Carriers of Common BDNF Gene Variants. J Clin Endocrinol Metab 2025; 110:e487-e496. [PMID: 38478378 DOI: 10.1210/clinem/dgae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Brain-derived neurotrophic factor (BDNF) concentrations may differ between BDNF genotype carriers. These changes occur in individuals with metabolic and mental disorders. OBJECTIVE The aim of this study was to assess the associations of glucose homeostasis parameters and the frequency of food consumption with BDNF protein concentrations based on BDNF single nucleotide polymorphisms (SNPs). METHODS Among the 439 participants, some common rs10835211 BDNF gene variants were analyzed. We evaluated BDNF concentrations, and measured glucose and insulin after fasting and during oral glucose tolerance tests. Anthropometric measurements, body composition, and body fat distribution were assessed, and a 3-day food intake diary and food frequency questionnaire were completed. RESULTS We observed significant differences in BDNF concentration between AA and AG genotype rs10835211 carriers (P = .018). The group of AA genotype holders were older, and positive correlation was found between age and BDNF in the whole study population (P = .012) and in the GG genotype carriers (P = .023). Moreover, BDNF protein correlated with fasting insulin (P = .015), HOMA-IR (P = .031), HOMA-B (P = .010), and the visceral/subcutaneous adipose tissue (VAT/SAT) ratio (P = .026) in the GG genotype individuals. Presence of the GG genotype was negatively correlated with nut and seed (P = .047) and lean pork consumption (P = .015), and the BDNF protein. Moreover, we observed correlations between the frequency of chicken (P = .028), pasta (P = .033), and sweet food intake (P = .040) with BDNF concentration in the general population. Among carriers of the AA genotype, we observed a positive correlation between the consumption of rice (P = .048) and sweet food (P = .028) and the BDNF protein level. CONCLUSION Peripheral BDNF may be associated with VAT content and insulin concentrations in GG genotype carriers and may vary with particular food intake, which warrants further investigation.
Collapse
Affiliation(s)
- Urszula Miksza
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Witold Bauer
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Joanna Roszkowska
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Moroz
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Angelika Buczynska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Wiatr
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Edyta Adamska-Patruno
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Adam Kretowski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
8
|
Lainšček D, Forstnerič V, Miroševič Š. CTNNB1 syndrome mouse models. Mamm Genome 2025:10.1007/s00335-025-10105-3. [PMID: 39833474 DOI: 10.1007/s00335-025-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, 1000, Slovenia.
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
| | - Špela Miroševič
- The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.
- Department of Family Medicine, Faculty of Medicine Ljubljana, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
9
|
Kosse C, Ivanov J, Knight Z, Pellegrino K, Friedman J. A subcortical feeding circuit linking an interoceptive node to jaw movement. Nature 2024; 636:151-161. [PMID: 39443799 PMCID: PMC11618074 DOI: 10.1038/s41586-024-08098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood1-3. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMHBDNF neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMHBDNF inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMHBDNF neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMHBDNF activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMHBDNF → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.
Collapse
Affiliation(s)
- Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Zachary Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Sakata K, Fukuchi M. Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice. Genes Cells 2024; 29:1077-1084. [PMID: 39278976 DOI: 10.1111/gtc.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed in the white adipose tissues (WATs), and the expression increases during high-fat diet (HFD) feeding, implicating its role in obesity. Here, we focused on BDNF expression in epididymal WAT (eWAT), a visceral adipose tissue, in mice. During 2 weeks of HFD feeding, Bdnf mRNA expression in eWAT slightly increased, but a robust increase was observed after 8 weeks of HFD feeding. This upregulation of Bdnf mRNA was correlated with significant induction of hypoxia-inducible factor 1α (Hif1α) and platelet-derived growth factor subunit B (Pdgfb) mRNA in eWAT following 8 weeks of HFD feeding. Furthermore, the increased expression of the M1 macrophage markers was strongly correlated with the elevation of Bdnf mRNA in the eWAT. Notably, 8 weeks of HFD feeding significantly elevated Tnfα mRNA expression in eWAT, while no such induction was observed in inguinal WAT (iWAT). In contrast, the expression of Adipoq (adiponectin), implicated in improved insulin sensitivity and anti-inflammatory effects, was significantly upregulated in iWAT, but not in eWAT. Thus, our study may show the role of BDNF in eWAT in obesity models, potentially contributing to the pathological state of visceral adipose tissues.
Collapse
Affiliation(s)
- Kurumi Sakata
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| |
Collapse
|
11
|
van Melis LVJ, Peerdeman AM, González CA, van Kleef RGDM, Wopken JP, Westerink RHS. Effects of chronic insecticide exposure on neuronal network development in vitro in rat cortical cultures. Arch Toxicol 2024; 98:3837-3857. [PMID: 39162819 PMCID: PMC11489184 DOI: 10.1007/s00204-024-03840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Developmental exposure to carbamates, organophosphates, and pyrethroids has been associated with impaired neurodevelopmental outcomes. Sex-specific differences following chronic insecticide exposure are rather common in vivo. Therefore, we assessed the chronic effects of in vitro exposure to different carbamates (carbaryl, methomyl and aldicarb), organophosphates [chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), and 3,5,6,trichloropyridinol (TCP)], and pyrethroids [permethrin, alpha-cypermethrin and 3-phenoxy benzoic acid (3-PBA)] on neuronal network development in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure for 1 week to carbaryl inhibited neurodevelopment in male cultures, while a hyperexcitation was observed in female cultures. Methomyl and aldicarb evoked a hyperexcitation after 2 weeks of exposure, which was more pronounced in female cultures. In contrast to acute MEA results, exposure to ≥ 10 µM CPF caused hyperexcitation in both sexes after 10 days. Interestingly, exposure to 10 µM CPO induced a clear hyperexcitation after 10 days of exposure in male but not female cultures. Exposure to 100 µM CPO strongly inhibited neuronal development. Exposure to the type I pyrethroid permethrin resulted in a hyperexcitation at 10 µM and a decrease in neuronal development at 100 µM. In comparison, exposure to ≥ 10 µM of the type II pyrethroid alpha-cypermethrin decreased neuronal development. In female but not in male cultures, exposure to 1 and 10 µM permethrin changed (network) burst patterns, with female cultures having shorter (network) bursts with fewer spikes per (network) burst. Together, these results show that MEA recordings are suitable for measuring sex-specific developmental neurotoxicity in vitro. Additionally, pyrethroid exposure induced effects on neuronal network development at human-relevant concentrations. Finally, chronic exposure has different effects on neuronal functioning compared to acute exposure, highlighting the value of both exposure paradigms.
