1
|
Güney R, Potreck A, Neuberger U, Schmitt N, Purrucker J, Möhlenbruch MA, Bendszus M, Seker F. Association of Carotid Artery Disease with Collateralization and Infarct Growth in Patients with Acute Middle Cerebral Artery Occlusion. AJNR Am J Neuroradiol 2024; 45:574-580. [PMID: 38575322 PMCID: PMC11288550 DOI: 10.3174/ajnr.a8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND PURPOSE Collaterals are important in large vessel occlusions (LVO), but the role of carotid artery disease (CAD) in this context remains unclear. This study aimed to investigate the impact of CAD on intracranial collateralization and infarct growth after thrombectomy in LVO. MATERIALS AND METHODS All patients who underwent thrombectomy due to M1 segment occlusion from 01/2015 to 12/2021 were retrospectively included. Internal carotid artery stenosis according to NASCET was assessed on the affected and nonaffected sides. Collaterals were assessed according to the Tan score. Infarct growth was quantified by comparing ASPECTS on follow-up imaging with baseline ASPECTS. RESULTS In total, 709 patients were included, 118 (16.6%) of whom presented with CAD (defined as severe stenosis ≥70% or occlusion ipsilaterally), with 42 cases (5.9%) being contralateral. Good collateralization (Tan 3) was present in 56.5% of the patients with ipsilateral CAD and 69.1% of the patients with contralateral CAD. The ipsilateral stenosis grade was an independent predictor of good collateral supply (adjusted OR: 1.01; NASCET point, 95% CI: 1.00-1.01; P = .009), whereas the contralateral stenosis grade was not (P = .34). Patients with ipsilateral stenosis of ≥70% showed less infarct growth (median ASPECTS decay: 1; IQR: 0-2) compared with patients with 0%-69% stenosis (median: 2; IQR: 1-3) (P = .005). However, baseline ASPECTS was significantly lower in patients with stenosis of 70%-100% (P < .001). The results of a multivariate analysis revealed that increasing ipsilateral stenosis grade (adjusted OR: 1.0; 95% CI: 0.99-1.00; P = .004) and good collateralization (adjusted OR: 0.5; 95% CI: 0.4-0.62; P < .001) were associated with less infarct growth. CONCLUSIONS CAD of the ipsilateral ICA is an independent predictor of good collateral supply. Patients with CAD tend to have larger baseline infarct size but less infarct growth.
Collapse
Affiliation(s)
- Resul Güney
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| | - Arne Potreck
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| | - Ulf Neuberger
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| | - Niclas Schmitt
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Purrucker
- Departments of Neurology (J.P.), Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Möhlenbruch
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| | - Fatih Seker
- From the Departments of Neuroradiology (R.G., A.P., U.N., N.S., M.A.M., M.B., F.S.) Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Kang K, Wang DP, Lv QL, Chen F. VEGF-A ameliorates ischemia hippocampal neural injury via regulating autophagy and Akt/CREB signaling in a rat model of chronic cerebral hypoperfusion. J Stroke Cerebrovasc Dis 2023; 32:107367. [PMID: 37734181 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai 200032, China; Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi 330029, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Elfving B, Liebenberg N, du Jardin K, Sanchez C, Wegener G, Müller HK. Single dose S-ketamine rescues transcriptional dysregulation of Mtor and Nrp2 in the prefrontal cortex of FSL rats 1 hour but not 14 days post dosing. Eur Neuropsychopharmacol 2022; 65:56-67. [PMID: 36375239 DOI: 10.1016/j.euroneuro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
There is a pressing need to identify biological indicators of major depression to help guide proper diagnosis and optimize treatment. Animal models mimicking aspects of depression constitute essential tools for early-stage exploration of relevant pathways. In this study, we used the Flinders Sensitive and Resistant Line (FSL/FRL) to explore central and peripheral transcriptional changes in vascular endothelial growth factor (VEGF) pathway genes and their temporal regulation after a single dose of S-ketamine (15 mg/kg). We found that S-ketamine induced both rapid (1 hour) and sustained (2 and 14 days) antidepressant-like effects in the FSL rats. Analysis of mRNA expression revealed significant strain effects of Vegf, Vegf164, Vegfr-1, Nrp1, Nrp2, Rictor, and Raptor in the prefrontal cortex (PFC) and of Vegf164, GbetaL, and Tsc1 in the hippocampus (HIP), which indicates suppression of VEGF signaling in the FSL rats compared to FRL rats. This notion was further substantiated by reduced expression of Vegf and Mtor in plasma from FSL rats. In the brain, S-ketamine induced transcriptional changes in the acute phase, not the sustained phase. There were significant treatment effects of S-ketamine on Vegfr-2 in both PFC and HIP and on Vegf and Vegfr-1 in HIP. Moreover, we found that S-ketamine specifically restored reduced levels of Nrp2 and Mtor in the PFC of the FSL rats. In conclusion, this study substantiates the use of the FRL/FSL rats to explore the depressive-like behavior at the transcriptional level of the VEGF pathway genes and study their regulation in response to various treatment paradigms.
Collapse
Affiliation(s)
- Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark.
