1
|
Akinci M, Aguilar‐Domínguez P, Palpatzis E, Shekari M, García‐Prat M, Deulofeu C, Fauria K, García‐Aymerich J, Gispert JD, Suárez‐Calvet M, Grau‐Rivera O, Sánchez‐Benavides G, Arenaza‐Urquijo EM, for the ALFA study. Physical activity changes during midlife link to brain integrity and amyloid burden. Alzheimers Dement 2025; 21:e70007. [PMID: 40304268 PMCID: PMC12042120 DOI: 10.1002/alz.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Evidence suggests that midlife physical activity may reduce Alzheimer's disease (AD) risk. In at-risk individuals, we investigated midlife physical activity changes in relation to AD-related pathologies. METHODS We included 337 cognitively unimpaired adults with baseline and follow-up physical activity evaluations within 4.07 ± 0.84 years. We performed multiple regressions considering follow-up amyloid-PET burden and MRI-based medial temporal lobe cortical thickness as outcomes. Independent variables encompassed changes in adherence to World Health Organization (WHO)-recommended physical activity levels, activity amounts, and sedentary behavior (no activity reported). RESULTS Remaining sedentary was associated with lower cortical thickness compared to doing limited physical activity, maintaining adherence, or becoming adherent to WHO recommendations. Becoming adherent to recommendations was linked to lower amyloid burden compared to becoming non-adherent. Increased activity amounts showed a dose-dependent association with lower amyloid burden. DISCUSSION Increasing physical activity and new adherence to WHO recommendations could be key objectives for preventive strategies during midlife. CLINICAL TRIAL REGISTRATION INFORMATION Registered at Clinicaltrials.gov (identifier: NCT02485730). HIGHLIGHTS Boosting physical activity in midlife may have beneficial effects in preclinical AD. Physical activity increases relate to lower Aβ burden in a dose-dependent manner. Remaining sedentary links to lower cortical thickness in AD-vulnerable structures. New adherence to WHO-recommended physical activity levels may enhance brain health.
Collapse
Affiliation(s)
- Muge Akinci
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Pablo Aguilar‐Domínguez
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIBSant Pau)BarcelonaSpain
| | - Eleni Palpatzis
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research InstituteBarcelonaSpain
| | - Marina García‐Prat
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
| | - Carme Deulofeu
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
| | - Judith García‐Aymerich
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Gonzalo Sánchez‐Benavides
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Eider M. Arenaza‐Urquijo
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Barcelonaβeta Brain Research Center ‐ Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Hospital del Mar Medical Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | | |
Collapse
|
2
|
Oomens JE, Cody KA, Du L, Jonaitis EM, Studer RL, Chin NA, Köhler S, Visser PJ, Vos SJB, Langhough RE, Jansen WJ, Johnson SC. Late-midlife lifestyle and brain and cognitive changes in individuals on the AD versus non-AD continuum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70101. [PMID: 40242836 PMCID: PMC12000247 DOI: 10.1002/dad2.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION We investigated whether a composite measure of late-midlife lifestyle was associated with (1) longitudinal brain changes and (2) cognitive changes when adjusting for these brain changes. METHODS We used linear mixed models to examine whether the LIfestyle for BRAin Health (LIBRA) index was associated with changes in tau, white matter hyperintensity, neurodegeneration, and cognition and whether changes were similar in amyloid positive (A+; > 17 Centiloids) and negative participants. RESULTS We included 324 individuals from the Wisconsin Registry for Alzheimer's Prevention (39% apolipoprotein E [APOE] ε 4 carrier, 30% A+, prior baseline age 67 [50-75]). The LIBRA index was not associated with biomarker trajectories or the primary cognitive composite outcome trajectory. There were inconsistent effects on secondary domain-specific cognitive trajectories. In contrast, tau and neurodegeneration were strongly associated with cognitive trajectories. DISCUSSION In the age-range and disease-range studied, lifestyle did not exhibit a meaningful effect on Alzheimer's disease or vascular biomarker accumulation and was not consistently associated with cognitive trajectories. Highlights In this age-range, the LIfestyle for BRAin Health (LIBRA) index was not associated with biomarker trajectories.The LIBRA index was not consistently associated with cognitive trajectories.Effects of lifestyle, if any, may take more time to manifest.
Collapse
Affiliation(s)
- Julie E. Oomens
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht UniversityMaastrichtThe Netherlands
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Karly A. Cody
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Stanford UniversityStanfordCaliforniaUSA
| | - Lianlian Du
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush Medical CollegeChicagoIllinoisUSA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachel L. Studer
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sebastian Köhler
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht UniversityMaastrichtThe Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht UniversityMaastrichtThe Netherlands
- Department of NeurologyAlzheimer CenterVU University Medical CenterAmsterdamThe Netherlands
| | - Stephanie J. B. Vos
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht UniversityMaastrichtThe Netherlands
| | - Rebecca E. Langhough
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Willemijn J. Jansen
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht UniversityMaastrichtThe Netherlands
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Paulsen AJ, Driscoll I, Breidenbach BM, Glittenberg MP, Lose SR, Ma Y, Sager MA, Carlsson CM, Gallagher CL, Hermann BP, Blennow K, Zetterberg H, Asthana S, Johnson SC, Betthauser TJ, Christian BT, Cook DB, Okonkwo OC. The impact of cardiorespiratory fitness on Alzheimer's disease biomarkers and their relationships with cognitive decline. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323245. [PMID: 40093252 PMCID: PMC11908334 DOI: 10.1101/2025.03.03.25323245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Relationships between core Alzheimer's disease (AD) biomarker accumulation and cognitive decline are well-established and the literature generally suggests a favorable relationship of cardiorespiratory fitness (CRF) on AD biomarker accumulation and cognition. Differences in risk of biomarker status conversion or accumulation rates by CRF, or their potential interactive relationships with cognitive decline remain largely unknown. METHODS Participants (N=533; MeanAGE=65, 70% female) from the Wisconsin Alzheimer's Disease Research Center and the Wisconsin Registry for Alzheimer's Prevention underwent serial blood draws, and cognitive and imaging assessments (MeanFollow-up=6.0 years). PET imaging of amyloid-β (Aβ) and tau (T) and plasma phosphorylated tau-217 (pTau-217) were used to determine biomarker status (+/-). Sex-specific estimated CRF (eCRF) tertiles were created using a validated equation. Kaplan-Meier survival curves and Cox-proportional hazards models characterized the risk of becoming biomarker-positive. Linear mixed effects models estimated associations between baseline eCRF and core AD biomarker accumulation and whether eCRF modified relationships between biomarker accumulation and cognitive decline. Analyses were stratified by biomarker +/- status. RESULTS No significant relationships were observed between eCRF and biomarker trajectories. However, those in the high eCRF group who were also Aβ- (HR[95%CI]=0.42[0.20, 0.88]) and pTau-217-(HR[95%CI]=0.45[0.21, 0.97]) at baseline had a significantly lower risk of becoming biomarker-positive. There was a significant attenuation of the detrimental relationship between Aβ accumulation and cognitive decline for those with high eCRF and Aβ+/T+. DISCUSSION While CRF did not influence core AD biomarker accumulation trajectories, high CRF did seem to protect against becoming biomarker-positive and attenuate the known deleterious relationship between biomarker accumulation and cognitive decline in Aβ+/T+.
Collapse
Affiliation(s)
- A J Paulsen
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - I Driscoll
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - B M Breidenbach
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - M P Glittenberg
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - S R Lose
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - Y Ma
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
| | - M A Sager
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
| | - C M Carlsson
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, 2500 Overlook Terrace, Madison, Wisconsin, USA, 53705
| | - C L Gallagher
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, 2500 Overlook Terrace, Madison, Wisconsin, USA, 53705
- Departmentof Neurology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA
| | - B P Hermann
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
- Departmentof Neurology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 100, 405 30 Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Göteborg, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 47 Bd de l'Hôpital, 75013, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, P.R. China
| | - H Zetterberg
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 100, 405 30 Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Göteborg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, Gower Street, London, WC1E 6BT, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Units 1501-1502, 1512-1518, 15/F Building 17W, 17 Science Park W Ave, Science Park, Hong Kong, PR China
| | - S Asthana
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, 2500 Overlook Terrace, Madison, Wisconsin, USA, 53705
| | - S C Johnson
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - T J Betthauser
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
| | - B T Christian
- Department of Medical Physics, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 111 Highland Ave, Room 1005, Madison, Wisconsin, USA, 53705
| | - D B Cook
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin, USA, 53705
- Department of Kinesiology, University of Wisconsin School of Education, 1300 University Avenue, 285 Medical Sciences Center, Madison, Wisconsin, USA, 53706
| | - O C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC2420, Madison, Wisconsin, 53792, USA
- Wisconsin Alzheimer's Institute, 610 Walnut St, Suite 957, Madison, Wisconsin, 53726, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, 2500 Overlook Terrace, Madison, Wisconsin, USA, 53705
| |
Collapse
|
4
|
Blum EG, Edmunds KJ, Breidenbach B, Cook N, Driscoll I, Lose SR, Bendlin BB, Ma Y, Christian B, Betthauser TJ, Sager M, Asthana S, Johnson SC, Cook DB, Okonkwo OC. Physical activity and APOE neuropathology score modify the association of age and [ 11C]-PiB-PET amyloid burden in a cohort enriched with risk for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.01.25323157. [PMID: 40093261 PMCID: PMC11908305 DOI: 10.1101/2025.03.01.25323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Physical activity (PA) is a protective factor against amyloid-β (Aβ) accumulation in adults at risk for Alzheimer's disease (AD). This association, however, may differ by apolipoprotein E (APOE) genotype. This work examines interactions between age, PA, and neuropathology-based genetic risk for AD (APOE np ) on Aβ burden in cortical regions sensitive to its accumulation. Materials and Methods Included were 388 cognitively unimpaired, older (mean age ± SD = 68.10 ± 7.09; 66% female) participants from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study. The cohort was enriched with both family history of AD at enrollment and a higher overall prevalence of APOE ε4 allele carriage than typically observed in the general population. PA was assessed using a self-reported questionnaire. Aβ burden was measured using Pittsburg Compound B (11C-PiB) PET imaging, which allowed us to derive volume corrected distribution volume ratio (DVR) maps from nine bilateral regions of interest (ROIs) and a global cortical composite score. Linear regression models examined the interactions between age, PA, and APOE np on Aβ burden. Finally, APOE np scores were aggregated according to estimated risk to illustrate the differential effects between active (weekly moderate PA ≥ 150 minutes) and inactive individuals. Results Three-way interactions (Age × PA × APOE np ) were significant (all P's ≤ 0.05) for the global cortical composite and six of the examined ROIs (the PPC, ACC, mOFC, SMG, MTG, and STG). Models stratified by APOE np and PA showed greater levels of age-related Aβ accumulation in each of these ROIs, with the greatest effects in inactive participants with high APOE np scores. Conclusion Individuals with high APOE np scores who concomitantly engage in suboptimal weekly moderate-intensity PA have greater Aβ burden. These findings underscore how both PA and APOE haplotype play intersect in modifying age-related Aβ burden in brain regions susceptible to its deposition in cognitively unimpaired, older adults at risk for AD.