Collapse
Affiliation(s)
- Lennart V J van Melis
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Anneloes M Peerdeman
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Celia Arenas González
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - J Pepijn Wopken
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
12
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. Brain 2024; 147:3471-3486. [PMID: 38554393 PMCID: PMC11449144 DOI: 10.1093/brain/awae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Joy Barrett
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21021, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Pei-Ju Lu
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action. J Clin Med 2024; 13:5364. [PMID: 39336850 PMCID: PMC11432543 DOI: 10.3390/jcm13185364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Bulimia nervosa (BN) is a disorder primarily affecting adolescent females, characterized by episodes of binge eating followed by inappropriate compensatory behaviors aimed at preventing weight gain, including self-induced vomiting and the misuse of diuretics, laxatives, and insulin. The precise etiology of BN remains unknown, with factors such as genetics, biological influences, emotional disturbances, societal pressures, and other challenges contributing to its prevalence. First-line treatment typically includes pharmacotherapy, which has shown moderate effectiveness. Neuroimaging evidence suggests that altered brain activity may contribute to the development of BN, making interventions that directly target the brain extremely valuable. One such intervention is repetitive transcranial magnetic stimulation (rTMS), a non-invasive stimulation technique that has been garnering interest in the medical community for many years. METHODS This review explores the use of rTMS in the treatment of BN. Searches were conducted in the PubMed/Medline, ResearchGate, and Cochrane databases. RESULTS Twelve relevant studies were identified. Analysis of the results from these studies reveals promising findings, particularly regarding key parameters in the pathophysiology of BN. Several studies assessed the impact of rTMS on binge episodes. While some studies did not find significant reductions, most reported decreases in binge eating and purging behaviors, with some cases showing complete remission. Reductions in symptoms of depression and food cravings were also demonstrated. However, results regarding cognitive improvement were mixed. The discussion focused heavily on potential mechanisms of action, including neuromodulation of brain networks, induction of neuroplasticity, impact on serotonergic dysfunction, anti-inflammatory action, and HPA axis modulation. rTMS was found to be a safe intervention with no serious side effects. CONCLUSIONS rTMS in the treatment of BN appears to be a promising intervention that alleviates some symptoms characteristic of the pathophysiology of this disorder. An additional effect is a significant reduction in depressive symptoms. However, despite these findings, further research is required to confirm its effectiveness and elucidate the mechanisms of action. It is also recommended to further investigate the potential mechanisms of action described in this review.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| | | |
Collapse
|
14
|
M JN, Bharadwaj D. The complex web of obesity: from genetics to precision medicine. Expert Rev Endocrinol Metab 2024; 19:403-418. [PMID: 38869356 DOI: 10.1080/17446651.2024.2365785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.
Collapse
Affiliation(s)
- Janaki Nair M
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
16
|
Forsell P, Parrado Fernández C, Nilsson B, Sandin J, Nordvall G, Segerdahl M. Positive Allosteric Modulators of Trk Receptors for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:997. [PMID: 39204102 PMCID: PMC11357672 DOI: 10.3390/ph17080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophins are important regulators of neuronal and non-neuronal functions. As such, the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor tyrosine kinases, has attracted intense research interest and their role in multiple diseases including Alzheimer's disease has been described. Attempts to administer neurotrophins to patients have been reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy. Thus, much of the focus during recent years has been on identifying small molecules acting as agonists or positive allosteric modulators (PAMs) of Trk receptors. Two examples of successful discovery and development of PAMs are the TrkA-PAM E2511 and the pan-Trk PAM ACD856. E2511 has been reported to have disease-modifying effects in preclinical models, whereas ACD856 demonstrates both a symptomatic and a disease-modifying effect in preclinical models. Both molecules have reached the stage of clinical development and were reported to be safe and well tolerated in clinical phase 1 studies, albeit with different pharmacokinetic profiles. These two emerging small molecules are interesting examples of possible novel symptomatic and disease-modifying treatments that could complement the existing anti-amyloid monoclonal antibodies for the treatment of Alzheimer's disease. This review aims to present the concept of positive allosteric modulators of the Trk receptors as a novel future treatment option for Alzheimer's disease and other neurodegenerative and cognitive disorders, and the current preclinical and clinical data supporting this new concept. Preclinical data indicate dual mechanisms, not only as cognitive enhancers, but also a tentative neurorestorative function.
Collapse
Affiliation(s)
- Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Cristina Parrado Fernández
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Boel Nilsson
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Märta Segerdahl
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| |
Collapse
|
17
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
18
|
Yamada T, Mihara K, Ueda T, Yamauchi D, Shimizu M, Ando A, Mayumi K, Nakata Z, Mikamiyama H. Discovery and Hit to Lead Optimization of Macrocyclic Peptides as Novel Tropomyosin Receptor Kinase A Antagonists. J Med Chem 2024; 67:11197-11208. [PMID: 38950284 DOI: 10.1021/acs.jmedchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Tropomyosin receptor kinases (Trks) are receptor tyrosine kinases activated by neurotrophic factors, called neurotrophins. Among them, TrkA interacts with the nerve growth factor (NGF), which leads to pain induction. mRNA-display screening was carried out to discover a hit compound 2, which inhibits protein-protein interactions between TrkA and NGF. Subsequent structure optimization improving phosphorylation inhibitory activity and serum stability was pursued using a unique process that took advantage of the peptide being synthesized by translation from mRNA. This gave peptide 19, which showed an analgesic effect in a rat incisional pain model. The peptides described here can serve as a new class of analgesics, and the structure optimization methods reported provide a strategy for discovering new peptide drugs.