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Kristian du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lun Research USA, Inc., Paramus, NJ, United States of America
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
4
|
Shibahara I, Shibahara Y, Hagiwara H, Watanabe T, Orihashi Y, Handa H, Inukai M, Hide T, Yasui Y, Kumabe T. Ventricular opening and cerebrospinal fluid circulation accelerate the biodegradation process of carmustine wafers suggesting their immunomodulation potential in the human brain. J Neurooncol 2022; 159:425-435. [PMID: 35802230 DOI: 10.1007/s11060-022-04078-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Opening the ventricular system during glioblastoma surgery is often necessary, but the consequent effect on the tumor microenvironment of glioblastoma remains unknown. Implantation of carmustine wafer enables direct drug delivery to the tumor site; however, the exact mechanism of the wafer's biodegradation process is unclear, and the available data is limited to in vivo non-human mammalian studies. We hypothesized that the ventricular opening affects the degradation process of the wafer and the glioblastoma tumor microenvironment. METHODS This study included 30 glioblastoma patients. 21 patients underwent carmustine wafer implantation during initial surgery. All patients underwent repeated surgical resection upon recurrence, allowing for pathological comparison of changes associated with wafer implantation. Immunohistochemical analyses were performed using CD68, TMEM119, CD163, IBA1, BIN1, and CD31 antibodies to highlight microglia, macrophages, and tumor vascularity, and the quantitative scoring results were correlated with clinical, molecular, and surgical variables, including the effect of the ventricular opening. RESULTS The carmustine wafer implanted group presented significantly less TMEM119-positive microglia within the tumor (P = 0.0002). Simple and multiple regression analyses revealed that the decrease in TMEM119-positive microglia was correlated with longer intervals between surgeries and opened ventricular systems. No correlation was observed between age, methylated O6-methylguanine DNA methyltransferase promoter expression, and the extent of surgical resection. CONCLUSIONS Our study findings strongly suggest that biomaterials may possess immunomodulation capacity, which is significantly impacted by the ventricular opening procedure. Furthermore, our data highlights the pathophysiological effects of the ventricular opening within the surrounding human brain, especially after the wafer implantation.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Yukiko Shibahara
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Hagiwara
- Department of Neurosurgery, Yamato Municipal Hospital, Yamato, Kanagawa, Japan
| | - Takashi Watanabe
- Department of General Internal Medicine, JCHO Sendai Hospital, Sendai, Miyagi, Japan
| | - Yasushi Orihashi
- Division of Clinical Research, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Hajime Handa
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshie Yasui
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
5
|
Hu Y, Zheng Y, Wang T, Jiao L, Luo Y. VEGF, a Key Factor for Blood Brain Barrier Injury After Cerebral Ischemic Stroke. Aging Dis 2022; 13:647-654. [PMID: 35656098 PMCID: PMC9116914 DOI: 10.14336/ad.2021.1121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Blood brain barrier (BBB) injury is an important factor affecting the prognosis of ischemic stroke. Extensive research on BBB injury has revealed that blood vessels and neural networks are interdependent and interrelated during and after the development of the brain. An array of signaling molecules, known as angioneurins, can affect both blood vessels and neural networks simultaneously. Angioneurins not only regulate the angiogenesis and remodeling process of the vascular system, but also act as neurotrophic and neuroprotective factors, or serve as guide molecules for axons. Vascular endothelial growth factor (VEGF) is a type of angioneurin that is expressed in neurons, astrocytes, macrophages, and vascular endothelial cells in ischemic and hypoxic brain tissues after cerebral ischemia. VEGF can increase and induce the destruction of the endothelial barrier in the early stages of cerebral ischemia. Both the upregulation of endogenous VEGF levels and the use of exogenous VEGF are harmful in the acute stage of stroke. However, the harmful effects of VEGF on vascular integrity are transient. Several studies have shown that VEGF regulates angiogenesis, neurogenesis, neurite growth and brain edema after cerebral ischemia. Therefore, it is crucial to understand the dual role of VEGF in ischemic stroke. The following will focus on the damage caused by VEGF to the BBB in the context of cerebral ischemic stroke, as well as therapeutic studies targeting VEGF.