Collapse
Affiliation(s)
- Eli G Blum
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Kyle J Edmunds
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Institute of Biomedical and Neural Engineering (IBNE), Reykjavík University, 101 Reykjavík, Iceland
| | - Brianne Breidenbach
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Noah Cook
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110
| | - Ira Driscoll
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sarah R Lose
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Bradley Christian
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Mark Sager
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Dane B Cook
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Department of Kinesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
5
|
Jarchow M, Driscoll I, Breidenbach BM, Cook N, Gallagher CL, Johnson SC, Asthana S, Hermann BP, Sager MA, Blennow K, Zetterberg H, Carlsson CM, Kollmorgen G, Quijano-Rubio C, Cook DB, Dubal DB, Okonkwo OC. Older more fit KL-VS heterozygotes have more favorable AD-relevant biomarker profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25323056. [PMID: 40093256 PMCID: PMC11908295 DOI: 10.1101/2025.02.27.25323056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
INTRODUCTION While hallmarked by the accumulation of β-amyloid plaques (Aβ) and neurofibrillary tangles (tau) in the brain, Alzheimer's disease (AD) is a multifactorial disorder that involves additional pathological events, including neuroinflammation, neurodegeneration and synaptic dysfunction. AD-associated biomolecular changes seem to be attenuated in carriers of the functionally advantageous variant of the KLOTHO gene (KL-VSHET). Independently, better cardiorespiratory fitness (CRF) is associated with better health outcomes, both in general and specifically with regard to AD pathology. Here we investigate whether the relationships between CRF (peak oxygen consumption (VO2peak)) and cerebrospinal fluid (CSF) core AD biomarkers and those of neuroinflammation, neurodegeneration, and synaptic dysfunction differ for KL-VSHET compared to non-carriers (KL-VSNC). METHODS The cohort, enriched for AD risk, consisted of cognitively unimpaired adults (N=136; MeanAGE(SD)=62.5(6.7)) from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center. Covariate-adjusted (age, sex, parental AD history, APOE4+ status, and age difference between CSF sampling and exercise test) linear models examined the interaction between VO2peak and KLOTHO genotype on core AD biomarker levels in CSF [phosphorylated tau 181 (pTau181), Aβ42/Aβ40, pTau181/Aβ42]. Analyses were repeated for CSF biomarkers of neurodegeneration [total tau (tTau), α-synuclein (α-syn), neurofilament light polypeptide (NfL)], synaptic dysfunction [neurogranin (Ng)], and neuroinflammation [glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed in myeloid cells (sTREM2), chitinase-3-like protein 1 (YKL-40), interleukin 6 (IL-6), S100 calcium-binding protein B (S100B)]. RESULTS The interaction between VO2peak and KL-VSHET was significant for tTau (P=0.05), pTau181 (P=0.03), Ng (P=0.02), sTREM2 (P=0.03), and YKL-40 (P=0.03), such that lower levels of each biomarker were observed for KL-VSHET who were more fit. No significant KL-VSxVO2peak interactions were observed for Aβ42/Aβ40, pTau181/Aβ42, α-syn, NfL, GFAP, IL-6 or S100B (all Ps>0.09). CONCLUSIONS We report a synergistic relationship between KL-VSHET and CRF with regard to pTau181, tTau, Ng, sTREM2 and YKL-40, suggesting a protective role for both KL-VSHET and better cardiovascular fitness against unfavorable AD-related changes. Their potentially shared biological mechanisms will require future investigations.
Collapse
Affiliation(s)
- Mackenzie Jarchow
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ira Driscoll
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Brianne M. Breidenbach
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Noah Cook
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine L. Gallagher
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Roche Diagnostics GmbH, Penzberg, Germany
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Dane B. Cook
- Research Service, William S. Middleton VA Hospital, Madison, WI, USA
- Department of Kinesiology, School of Education, University of Wisconsin-Madison, Madison, WI, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| |
Collapse
|
6
|
James SN, Sudre CH, Barnes J, Cash DM, Chiou YJ, Coath W, Keshavan A, Lu K, Malone I, Murray-Smith H, Nicholas JM, Orini M, Parker T, Almeida-Meza P, Fox NC, Richards M, Schott JM. The relationship between leisure time physical activity patterns, Alzheimer's disease markers and cognition. Brain Commun 2025; 7:fcae431. [PMID: 39898325 PMCID: PMC11781833 DOI: 10.1093/braincomms/fcae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
We assessed the association between leisure time physical activity patterns across 30 years of adulthood with a range of in vivo Alzheimer's disease-related neurodegenerative markers and cognition, and their interplay, at age 70. Participants from the 1946 British birth cohort study prospectively reported leisure time physical activity five times between ages 36 and 69 and were dichotomized into (i) not active (no participation/month) and (ii) active (participated once or more/month) and further derived into: (0) never active (not active); (1) active before 50's only (≤43 years); (2) active from 50's onwards only (≥53 years); (3) always active (active throughout). Participants underwent 18F-florbetapir Aβ and magnetic resonance imaging at age 70. Regression analyses were conducted to assess the direct and the moderating relationship between leisure time physical activity metrics, Alzheimer's disease-related neurodegeneration markers (including Aβ status, hippocampal and whole-brain volume, and cortical thickness in Alzheimer's disease signature regions) and cognition. All models were adjusted for childhood cognition, education and childhood socioeconomic position, and examined by sex. Findings drawn from 468 participants (49% female) demonstrated a direct association between being active before 50 years old (≤43 years) and throughout life (up to age 69 years), with larger hippocampal volume at age 70 (P < 0.05). There was little evidence that leisure time physical activity had direct effects on other brain health measures (all P > 0.05). However, leisure time physical activity patterns modified and attenuated the association between poorer cognitive functioning at age 70 and a range of Alzheimer's disease-related neurodegenerative markers (Aβ status; hippocampal and whole-brain volume; cortical thickness in Alzheimer's disease regions) (all P < 0.05). We found suggestive evidence that women with early markers of Alzheimer's disease-related neurodegeneration were most sensitive to leisure time physical activity patterns: a lifetime of inactivity in women exacerbated the manifestation of early Alzheimer's disease markers (Aβ and cortical thickness-related cognition), yet, if women were active across life or early in life, it mostly buffered these negative relationships. Engagement in leisure time physical activity in the life course is associated with better cognitive functioning at age 70, even in those with early markers of Alzheimer's disease. If causal, this is likely via multiple pathways, potentially through the preservation of hippocampal volume, as well as via cognitive resilience pathways delaying cognitive manifestations of early markers of Alzheimer's disease, particularly in women. Our findings warrant further research to shed light on the mechanisms of physical activity as a potential disease-modifying intervention of brain health and cognitive resilience.
Collapse
Affiliation(s)
- Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London WC1E 7HB, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London WC1E 7HB, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- Biomedical Computing, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Josephine Barnes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, University College London, London NW1 3BT, UK
| | - Yu-Jie Chiou
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ian Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Michele Orini
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London WC1E 7HB, UK
| | - Thomas Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
- Department of Medicine, Division of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Pamela Almeida-Meza
- Department of Behavioural Science and Health, University College London, London WC1E 6BT, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London WC1E 7HB, UK
| | - Jonathan M Schott
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London WC1E 7HB, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
7
|
Knell G, Hall JR, Large S, Abdullah L, Petersen M, Johnson LA, O'Bryant SE. Alzheimer's disease plasma biomarkers and physical functioning in a diverse sample of adults. Alzheimers Dement 2025; 21:e14322. [PMID: 39744805 PMCID: PMC11772697 DOI: 10.1002/alz.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 01/29/2025]
Abstract
INTRODUCTION The relationship between Alzheimer's disease (AD) plasma biomarkers, and physical functioning (PF) across diverse races and ethnicities remains unclear. This study aims to explore this association in an ethno-racially diverse sample of cognitively unimpaired community-dwelling adults. METHODS Data clinical examinations, neuropsychological tests, blood draws, and PF exams (Timed Up and Go [TUG] and Short Physical Performance Battery [SPPB]) were analyzed. Multivariable linear regressions assessed the association between PF and AD plasma biomarkers (amyloid beta [Aβ]40, Aβ42, total tau [t-tau], neurofiliament light chain [NfL]). RESULTS The sample (n = 2358; mean age 64.7 years; 65.9% female), was 20% African American, 41.9% non-Hispanic White, and 38.1% Hispanic. Findings indicate that worse PF is linked to higher biomarker levels (p < 0.05). Associations differed by race and ethnicity group. TUG time was associated (p < 0.05) with Aβ40, Aβ42, and tau among non-Hispanic Whites, whereas SPPB scores were associated (p < 0.05) with t-tau and NfL among African Americans. DISCUSSION PF, ethnic/racial, and plasma AD biomarker data should be used to aid in developing risk profiles for neurodegenerative diseases. HIGHLIGHTS Alzheimer's disease (AD) biomarkers are associated with physical functioning (PF) Ethno-racial variation exists in AD biomarker and PF associations Race and ethnicity should considered when assessing neurodegenerative disease risk.
Collapse
Affiliation(s)
- Gregory Knell
- Department of Population & Community Health, College of Public HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - James R. Hall
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Stephanie Large
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- College of NursingUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Lubnaa Abdullah
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Pharmacology & NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Leigh A. Johnson
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- College of NursingUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Sid E. O'Bryant
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
8
|
Dziewa M, Złotek M, Herbet M, Piątkowska-Chmiel I. Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease. Cell Mol Neurobiol 2024; 44:80. [PMID: 39607636 PMCID: PMC11604688 DOI: 10.1007/s10571-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Collapse
Affiliation(s)
- Magdalena Dziewa
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Magdalena Złotek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| |
Collapse
|
9
|
Guzmán‐Vélez E, Rivera‐Hernández A, Fabrega S, Oliveira G, Martínez JE, Baena A, Picard G, Lopera F, Arnold SE, Taylor JA, Quiroz YT. Relationship between physical activity and biomarkers of pathology and neuroinflammation in preclinical autosomal-dominant Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70003. [PMID: 39748841 PMCID: PMC11694529 DOI: 10.1002/trc2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025]
Abstract
Objective Physical activity (PA) has been linked to reduced Alzheimer's disease (AD) risk. However, less is known about its effects in the AD preclinical stage. We aimed to investigate whether greater PA was associated with lower plasma biomarkers of AD pathology, neural injury, reactive astrocytes, and better cognition in individuals with autosomal-dominant AD due to the presenilin-1 E280A mutation who are virtually guaranteed to develop dementia. Methods Twenty-eight cognitively unimpaired mutation carriers (ages x̄ = 29.28) wore a FitBit Charge-4 for 14 days. We calculated their average steps to measure locomotion, and Training Impulse (TRIMP) to quantify the intensity and duration of PAs using heart rate. Plasma amyloid beta 42/40 ratio, phosphorylated tau 181, neurofilament light chain, and glial fibrillary acidic protein (GFAP) were measured. Cognition was assessed with the Consortium to Establish a Registry for Alzheimer's Disease word list learning and delayed recall, Trail Making Test Part A, and Wechsler Adult Intelligence Scale-version IV Digit Span Backward. We conducted multiple linear regressions controlling for age, sex, body mass index, and education. Results There were no associations among steps or TRIMP with plasma biomarkers or cognition. Greater TRIMP was related to higher GFAP levels. Conclusions PA was not associated with cognition or plasma biomarkers. However, greater intensity and duration of PAs were related to higher GFAP. Participants engaged very little in moderate to vigorous PA. Therefore, light PA may not exert a significant protective effect in preclinical AD. Future work with larger samples and longitudinal data is needed to elucidate further the potential impact of PA on AD progression in the preclinical stages. Highlights Locomotion (average steps) was not associated with plasma biomarkers or cognition.Greater training load (training impulse) was related to higher glial fibrillary acidic protein levels in mutation carriers.Light physical activity may not suffice to exert a protective effect on Alzheimer's disease.
Collapse
Affiliation(s)
- Edmarie Guzmán‐Vélez
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Sofia Fabrega
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | - Gabriel Oliveira
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | - Jairo E. Martínez
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Glen Picard
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBoston, MAUSA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Steven E. Arnold
- Department of Neurology, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| | - J Andrew Taylor
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBoston, MAUSA
| | - Yakeel T. Quiroz
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Department of Neurology, Harvard Medical SchoolMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
10
|
De Guia IL, Eslick S, Naismith SL, Kanduri S, Shah TM, Martins RN. The Crosstalk Between Amyloid-β, Retina, and Sleep for the Early Diagnosis of Alzheimer's Disease: A Narrative Review. J Alzheimers Dis Rep 2024; 8:1009-1021. [PMID: 39114553 PMCID: PMC11305848 DOI: 10.3233/adr-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which is characterised by progressive memory loss and accumulation of hallmark markers amyloid-β (Aβ) and neurofibrillary tangles in the diseased brain. The current gold standard diagnostic methods have limitations of being invasive, costly, and not easily accessible. Thus, there is a need for new avenues, such as imaging the retina for early AD diagnosis. Sleep disruption is symptomatically frequent across preclinical and AD subjects. As circadian activity, such as the sleep-wake cycle, is linked to the retina, analysis of their association may be useful additions for achieving predictive AD diagnosis. In this narrative review, we provide an overview of human retina studies concerning the deposition of Aβ, the role of the retina in sleep-wake cycle, the disruption of sleep in AD, and to gather evidence for the associations between Aβ, the retina, and sleep. Understanding the mechanisms behind the associations between Aβ, retina, and sleep could assist in the interpretation of retinal changes accurately in AD.