Collapse
Affiliation(s)
- Toru Yamada
- Biopharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Kousuke Mihara
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Taichi Ueda
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Daisuke Yamauchi
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Masaya Shimizu
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Azusa Ando
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Kei Mayumi
- Pharmaceutical Development Division, Yodoyabashi Office, Osaka , Osaka 541-0042, Japan
| | - Zenzaburo Nakata
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Hidenori Mikamiyama
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| |
Collapse
|
19
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Medeiros D, Ayala-Baylon K, Egido-Betancourt H, Miller E, Chapleau C, Robinson H, Phillips ML, Yang T, Longo FM, Li W, Pozzo-Miller L. A small-molecule TrkB ligand improves dendritic spine phenotypes and atypical behaviors in female Rett syndrome mice. Dis Model Mech 2024; 17:dmm050612. [PMID: 38785269 PMCID: PMC11139040 DOI: 10.1242/dmm.050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 05/25/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Ayala-Baylon
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Egido-Betancourt
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Chapleau
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly Robinson
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary L. Phillips
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
22
|
Poggini S, Matte Bon G, Ciano Albanese N, Karpova N, Castrén E, D'Andrea I, Branchi I. Subjective experience of the environment determines serotoninergic antidepressant treatment outcome in male mice. J Affect Disord 2024; 350:900-908. [PMID: 38246279 DOI: 10.1016/j.jad.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Matte Bon
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nina Karpova
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Ivana D'Andrea
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S 1270, Sorbonne Université, Sciences and Engineering Faculty, Institut du Fer à Moulin, Paris, France
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
23
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
24
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
25
|
Marchetta P, Dapper K, Hess M, Calis D, Singer W, Wertz J, Fink S, Hage SR, Alam M, Schwabe K, Lukowski R, Bourien J, Puel JL, Jacob MH, Munk MHJ, Land R, Rüttiger L, Knipper M. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing. FASEB J 2024; 38:e23411. [PMID: 38243766 DOI: 10.1096/fj.202301995r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Mesbah Alam
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jerome Bourien
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Matthias H J Munk
- Department of Psychiatry & Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, Hannover, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Ichimura-Shimizu M, Kojima M, Suzuki S, Miyata M, Osaki Y, Matsui K, Mizui T, Tsuneyama K. Brain-derived neurotrophic factor knock-out mice develop non-alcoholic steatohepatitis. J Pathol 2023; 261:465-476. [PMID: 37781961 DOI: 10.1002/path.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023]
Abstract
While brain-derived neurotrophic factor (BDNF), which is a growth factor associated with cognitive improvement and the alleviation of depression symptoms, is known to regulate food intake and body weight, the role of BDNF in peripheral disease is not fully understood. Here, we show that reduced BDNF expression is associated with weight gain and the chronic liver disease non-alcoholic steatohepatitis (NASH). At 10 months of age, BDNF-heterozygous (BDNF+/- ) mice developed symptoms of NASH: centrilobular/perivenular steatosis, lobular inflammation with infiltration of neutrophils, ballooning hepatocytes, and fibrosis of the liver. Obesity and higher serum levels of glucose and insulin - major pathologic features in human NASH - were dramatic. Dying adipocytes were surrounded by macrophages in visceral fat, suggesting that chronic inflammation occurs in peripheral organs. RNA sequencing (RNA-seq) studies of the liver revealed that the most significantly enriched Gene Ontology term involved fatty acid metabolic processes and the modulation of neutrophil aggregation, pathologies that well characterise NASH. Gene expression analysis by RNA-seq also support the notion that BDNF+/- mice are under oxidative stress, as indicated by alterations in the expression of the cytochrome P450 family and a reduction in glutathione S-transferase p, an antioxidant enzyme. Histopathologic phenotypes of NASH were also observed in a knock-in mouse (BDNF+/pro ), in which the precursor BDNF is inefficiently converted into the mature form of BDNF. Lastly, as BDNF reduction causes overeating and subsequent obesity, a food restriction study was conducted in BDNF+/pro mice. Pair-fed BDNF+/pro mice developed hepatocellular damage and showed infiltration of inflammatory cells, including neutrophils in the liver, despite having body weights and blood parameters that were comparable to those of controls. This is the first report demonstrating that reduced BDNF expression plays a role in the pathogenic mechanism of NASH, which is a hepatic manifestation of metabolic syndrome. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Yui Osaki
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Konomi Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Toshiyuki Mizui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
27
|
Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci Res 2023; 197:42-51. [PMID: 36780947 DOI: 10.1016/j.neures.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neurotrophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular responses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that astrocytic BDNF may represent a promising target for clinical translation.
Collapse
Affiliation(s)
- Martina Albini
- Department of Experimental Medicine, University of Genova, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy
| | - Fabrizia Cesca
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy.
| |
Collapse
|
28
|
Çerçi B, Gök A, Akyol A. Brain-derived neurotrophic factor: Its role in energy balance and cancer cachexia. Cytokine Growth Factor Rev 2023; 71-72:105-116. [PMID: 37500391 DOI: 10.1016/j.cytogfr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.
Collapse
Affiliation(s)
- Barış Çerçi
- Medical School, Hacettepe University, Ankara, Turkey.