Collapse
Affiliation(s)
- Yue Hu
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yangmin Zheng
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Tao Wang
- 2Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liqun Jiao
- 2Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,4Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wang DP, Jin KY, Zhao P, Lin Q, Kang K, Hai J. Neuroprotective Effects of VEGF-A Nanofiber Membrane and FAAH Inhibitor URB597 Against Oxygen-Glucose Deprivation-Induced Ischemic Neuronal Injury. Int J Nanomedicine 2021; 16:3661-3678. [PMID: 34093011 PMCID: PMC8168836 DOI: 10.2147/ijn.s307335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Brain ischemia is a common neurological disorder worldwide that activates a cascade of pathophysiological events involving decreases in oxygen and glucose levels. Despite substantial efforts to explore its pathogenesis, the management of ischemic neuronal injury remains an enormous challenge. Accumulating evidence suggests that VEGF modified nanofiber (NF) materials and the fatty-acid amide hydrolase (FAAH) inhibitor URB597 exert an influence on alleviating ischemic brain damage. We aimed to further investigate their effects on primary hippocampal neurons, as well as the underlying mechanisms following oxygen-glucose deprivation (OGD). METHODS Different layers of VEGF-A loaded polycaprolactone (PCL) nanofibrous membranes were first synthesized by using layer-by-layer (LBL) self-assembly of electrospinning methods. The physicochemical and biological properties of VEGF-A NF membranes, and their morphology, hydrophilicity, and controlled-release of VEGF-A were then estimated. Furthermore, the effects of VEGF-A NF and URB597 on OGD-induced mitochondrial oxidative stress, inflammatory responses, neuronal apoptosis, and endocannabinoid signaling components were assessed. RESULTS The VEGF-A NF membrane and URB597 can not only promote hippocampal neuron adhesion and viability following OGD but also exhibited antioxidant/anti-inflammatory and mitochondrial membrane potential protection. The VEGF-A NF membrane and URB597 also inhibited OGD-induced cellular apoptosis through activating CB1R signaling. These results indicate that VEGF-A could be controlled-released by LBL self-assembled NF membranes. DISCUSSION The VEGF-A NF membrane and URB597 displayed positive synergistic neuroprotective effects through the inhibition of mitochondrial oxidative stress and activation of CB1R/PI3K/AKT/BDNF signaling, suggesting that a VEGF-A loaded NF membrane and the FAAH inhibitor URB597 could be of therapeutic value in ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| | - Peng Zhao
- Institute for Translational Medicine, Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Kai Kang
- Department of Research and Surveillance Evaluation, Shanghai Center for Health Promotion, Shanghai, 200040, People’s Republic of China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
7
|
Wang DP, Lin Q, Kang K, Wu YF, Su SH, Hai J. Preservation of spatial memory and neuroprotection by the fatty acid amide hydrolase inhibitor URB597 in a rat model of vascular dementia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:228. [PMID: 33708855 PMCID: PMC7940933 DOI: 10.21037/atm-20-4431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Chronic cerebral hypoperfusion (CCH) is a major risk factor for vascular dementia (VaD). There are currently no broadly effective prevention or treatment strategies for VaD, but recent studies have reported promising results following vascular bypass surgery and pharmacomodulation of the brain endocannabinoid system (ECS). In this study, early effects of encephalomyosynangiosis (EMS) bypass surgery and augmented endocannabinoid signaling on CCH-induced cognitive dysfunction and neuronal damage were investigated. Methods An animal model of VaD was established by bilateral common carotid artery occlusion (BCCAO). Cannabinoid signaling was upregulated by treatment with the fatty acid amide hydrolase inhibitor URB597 (URB). Spatial learning and memory, cerebral blood flow (CBF), revascularization, brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling, and apoptosis were compared among Sham, BCCAO, BCCAO + EMS, BCCAO + URB, and BCCAO + URB + EMS groups. Spatial learning and memory were evaluated using the Morris water maze (MWM). The CBF in cortex and hippocampus was evaluated by 3-dimensional arterial spin labeling. The neovascularization was visualized by CD34 immunofluorescence staining, and BDNF-TrkB signaling protein expression levels were assessed by Western blotting. Results Treatment with URB597 but not EMS alone reversed the spatial learning and memory deficits induced by BCCAO. Neovascularization was enhanced after EMS surgery but not by URB597. Alternatively, there were no significant differences in CBF among treatment groups. Expression levels of BDNF and TrkB were significantly reduced by CCH compared to Sham treatment, and downregulation of both proteins was reversed by URB597 treatment but not EMS. BCCAO enhanced neuronal apoptosis, which was also reversed by URB597. Conclusions Augmentation of endogenous cannabinoid signaling but not EMS protects against CCH-induced neurodegeneration and preserves spatial learning and memory, possibly by activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China.,Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Kang
- Department of Research and Surveillance Evaluation, Shanghai Center for Health Promotion, Shanghai, China
| | - Yi-Fang Wu
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Winter RC, Antunes ACM, de Oliveira FH. The relationship between vascular endothelial growth factor and histological grade in intracranial meningioma. Surg Neurol Int 2020; 11:328. [PMID: 33194262 PMCID: PMC7655995 DOI: 10.25259/sni_528_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Meningioma is the most common benign intracranial neoplasm, accounting for 30% of all primary brain tumors. In 90% of cases, meningiomas are benign. Several aspects of molecular biology, including potential biomarkers, have been studied in attempts to better understand the natural history of meningiomas. Vascular endothelial growth factor (VEGF) is a biomarker responsible for inducing physiological and pathological angiogenesis. VEGF expression has been investigated as a potential predictor of several tumor aspects, including growth rate, recurrence rate, brain tissue invasion, peritumoral edema and surgical prognosis, and also as a marker of histological grade. However, there is no consensus in the literature with respect to the association between this biological factor and meningioma. We digitally analyzed immunohistochemical images using ImageJ software with the aim of correlating VEGF expression with tumor histology. Methods Tissue samples from patients presenting with meningioma who had undergone surgical removal between 2007 and 2016 at the Hospital de Clínicas de Porto Alegre (HCPA), in Southern Brazil, were analyzed to identify possible immunohistochemical associations between VEGF and histological grade and subtype. Results Seventy-six patients were included; 82% were female, mean age was 59.9 years (range: 18-91). No statistically significant associations were found between VEGF expression and histological grade or subtype (P = 0.310). Conclusion Our findings suggest that VEGF is frequently present in meningiomas regardless of histological grade and should not be used as a marker of severity or histological grade.