Collapse
Affiliation(s)
| | - Shaun Eslick
- Macquarie University, North Ryde, NSW, Australia
| | - Sharon L. Naismith
- Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Ralph N. Martins
- Macquarie University, North Ryde, NSW, Australia
- Edith Cowen University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
11
|
Ourry V, Binette AP, St-Onge F, Strikwerda-Brown C, Chagnot A, Poirier J, Breitner J, Arenaza-Urquijo EM, Rabin JS, Buckley R, Gonneaud J, Marchant NL, Villeneuve S. How Do Modifiable Risk Factors Affect Alzheimer's Disease Pathology or Mitigate Its Effect on Clinical Symptom Expression? Biol Psychiatry 2024; 95:1006-1019. [PMID: 37689129 DOI: 10.1016/j.biopsych.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Clinical Memory Research Unit, Department of Clinical Sciences, Lunds Universitet, Malmö, Sweden
| | - Frédéric St-Onge
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cherie Strikwerda-Brown
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Audrey Chagnot
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Eider M Arenaza-Urquijo
- Environment and Health over the Lifecourse Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Buckley
- Melbourne School of Psychological Sciences University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Callow DD, Spira AP, Zipunnikov V, Lu H, Wanigatunga SK, Rabinowitz JA, Albert M, Bakker A, Soldan A. Sleep and physical activity measures are associated with resting-state network segregation in non-demented older adults. Neuroimage Clin 2024; 43:103621. [PMID: 38823249 PMCID: PMC11179421 DOI: 10.1016/j.nicl.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Greater physical activity and better sleep are associated with reduced risk of cognitive decline and dementia among older adults, but little is known about their combined associations with measures of brain function and neuropathology. This study investigated potential independent and interactive cross-sectional relationships between actigraphy-estimated total volume of physical activity (TVPA) and sleep patterns [i.e., total sleep time (TST), sleep efficiency (SE)] with resting-state functional magnetic resonance imaging (rs-fMRI) measures of large scale network connectivity and positron emission tomography (PET) measures of amyloid-β. Participants were 135 non-demented older adults from the BIOCARD study (116 cognitively normal and 19 with mild cognitive impairment; mean age = 70.0 years). Using multiple linear regression analyses, we assessed the association between TVPA, TST, and SE with connectivity within the default-mode, salience, and fronto-parietal control networks, and with network modularity, a measure of network segregation. Higher TVPA and SE were independently associated with greater network modularity, although the positive relationship of SE with modularity was only present in amyloid-negative individuals. Additionally, higher TVPA was associated with greater connectivity within the default-mode network, while greater SE was related to greater connectivity within the salience network. In contrast, longer TST was associated with lower network modularity, particularly among amyloid-positive individuals, suggesting a relationship between longer sleep duration and greater network disorganization. Physical activity and sleep measures were not associated with amyloid positivity. These data suggest that greater physical activity levels and more efficient sleep may promote more segregated and potentially resilient functional networks and increase functional connectivity within specific large-scale networks and that the relationship between sleep and functional networks connectivity may depend on amyloid status.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Adam P Spira
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America; Johns Hopkins Center on Aging and Health, Baltimore, MD, the United States of America
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Sarah K Wanigatunga
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ US
| | - Marilyn Albert
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Arnold Bakker
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Anja Soldan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| |
Collapse
|
13
|
Yang J, Zhou C, Li H. Effects of lifestyle and its interaction with anemia on cognitive function in older adults: A longitudinal study. Psych J 2024; 13:242-251. [PMID: 38105563 PMCID: PMC10990814 DOI: 10.1002/pchj.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/19/2023]
Abstract
A better understanding of the impact of lifestyle factors on cognitive function in older adults is critical for developing intervention strategies to achieve successful aging. Moreover, older adults who fulfill the World Health Organization criteria for anemia have a significantly higher risk of developing dementia. In the current study, we aimed to assess the buffering effects of lifestyle on cognitive function in older Chinese adults through a nationally representative survey. The sample consisted of 1201 participants (mean age: 82.39 ± 12.08 years, 52.1% female) from the 2011/2012 and 2014 waves of the Chinese Longitudinal Healthy Longevity Survey. Multiple linear regression analyses were used to explore the relationship between changes in lifestyle factors and the rate of cognitive function changes, as well as the effects of the interaction between lifestyle factors and anemia on cognitive function changes. Increased levels of participation in leisure activities, social activities, and dietary diversity delayed cognitive decline. Persistent anemia accelerated cognitive decline, while frequent participation in leisure activities delayed cognitive decline due to anemia. The increased levels of participation in leisure activities, social activities, and dietary diversity can alleviate the cognitive decline caused by aging itself, and more frequently participation in leisure activities can also alleviate the adverse effects of anemia on cognitive function in older adults.
Collapse
Affiliation(s)
- Jia Yang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Zhejiang Museum of Natural HistoryHangzhouChina
| | - Chen Zhou
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hui‐Jie Li
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Rodriguez-Ayllon M, Solis-Urra P, Arroyo-Ávila C, Álvarez-Ortega M, Molina-García P, Molina-Hidalgo C, Gómez-Río M, Brown B, Erickson KI, Esteban-Cornejo I. Physical activity and amyloid beta in middle-aged and older adults: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:133-144. [PMID: 37558161 PMCID: PMC10980893 DOI: 10.1016/j.jshs.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND One of the pathological hallmarks distinguishing Alzheimer's disease from other dementias is the accumulation of amyloid beta (Aβ). Higher physical activity is associated with decreased dementia risk, and one potential path could be through Aβ levels modulation. We aimed to explore the relationship between physical activity and Aβ in middle-aged and older adults. METHODS A systematic search of PubMed, Web of Science, PsycINFO, Cochrane Central Register of Controlled Trials, and SPORTDiscus was performed from inception to April 28, 2022. Studies were eligible if they included physical activity and Aβ data in adults aged 45 years or older. Multi-level meta-analyses of intervention and observational studies were performed to examine the role of physical activity in modulating Aβ levels. RESULTS In total, 37 articles were included (8 randomized controlled trials, 3 non-randomized controlled trials, 4 prospective longitudinal studies, and 22 cross-sectional studies). The overall effect size of physical activity interventions on changes in blood Aβ was medium (pooled standardized mean difference = -0.69, 95% confidence interval (95%CI): -1.41 to 0.03; I2 = 74.6%). However, these results were not statistically significant, and there were not enough studies to explore the effects of physical activity on cerebrospinal fluid (CSF) and brain Aβ. Data from observational studies were examined based on measurements of Aβ in the brain using positron emission tomography scans, CSF, and blood. Higher physical activity was positively associated with Aβ only in the CSF (Estimate r = 0.12; 95%CI: 0.05-0.18; I2 = 38.00%). CONCLUSION Physical activity might moderately reduce blood Aβ in middle-aged and older adults. However, results were only near statistical significance and might be interpreted with caution given the methodological limitations observed in some of the included studies. In observational studies, higher levels of physical activity were positively associated with Aβ only in CSF. Therefore, further research is needed to understand the modulating role of physical activity in the brain, CSF, and blood Aβ, as well as its implication for cognitive health.
Collapse
Affiliation(s)
- María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, GD 3015, the Netherlands
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile; Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Cristina Arroyo-Ávila
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Miriam Álvarez-Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Pablo Molina-García
- Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | | | - Manuel Gómez-Río
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Belinda Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kirk I Erickson
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Advent Health Research Institute, Neuroscience Institute Orlando, Orlando, FL 32803, USA
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Physiopathology of Obesity and Nutrition Research Center (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
15
|
Slee MG, Rainey‐Smith SR, Villemagne VL, Doecke JD, Sohrabi HR, Taddei K, Ames D, Dore V, Maruff P, Laws SM, Masters CL, Rowe CC, Martins RN, Erickson KI, Brown BM. Physical activity and brain amyloid beta: A longitudinal analysis of cognitively unimpaired older adults. Alzheimers Dement 2024; 20:1350-1359. [PMID: 37984813 PMCID: PMC10917015 DOI: 10.1002/alz.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aβ) over 15 years in a cohort of cognitively unimpaired older adults. METHODS PA and Aβ measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aβ. Moderation analyses examined apolipoprotein E (APOE) ε4 carriage impact on the PA-Aβ relationship. RESULTS PA was not associated with brain Aβ at baseline (β = -0.001, p = 0.72) or over time (β = -0.26, p = 0.24). APOE ε4 status did not moderate the PA-Aβ relationship over time (β = 0.12, p = 0.73). Brain Aβ levels did not predict PA trajectory (β = -54.26, p = 0.59). DISCUSSION Our study did not identify a relationship between habitual PA and brain Aβ levels. HIGHLIGHTS Physical activity levels did not predict brain amyloid beta (Aβ) levels over time in cognitively unimpaired older adults (≥60 years of age). Apolipoprotein E (APOE) ε4 carrier status did not moderate the physical activity-brain Aβ relationship over time. Physical activity trajectories were not impacted by brain Aβ levels.
Collapse
Affiliation(s)
- Michael G. Slee
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Victor L. Villemagne
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - James D. Doecke
- The Australian e‐Health Research CentreCSIROHerstonQueenslandAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kevin Taddei
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| | - David Ames
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- National Ageing Research InstituteParkvilleVictoriaAustralia
- Academic Unit for Psychiatry of Old AgeUniversity of MelbourneCarltonVictoriaAustralia
| | - Vincent Dore
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Cogstate LtdMelbourneVictoriaAustralia
| | - Simon M. Laws
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation GroupSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kirk I. Erickson
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Belinda M. Brown
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| |
Collapse
|
16
|
Ahmed FS, McMillan TM, Guenther BA, Dearborn P. Cognitive Performance following Single- or Multi-Session Exercise Intervention in Middle Age: A Systematic Review. Exp Aging Res 2024; 50:28-64. [PMID: 36384438 DOI: 10.1080/0361073x.2022.2137360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Research in modifiable behaviors, like exercise, on risk for dementia is increasing. Although many studies focus on older adults, brain pathology for Alzheimer's Disease can begin in middle age, suggesting an ideal target for intervention. METHODS We conducted a systematic review from exercise intervention studies on cognitive function among healthy, middle-aged participants (45-65). We searched multiple databases (PubMed, PsycINFO, MEDLINE, Cochrane Central Register of Controlled Trials, Google Scholar) for studies using standard, validated, neuropsychological measures following either single- or multi-session interventions in cognitively-unimpaired, middle-aged adults. RESULTS We identified 13 eligible studies. There was notable heterogeneity across studies, with varying design, measures, interventions, and results. Results from single-session studies showed improvement in response inhibition, while results for cognitive flexibility were mixed. No significant changes were found on measures of attention, working memory, or processing speed. Results from multi-session studies were more varied. Verbal memory was found to improve while performance on tests of attention and working memory, processing speed, and executive function were mixed. CONCLUSION Importantly, for both single-session and multi-session studies, there was no standard set of neuropsychological tests administered, making it more difficult to synthesize the findings into a single narrative. We end with a discussion on future directions and implementation.