| | - Ayşenur Gök
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| | - Aytekin Akyol
- Departmant of Pathology, Medical School, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
29
|
Sun YX, Su YA, Wang Q, Zheng JY, Zhang CC, Wang T, Liu X, Ma YN, Li XX, Zhang XQ, Xie XM, Wang XD, Li JT, Si TM. The causal involvement of the BDNF-TrkB pathway in dentate gyrus in early-life stress-induced cognitive deficits in male mice. Transl Psychiatry 2023; 13:173. [PMID: 37225683 DOI: 10.1038/s41398-023-02476-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Cognitive dysfunction is a significant, untreated clinical need in patients with psychiatric disorders, for which preclinical studies are needed to understand the underlying mechanisms and to identify potential therapeutic targets. Early-life stress (ELS) leads to long-lasting deficits of hippocampus-dependent learning and memory in adult mice, which may be associated with the hypofunction of the brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB). In this study, we carried out eight experiments using male mice to examine the causal involvement of the BDNF-TrkB pathway in dentate gyrus (DG) and the therapeutic effects of the TrkB agonist (7,8-DHF) in ELS-induced cognitive deficits. Adopting the limited nesting and bedding material paradigm, we first demonstrated that ELS impaired spatial memory, suppressed BDNF expression and neurogenesis in the DG in adult mice. Downregulating BDNF expression (conditional BDNF knockdown) or inhibition of the TrkB receptor (using its antagonist ANA-12) in the DG mimicked the cognitive deficits of ELS. Acute upregulation of BDNF (exogenous human recombinant BDNF microinjection) levels or activation of TrkB receptor (using its agonist, 7,8-DHF) in the DG restored ELS-induced spatial memory loss. Finally, acute and subchronic systemic administration of 7,8-DHF successfully restored spatial memory loss in stressed mice. Subchronic 7,8-DHF treatment also reversed ELS-induced neurogenesis reduction. Our findings highlight BDNF-TrkB system as the molecular target of ELS-induced spatial memory deficits and provide translational evidence for the intervention at this system in the treatment of cognitive deficits in stress-related psychiatric disorders, such as major depressive disorder.
Collapse
Affiliation(s)
- Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qi Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Ya Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Meng Xie
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
30
|
Naeini Z, Abaj F, Rafiee M, Koohdani F. Interactions of BDNF Val66met and dietary indices in relation to metabolic markers among patient with type 2 diabetes mellitus: a cross-sectional study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:34. [PMID: 37072879 PMCID: PMC10111776 DOI: 10.1186/s41043-023-00375-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Gene-diet interaction is related to the progression of diabetes and cardiovascular diseases biomarkers. We aimed to evaluate the interaction between diet quality indices and BDNF Val66Mat (rs6265) on cardiometabolic markers among diabetic patients. METHODS This cross-sectional study was conducted on 634 patients with type 2 diabetes mellitus, which were randomly recruited from diabetic centers in Tehran. Dietary intakes were estimated by a previously validated semi-quantitative food frequency questionnaire comprising 147 items. All participants were categorized into three categories, based on healthy eating index (HEI), diet quality index (DQI), and phytochemical index (PI) scores. Polymerase chain reaction was used for genotyping the BDNF Val66Met. Interactions were tested using analysis of covariance in adjusted and crude models. RESULTS Our result showed that higher DQI, HEI, and PI scores significantly decrease body mass index and waist circumference among individuals with Met/Met, Val/Met, and Val/Val genotypes (P interactions < 0.05). Moreover, the highest quartile of the DQI and PI, compared to the lowest, showed lower TG level among Met allele carriers compared to Val/Val homozygotes (P interaction = 0.004 and 0.01, respectively) and a faster reduction in IL-18 and TC level was seen among Met/Met, Val/Met who had higher HEI intake than those with Val/Val genotype. CONCLUSIONS BDNF Val66Met polymorphism may interact with HEI, DQI, and PI. We have revealed that Met allele acts as a protective allele for diabetic patients and may have a beneficial influence on cardio-metabolic factors through regulating dietary intake.
Collapse
Affiliation(s)
- Zeinab Naeini
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Masoumeh Rafiee
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran.
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
31
|
Xia Y, Song X, Wu L, Li J, Liu N, Cui W. Pathoclinical associations between panic disorders and the brain-derived neurotrophic factor Val66Met polymorphism: an updated meta-analysis. Psychiatr Genet 2023; 33:50-58. [PMID: 36794980 PMCID: PMC9997625 DOI: 10.1097/ypg.0000000000000337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Prior studies have indicated the pathological role of brain-derived neurotrophic factor (BDNF) gene polymorphism in panic disorders (PD). A functionally less active BDNF Val66Met mutant was previously detected in PD patients with different ethnic backgrounds. However, the results remain inconclusive or inconsistent. A meta-analysis was used to explore the consistency of the BDNF Val66Met mutant's association with PD irrespective of the subject's ethnicity. Relevant case-controlled full-length clinical and preclinical reports were retrieved by database searching, and 11 articles involving 2203 cases and 2554 controls were systematically selected per the standard inclusion criteria. Eleven articles were finally included that explored the relationship between the Val66Met polymorphism and PD risk susceptibility. Statistical analysis revealed a significant genetic association of the mutation, allele frequencies, and genotype distributions of BDNF with PD onset. Our findings demonstrated that the BDNF Val66Met is a susceptibility factor of PD.