Collapse
Affiliation(s)
- Rafael Contage Winter
- Departments of Neurosurgery Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Francine Hehn de Oliveira
- Departments of Neuropathology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Saft M, Gonzales-Portillo B, Park YJ, Cozene B, Sadanandan N, Cho J, Garbuzova-Davis S, Borlongan CV. Stem Cell Repair of the Microvascular Damage in Stroke. Cells 2020; 9:cells9092075. [PMID: 32932814 PMCID: PMC7563611 DOI: 10.3390/cells9092075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a life-threatening disease that leads to mortality, with survivors subjected to long-term disability. Microvascular damage is implicated as a key pathological feature, as well as a therapeutic target for stroke. In this review, we present evidence detailing subacute diaschisis in a focal ischemic stroke rat model with a focus on blood–brain barrier (BBB) integrity and related pathogenic processes in contralateral brain areas. Additionally, we discuss BBB competence in chronic diaschisis in a similar rat stroke model, highlighting the pathological changes in contralateral brain areas that indicate progressive morphological brain disturbances overtime after stroke onset. With diaschisis closely approximating stroke onset and progression, it stands as a treatment of interest for stroke. Indeed, the use of stem cell transplantation for the repair of microvascular damage has been investigated, demonstrating that bone marrow stem cells intravenously transplanted into rats 48 h post-stroke survive and integrate into the microvasculature. Ultrastructural analysis of transplanted stroke brains reveals that microvessels display a near-normal morphology of endothelial cells and their mitochondria. Cell-based therapeutics represent a new mechanism in BBB and microvascular repair for stroke.
Collapse
Affiliation(s)
| | | | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | | | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
- Correspondence: ; Tel.: +813-974-3988
| |
Collapse
|
10
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Cárdenas-Rivera A, Campero-Romero AN, Heras-Romero Y, Penagos-Puig A, Rincón-Heredia R, Tovar-Y-Romo LB. Early Post-stroke Activation of Vascular Endothelial Growth Factor Receptor 2 Hinders the Receptor 1-Dependent Neuroprotection Afforded by the Endogenous Ligand. Front Cell Neurosci 2019; 13:270. [PMID: 31312121 PMCID: PMC6614187 DOI: 10.3389/fncel.2019.00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has long been connected to the development of tissue lesion following ischemic stroke. Contradictory findings either situate VEGF as a promoter of large infarct volumes or as a potential attenuator of damage due to its well documented neuroprotective capability. The core of this discrepancy mostly lies on the substantial number of pleiotropic functions driven by VEGF. Mechanistically, these effects are activated through several VEGF receptors for which various closely related ligands exist. Here, we tested in an experimental model of stroke how the differential activation of VEGF receptors 1 and 2 would modify functional and histological outcomes in the acute phase post-ischemia. We also assessed whether VEGF-mediated responses would involve the modulation of inflammatory mechanisms and how this trophic factor acted specifically on neuronal receptors. We produced ischemic infarcts in adult rats by transiently occluding the middle cerebral artery and induced the pharmacological inhibition of VEGF receptors by i.c.v. administration of the specific VEGFR2 inhibitor SU1498 and the pan-VEGFR blocker Axitinib. We evaluated the neurological performance of animals at 24 h following stroke and the occurrence of brain infarctions analyzed at the gross metabolic and neuronal viability levels. We also assessed the induction of peripheral pro- and anti-inflammatory cytokines in the cerebrospinal fluid and blood and assessed the polarization of activated microglia. Finally, we studied the direct involvement of cortical neuronal receptors for VEGF with in vitro assays of excitotoxic damage. Preferential VEGFR1 activation by the endogenous ligand promotes neuronal protection and prevents the presentation of large volume infarcts that highly correlate with neurological performance, while the concomitant activation of VEGFR2 reduces this effect, even in the presence of exogenous ligand. This process partially involves the polarization of microglia to the state M2. At the cellular level, neurons also responded better to the preferential activation of VEGFR1 when challenged to N-methyl-D-aspartate-induced excitotoxicity. Endogenous activation of VEGFR2 hinders the neuroprotective mechanisms mediated by the activation of VEGFR1. The selective modulation of these concurrent processes might enable the development of therapeutic approaches that target specific VEGFR1-mediated signaling during the acute phase post-stroke.
Collapse
Affiliation(s)
- Alfredo Cárdenas-Rivera
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yessica Heras-Romero
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés Penagos-Puig
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis B Tovar-Y-Romo
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Ek Olofsson H, Englund E. A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia? Neuropathol Appl Neurobiol 2019; 45:557-569. [PMID: 30957900 PMCID: PMC6850314 DOI: 10.1111/nan.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Aims We observed a microvascular structure in the cerebral cortex that has not, to our knowledge, been previously described. We have termed the structure a ‘raspberry’, referring to its appearance under a bright‐field microscope. We hypothesized that raspberries form through angiogenesis due to some form of brain ischaemia or hypoperfusion. The aims of this study were to quantify raspberry frequency within the cerebral cortex according to diagnosis (vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls) and brain regions (frontal, temporal, parietal and occipital cortices, regardless of diagnosis). Materials and methods In each of 10 age‐matched subjects per group, a 20‐mm section of the cerebral cortex was examined in haematoxylin‐and‐eosin‐stained sections of the frontal, temporal and parietal, and/or occipital lobes. Tests were performed to validate the haematoxylin‐and‐eosin‐based identification of relative differences between the groups, and to investigate inter‐rater variability. Results Raspberry frequency was highest in subjects with vascular dementia, followed by those with frontotemporal lobar degeneration, Alzheimer's disease and last, nondemented controls. The frequency of raspberries in subjects with vascular dementia differed from that of all other groups at a statistically significant level. In the cerebral lobes, there was a statistically significant difference between the frontal and occipital cortices. Conclusions We believe the results support the hypothesis that raspberries are a sign of angiogenesis in the adult brain. It is pertinent to discuss possible proangiogenic stimuli, including brain ischaemia (such as mild hypoperfusion due to a combination of small vessel disease and transient hypotension), neuroinflammation and protein pathology.