Collapse
Affiliation(s)
- Fayeza S Ahmed
- Department of Psychology, University of Maine, Orono, Maine, USA
| | | | | | - Peter Dearborn
- Department of Psychology, University of Maine, Orono, Maine, USA
| |
Collapse
|
17
|
Kimura N, Sasaki Y, Masuda T, Ataka T, Eguchi A, Kakuma T, Matsubara E. Objective sleep was longitudinally associated with brain amyloid burden in mild cognitive impairment. Ann Clin Transl Neurol 2023; 10:2266-2275. [PMID: 37776077 PMCID: PMC10723246 DOI: 10.1002/acn3.51912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Understanding the longitudinal association of objective sleep and physical activity with brain amyloid burden and cortical glucose metabolism has critical clinical and public health implications for dementia prevention in later life. METHODS We enrolled 118 individuals aged ≥65 years with mild cognitive impairment, who were followed up on from August 2015 to September 2019. All participants continuously wore an accelerometer sensor for 7 consecutive days every 3 months and received annual 11 C-Pittsburgh compound-B and 18 F-fluorodeoxyglucose positron emission tomography (PET). Sleep and physical activity parameters were assessed using accelerometer sensor data and PET imaging was quantified using a standardized uptake-value ratio. Fifty-seven participants (48.3%) completed a lifestyle factor assessment and PET imaging over the 3-year period. A linear mixed-effects model was applied to examine the longitudinal association of sleep and physical activity parameters with PET imaging over the 3-year period, controlling for potential confounders. RESULTS Sleep efficiency was inversely associated with amyloid uptake in the frontal lobe. Although sleep duration was positively associated with global amyloid uptake, particularly in the frontal lobe, their impact was extremely small. However, physical activity parameters were not significantly associated with the 11 C-Pittsburgh compound-B-uptake. Furthermore, sleep and physical activity parameters were not significantly associated with cortical glucose metabolism. INTERPRETATION Lower sleep efficiency could be an early symptom of greater brain amyloid burden at the mild cognitive impairment stage. Therefore, the assessment of sleep may be useful for identifying individuals at higher risk for brain amyloid burden. Future longer term observational studies are required to confirm these findings.
Collapse
Affiliation(s)
- Noriyuki Kimura
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Yuuki Sasaki
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Teruaki Masuda
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Takuya Ataka
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Atsuko Eguchi
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | | | - Etsuro Matsubara
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| |
Collapse
|
18
|
Grasset L, Planche V, Bouteloup V, Azouani C, Dubois B, Blanc F, Paquet C, David R, Belin C, Jonveaux T, Julian A, Pariente J, Mangin JF, Chêne G, Dufouil C. Physical activity, biomarkers of brain pathologies and dementia risk: Results from the Memento clinical cohort. Alzheimers Dement 2023; 19:5700-5718. [PMID: 37422285 DOI: 10.1002/alz.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION This study aims to examine whether physical activity moderates the association between biomarkers of brain pathologies and dementia risk. METHODS From the Memento cohort, we analyzed 1044 patients with mild cognitive impairment, aged 60 and older. Self-reported physical activity was assessed using the International Physical Activity Questionnaire. Biomarkers of brain pathologies comprised medial temporal lobe atrophy (MTA), white matter lesions, and plasma amyloid beta (Aβ)42/40 and phosphorylated tau181. Association between physical activity and risk of developing dementia over 5 years of follow-up, and interactions with biomarkers of brain pathologies were tested. RESULTS Physical activity moderated the association between MTA and plasma Aβ42/40 level and increased dementia risk. Compared to participants with low physical activity, associations of both MTA and plasma Aβ42/40 on dementia risk were attenuated in participants with high physical activity. DISCUSSION Although reverse causality cannot be excluded, this work suggests that physical activity may contribute to cognitive reserve. HIGHLIGHTS Physical activity is an interesting modifiable target for dementia prevention. Physical activity may moderate the impact of brain pathology on dementia risk. Medial temporal lobe atrophy and plasma amyloid beta 42/40 ratio were associated with increased dementia risk especially in those with low level of physical activity.
Collapse
Affiliation(s)
- Leslie Grasset
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
| | - Vincent Planche
- University of Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Vincent Bouteloup
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Chabha Azouani
- CATI multicentre imaging platform, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Gif-sur-Yvette, France
| | - Bruno Dubois
- IM2A AP-HP INSERM UMR-S975 Groupe Hospitalier Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer Institut du Cerveau et de la Moelle épinière Sorbonne Université Paris, Paris, France
| | - Frédéric Blanc
- ICube laboratory, Pôle de Gériatrie, Université de Strasbourg, CNRS, UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Centre Mémoire de Ressources et de Recherches, Strasbourg, France
| | - Claire Paquet
- Université de Paris Cité, Centre de Neurologie Cognitive GHU APHP Nord Hôpital Lariboisière, INSERMU1144, Paris, France
| | - Renaud David
- Department of Old Age Psychiatry, Nice University Hospital, Nice, France
| | - Catherine Belin
- Service de Neurologie Hôpital Saint-Louis AP-HP, Paris, France
| | - Thérèse Jonveaux
- Centre Mémoire de Ressources et de Recherche de Lorraine, Service de Neurologie CHRU Nancy, Laboratoire Lorrain de Psychologie et de Neurosciences de la dynamique des comportements 2LPN EA 7489 Université de Lorraine, Nancy, France
| | - Adrien Julian
- Service de Neurologie CHU La Milétrie Centre Mémoire de Ressources et de Recherche, Poitiers, France
- Centre d'Investigation Clinique CIC1402, Poitiers, France
| | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Universite de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-François Mangin
- CATI multicentre imaging platform, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Neurospin, UMR 9027, Gif-sur-Yvette, France
| | - Geneviève Chêne
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Molina Hidalgo C, Collins AM, Crisafio ME, Grove G, Kamarck TW, Kang C, Leckie RL, MacDonald M, Manuck SB, Marsland AL, Muldoon MF, Rasero J, Scudder MR, Velazquez-Diaz D, Verstynen T, Wan L, Gianaros PJ, Erickson KI. Effects of a laboratory-based aerobic exercise intervention on brain volume and cardiovascular health markers: protocol for a randomised clinical trial. BMJ Open 2023; 13:e077905. [PMID: 37968003 PMCID: PMC10660203 DOI: 10.1136/bmjopen-2023-077905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Physical activity (PA) has beneficial effects on brain health and cardiovascular disease (CVD) risk. Yet, we know little about whether PA-induced changes to physiological mediators of CVD risk influence brain health and whether benefits to brain health may also explain PA-induced improvements to CVD risk. This study combines neurobiological and peripheral physiological methods in the context of a randomised clinical trial to better understand the links between exercise, brain health and CVD risk. METHODS AND ANALYSIS In this 12-month trial, 130 healthy individuals between the ages of 26 and 58 will be randomly assigned to either: (1) moderate-intensity aerobic PA for 150 min/week or (2) a health information control group. Cardiovascular, neuroimaging and PA measurements will occur for both groups before and after the intervention. Primary outcomes include changes in (1) brain structural areas (ie, hippocampal volume); (2) systolic blood pressure (SBP) responses to functional MRI cognitive stressor tasks and (3) heart rate variability. The main secondary outcomes include changes in (1) brain activity, resting state connectivity, cortical thickness and cortical volume; (2) daily life SBP stress reactivity; (3) negative and positive affect; (4) baroreflex sensitivity; (5) pulse wave velocity; (6) endothelial function and (7) daily life positive and negative affect. Our results are expected to have both mechanistic and public health implications regarding brain-body interactions in the context of cardiovascular health. ETHICS AND DISSEMINATION Ethical approval has been obtained from the University of Pittsburgh Institutional Review Board (IRB ID: 19020218). This study will comply with the NIH Data Sharing Policy and Policy on the Dissemination of NIH-Funded Clinical Trial Information and the Clinical Trials Registration and Results Information Submission rule. TRIAL REGISTRATION NUMBER NCT03841669.
Collapse
Affiliation(s)
- Cristina Molina Hidalgo
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Audrey M Collins
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary E Crisafio
- College of Health and Human Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - George Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas W Kamarck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chaeryon Kang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Regina L Leckie
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madison MacDonald
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew F Muldoon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Javier Rasero
- ExPhy Research group and Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | - Mark R Scudder
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Velazquez-Diaz
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- ExPhy Research group and Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lu Wan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
20
|
Stojanovic M, Babulal GM, Head D. Determinants of physical activity engagement in older adults. J Behav Med 2023; 46:757-769. [PMID: 36920727 PMCID: PMC10502182 DOI: 10.1007/s10865-023-00404-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
In order to increase engagement in physical activity, it is important to determine which factors contribute to physical activity engagement in older adults. The current study examined the relative predictive ability of several potential determinants, in terms of both the concurrent level as well as longitudinal trajectories. Clinically normal adults aged 61-92 completed the Physical Activity Scale for the Elderly (n = 189 for cross-sectional models; n = 214 for longitudinal models). Potential determinants included age, gender, education, physical health, sensory health, mood, cardiovascular health, cognitive status, and biomarkers of Alzheimer disease (AD). We observed a novel finding that both concurrent physical health (p < 0.001) and change in physical health (p < 0.001) were significant predictors above and beyond other determinants. Concurrent mood predicted levels of physical activity (p = 0.035), particularly in females. These findings suggest that poor physical health and low mood might be important to consider as potential barriers to physical activity engagement in older adults.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Psychological & Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, Box 1125, USA.
| | - Ganesh M Babulal
- Department of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa
- Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Institute of Public Health, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Denise Head
- Department of Psychological & Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, Box 1125, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Stojanovic M, Schindler SE, Morris JC, Head D. Effect of exercise engagement and cardiovascular risk on neuronal injury. Alzheimers Dement 2023; 19:4454-4462. [PMID: 37534906 PMCID: PMC10592382 DOI: 10.1002/alz.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Neuronal health as a potential underlying mechanism of the beneficial effects of exercise has been understudied in humans. Furthermore, there has been limited consideration of potential moderators (e.g., cardiovascular health) on the effects of exercise. METHODS Clinically normal middle-aged and older adults completed a validated questionnaire about exercise engagement over a 10-year period (n = 75; age 63 ± 8 years). A composite estimate of neuronal injury was formulated that included cerebrospinal fluid-based measures of visinin-like protein-1, neurogranin, synaptosomal-associated protein 25, and neurofilament light chain. Cardiovascular risk was estimated using the Framingham Risk Score. RESULTS Cross-sectional analyses showed that greater exercise engagement was associated with less neuronal injury in the group with lower cardiovascular risk (p = 0.008), but not the group with higher cardiovascular risk (p = 0.209). DISCUSSION Cardiovascular risk is an important moderator to consider when examining the effects of exercise on cognitive and neural health, and may be relevant to personalized exercise recommendations. HIGHLIGHTS We examined the association between exercise engagement and neuronal injury. Vascular risk moderated the association between exercise and neuronal injury. Cardiovascular risk may be relevant to personalized exercise recommendations.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Suzanne E. Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
| | - Denise Head
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
22
|
Guerrini S, Hunter EM, Papagno C, MacPherson SE. Cognitive reserve and emotion recognition in the context of normal aging. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:759-777. [PMID: 35634692 DOI: 10.1080/13825585.2022.2079603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The Cognitive Reserve (CR) hypothesis accounts for individual differences in vulnerability to age- or pathological-related brain changes. It suggests lifetime influences (e.g., education) increase the effectiveness of cognitive processing in later life. While evidence suggests CR proxies predict cognitive performance in older age, it is less clear whether CR proxies attenuate age-related decline on social cognitive tasks. This study investigated the effect of CR proxies on unimodal and cross-modal emotion identification. Sixty-six older adults aged 60-78 years were assessed on CR proxies (Cognitive Reserve Index Questionnaire, NART), unimodal(faces only, voices only), and cross-modal (faces and voices combined) emotion recognition and executive function (Stroop Test). No CR proxy predicted performance on emotion recognition. However, NART IQ predicted performance on the Stroop test; higher NART IQ was associated with better performance. The current study suggests CR proxies do not predict performance on social cognition tests but do predict performance on cognitive tasks.