Collapse
Affiliation(s)
- Yu Xia
- Department of Psychiatry, Shenyang Mental Health Center, Shenyang
| | - Xun Song
- Grade 2020, College of Mental Health, Bengbu Medical University, Bengbu
| | - Lijuan Wu
- Department of Psychiatry, Shenyang Mental Health Center, Shenyang
| | - Jun Li
- Department of Psychiatry, Shenyang Anning Hospital, Shenyang
| | - Nan Liu
- China National Tobacco Quality Supervision and Test Centre, Zhengzhou, China
| | - Wenhui Cui
- Department of Psychiatry, Shenyang Mental Health Center, Shenyang
| |
Collapse
|
32
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
33
|
Hosseini E, Kianifard D. Effect of prenatal stress and extremely low-frequency electromagnetic fields on anxiety-like behavior in female rats: With an emphasis on prefrontal cortex and hippocampus. Brain Behav 2023; 13:e2949. [PMID: 36942730 PMCID: PMC10097060 DOI: 10.1002/brb3.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/03/2022] [Accepted: 01/23/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Prenatal stress (PS) is a problematic situation resulting in psychological implications such as social anxiety. Ubiquitous extremely low-frequency electromagnetic fields (ELF-EMF) have been confirmed as a potential physiological stressor; however, useful neuroregenerative effect of these types of electromagnetic fields has also frequently been reported. The aim of the present study was to survey the interaction of PS and ELF-EMF on anxiety-like behavior. METHOD A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, stress (their mothers were exposed to stress), EMF (their mothers underwent to ELF-EMF), and EMF/stress (their mothers concurrently underwent to stress and ELF-EMF). The rats were assayed using elevated plus-maze and open field tests. RESULTS Expressions of the hippocampus GAP-43, BDNF, and caspase-3 (cas-3) were detected by immunohistochemistry in Cornu Ammonis 1 (CA1) and dentate gyrus (DG) of the hippocampus and prefrontal cortex (PFC). Anxiety-like behavior increased in all treatment groups. Rats in the EMF/stress group presented more serious anxiety-like behavior. In all treatment groups, upregulated expression of cas-3 was seen in PFC, DG, and CA1 and downregulated expression of BDNF and GAP-43 was seen in PFC and DG and the CA1. Histomorphological study showed vast neurodegenerative changes in the hippocampus and PFC. CONCLUSION The results showed ,female rats that underwent PS or/and EMF exhibited critical anxiety-like behavior and this process may be attributed to neurodegeneration in PFC and DG of the hippocampus and possibly decreased synaptic plasticity so-called areas.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Faculty of Veterinary Medicine, Division of Physiology, Department of basic science, Urmia University, Urmia, Iran
| | - Davoud Kianifard
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
34
|
Trinh S, Keller L, Herpertz-Dahlmann B, Seitz J. The role of the brain-derived neurotrophic factor (BDNF) in anorexia nervosa. Psychoneuroendocrinology 2023; 151:106069. [PMID: 36878115 DOI: 10.1016/j.psyneuen.2023.106069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is a growth factor belonging to the neurotrophin family which plays a pivotal role in the differentiation, survival, and plasticity of neurons in the central nervous system. Evidence suggests that BDNF is an important signal molecule in the regulation of energy balance and thus implicated in body weight control. The discovery of BDNF-expressing neurons in the paraventricular hypothalamus which is important in the regulation of energy intake, physical activity, and thermogenesis gives more evidence to the suggested participation of BDNF in eating behavior. Until now it remains questionable whether BDNF can be used as a reliable biomarker for eating disorders such as anorexia nervosa (AN) as available findings on BDNF levels in patients with AN are ambiguous. AN is an eating disorder characterized by a pathological low body weight in combination with a body image disturbance typically developing during adolescence. A severe drive for thinness leads to restrictive eating behavior often accompanied by physical hyperactivity. During therapeutic weight restoration an increase of BDNF expression levels seems desirable as it might improve neuronal plasticity and survival which is essential for learning processes and thereby essential for the success of the psychotherapeutic treatment of patients. On the contrary, the well-known anorexigenic effect of BDNF might favor relapse in patients as soon as the BDNF levels significantly increase during weight rehabilitation. The present review summarizes the association between BDNF and general eating behavior and especially focuses on the eating disorder AN. In this regard findings from preclinical AN studies (activity-based anorexia model) are outlined as well.
Collapse
Affiliation(s)
- Stefanie Trinh
- Institute for Neuroanatomy, University Hospital, RWTH University Aachen, Wendlingweg 2, Aachen D-52074, Germany.
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH University Aachen, Neuenhofer Weg 21, Aachen D-52074, Germany.
| |
Collapse
|
35
|
Woodburn SC, Asrat HS, Flurer JK, Schwierling HC, Bollinger JL, Vollmer LL, Wohleb ES. Depletion of microglial BDNF increases susceptibility to the behavioral and synaptic effects of chronic unpredictable stress. Brain Behav Immun 2023; 109:127-138. [PMID: 36681359 PMCID: PMC10023455 DOI: 10.1016/j.bbi.2023.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In the medial prefrontal cortex (PFC), chronic stress reduces synaptic expression of glutamate receptors, leading to decreased excitatory signaling from layer V pyramidal neurons and working memory deficits. One key element driving these changes is a reduction in brain-derived neurotrophic factor (BDNF) signaling. BDNF is a potent mediator of synaptic growth and deficient BDNF signaling has been linked to stress susceptibility. Prior studies indicated that neurons are the primary source of BDNF, but more recent work suggests that microglia are also an important source of BDNF. Adding to this, our work showed that 14 days of chronic unpredictable stress (CUS) reduced Bdnf transcript in PFC microglia, evincing its relevance in the effects of stress. To explore this further, we utilized transgenic mice with microglia-specific depletion of BDNF (Cx3cr1Cre/+:Bdnffl/fl) and genotype controls (Cx3cr1Cre/+:Bdnf+/+). In the following experiments, mice were exposed to a shortened CUS paradigm (7 days) to determine if microglial Bdnf depletion promotes stress susceptibility. Analyses of PFC microglia revealed that Cx3cr1Cre/+:Bdnffl/fl mice had shifts in phenotypic markers and gene expression. In a separate cohort, synaptoneurosomes were collected from the PFC and western blotting was performed for synaptic markers. These experiments showed that Cx3cr1Cre/+:Bdnffl/fl mice had baseline deficits in GluN2B, and that 7 days of CUS additionally reduced GluN2A levels in Cx3cr1Cre/+:Bdnffl/fl mice, but not genotype controls. Behavioral and cognitive testing showed that this coincided with exacerbated stress effects on temporal object recognition in Cx3cr1Cre/+:Bdnffl/fl mice. These results indicate that microglial BDNF promotes glutamate receptor expression in the PFC. As such, mice with deficient microglial BDNF had increased susceptibility to the behavioral and cognitive consequences of stress.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helina S Asrat
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hana C Schwierling
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren L Vollmer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
36
|
Xie X, Houtz J, Liao GY, Chen Y, Xu B. Genetic Val66Met BDNF Variant Increases Hyperphagia on Fat-rich Diets in Mice. Endocrinology 2023; 164:6984997. [PMID: 36631165 DOI: 10.1210/endocr/bqad008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
High prevalence of obesity is attributable in part to consumption of highly palatable, fat-rich foods. However, the mechanism controlling dietary fat intake is largely unknown. In this study we investigated the role of brain-derived neurotrophic factor (BDNF) in the control of dietary fat intake in a mouse model that mimics the common human Val-to-Met (Val66Met) polymorphism that impairs BDNF release via the regulated secretory pathway. BdnfMet/Met mice gained weight much faster than wild-type (WT) mice and developed severe obesity due to marked hyperphagia when they were fed HFD. Hyperphagia in these mice worsened when the fat content in their diet was increased. Conversely, mice lacking leptin exhibited similar hyperphagia on chow and HFD. When 2 diets were provided simultaneously, WT and BdnfMet/Met mice showed a comparable preference for the more palatable diet rich in either fat or sucrose, indicating that increased hyperphagia on fat-rich diets in BdnfMet/Met mice is not due to enhanced hedonic drive. In support of this interpretation, WT and BdnfMet/Met mice increased calorie intake to a similar extent during the first day after chow was switched to HFD; however, WT mice decreased HFD intake faster than BdnfMet/Met mice in subsequent days. Furthermore, we found that refeeding after fasting or nocturnal feeding with HFD activated TrkB more strongly than with chow in the hypothalamus of WT mice, whereas TrkB activation under these 2 conditions was greatly attenuated in BdnfMet/Met mice. These results indicate that satiety factors generated during HFD feeding induce BDNF release to suppress excess dietary fat intake.