Collapse
Affiliation(s)
- H Ek Olofsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - E Englund
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Han JY, Kim JK, Kim JH, Oh BS, Cho WJ, Jung YD, Lee SG. Neurorestorative effects of epigallocatechin-3-Gallate on cognitive function in a chronic cerebral hypoperfusion rat model. Restor Neurol Neurosci 2018; 34:367-77. [PMID: 27080069 DOI: 10.3233/rnn-150586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE This study investigated whether (-)-epigallocatechin-3-gallate (EGCG) can enhance cognition by a neurorestorative effect in a rat model of bilateral common carotid artery occlusion (BCCAO). METHODS Forty-eight male, 8-week-old Sprague-Dawley rats were randomly allocated to four groups 6 weeks after BCCAO or sham operation: EGCG-single intravenous injection (25 mg/kg/day; SIV group), EGCG-multiple intraperitoneal injection (50 mg/kg/day for 5 days; MIP group), untreated BCCAO group (untreated group), and sham-operated group (sham group). RESULTS Escape latency was significantly shorter in the SIV and MIP groups than in the untreated group. SIV and MIP groups were significantly different from the untreated group in the activity of superoxide dismutase and the content of malondialdehyde (p < 0.05). Protein expression level of brain-derived neurotrophic factor was not significantly different between groups (p > 0.05), while protein expression of vascular endothelial growth factor was significantly lower in the SIV group than in the untreated group (p < 0.05). Protein expression of N-methyl-D-aspartate receptor subunits NR1 and NR2B was significantly higher in the MIP group than in the untreated group (p < 0.05). CONCLUSIONS EGCG administration at 6 weeks after BCCAO is neurorestorative via an anti-oxidant effect and synaptogenesis, except for angiogenesis.
Collapse
Affiliation(s)
- Jae-Young Han
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju City, Republic of Korea
| | - Jung-Kook Kim
- Department of Rehabilitation Standard & Policy, National Rehabilitation Center Research Institute, Seoul City, Republic of Korea
| | - Jae-Hong Kim
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Dong-Shin University, Naju City, Republic of Korea
| | - Bong-Seok Oh
- Department of Sports and Leisure Science, Sunchon National University, Sunchon City, Republic of Korea
| | - Wan-Ju Cho
- Department of Physical Education, Chosun University, Gwangju City, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju City, Republic of Korea
| | - Sam-Gyu Lee
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju City, Republic of Korea
| |
Collapse
|
14
|
Zhou D, Meng R, Li SJ, Ya JY, Ding JY, Shang SL, Ding YC, Ji XM. Advances in chronic cerebral circulation insufficiency. CNS Neurosci Ther 2017; 24:5-17. [PMID: 29143463 DOI: 10.1111/cns.12780] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) may not be an independent disease; rather, it is a pervasive state of long-term cerebral blood flow insufficiency caused by a variety of etiologies, and considered to be associated with either occurrence or recurrence of ischemic stroke, vascular cognitive impairment, and development of vascular dementia, resulting in disability and mortality worldwide. This review summarizes the features and recent progress of CCCI, mainly focusing on epidemiology, experimental research, pathophysiology, etiology, clinical manifestations, imaging presentation, diagnosis, and potential therapeutic regimens. Some research directions are briefly discussed as well.
Collapse
Affiliation(s)
- Da Zhou
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Si-Jie Li
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jing-Yuan Ya
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia-Yue Ding
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ling Shang
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Chuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xun-Ming Ji
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Cai B, Peng B. Intracranial artery stenosis: Current status of evaluation and treatment in China. Chronic Dis Transl Med 2017; 3:197-206. [PMID: 29354802 PMCID: PMC5747500 DOI: 10.1016/j.cdtm.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 01/15/2023] Open
Abstract
Intracranial artery stenosis (ICAS), a common cause of ischemic stroke, is a growing cause of concern in China. Recently, many epidemiological, etiological, pathophysiological, therapy, and diagnostic imaging studies have focused on ICAS, and guidelines and consensus on the diagnosis and treatment of ICAS have been published and updated by domestic experts. Such work is pivotal to our enhanced comprehension, diagnosis, and treatment of ICAS. In this review, we summarize the latest progress in the evaluation and treatment of ICAS in China.
Collapse
Affiliation(s)
- Bin Cai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Shu S, Zhang L, Zhu YC, Li F, Cui LY, Wang H, Sun Y, Wu PL, Zhu ZH, Peng B. Imaging angiogenesis using 68Ga-NOTA-PRGD2 positron emission tomography/computed tomography in patients with severe intracranial atherosclerotic disease. J Cereb Blood Flow Metab 2017; 37:3401-3408. [PMID: 28273724 PMCID: PMC5624394 DOI: 10.1177/0271678x17696322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a critical compensation route, which has been demonstrated in the brain following ischemic stroke; however, few studies have investigated angiogenesis in chronic intracranial atherosclerosis disease (ICAD). We used 68Ga-NOTA-PRGD2 positron emission tomography/computed tomography based imaging to detect angiogenesis in chronic ICAD and to explore the factors that may have affected it. A total of 21 participants with unilateral severe chronic ICAD were included in the study. Of the 21 participants, 19 were men; the mean (SD) age was 52 (15) years. In 18 participants, we observed elevated 68Ga-NOTA-PRGD2 uptake in the peri-infarct, subcortical, and periventricular regions of the lesioned side, with a higher 68Ga-NOTA-PRGD2 SUVmax compared to that in the contralateral hemisphere (0.15 vs. 0.06, p=0.001). The 18F-FDG PET SUVmax was significantly lower on the lesioned side (11.28 vs. 13.92, p=0.001). Subgroup analyses revealed that the recent group (<6 months) had a higher lesion-to-contralateral region ratio SUVmax than the remote group (>6 months) (6.73 vs. 2.36, p<0.05). Our results provide molecular imaging evidence of angiogenesis in patients with severe chronic ICAD. Furthermore, the extent of angiogenesis in chronic ICAD may be affected by the post-qualified event time interval, and not by infarction itself or the severity of the arterial lesion.