Collapse
Affiliation(s)
- Sofia Guerrini
- Dipartimento di Psicologia, Università degli studi di Milano-Bicocca, Milano, Italy
| | | | - Costanza Papagno
- CeRiN, Centro di Riabilitazione Neurocognitiva, CIMeC, Università di Trento, Rovereto, Italy
| | - Sarah E MacPherson
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Ghadiri N, Esfarjani F, Marandi SM, Banitalebi E, Saghaee E. Combined Ursolic Acid and Resistance/Endurance Training Improve Type 3 Diabetes Biomarkers-Related Memory Deficits in Hippocampus of Aged Male Wistar Rats. Int J Prev Med 2023; 14:65. [PMID: 37351031 PMCID: PMC10284247 DOI: 10.4103/ijpvm.ijpvm_317_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Both aging and diabetes are two well-established risk factors related to type 3 diabetes and memory deficits. Accordingly, diabetes multiplies the effects of aging on cognition impairments once these conditions occur simultaneously. Methods In this present experimental study, 56 male Wistar rats with HFD/STZ-induced T2D were randomized into seven groups (n = eight animals per group): (1) sedentary old non-diabetic (C); (2) sedentary HFD/STZ-induced T2D (D); (3) sedentary HFD/STZ-induced T2D plus UA (UA) (DU); (4) endurance-trained HFD/STZ-induced T2D (DE); (5) resistance-trained HFD/STZ-induced T2D (DR); (6) endurance-trained HFD/STZ-induced T2D plus UA (DEU); and (7) resistance-trained STZ-diabetic plus UA (DRU) rats. Two-way ANOVA was applied to measure the training, supplementation, and interaction effect on serum and gene expression outcomes. Result The study results established no significant interaction effect between the UA supplementation and the resistance/endurance training with regard to the levels of glucose (P = 0.534), insulin (P = 0.327), brain-derived neurotrophic factor (P = 0.191), and insulin-like growth factor-1 (P = 0.448). Conclusions To develop novel practical nutritional strategies involving UA intake, further studies are thus needed to clarify how chronic consumption of UA with/without resistance/endurance training reverses cognition disorder process in old male Wistar rats with HFD/STZ-induced T2D.
Collapse
Affiliation(s)
- Neda Ghadiri
- Department of Sport Sciences, University of Isfahan, Isfahan, Iran
| | | | | | | | - Elham Saghaee
- Department of Neuroscience, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
24
|
Zavecz Z, Shah VD, Murillo OG, Vallat R, Mander BA, Winer JR, Jagust WJ, Walker MP. NREM sleep as a novel protective cognitive reserve factor in the face of Alzheimer's disease pathology. BMC Med 2023; 21:156. [PMID: 37138290 PMCID: PMC10155344 DOI: 10.1186/s12916-023-02811-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance functions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensation against memory dysfunction otherwise caused by high AD pathology burden, remains unknown. METHODS Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pittsburgh compound B) positron emission tomography (PET) scanning for the quantification of β-amyloid (Aβ) with sleep electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning task. RESULTS We demonstrated that NREM SWA significantly moderates the effect of Aβ status on memory function. Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aβ burden, i.e., those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aβ pathological burden, and thus without the same need for cognitive reserve, did not similarly benefit from the presence of NREM SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aβ status predicting memory function was significant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve factors, such as education and physical activity (p = 0.042). CONCLUSIONS These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve function of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resilience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation of cognitive function in the face of AD pathology, both present moment and longitudinally.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vyoma D Shah
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Olivia G Murillo
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Raphael Vallat
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92617, USA
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew P Walker
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
25
|
Thiel A, Hermanns C, Lauer AA, Reichrath J, Erhardt T, Hartmann T, Grimm MOW, Grimm HS. Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease. Nutrients 2023; 15:nu15071684. [PMID: 37049524 PMCID: PMC10096957 DOI: 10.3390/nu15071684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Lifestyle habits and insufficient sunlight exposure lead to a high prevalence of vitamin D hypovitaminosis, especially in the elderly. Recent studies suggest that in central Europe more than 50% of people over 60 years are not sufficiently supplied with vitamin D. Since vitamin D hypovitaminosis is associated with many diseases, such as Alzheimer’s disease (AD), vitamin D supplementation seems to be particularly useful for this vulnerable age population. Importantly, in addition to vitamin D, several analogues are known and used for different medical purposes. These vitamin D analogues differ not only in their pharmacokinetics and binding affinity to the vitamin D receptor, but also in their potential side effects. Here, we discuss these aspects, especially those of the commonly used vitamin D analogues alfacalcidol, paricalcitol, doxercalciferol, tacalcitol, calcipotriol, and eldecalcitol. In addition to their pleiotropic effects on mechanisms relevant to AD, potential effects of vitamin D analogues on comorbidities common in the context of geriatric diseases are summarized. AD is defined as a complex neurodegenerative disease of the central nervous system and is commonly represented in the elderly population. It is usually caused by extracellular accumulation of amyloidogenic plaques, consisting of amyloid (Aβ) peptides. Furthermore, the formation of intracellular neurofibrillary tangles involving hyperphosphorylated tau proteins contributes to the pathology of AD. In conclusion, this review emphasizes the importance of an adequate vitamin D supply and discusses the specifics of administering various vitamin D analogues compared with vitamin D in geriatric patients, especially those suffering from AD.
Collapse
|
26
|
Applebaum JW, Shieu MM, McDonald SE, Dunietz GL, Braley TJ. The Impact of Sustained Ownership of a Pet on Cognitive Health: A Population-Based Study. J Aging Health 2023; 35:230-241. [PMID: 36006805 DOI: 10.1177/08982643221122641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives: To examine associations between sustained ownership of a pet and cognitive outcomes among a national sample of U.S. adults. Methods: Weighted linear mixed models were estimated using the Health and Retirement Study (2010-2016, n = 1369) to compare repeated measures of cognitive function between respondents who endorsed owning a pet in a sustained manner (>5 years), versus those who owned a pet ≤5 years, and non-pet owners. Results: Respondents aged 65+ who owned a pet >5 years demonstrated higher composite cognitive scores, compared to non-pet owners (β = .76, p = .03). Sustained pet ownership was associated with higher immediate (β = .3, p = .02) and delayed (β = .4, p = .007) word recall scores. There were no significant differences in cognitive scores between pet owners and non-owners aged < 65. Discussion: Sustained ownership of a pet could mitigate cognitive disparities in older adults. Further studies are needed to examine potential causal pathways, including physical activity and stress buffering, versus selection effects.
Collapse
Affiliation(s)
- Jennifer W Applebaum
- Department of Sociology and Criminology & Law, 3463University of Florida, Gainesville, FL, USA
| | - Monica M Shieu
- Department of Neurology, 1259University of Michigan, Ann Arbor, MI, USA
| | - Shelby E McDonald
- Clark-Hill Institute for Positive Youth Development, Department of Psychology, 6889Virginia Commonwealth University, Richmond, VA, USA
| | | | - Tiffany J Braley
- Department of Neurology, 1259University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Mondino A, Khan M, Case B, Giovagnoli S, Thomson A, Lascelles BDX, Gruen M, Olby N. Activity patterns are associated with fractional lifespan, memory, and gait speed in aged dogs. Sci Rep 2023; 13:2588. [PMID: 36788306 PMCID: PMC9929073 DOI: 10.1038/s41598-023-29181-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Maintaining an active lifestyle is considered a hallmark of successful aging. Physical activity significantly reduces the risk of cognitive decline and Alzheimer's disease in humans. However, pain and lack of motivation are important barriers to exercise. Dogs are a remarkable model for translational studies in aging and cognition as they are prone to Canine Cognitive Dysfunction syndrome, which has many similarities with Alzheimer's disease. According to owner reports, changes in activity levels are characteristic of this syndrome, with decreased daytime activity, but also excessive pacing, especially at sleep time. We used physical activity monitors to record the activity of 27 senior dogs and evaluated the association between activity level and age, fractional lifespan, cognitive status measured by an owner questionnaire and cognitive tests. We also assessed the relationship between activity and joint/spinal pain, and the off/on leash gait speed ratio (a potential marker of gait speed reserve and motivation). We found that activity patterns in dogs are associated with fractional lifespan and working memory. Additionally, dogs with higher on/off leash gait speed are more active in the afternoon of weekdays. These results encourage future studies evaluating how physical activity can improve or delay cognitive impairment in senior dogs.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael Khan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Beth Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sara Giovagnoli
- Department of Psychology "Renzo Canestrari", University of Bologna, Bologna, Italy
| | - Andrea Thomson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - B Duncan X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Comparative Pain Research and Education Centre, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA
- Department of Anesthesiology, Center for Translational Pain Research, Duke University, Durham, NC, USA
| | - Margaret Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natasha Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
28
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
29
|
Edmunds KJ, Driscoll I, Hagen EW, Barnet JH, Ravelo LA, Plante DT, Gaitán JM, Lose SR, Motovylyak A, Bendlin BB, Okonkwo OC, Peppard PE. Cardiorespiratory Fitness Attenuates the Deleterious Effects of Sleep Apnea on Cerebral Structure and Perfusion in the Wisconsin Sleep Cohort Study. J Alzheimers Dis 2023; 95:427-435. [PMID: 37545229 PMCID: PMC10810251 DOI: 10.3233/jad-220910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Emerging evidence suggests that age-related changes in cerebral health may be sensitive to vascular risk modifiers, such as physical activity and sleep. OBJECTIVE We examine whether cardiorespiratory fitness modifies the association of obstructive sleep apnea (OSA) severity with MRI-assessed measures of cerebral structure and perfusion. METHODS Using data from a cross-sectional sample of participants (n = 129, 51% female, age range 49.6-85.3 years) in the Wisconsin Sleep Cohort study, we estimated linear models of MRI-assessed total and regional gray matter (GM) and white matter (WM) volumes, WM hyperintensity (WMH:ICV ratio), total lesion volume, and arterial spin labeling (ASL) cerebral blood flow (CBF), using an estimated measure of cardiorespiratory fitness (CRF) and OSA severity as predictors. Participants' sleep was assessed using overnight in-laboratory polysomnography, and OSA severity was measured using the apnea-hypopnea index (AHI), or the mean number of recorded apnea and hypopnea events per hour of sleep. The mean±SD time difference between PSG data collection and MRI data collection was 1.7±1.5 years (range: [0, 4.9 years]). RESULTS OSA severity was associated with reduced total GM volume (β=-0.064; SE = 0.023; p = 0.007), greater total WM lesion volume (interaction p = 0.023), and greater WMHs (interaction p = 0.017) in less-fit subjects. Perfusion models revealed significant differences in the association of AHI and regional CBF between fitness groups (interaction ps < 0.05). CONCLUSION This work provides new evidence for the protective role of cardiorespiratory fitness against the deleterious effects of OSA on brain aging in late-middle age to older adults.
Collapse
Affiliation(s)
- Kyle J Edmunds
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Ira Driscoll
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison
- Psychology Department, University of Wisconsin-Milwaukee
| | - Erika W Hagen
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Jodi H Barnet
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Laurel A Ravelo
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison
| | - David T Plante
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Julian M Gaitán
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Sarah R Lose
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Paul E Peppard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison
| |
Collapse
|
30
|
Casaletto KB, Kornack J, Paolillo EW, Rojas JC, VandeBunte A, Staffaroni AS, Lee S, Heuer H, Forsberg L, Ramos EM, Miller BL, Kramer JH, Yaffe K, Petrucelli L, Boxer A, Boeve B, Gendron TF, Rosen H. Association of Physical Activity With Neurofilament Light Chain Trajectories in Autosomal Dominant Frontotemporal Lobar Degeneration Variant Carriers. JAMA Neurol 2023; 80:82-90. [PMID: 36374516 PMCID: PMC9664369 DOI: 10.1001/jamaneurol.2022.4178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Importance Physical activity is associated with cognitive health, even in autosomal dominant forms of dementia. Higher physical activity is associated with slowed cognitive and functional declines over time in adults carrying autosomal dominant variants for frontotemporal lobar degeneration (FTLD), but whether axonal degeneration is a potential neuroprotective target of physical activity in individuals with FTLD is unknown. Objective To examine the association between physical activity and longitudinal neurofilament light chain (NfL) trajectories in individuals with autosomal dominant forms of FTLD. Design, Setting, and Participants This cohort study included individuals from the ALLFTD Consortium, which recruited patients from sites in the US and Canada. Symptomatic and asymptomatic adults with pathogenic variants in one of 3 common genes associated with FTLD (GRN, C9orf72, or MAPT) who reported baseline physical activity levels and completed annual blood draws were assessed annually for up to 4 years. Genotype, clinical measures, and blood draws were collected between December 2014 and June 2019; data were analyzed from August 2021 to January 2022. Associations between reported baseline physical activity and longitudinal plasma NfL changes were assessed using generalized linear mixed-effects models adjusting for baseline age, sex, education, functional severity, and motor symptoms. Exposures Baseline physical activity levels reported via the Physical Activity Scale for the Elderly. To estimate effect sizes, marginal means were calculated at 3 levels of physical activity: 1 SD above the mean represented high physical activity, 0 SD represented average physical activity, and 1 SD below the mean represented low physical activity. Main Outcomes and Measures Annual plasma NfL concentrations were measured with single-molecule array technology. Results Of 160 included FTLD variant carriers, 84 (52.5%) were female, and the mean (SD) age was 50.7 (14.7) years. A total of 51 (31.8%) were symptomatic, and 77 carried the C9orf72 variant; 39, GRN variant; and 44, MAPT variant. Higher baseline physical activity was associated with slower NfL trajectories over time. On average, NfL increased 45.8% (95% CI, 22.5 to 73.7) over 4 years in variant carriers. Variant carriers with high physical activity demonstrated 14.0% (95% CI, -22.7 to -4.3) slower NfL increases compared with those with average physical activity and 30% (95% CI, -52.2 to -8.8) slower NfL increases compared with those with low physical activity. Within genotype, C9orf72 and MAPT carriers with high physical activity evidenced 18% to 21% (95% CI, -43.4 to -7.2) attenuation in NfL, while the association between physical activity and NfL trajectory was not statistically significant in GRN carriers. Activities associated with higher cardiorespiratory and cognitive demands (sports, housework, and yardwork) were most strongly correlated with slower NfL trajectories (vs walking and strength training). Conclusions and Relevance In this study, higher reported physical activity was associated with slower progression of an axonal degeneration marker in individuals with autosomal dominant FTLD. Physical activity may serve as a primary prevention target in FTLD.