Collapse
Affiliation(s)
- Xiangyang Xie
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, USA
| | - Jessica Houtz
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, USA
| | - Guey-Ying Liao
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, USA
| | - Yuting Chen
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Baoji Xu
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
37
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
38
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
39
|
Li DC, Dighe NM, Barbee BR, Pitts EG, Kochoian B, Blumenthal SA, Figueroa J, Leong T, Gourley SL. A molecularly integrated amygdalo-fronto-striatal network coordinates flexible learning and memory. Nat Neurosci 2022; 25:1213-1224. [PMID: 36042313 PMCID: PMC10614133 DOI: 10.1038/s41593-022-01148-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Behavioral flexibility-that is, the ability to deviate from established behavioral sequences-is critical for navigating dynamic environments and requires the durable encoding and retrieval of new memories to guide future choice. The orbitofrontal cortex (OFC) supports outcome-guided behaviors. However, the coordinated neural circuitry and cellular mechanisms by which OFC connections sustain flexible learning and memory remain elusive. Here we demonstrate in mice that basolateral amygdala (BLA)→OFC projections bidirectionally control memory formation when familiar behaviors are unexpectedly not rewarded, whereas OFC→dorsomedial striatum (DMS) projections facilitate memory retrieval. OFC neuronal ensembles store a memory trace for newly learned information, which appears to be facilitated by circuit-specific dendritic spine plasticity and neurotrophin signaling within defined BLA-OFC-DMS connections and obstructed by cocaine. Thus, we describe the directional transmission of information within an integrated amygdalo-fronto-striatal circuit across time, whereby novel memories are encoded by BLA→OFC inputs, represented within OFC ensembles and retrieved via OFC→DMS outputs during future choice.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Niharika M Dighe
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Britton R Barbee
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth G Pitts
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brik Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sarah A Blumenthal
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Janet Figueroa
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Traci Leong
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Morè L, Privitera L, Perrett P, Cooper DD, Bonnello MVG, Arthur JSC, Frenguelli BG. CREB serine 133 is necessary for spatial cognitive flexibility and long-term potentiation. Neuropharmacology 2022; 219:109237. [PMID: 36049536 DOI: 10.1016/j.neuropharm.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The transcription factor cAMP response element binding protein (CREB) is widely regarded as orchestrating the genomic response that underpins a range of physiological functions in the central nervous system, including learning and memory. Of the means by which CREB can be regulated, emphasis has been placed on the phosphorylation of a key serine residue, S133, in the CREB protein, which is required for CREB-mediated transcriptional activation in response to a variety of activity-dependent stimuli. Understanding the role of CREB S133 has been complicated by molecular genetic techniques relying on over-expression of either dominant negative or activating transgenes that may distort the physiological role of endogenous CREB. A more elegant recent approach targeting S133 in the endogenous CREB gene has yielded a mouse with constitutive replacement of this residue with alanine (S133A), but has generated results (no behavioural phenotype and no effect on gene transcription) at odds with contemporary views as to the role of CREB S133, and which may reflect compensatory changes associated with the constitutive mutation. To avoid this potential complication, we generated a post-natal and forebrain-specific CREB S133A mutant in which the expression of the mutation was under the control of CaMKIIα promoter. Using male and female mice we show that CREB S133 is necessary for spatial cognitive flexibility, the regulation of basal synaptic transmission, and for the expression of long-term potentiation (LTP) in hippocampal area CA1. These data point to the importance of CREB S133 in neuronal function, synaptic plasticity and cognition in the mammalian brain.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Philippa Perrett
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Manuel Van Gijsel Bonnello
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
41
|
Brain-derived neurotrophic factor (BDNF): a multifaceted marker in chronic kidney disease. Clin Exp Nephrol 2022; 26:1149-1159. [DOI: 10.1007/s10157-022-02268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
|
42
|
Kackley ML, Buga A, Crabtree CD, Sapper TN, McElroy CA, Focht BC, Kraemer WJ, Volek JS. Influence of Nutritional Ketosis Achieved through Various Methods on Plasma Concentrations of Brain Derived Neurotropic Factor. Brain Sci 2022; 12:brainsci12091143. [PMID: 36138878 PMCID: PMC9496887 DOI: 10.3390/brainsci12091143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Brain-Derived Neurotropic Factor (BDNF) expression is decreased in conditions associated with cognitive decline as well as metabolic diseases. One potential strategy to improve metabolic health and elevate BDNF is by increasing circulating ketones. Beta-Hydroxybutyrate (BHB) stimulates BDNF expression, but the association of circulating BHB and plasma BDNF in humans has not been widely studied. Here, we present results from three studies that evaluated how various methods of inducing ketosis influenced plasma BDNF in humans. Study 1 determined BDNF responses to a single bout of high-intensity cycling after ingestion of a dose of ketone salts in a group of healthy adults who were habitually consuming either a mixed diet or a ketogenic diet. Study 2 compared how a ketogenic diet versus a mixed diet impacts BDNF levels during a 12-week resistance training program in healthy adults. Study 3 examined the effects of a controlled hypocaloric ketogenic diet, with and without daily use of a ketone-salt, on BDNF levels in overweight/obese adults. We found that (1) fasting plasma BDNF concentrations were lower in keto-adapted versus non keto-adapted individuals, (2) intense cycling exercise was a strong stimulus to rapidly increase plasma BDNF independent of ketosis, and (3) clinically significant weight loss was a strong stimulus to decrease fasting plasma BDNF independent of diet composition or level of ketosis. These results highlight the plasticity of plasma BDNF in response to lifestyle factors but does not support a strong association with temporally matched BHB concentrations.