Collapse
Affiliation(s)
- Shi Shu
- 1 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Zhang
- 1 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Cheng Zhu
- 1 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Li
- 2 Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Ying Cui
- 1 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- 2 Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Sun
- 2 Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Pei Lin Wu
- 2 Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,3 Department of Nuclear Medicine, Dong Zhi Men Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao Hui Zhu
- 2 Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bin Peng
- 1 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Xu Z, Han K, Chen J, Wang C, Dong Y, Yu M, Bai R, Huang C, Hou L. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J Neurochem 2017. [PMID: 28632969 DOI: 10.1111/jnc.14108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Xu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Kaiwei Han
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Jigang Chen
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chunhui Wang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Yan Dong
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Mingkun Yu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Rulin Bai
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chenguang Huang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Lijun Hou
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| |
Collapse
|
18
|
Yin W, Clare K, Zhang Q, Volkow ND, Du C. Chronic cocaine induces HIF-VEGF pathway activation along with angiogenesis in the brain. PLoS One 2017; 12:e0175499. [PMID: 28448515 PMCID: PMC5407832 DOI: 10.1371/journal.pone.0175499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/26/2017] [Indexed: 11/19/2022] Open
Abstract
Cocaine induces vasoconstriction in cerebral vessels, which with repeated use can result in transient ischemic attacks and cerebral strokes. However, the neuroadaptations that follow cocaine's vasoconstricting effects are not well understood. Here, we investigated the effects of chronic cocaine exposure (2 and 4 weeks) on markers of vascular function and morphology in the rat brain. For this purpose we measured nitric oxide (NO) concentration in plasma, brain neuronal nitric oxide synthase (nNOS or NOS1), HIF-1α, and VEGF expression in different brain regions, i.e., middle prefrontal cortex, somatosensory cortex, nucleus accumbens, and dorsal striatum, using ELISA or Western blot. Additionally, microvascular density in these brain regions was measured using immunofluorescence microscopy. We showed that chronic cocaine significantly affected NOS1, HIF-1α and VEGF expression, in a region- and cocaine treatment-time- dependent manner. Cerebral microvascular density increased significantly in parallel to these neurochemical changes. Furthermore, significant correlations were detected between VEGF expression and microvascular density in cortical regions (middle prefrontal cortex and somatosensory cortex), but not in striatal regions (nucleus accumbens and dorsal striatum). These results suggest that following chronic cocaine use, as cerebral ischemia developed, NOS1, the regulatory protein to counteract blood vessel constriction, was upregulated; meanwhile, the HIF-VEGF pathway was activated to increase microvascular density (i.e., angiogenesis) and thus restore local blood flow and oxygen supply. These physiological responses were triggered presumably as an adaptation to minimize ischemic injury caused by cocaine. Therefore, effectively promoting such physiological responses may provide novel and effective therapeutic solutions to treat cocaine-induced cerebral ischemia and stroke.
Collapse
Affiliation(s)
- Wei Yin
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| | - Kevin Clare
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| | - Qiujia Zhang
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States of America
| | - Congwu Du
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
19
|
Wang D, Lin Q, Su S, Liu K, Wu Y, Hai J. URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy. Neuroscience 2016; 344:293-304. [PMID: 28042028 DOI: 10.1016/j.neuroscience.2016.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is associated with various ischemic cerebrovascular diseases that are characterized by cognitive impairment. The role of autophagy in cognitive dysfunction under conditions of CCH is poorly understood. To address this issue, the present study investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on autophagy and cognition in a CCH model as well as the underlying mechanisms. Cognitive function was evaluated with the Morris water maze and by assessing long-term potentiation (LTP). The expression of autophagy-related proteins and mammalian target of rapamycin (mTOR) signaling pathway components was evaluated by immunofluorescence and western blot analyses, and ultrastructural changes were examined by transmission electron microscopy (EM). URB597 improved cognitive impairment by inhibiting CCH-induced autophagy, which was associated with mTOR signaling. Moreover, the ultrastructural deterioration resulting from CCH was improved by chronic treatment with URB597. These findings indicate that URB597 modulates autophagy in an mTOR-dependent manner, and mitigates neuronal damage and cognitive deterioration caused by CCH.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaohua Su
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China
| | - Kejia Liu
- Department of Cell Biology, Key Laboratory of Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifang Wu
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
20
|
|
21
|
Ergul A, Valenzuela JP, Fouda AY, Fagan SC. Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Res 2015; 1623:81-96. [PMID: 25749094 PMCID: PMC4743654 DOI: 10.1016/j.brainres.2015.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - John Paul Valenzuela
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA
| | - Abdelrahman Y Fouda
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
22
|