Collapse
Affiliation(s)
- Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - John Kornack
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Emily W. Paolillo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Julio C. Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Anna VandeBunte
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Adam S. Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Shannon Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Hilary Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eliana M. Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Kristine Yaffe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida
| | - Adam Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Brad Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| |
Collapse
|
31
|
McIntyre CC, Gaitán JM, Edmunds KJ, Lose SR, Bendlin BB, Sager M, Asthana S, Johnson SC, Okonkwo OC. Insulin Homeostasis Mediates the Relationship Between Cardiorespiratory Fitness and Cognitive Speed in Aging Adults. J Alzheimers Dis 2023; 93:577-584. [PMID: 37066914 PMCID: PMC10324047 DOI: 10.3233/jad-221249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Cardiorespiratory fitness (CRF) supports cognition, though it is unclear what mechanisms underly this relationship. Insulin resistance adversely affects cognition but can be reduced with habitual exercise. OBJECTIVE We investigated whether insulin resistance statistically mediates the relationship between CRF and cognition. METHODS In our observational study, we included n = 1,131 cognitively unimpaired, nondiabetic older adults from a cohort characterized by elevated Alzheimer's disease (AD) risk. We estimated CRF (eCRF) using a validated equation that takes age, sex, body mass index, resting heart rate, and habitual physical activity as inputs. The Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) quantified insulin resistance. Standardized cognitive factor scores for cognitive speed/flexibility, working memory, verbal learning/memory, and immediate memory were calculated from a battery of neuropsychological tests. Linear regression models and bootstrapped estimates of indirect effects were used to determine whether HOMA-IR mediated significant relationships between eCRF and cognition. RESULTS eCRF was positively associated with cognitive speed/flexibility (p = 0.034). When controlling for HOMA-IR, eCRF was no longer associated with cognitive speed/flexibility (p = 0.383). HOMA-IR had a significant indirect effect on the eCRF-cognition relationship (B = 0.025, CI = [0.003,0.051]). eCRF was not associated with working memory (p = 0.236), immediate memory (p = 0.345), or verbal learning/memory (p = 0.650). CONCLUSION Among older adults at risk for AD, peripheral insulin resistance mediates the relationship between CRF and cognitive speed.
Collapse
Affiliation(s)
- Clayton C. McIntyre
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Julian M. Gaitán
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Kyle J. Edmunds
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sarah R. Lose
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Mark Sager
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
32
|
Grasset L, Proust-Lima C, Mangin JF, Habert MO, Dubois B, Paquet C, Hanon O, Gabelle A, Ceccaldi M, Annweiler C, David R, Jonveaux T, Belin C, Julian A, Rouch-Leroyer I, Pariente J, Locatelli M, Chupin M, Chêne G, Dufouil C, on behalf of the Memento Cohort Study group. Explaining the association between social and lifestyle factors and cognitive functions: a pathway analysis in the Memento cohort. Alzheimers Res Ther 2022; 14:68. [PMID: 35585559 PMCID: PMC9115948 DOI: 10.1186/s13195-022-01013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
This work aimed to investigate the potential pathways involved in the association between social and lifestyle factors, biomarkers of Alzheimer’s disease and related dementia (ADRD), and cognition.
Methods
The authors studied 2323 participants from the Memento study, a French nationwide clinical cohort. Social and lifestyle factors were education level, current household incomes, physical activity, leisure activities, and social network from which two continuous latent variables were computed: an early to midlife (EML) and a latelife (LL) indicator. Brain magnetic resonance imaging (MRI), lumbar puncture, and amyloid-positron emission tomography (PET) were used to define three latent variables: neurodegeneration, small vessel disease (SVD), and AD pathology. Cognitive function was defined as the underlying factor of a latent variable with four cognitive tests. Structural equation models were used to evaluate cross-sectional pathways between social and lifestyle factors and cognition.
Results
Participants’ mean age was 70.9 years old, 62% were women, 28% were apolipoprotein-ε4 carriers, and 59% had a Clinical Dementia Rating (CDR) score of 0.5. Higher early to midlife social indicator was only directly associated with better cognitive function (direct β = 0.364 (0.322; 0.405), with no indirect pathway through ADRD biomarkers (total β = 0.392 (0.351; 0.429)). In addition to a direct effect on cognition (direct β = 0.076 (0.033; 0.118)), the association between latelife lifestyle indicator and cognition was also mostly mediated by an indirect effect through lower neurodegeneration (indirect β = 0.066 (0.042; 0.090) and direct β = − 0.116 (− 0.153; − 0.079)), but not through AD pathology nor SVD.
Conclusions
Early to midlife social factors are directly associated with higher cognitive functions. Latelife lifestyle factors may help preserve cognitive functions through lower neurodegeneration.
Collapse
|
33
|
Planalp EM, Okonkwo OC. Is 112 the New 10 000?-Step Count and Dementia Risk in the UK Biobank. JAMA Neurol 2022; 79:973-974. [PMID: 36066878 DOI: 10.1001/jamaneurol.2022.2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Elizabeth M Planalp
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
34
|
Wu J, Zhu L, Dong X, Sun Z, Cai K, Shi Y, Chen A. Relationship between Physical Activity and Emotional Regulation Strategies in Early Adulthood: Mediating Effects of Cortical Thickness. Brain Sci 2022; 12:1210. [PMID: 36138946 PMCID: PMC9496840 DOI: 10.3390/brainsci12091210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the relationship between physical activity (PA) and emotional regulation strategies among college students to establish the mediating role of cortical thickness. A total of 60 university students (18−20 years old) were enrolled in this study. The International Physical Activity Questionnaire (IPAQ-L) was used to estimate PA levels. Based on the International Physical Activity Working Group standards, PA levels were divided into low, medium, and high PA groups; emotional regulation strategies were determined by the Emotion Regulation Questionnaire (ERQ), including the Cognitive Reappraisal Scale (CR) and the Expressive Suppression Scale (ES). Structural magnetic resonance imaging (MRI) was used to measure cortical thickness. Differences in use of the ES strategy among high, medium, and low PA groups were not marked. However, compared to the low PA group, the CR strategy was frequently used in the high PA group, with a thicker right hemisphere rostral anterior cingulate cortex (rrACC). PA levels were positively correlated with thickness of the rrACC cortex (r = 0.398, p = 0.002 < 0.05) and CR strategy (r = 0.398, p = 0.002 < 0.05), and negatively correlated with the ES strategy (r = −0.348, p = 0.007 < 0.05). The rrACC cortical thickness played a partial mediating role in the relationship between PA and CR strategy, accounting for 33.1% of total effect values. These findings indicate that although the negative correlation between PA and ES was not significant, the positive correlation between PA with CR was significant, and rrACC thickness played a partial mediating role in the relationship between PA and CR, providing new evidence toward comprehensively revealing the relationship between PA, rrACC cortical thickness, and emotion regulation strategies.
Collapse
Affiliation(s)
- Jingjing Wu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Lina Zhu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Yifan Shi
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
35
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
36
|
Vesperman CJ, Wang R, Schultz SA, Law LL, Dougherty RJ, Ma Y, Oh JM, Edwards DF, Gallagher CL, Chin NA, Asthana S, Hermann BP, Sager MA, Johnson SC, Cook DB, Okonkwo OC. Cardiorespiratory fitness and cognition in persons at risk for Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12330. [PMID: 35845261 PMCID: PMC9270660 DOI: 10.1002/dad2.12330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023]
Abstract
Introduction This study examined the relationship between cardiorespiratory fitness (CRF) and longitudinal cognitive functioning in a cohort enriched with risk factors for Alzheimer's disease (AD). Methods A total of 155 enrollees in the Wisconsin Registry for Alzheimer's Prevention completed repeat comprehensive neuropsychological evaluations that assessed six cognitive domains. Peak oxygen consumption (VO2peak) was the primary measure of CRF. Random effects regression was used to investigate the effect of CRF on cognitive trajectories. Results Higher CRF was associated with slower decline in the cognitive domains of verbal learning and memory (P < .01) and visual learning and memory (P < .042). Secondary analyses indicated that these effects were stronger among men than women, and for noncarriers of the apolipoprotein E ε4 allele. Discussion Higher CRF was associated with a slower rate of the decline in episodic memory that occurs as a natural consequence of aging in a cohort enriched with risk factors for AD.
Collapse
Affiliation(s)
- Clayton J. Vesperman
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rui Wang
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- The Swedish School of Sport and Health SciencesGIHStockholmSweden
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Stephanie A. Schultz
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Lena L. Law
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ryan J. Dougherty
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of KinesiologyUniversity of Wisconsin School of EducationMadisonWisconsinUSA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Jennifer M. Oh
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Dorothy F. Edwards
- Department of KinesiologyUniversity of Wisconsin School of EducationMadisonWisconsinUSA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Dane B. Cook
- Department of KinesiologyUniversity of Wisconsin School of EducationMadisonWisconsinUSA
- Research ServiceWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
37
|
Vassilaki M, Petersen RC, Vemuri P. Area Deprivation Index as a Surrogate of Resilience in Aging and Dementia. Front Psychol 2022; 13:930415. [PMID: 35846636 PMCID: PMC9277306 DOI: 10.3389/fpsyg.2022.930415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Area deprivation index (ADI), a tool used to capture the multidimensional neighborhood socioeconomic disadvantage across populations, is highly relevant to the field of aging and Alzheimer’s disease and Alzheimer’s disease related dementias (AD/ADRD). ADI is specifically relevant in the context of resilience, a broad term used to explain why some older adults have better cognitive outcomes than others. The goal of this mini-review is three-fold: (1) to summarize the current literature on ADI and its link to cognitive impairment outcomes; (2) suggest possible mechanisms through which ADI may have an impact on AD/ADRD outcomes, and (3) discuss important considerations when studying relations between ADI and cognitive as well as brain health. Though difficult to separate both the upstream factors that emerge from high (worse) ADI and all the mechanisms at play, ADI is an attractive proxy of resilience that captures multifactorial contributors to the risk of dementia. In addition, a life-course approach to studying ADI may allow us to capture resilience, which is a process developed over the lifespan. It might be easier to build, preserve or improve resilience in an environment that facilitates instead of hindering physical, social, and cognitively beneficial activities. Neighborhood disadvantage can adversely impact cognitive impairment risk but be at the same time a modifiable risk factor, amenable to policy changes that can affect communities.