Collapse
Affiliation(s)
- Madison L. Kackley
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Buga
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Chris D. Crabtree
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N. Sapper
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Craig A. McElroy
- Department of Medicinal Chemistry and Pharmacognosy, 06 The Ohio State University, Columbus, OH 43210, USA
| | - Brian C. Focht
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - William J. Kraemer
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jeff S. Volek
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
43
|
Kamyshna I, Pavlovych L, Pankiv V, Pankiv I, Kamyshnyi A. Anxiety Disorders and Prediction of Their Development in Patients with Hypothyroidism and Autoimmune Thyroiditis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: Since the association between thyroid dysfunction and neuropsychiatric disorders has been known for many years, it is important to analyze the associations of the BDNF gene polymorphism (rs6265), the VDR gene polymorphism (rs2228570), and the NMDA gene polymorphism (rs4880213) with the anxiety in patients with autoimmune thyroiditis and hypothyroidism in the Western Ukrainian population and predict the development of anxiety disorders in these patients.
Methods: The study involved a total of 153 patients with various forms of thyroid pathology. BDNF levels in the sera of the patients and healthy individuals were quantified using an enzyme-linked immunosorbent assay with a highly sensitive Human BDNF ELISA Kit (Elabscience®, United States, Catalog No: E-EL-H0010) on E.I.A. Reader Sirio S (Seac, Italy). Genotyping of the VDR (rs2228570), BDNF (rs6265), and NMDA (rs4880213) gene polymorphism using TaqMan probes and TaqMan Genotyping Master Mix (4371355) on CFX96™Real-Time PCR Detection System (Bio-Rad Laboratories, Inc., USA). Polymerase chain reaction (PCR) for TaqMan genotyping was carried out according to the kit instructions (Applied Biosystems, USA).
Results: According to the data obtained when comparing the presence of anxiety on the Hamilton scale on SNP statistically significant differences were revealed depending on BDNF gene polymorphism (rs6265) (p < 0.001). When comparing the presence of anxiety on the Hamilton scale on SNP depending on VDR gene polymorphism (rs2228570), NMDA gene polymorphism (rs4880213) no statistically significant differences were revealed (p = 0.782, p = 0.677 respectively) We identified an inverse strong correlation between the presence of anxiety on Hamilton scale and BDNF, 25-OH Vitamin D levels, and fT4 in the blood (p <0.001) and a direct moderate correlation between the presence of anxiety on Hamilton scale and TSH, GRIN2B, and anti-TPO (p <0.001).
Conclusion: Indicators such as BDNF, GRIN2B, fT4, anti-TG, and 25-OH levels of vitamin D are prognostically significant risk criteria for anxiety.
Collapse
|
44
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
45
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
46
|
Choi C, Saha A, An S, Cho YK, Kim H, Noh M, Lee YH. Macrophage-Specific Connexin 43 Knockout Protects Mice from Obesity-Induced Inflammation and Metabolic Dysfunction. Front Cell Dev Biol 2022; 10:925971. [PMID: 35800892 PMCID: PMC9253378 DOI: 10.3389/fcell.2022.925971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Adipose tissue macrophages are a major immune cell type contributing to homeostatic maintenance and pathological adipose tissue remodeling. However, the mechanisms underlying macrophage recruitment and polarization in adipose tissue during obesity remain poorly understood. Previous studies have suggested that the gap junctional protein, connexin 43 (Cx43), plays a critical role in macrophage activation and phagocytosis. Herein, we investigated the macrophage-specific roles of Cx43 in high fat diet (HFD)-induced pathological remodeling of adipose tissue. Expression levels of Cx43 were upregulated in macrophages co-cultured with dying adipocytes in vitro, as well as in macrophages associated with dying adipocytes in the adipose tissue of HFD-fed mice. Cx43 knockdown reduced lipopolysaccharide (LPS)-induced ATP release from macrophages and decreased inflammatory responses of macrophages co-cultured with dying adipocytes. Based on global gene expression profiling, macrophage-specific Cx43-knockout (Cx43-MKO) mice were resistant to HFD-induced inflammatory responses in adipose tissue, potentially via P2X7-mediated signaling pathways. Cx43-MKO mice exhibited reduced HFD-induced macrophage recruitment in adipose tissue. Moreover, Cx43-MKO mice showed reduced inflammasome activation in adipose tissues and improved glucose tolerance. Collectively, these findings demonstrate that Cx43 expression in macrophages facilitates inflammasome activation, which, in turn, contributes to HFD-induced metabolic dysfunction.
Collapse
|
47
|
A functional circuit formed by the autonomic nerves and myofibroblasts controls mammalian alveolar formation for gas exchange. Dev Cell 2022; 57:1566-1581.e7. [PMID: 35714603 DOI: 10.1016/j.devcel.2022.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022]
Abstract
Alveolar formation increases the surface area for gas exchange. A molecular understanding of alveologenesis remains incomplete. Here, we show that the autonomic nerve and alveolar myofibroblast form a functional unit in mice. Myofibroblasts secrete neurotrophins to promote neurite extension/survival, whereas neurotransmitters released from autonomic terminals are necessary for myofibroblast proliferation and migration, a key step in alveologenesis. This establishes a functional link between autonomic innervation and alveolar formation. We also discover that planar cell polarity (PCP) signaling employs a Wnt-Fz/Ror-Vangl cascade to regulate the cytoskeleton and neurotransmitter trafficking/release from the terminals of autonomic nerves. This represents a new aspect of PCP signaling in conferring cellular properties. Together, these studies offer molecular insight into how autonomic activity controls alveolar formation. Our work also illustrates the fundamental principle of how two tissues (e.g., nerves and lungs) interact to build alveoli at the organismal level.