Cakmak M, Yazıcı I, Boybeyi O, Ayva S, Aslan MK, Senyucel MF, Soyer T. The effect of penile urethral fat graft application on urethral angiogenesis. J Pediatr Urol 2015; 11:258.e1-6. [PMID: 25964198 DOI: 10.1016/j.jpurol.2015.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Autologous fat grafts are rich in adipose-derived stem cells, providing optimal soft-tissue replacement and significant quantities of angiogenic growth factor. Although fat grafts (FG) are used in several clinical conditions, the use of FG in urethral repairs and the effects of FG to urethral repairs have not yet been reported. OBJECTIVE An experimental study was performed to evaluate the effect of FG on urethral angiogenesis and tissue growth factor (GF) levels. STUDY DESIGN Sixteen Wistar albino, adult, male rats were allocated into two groups: the control group (CG) (n = 8) and the experiment group (EG) (n = 8). After anesthetization of all rats, 3-mm vertical incisions were made on the urethras, and then sutured with interrupted 5/0 vicryl sutures. The operations were performed under a stereo dissecting microscope under magnification (×20). In the CG, no additional procedure was performed. In the EG after the same surgical procedure, 1 mm(3) FG was removed from the inguinal region by sharp dissection with a knife. The grafts were trimmed to 1 × 1 mm dimensions on millimeter paper. The FGs were placed on the repaired urethras. The skin was then closed. Samples from urethral and penile skin were taken 21 days after surgery in both groups. Density and intensity of staining with vascular-endothelial GF (VEGF), VEGF-receptor, and endothelial-GF receptor (EGFR) in the endothelial and mesenchymal cells of the penile urethral vessels were immunohistochemically evaluated. Data obtained from immunohistochemical evaluations were analyzed with SPSS 15.0. The P-values lower than 0.05 were considered as significant. RESULTS Density of VEGF staining was significantly decreased in the vascular endothelium of the EG compared to the CG (P < 0.05). Density of the EGFR staining was significantly decreased in the vascular endothelium of the EG compared to the CG (P < 0.05) (Table). Intensity of VEGF, VEGF-R and EGFR staining was not significantly different between the two groups. There were no significant differences between groups regarding to VEGFR staining and mesenchymal examination. DISCUSSION Decreased density was found in the VEGF staining in the vascular endothelium. This could be explained by the day that the tissues were harvested or because autologous fat grafts might cause decreased growth factor levels, which is contrary to the literature data. CONCLUSION Fat grafting has an immunohistochemical effect on the growth factor levels that are related to angiogenesis after urethral repair. It is difficult to make a firm conclusion about the role of fat grafting on urethral healing. Therefore, future studies are needed to see if FG can be used as an alternative to other procedures in order to avoid complications.
Collapse
Affiliation(s)
- M Cakmak
- Ankara University, Medical Faculty, Department of Pediatric Surgery, Ankara, Turkey.
| | - I Yazıcı
- Kırıkkale University, Medical Faculty, Department of Reconstructive Surgery, Kırıkkale, Turkey.
| | - O Boybeyi
- Kırıkkale University, Medical Faculty, Department of Pediatric Surgery, Kırıkkale, Turkey.
| | - S Ayva
- Baskent University, Medical Faculty, Department of Pathology, Ankara, Turkey.
| | - M K Aslan
- Kırıkkale University, Medical Faculty, Department of Pediatric Surgery, Kırıkkale, Turkey.
| | - M F Senyucel
- Kırıkkale University, Medical Faculty, Department of Pediatric Surgery, Kırıkkale, Turkey.
| | - T Soyer
- Hacettepe University, Medical Faculty, Department of Pediatric Surgery, Ankara, Turkey.
| |
Collapse
|
23
|
Garbuzova-Davis S, Haller E, Williams SN, Haim ED, Tajiri N, Hernandez-Ontiveros DG, Frisina-Deyo A, Boffeli SM, Sanberg PR, Borlongan CV. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol 2015; 522:3120-37. [PMID: 24610730 DOI: 10.1002/cne.23582] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/14/2022]
Abstract
Stroke is a life-threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from the initial ischemic lesion, i.e., diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was involved in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis by using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included 1) vacuolated endothelial cells containing large autophagosomes, 2) degenerated pericytes displaying mitochondria with cristae disruption, 3) degenerated astrocytes and perivascular edema, 4) Evans blue extravasation, and 5) appearance of parenchymal astrogliosis. Discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang L, Guo S, Zhang N, Tao Y, Zhang H, Qi T, Liang F, Huang Z. The role of SDF-1/CXCR4 in the vasculogenesis and remodeling of cerebral arteriovenous malformation. Ther Clin Risk Manag 2015; 11:1337-44. [PMID: 26366086 PMCID: PMC4562729 DOI: 10.2147/tcrm.s87590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cerebral arteriovenous malformation (AVM) involves the vasculogenesis of cerebral blood vessels and can cause severe intracranial hemorrhage. Stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, are believed to exert multiple physiological functions including angiogenesis. Thus, we investigated the role of SDF-1/CXCR4 in the vasculogenesis of cerebral AVM. Methods Brain AVM lesions from surgical resections were analyzed for the expression of SDF-1, CXCR4, VEGF-A, and HIF-1 by using immunohistochemical staining. Flow cytometry was used to quantify the level of circulating endothelial progenitor cells (EPCs). Further, in an animal study, chronic cerebral hypoperfusion model rats were analyzed for the expression of SDF-1 and HIF-1. CXCR4 antagonist, AMD3100, was also used to detect its effects on cerebral vasculogenesis and SDF-1 expression. Results Large amounts of CXCR4-positive CD45+ cells were found in brain AVM lesion blood vessel walls, which also have higher SDF-1 expression. Cerebral AVM patients also had higher level of EPCs and SDF-1. In chronic cerebral hypoperfusion rats, SDF-1, HIF-1, and CD45 expressions were elevated. The application of AMD3100 effectively suppressed angiogenesis and infiltration of CXCR4-positive CD45+ cells in hypoperfusion rats compared to controls. Conclusion The SDF-1/CXCR4 axis plays an important role in the vasculogenesis and migration of inflammatory cells in cerebral AVM lesions, possibly via the recruitment of bone marrow EPCs.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Neurosurgery ICU, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaolei Guo
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuqian Tao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Heng Zhang
- Department of Neurosurgery ICU, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tiewei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhengsong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Tado M, Mori T, Fukushima M, Oshima H, Maeda T, Yoshino A, Aizawa S, Katayama Y. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats. J Neurotrauma 2014; 31:691-8. [PMID: 24294928 DOI: 10.1089/neu.2013.2940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.