Collapse
Affiliation(s)
- Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Maria Vassilaki,
| | - Ronald C. Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
38
|
Brown BM, de Frutos Lucas J, Porter T, Frost N, Vacher M, Peiffer JJ, Laws SM. Non-Modifiable Factors as Moderators of the Relationship Between Physical Activity and Brain Volume: A Cross-Sectional UK Biobank Study. J Alzheimers Dis 2022; 88:1091-1101. [PMID: 35754269 DOI: 10.3233/jad-220114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research suggests physical activity attenuates grey and white matter loss; however, there appears to be individual variability in this effect. Understanding factors that can influence the relationship between physical activity and brain volume may enable prediction of individual response. OBJECTIVE The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) ɛ4 allele carriage. METHODS Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine the study objectives. All participants underwent a magnetic resonance imaging scan to quantify grey and white matter volumes, physical activity monitoring via actigraphy, and genotyping. RESULTS Physical activity was associated with total grey matter volume, total white matter volume, and right hippocampal volume. Only males had an association between higher physical activity levels and greater cortical grey matter volume, total grey matter volume, and right hippocampal volume. Age moderated the relationship between physical activity and white matter volume. CONCLUSION Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Age may also play a role in impacting the relationship between physical activity and brain volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of age and sex-effects on the physical activity and brain volume relationship.
Collapse
Affiliation(s)
- Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jaisalmer de Frutos Lucas
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, UPM-UCM, Pozuelo de Alarcón, Spain
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Natalie Frost
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Vacher
- Australian e-Health Research Centre, CSIRO, Floreat, Western Australia, Australia
| | - Jeremiah J Peiffer
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
39
|
Felisatti F, Gonneaud J, Palix C, Garnier-Crussard A, Mézenge F, Landeau B, Chocat A, Quillard A, Ferrand-Devouge E, de La Sayette V, Vivien D, Chételat G, Poisnel G. Role of Cardiovascular Risk Factors on the Association Between Physical Activity and Brain Integrity Markers in Older Adults. Neurology 2022; 98:e2023-e2035. [PMID: 35418459 PMCID: PMC9162049 DOI: 10.1212/wnl.0000000000200270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Physical activity has been associated with a decreased risk for dementia, but the mechanisms underlying this association remain to be determined. Our objective was to assess whether cardiovascular risk factors mediate the association between physical activity and brain integrity markers in older adults. METHODS At baseline, participants from the Age-Well study completed a physical activity questionnaire and underwent cardiovascular risk factors collection (systolic blood pressure, body mass index [BMI], current smoker status, and high-density lipoprotein cholesterol, total cholesterol, and insulin levels) and multimodal neuroimaging (structural MRI, diffusion MRI, FDG-PET, and florbetapir PET). Multiple regressions were conducted to assess the association among physical activity, cardiovascular risk factors, and neuroimaging. Mediation analyses were performed to test whether cardiovascular risk factors mediated the associations between physical activity and neuroimaging. RESULTS A total of 134 cognitively unimpaired older adults (≥65 years) were included. Higher physical activity was associated with higher gray matter (GM) volume (β = 0.174, p = 0.030) and cerebral glucose metabolism (β = 0.247, p = 0.019) but not with amyloid deposition or white matter integrity. Higher physical activity was associated with lower insulin level and BMI but not with the other cardiovascular risk factors. Lower insulin level and BMI were related to higher GM volume but not to cerebral glucose metabolism. When controlling for insulin level and BMI, the association between physical activity and cerebral glucose metabolism remained unchanged, while the association with GM volume was lost. When insulin level and BMI were entered in the same model, only BMI remained a significant predictor of GM volume. Mediation analyses confirmed that insulin level and BMI mediated the association between physical activity and GM volume. Analyses were replicated within Alzheimer disease-sensitive regions and results remained overall similar. DISCUSSION The association between physical activity and GM volume is mediated by changes in insulin level and BMI. In contrast, the association with cerebral glucose metabolism seems to be independent from cardiovascular risk factors. Older adults engaging in physical activity experience cardiovascular benefits through the maintenance of a lower BMI and insulin level, resulting in greater structural brain integrity. This study has implications for understanding how physical activity affects brain health and may help in developing strategies to prevent or delay age-related decline. TRIAL REGISTRATION INFORMATION EudraCT: 2016-002,441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Francesca Felisatti
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Julie Gonneaud
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Cassandre Palix
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Antoine Garnier-Crussard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Florence Mézenge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Brigitte Landeau
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Chocat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Quillard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Eglantine Ferrand-Devouge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Vincent de La Sayette
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Denis Vivien
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Gaël Chételat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Géraldine Poisnel
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| |
Collapse
|
40
|
Gonneaud J, Moreau I, Felisatti F, Arenaza‐Urquijo E, Ourry V, Touron E, de la Sayette V, Vivien D, Chételat G. Men and women show partly distinct effects of physical activity on brain integrity. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12302. [PMID: 35382233 PMCID: PMC8959639 DOI: 10.1002/dad2.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
Introduction Physical inactivity and female sex are independently associated with increased Alzheimer's disease (AD) lifetime risk. This study investigates the possible interactions between sex and physical activity on neuroimaging biomarkers. Methods In 134 cognitively unimpaired older adults (≥65 years, 82 women) from the Age-Well randomized controlled trial (baseline data), we investigated the association between physical activity and multimodal neuroimaging (gray matter volume, glucose metabolism, perfusion, and amyloid burden), and how sex modulates these associations. Results The anterior cingulate cortex volume was independently associated with sex and physical activity. Sex and physical activity interacted on perfusion and amyloid deposition in medial parietal regions, such that physical activity was related to perfusion only in women, and to amyloid burden only in men. Discussion Physical activity has both sex-dependent and sex-independent associations with brain integrity. Our findings highlight partly distinct reserve mechanisms in men and women, which might in turn influence their risk of AD. Highlights Sex and physical activity have been linked to Alzheimer's disease (AD) progression.The association of sex and physical activity with brain health is partly independent.Different reserve mechanisms exist in men and women.
Collapse
Affiliation(s)
- Julie Gonneaud
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Ilana Moreau
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Francesca Felisatti
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Eider Arenaza‐Urquijo
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
- Barcelonabeta Brain Research CenterFundación Pasqual MaragallBarcelonaSpain
| | - Valentin Ourry
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
- Normandie UnivUNICAEN, PSL UniversitéEPHE, INSERM, U1077CHU de CaenGIP CyceronNIMHCaenFrance
| | - Edelweiss Touron
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Vincent de la Sayette
- Normandie UnivUNICAEN, PSL UniversitéEPHE, INSERM, U1077CHU de CaenGIP CyceronNIMHCaenFrance
- Service de NeurologieCentre Hospitalier Universitaire de CaenCaenFrance
| | - Denis Vivien
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Gaël Chételat
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| |
Collapse
|
41
|
Pedrini S, Chatterjee P, Nakamura A, Tegg M, Hone E, Rainey-Smith SR, Rowe CC, Dore V, Villemagne VL, Ames D, Kaneko N, Gardener SL, Taddei K, Fernando B, Martins I, Bharadwaj P, Sohrabi HR, Masters CL, Brown B, Martins RN. The Association Between Alzheimer's Disease-Related Markers and Physical Activity in Cognitively Normal Older Adults. Front Aging Neurosci 2022; 14:771214. [PMID: 35418852 PMCID: PMC8996810 DOI: 10.3389/fnagi.2022.771214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711. Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40, Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42 and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Pratishtha Chatterjee
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Akinori Nakamura
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Michelle Tegg
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Eugene Hone
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- Academic Unit for Psychiatry of Old Age, St George's Hospital, University of Melbourne, Kew, VIC, Australia
| | - Naoki Kaneko
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sam L. Gardener
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Kevin Taddei
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Binosha Fernando
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Prashant Bharadwaj
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin L. Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Belinda Brown
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Ralph N. Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Ralph N. Martins
| |
Collapse
|
42
|
Desai P, Dhana K, DeCarli C, Wilson RS, McAninch EA, Evans DA, Rajan KB. Examination of Neurofilament Light Chain Serum Concentrations, Physical Activity, and Cognitive Decline in Older Adults. JAMA Netw Open 2022; 5:e223596. [PMID: 35315915 PMCID: PMC8941360 DOI: 10.1001/jamanetworkopen.2022.3596] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Little is known about the association of serum neurofilament light chain (NfL) concentrations and physical activity with the rate of cognitive decline in older adults. OBJECTIVE To examine the association of physical activity and NfL concentrations with cognitive decline in older adults over time. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Chicago Health and Aging Project (CHAP), a population-based cohort study that recruited participants through door-to-door census in 4 Chicago-area communities and collected data between 1993 and 2012 in cycles of 3 years. Participants in CHAP who had 2 or more cognitive function assessments and at least 1 blood sample collected for NfL measurement were selected for inclusion in the current study. Data were analyzed from January to December 2021. EXPOSURES Self-reported physical activity (minutes per week) and serum NfL concentration (pg/mL). MAIN OUTCOMES AND MEASURES Associations of baseline physical activity and NfL concentrations with changes in global cognitive function over time as evaluated using the East Boston Memory Test for episodic memory, the Symbol Digit Modalities Test for perceptual speed, and the Mini-Mental State Examination. Mixed-effects regression analyses were conducted to examine associations at baseline and longitudinally. RESULTS The study sample included 1158 participants (695 [60%] African American; 728 [63%] female), with a mean (SD) age of 77.4 (6.0) years and a mean educational level of 12.6 (3.5) years. Among participants with high NfL concentrations (>25 pg/mL), those who engaged in medium physical activity (<150 minutes per week) had a 12% slower rate of global cognitive decline (SD units, or β, -0.065; 95% CI, -0.099 to -0.032) and participants who engaged in high physical activity (≥150 minutes per week) had a 36% slower rate of decline (β, -0.048; 95% CI, -0.080 to -0.016) than did participants with low physical activity (no reported participation) (β, -0.075; 95% CI, -0.108 to -0.041). For participants with low NfL concentrations (≤25 pg/mL), those who took part in medium physical activity had 43% slower global cognitive decline (β, -0.025; 95% CI, -0.043 to -0.007) and individuals who participated in high physical activity had 30% slower decline (β, -0.031; 95% CI, -0.048 to -0.014) than did those who participated in low physical activity (β, -0.046; 95% CI, -0.066 to -0.025). CONCLUSIONS AND RELEVANCE The findings suggest that physical activity is associated with diminished cognitive decline among older adults with increased serum NfL concentrations. The results support the potential use of blood biomarkers in measuring the benefits of health behaviors, such as physical activity, and early intervention for older adults at risk for cognitive decline.
Collapse
Affiliation(s)
- Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | | | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | | | - Denis A. Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
- Department of Neurology, University of California at Davis
| |
Collapse
|
43
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
44
|
Loss of association between plasma irisin levels and cognition in Alzheimer's disease. Psychoneuroendocrinology 2022; 136:105624. [PMID: 34902775 DOI: 10.1016/j.psyneuen.2021.105624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Irisin, an exercise-induced myokine, has been shown to have beneficial effects on cognitive and metabolic functions. However, previous studies assessing the levels of circulating irisin in patients with Alzheimer's disease (AD) or diabetes mellitus (DM) have provided inconsistent results. This suggests that the normal physiological action of irisin may be altered by disease-associated pathological conditions in target organs. OBJECTIVE To investigate the association of plasma levels of irisin with cognition and brain structures according to the presence or absence of AD and DM. METHODS Plasma levels of irisin, multi-domain cognition, and volumes of relevant brain regions were assessed using enzyme-linked immunoassay, neuropsychological test, and magnetic resonance imaging, respectively. We classified 107 participants by cognitive (cognitively normal [CN, n = 23], mild cognitive impairment [MCI, n = 49], and AD [n = 35]) and metabolic (non-DM [n = 75] and DM [n = 32]) states. RESULTS Disease state-stratified multiple regression analyses showed that plasma levels of irisin were positively associated with cognition only in participants without AD (CN plus MCI). By contrast, in participants with AD, these associations lost significance, and furthermore, higher levels of irisin indicated smaller hippocampal, superior temporal, and inferior frontal volumes. The association between plasma irisin levels and cognition was not affected by the presence of DM. Consistently, moderation analysis revealed that the relationship between plasma irisin levels and cognition or brain structures was significantly modified by the presence of AD, not that of DM. CONCLUSION Our findings suggest that the beneficial actions of circulating irisin on cognition may be attenuated by AD-induced pathological conditions in the brain.