Collapse
|
48
|
Akça İİ, Bodur A, Kahraman C, Abidin İ, Aydın-Abidin S, Alver A. The regulation of adipokines related to obesity and diabetes is sensitive to BDNF levels and adipose tissue location. Hormones (Athens) 2022; 21:295-303. [PMID: 35298831 DOI: 10.1007/s42000-022-00364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The role of BDNF in adipose tissue metabolism is poorly understood. We investigated the effects of decreased levels of BDNF on the expression of major adipokines in different fat depots (e.g., subcutaneous and epididymal) of mouse groups fed three different diet protocols. METHODS BDNF heterozygous (+ / -) mice were used to evaluate the effect of reduced BDNF levels. Six groups of C57BL/6 J breed wild type (WT) and BDNF (+ / -) mice were formed. These groups were fed, respectively, a control diet (CD), a high-fat diet (HFD), and a high-sucrose diet (HSD) for 4 months. Serum samples and adipose tissues were used for biochemical assays. The serum concentrations and tissue expression levels of leptin, adiponectin, and resistin were measured. RESULTS Compared to the CD-fed WT group (control group), serum leptin and leptin expression levels were found to be higher in all experimental groups. Serum adiponectin levels were lower in the BDNF (+ / -) groups and HFD-fed WT group than in the control group. Epididymal adiponectin expression was found to be lower in the HFD-fed BDNF (+ / -) group and higher in HSD-fed groups than in the control group. Compared to the control group, adiponectin expression increased in the WT groups in subcutaneous adipose tissue. Serum resistin levels were elevated in the HFD-fed groups. Resistin expression in epididymal adipose tissue was lower in the CD-fed and HFD-fed groups than in the control group. CONCLUSIONS BDNF levels and diet differentially affect the expression of adipokines in different fat tissues in the body. BDNF may play a protective role in obesity and diabetes.
Collapse
Affiliation(s)
- İmran İnce Akça
- Department of Medical Biochemistry, Faculty of Medicine, Tokat Gaziosmanpasa University, 60100, Tokat, Turkey.
| | - Akın Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Rumeli University, İstanbul, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydın-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
49
|
Margolis AE, Liu R, Conceição VA, Ramphal B, Pagliaccio D, DeSerisy ML, Koe E, Selmanovic E, Raudales A, Emanet N, Quinn AE, Beebe B, Pearson BL, Herbstman JB, Rauh VA, Fifer WP, Fox NA, Champagne FA. Convergent neural correlates of prenatal exposure to air pollution and behavioral phenotypes of risk for internalizing and externalizing problems: Potential biological and cognitive pathways. Neurosci Biobehav Rev 2022; 137:104645. [PMID: 35367513 DOI: 10.1016/j.neubiorev.2022.104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Humans are ubiquitously exposed to neurotoxicants in air pollution, causing increased risk for psychiatric outcomes. Effects of prenatal exposure to air pollution on early emerging behavioral phenotypes that increase risk of psychopathology remain understudied. We review animal models that represent analogues of human behavioral phenotypes that are risk markers for internalizing and externalizing problems (behavioral inhibition, behavioral exuberance, irritability), and identify commonalities among the neural mechanisms underlying these behavioral phenotypes and the neural targets of three types of air pollutants (polycyclic aromatic hydrocarbons, traffic-related air pollutants, fine particulate matter < 2.5 µm). We conclude that prenatal exposure to air pollutants increases risk for behavioral inhibition and irritability through distinct mechanisms, including altered dopaminergic signaling and hippocampal morphology, neuroinflammation, and decreased brain-derived neurotrophic factor expression. Future studies should investigate these effects in human longitudinal studies incorporating complex exposure measurement methods, neuroimaging, and behavioral characterization of temperament phenotypes and neurocognitive processing to facilitate efforts aimed at improving long-lasting developmental benefits for children, particularly those living in areas with high levels of exposure.
Collapse
Affiliation(s)
- Amy E Margolis
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Ran Liu
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vasco A Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruce Ramphal
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariah L DeSerisy
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Emily Koe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ena Selmanovic
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amarelis Raudales
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nur Emanet
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aurabelle E Quinn
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Beatrice Beebe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brandon L Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population & Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - William P Fifer
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Nathan A Fox
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
50
|
Dingsdale H, Garay SM, Tyson HR, Savory KA, Sumption LA, Kelleher JS, Langley K, Van Goozen S, John RM. Cord serum brain-derived neurotrophic factor levels at birth associate with temperament outcomes at one year. J Psychiatr Res 2022; 150:47-53. [PMID: 35354099 PMCID: PMC9225956 DOI: 10.1016/j.jpsychires.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Altered serum levels of brain-derived neurotrophic factor (BDNF) are consistently linked with neurological disorders. BDNF is also increasingly implicated in the pathogenesis of neurodevelopmental disorders, particularly those found more frequently in males. At birth, male infants naturally have significantly lower serum BDNF levels (∼10-20% lower than females), which may render them more vulnerable to neurodevelopmental disorders. We previously characterized serum BDNF levels in mothers and their newborn infants as part of the Grown in Wales Study. Here, we analyzed whether cord serum BDNF levels at birth correlate with sex-specific outcomes at one year. The Bayley Scale of Infant Development, Third Edition (BSID-III) and Laboratory Temperament Assessment Battery (Lab-TAB) tasks were used to assess infant behavior and neurodevelopment at 12-14 months (mean ± SD: 13.3 ± 1.6 months; 46% male; n = 56). We found no relationship between serum BDNF levels at birth and BSID-III neurodevelopmental outcomes (cognitive or language), nor with infant behaviors in the Lab-TAB unpredictable mechanical toy or maternal separation tasks. In the sustained attention task, there was a significant positive relationship between serum BDNF and infant negative affect (B = 0.06, p = 0.018) and, for boys only, between serum BDNF and intensity of facial interest (B = 0.03, p = 0.005). However, only the latter remained after correction for multiple testing. This sex-specific association between cord serum BDNF and a parameter of attention at 12-14 months provides some support for the hypothesis that reduced serum BDNF levels at birth are linked to an increased risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayley Dingsdale
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Samantha M Garay
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Hannah R Tyson
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Katrina A Savory
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Lorna A Sumption
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | | | - Kate Langley
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK
| | - Stephanie Van Goozen
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK
| | - Rosalind M John
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|