Collapse
|
45
|
Pearce AM, Marr C, Dewar M, Gow AJ. Apolipoprotein E Genotype Moderation of the Association Between Physical Activity and Brain Health. A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 13:815439. [PMID: 35153725 PMCID: PMC8833849 DOI: 10.3389/fnagi.2021.815439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Possession of one or two e4 alleles of the apolipoprotein E (APOE) gene is associated with cognitive decline and dementia risk. Some evidence suggests that physical activity may benefit carriers of the e4 allele differently. Method We conducted a systematic review and meta-analysis of studies which assessed APOE differences in the association between physical activity and: lipid profile, Alzheimer's disease pathology, brain structure and brain function in healthy adults. Searches were carried out in PubMed, SCOPUS, Web of Science and PsycInfo. Results Thirty studies were included from 4,896 papers screened. Carriers of the e4 allele gained the same benefit from physical activity as non-carriers on most outcomes. For brain activation, e4 carriers appeared to gain a greater benefit from physical activity on task-related and resting-state activation and resting-state functional connectivity compared to non-carriers. Post-hoc analysis identified possible compensatory mechanisms allowing e4 carriers to maintain cognitive function. Discussion Though there is evidence suggesting physical activity may benefit e4 carriers differently compared to non-carriers, this may vary by the specific brain health outcome, perhaps limited to brain activation. Further research is required to confirm these findings and elucidate the mechanisms.
Collapse
|
46
|
Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol 2022; 18:417-442. [PMID: 35044793 DOI: 10.1146/annurev-clinpsy-072720-014213] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Is the field of cognitive aging irretrievably concerned with decline and deficits, or is it shifting to emphasize the hope of preservation and enhancement of cognitive function in late life? A fragment of an answer comes from research attempting to understand the reasons for individual variability in the extent and rate of cognitive decline. This body of work has created a sense of optimism based on evidence that there are some health behaviors that amplify cognitive performance or mitigate the rate of age-related cognitive decline. In this context, we discuss the role of physical activity on neurocognitive function in late adulthood and summarize how it can be conceptualized as a constructive approach both for the maintenance of cognitive function and as a therapeutic for enhancing or optimizing cognitive function in late life. In this way, physical activity research can be used to shape perceptions of cognitive aging. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 18 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kirk I Erickson
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Shannon D Donofry
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Psychiatry and Behavioral Health Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Chelsea M Stillman
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
47
|
Coomans EM, Tomassen J, Ossenkoppele R, Golla SSV, den Hollander M, Collij LE, Weltings E, van der Landen S, Wolters EE, Windhorst AD, Barkhof F, de Geus EJ, Scheltens P, Visser PJ, van Berckel BNM, den Braber A. Genetically identical twins show comparable tau PET load and spatial distribution. Brain 2022; 145:3571-3581. [PMID: 35022652 PMCID: PMC9586544 DOI: 10.1093/brain/awac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Tau accumulation starts during the preclinical phase of Alzheimer’s disease and is closely associated with cognitive decline. For preventive purposes, it is important to identify factors associated with tau accumulation and spread. Studying genetically identical twin-pairs may give insight into genetic and environmental contributions to tau pathology, as similarities in identical twin-pairs largely result from genetic factors, while differences in identical twin-pairs can largely be attributed to non-shared, environmental factors. This study aimed to examine similarities and dissimilarities in a cohort of genetically identical older twin-pairs in (i) tau load; and (ii) spatial distribution of tau, measured with 18F-flortaucipir PET. We selected 78 genetically identical twins (39 pairs; average age 73 ± 6 years), enriched for amyloid-β pathology and APOE ε4 carriership, who underwent dynamic 18F-flortaucipir PET. We extracted binding potentials (BPND) in entorhinal, temporal, widespread neocortical and global regions, and examined within-pair similarities in BPND using age and sex corrected intra-class correlations. Furthermore, we tested whether twin-pairs showed a more similar spatial 18F-flortaucipir distribution compared to non-twin pairs, and whether the participant’s co-twin could be identified solely based on the spatial 18F-flortaucipir distribution. Last, we explored whether environmental (e.g. physical activity, obesity) factors could explain observed differences in twins of a pair in 18F-flortaucipir BPND. On visual inspection, Alzheimer’s disease-like 18F-flortaucipir PET patterns were observed, and although we mainly identified similarities in twin-pairs, some pairs showed strong dissimilarities. 18F-flortaucipir BPND was correlated in twins in the entorhinal (r = 0.40; P = 0.01), neocortical (r = 0.59; P < 0.01) and global (r = 0.56; P < 0.01) regions, but not in the temporal region (r = 0.20; P = 0.10). The 18F-flortaucipir distribution pattern was significantly more similar between twins of the same pair [mean r = 0.27; standard deviation (SD) = 0.09] than between non-twin pairings of participants (mean r = 0.01; SD = 0.10) (P < 0.01), also after correcting for proxies of off-target binding. Based on the spatial 18F-flortaucipir distribution, we could identify with an accuracy of 86% which twins belonged to the same pair. Finally, within-pair differences in 18F-flortaucipir BPND were associated with within-pair differences in depressive symptoms (0.37 < β < 0.56), physical activity (−0.41 < β < −0.42) and social activity (−0.32 < β < −0.36) (all P < 0.05). Overall, identical twin-pairs were comparable in tau load and spatial distribution, highlighting the important role of genetic factors in the accumulation and spreading of tau pathology. Considering also the presence of dissimilarities in tau pathology in identical twin-pairs, our results additionally support a role for (potentially modifiable) environmental factors in the onset of Alzheimer’s disease pathological processes, which may be of interest for future prevention strategies.
Collapse
Affiliation(s)
- Emma M. Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sandeep S. V. Golla
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke den Hollander
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lyduine E. Collij
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma Weltings
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sophie van der Landen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma E. Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- UCL Institute of Neurology, London, UK
| | - Eco J.C. de Geus
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Bart N. M. van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Sohn BK, Byun MS, Yi D, Jeon SY, Lee JH, Choe YM, Lee DW, Lee JY, Kim YK, Sohn CH, Lee DY, KBASE Research Group. Late-Life Physical Activities Moderate the Relationship of Amyloid-β Pathology with Neurodegeneration in Individuals Without Dementia. J Alzheimers Dis 2022; 86:441-450. [PMID: 35068452 PMCID: PMC9210327 DOI: 10.3233/jad-215258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Physical activities (PA) have been suggested to reduce the risk of Alzheimer's disease (AD) dementia. However, information on the neuropathological links underlying the relationship is limited. OBJECTIVE We investigated the role of midlife and late-life PA with in vivo AD neuropathologies in old adults without dementia. METHODS This study included participants from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's disease (KBASE). The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance imaging. Using the multi-modal brain imaging data, in vivo AD pathologies including global amyloid deposition, AD-signature region cerebral glucose metabolism (AD-CM), and AD-signature region cortical thickness (AD-CT) were quantified. Both midlife and late-life PA of participants were measured using the Lifetime Total Physical Activity Questionnaire. RESULTS This study was performed on 260 participants without dementia (195 with normal cognitive function and 65 with mild cognitive impairment). PA of neither midlife nor late-life showed direct correspondence with any neuroimaging biomarker. However, late-life PA moderated the relationship of brain amyloid-β (Aβ) deposition with AD-CM and AD-CT. Aβ positivity had a significant negative effect on both AD-CM and AD-CT in individuals with lower late-life PA, but those with higher late-life PA did not show such results. Midlife PA did not have such a moderation effect. CONCLUSION The findings suggest that physically active lifestyle in late-life, rather than that in midlife, may delay AD-associated cognitive decline by decreasing Aβ-induced neurodegenerative changes in old adults.
Collapse
Affiliation(s)
- Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dahyun Yi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Dong Woo Lee
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea,Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea,Correspondence to: Dong Young Lee, Department of Neuropsychiatry, Seoul National University Hospital & Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. Tel.: +82 2 2072 2205; Fax: +82 2 744 7241;
| | | |
Collapse
|
49
|
Trubnikova OA, Tarasova IV, Moskin EG, Kupriyanova DS, Argunova YA, Pomeshkina SA, Gruzdeva OV, Barbarash OL. Beneficial Effects of a Short Course of Physical Prehabilitation on Neurophysiological Functioning and Neurovascular Biomarkers in Patients Undergoing Coronary Artery Bypass Grafting. Front Aging Neurosci 2021; 13:699259. [PMID: 34955803 PMCID: PMC8704127 DOI: 10.3389/fnagi.2021.699259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to evaluate the effects of a short course of physical prehabilitation on neurophysiological functioning and markers of the neurovascular unit in patients undergoing coronary artery bypass grafting (CABG). We performed a prospective randomized study involving 97 male CABG patients aged 45–70 years, 47 of whom underwent a 5–7-day preoperative course of aerobic physical training (PhT). Both groups of patients were comparable with respect to baseline clinical and anamnestic characteristics. An extended neuropsychological and electroencephalographic (EEG) study was performed before surgery and at 7–10 days after CABG. Markers of the neurovascular unit [S100β, neuron-specific enolase (NSE), and brain-derived neurotrophic factor (BDNF)] were examined as metabolic correlations of early postoperative cognitive dysfunction (POCD) at three time points: before surgery, within the first 24 h after surgery, and 7–10 days after CABG. POCD developed in 58% of patients who underwent preoperative PhT, and in 79.5% of patients who did not undergo training, 7–10 days after CABG. Patients without prehabilitation demonstrated a higher percentage of theta1 power increase in the relative change values as compared to the PhT patients (p = 0.015). The short preoperative course of PhT was associated with low plasma S100β concentration, but high BDNF levels in the postoperative period. Patients who underwent a short preoperative course of PhT had better cognitive and electrical cortical activity indicators. Markers of the neurovascular unit indicated lower perioperative brain injury after CABG in those who underwent training. A short course of PhT before CABG can decrease the brain’s susceptibility to ischemia and reduce the severity of cognitive impairments in cardiac surgery patients. Electrical brain activity indicators and neurovascular markers, such as S100β and BDNF, can be informative for the effectiveness of cardiac rehabilitation programs.
Collapse
Affiliation(s)
- Olga A Trubnikova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Irina V Tarasova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Evgeniy G Moskin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Darya S Kupriyanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Yuliya A Argunova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | | | - Olga V Gruzdeva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Olga L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
50
|
Fleming V, Piro-Gambetti B, Patrick A, Zammit M, Alexander A, Christian BT, Handen B, Cohen A, Klunk W, Laymon C, Ances BM, Plante DT, Okonkwo O, Hartley SL. Physical activity and cognitive and imaging biomarkers of Alzheimer's disease in down syndrome. Neurobiol Aging 2021; 107:118-127. [PMID: 34428720 PMCID: PMC8641014 DOI: 10.1016/j.neurobiolaging.2021.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Adults with Down syndrome (DS) are at risk for Alzheimer's disease. Despite sharing trisomy 21, however, there is variability in the age of disease onset. This variability may mean that other factors, such as lifestyle, influence cognitive aging and disease timing. The present study assessed the association between everyday life physical activity using an actigraph accelerometer and cognitive functioning and early Alzheimer's disease pathology via positron emission tomography amyloid-β and tau and diffusion tension imaging measures of white matter integrity in 61 non-demented adults with DS. Percent time in sedentary behavior and in moderate-to-vigorous activity were associated (negatively and positively, respectively) with cognitive functioning (r = -.472 to .572, p < 0.05). Neither sedentary behavior nor moderate-to-vigorous activity were associated with amyloid-β or tau, but both were associated with white matter integrity in the superior and inferior longitudinal fasciculus (Fractional Anisotropy: r = -.397 to -.419, p < 0.05; Mean Diffusivity: r = .400, p < 0.05). Longitudinal studies are needed to determine if physical activity promotes healthy aging in DS.
Collapse
Affiliation(s)
- Victoria Fleming
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brianna Piro-Gambetti
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Austin Patrick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew Zammit
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bradley T Christian
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annie Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beau M Ances
- Department of Neurology, Washington University at St. Louis, St. Louis, MO, USA
| | - David T Plante
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ozioma Okonkwo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|