Collapse
Affiliation(s)
- Masahiro Tado
- 1 Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine , Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Torun YA, Ozdemir MA, Ulger H, Nisari M, Akalın H, Patıroglu T, Ozkul Y, Onal M, Karakukcu M. Erythropoietin improves brain development in short-term hypoxia in rat embryo cultures. Brain Dev 2014; 36:864-9. [PMID: 24529975 DOI: 10.1016/j.braindev.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy continues to be a significant cause of death and disability worldwide. Erythropoietin (EPO) has the potential to lessen neurologic sequelae due to hypoxia-ischemia. METHODS The in vitro effects of EPO on total embryonic development and brain VEGF receptor (VEGFR) expressions were investigated in 50 rat embryos at 9.5 days of gestation that were cultured in whole rat serum (WRS). According to the study protocol, the embryos were divided into two groups. The first group is comprised hypoxia, 100 and 50 U/ml EPO after hypoxia groups. Group 2 comprised control (WRS) and WRS+EPO. After 48-h culture, the embryos from each group were harvested to be analyzed according to a morphological scoring system and also genetically to measure brain VEGFR expression. RESULTS The mean morphological scores for the embryos grown in control, WRS+EPO, hypoxia, and in the presence of 100 and 50 U/ml EPO in hypoxic medium were 55.30±7.22, 52.10±5.27, 23.0±4.60, 36.20±5.07, and 19.70±5.07, respectively. Expressions of VEGFR-1, -2, -3 were significantly elevated in the 100U/ml EPO and WRS+EPO groups compared to the hypoxia group (p<0.05). CONCLUSIONS These results support the conclusion that (1) VEGFR-1, -2, -3 may increase with EPO treatment in hypoxic conditions, (2) VEGF and EPO may be part of a self-regulated physiological protection mechanism to prevent neuronal injury including in utero neural tube defects.
Collapse
Affiliation(s)
- Yasemin Altuner Torun
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey.
| | - Mehmet Akif Ozdemir
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey
| | - Harun Ulger
- Erciyes University, Faculty of Medicine, Department of Anatomy and Clinical Research Institute, 38039 Kayseri, Turkey
| | - Mehtap Nisari
- Erciyes University, Faculty of Medicine, Department of Anatomy and Clinical Research Institute, 38039 Kayseri, Turkey
| | - Hilal Akalın
- Erciyes University, Faculty of Medicine, Department of Genetics, 38039 Kayseri, Turkey
| | - Turkan Patıroglu
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey
| | - Yusuf Ozkul
- Erciyes University, Faculty of Medicine, Department of Genetics, 38039 Kayseri, Turkey
| | - Muge Onal
- Erciyes University, Faculty of Medicine, Department of Genetics, 38039 Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey
| |
Collapse
|
27
|
Song S, Park JT, Na JY, Park MS, Lee JK, Lee MC, Kim HS. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia. Neural Regen Res 2014; 9:912-8. [PMID: 25206911 PMCID: PMC4146222 DOI: 10.4103/1673-5374.133136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/02/2022] Open
Abstract
Endogenous neural stem cells become “activated” after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine (BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.
Collapse
Affiliation(s)
- Seung Song
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Joo Young Na
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong-Kil Lee
- Department of Neurosurgery, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea ; Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
28
|
Cheng L, Ma L, Ren H, Zhao H, Pang Y, Wang Y, Wei M. Alterations in the expression of vascular endothelial growth factor in the rat brain following gamma knife surgery. Mol Med Rep 2014; 10:2263-70. [PMID: 25176344 PMCID: PMC4214336 DOI: 10.3892/mmr.2014.2520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
Gamma knife surgery (GKS) is used for the treatment of various brain diseases. However, the mechanisms underlying brain injury following irradiation remain to be elucidated. Given that vascular endothelial growth factor (VEGF) is closely associated with pathological angiogenesis and the permeability of the blood brain barrier (BBB), the present study was designed to analyze temporal alterations in VEGF expression in the cerebral cortex and the effect of VEGF on cerebral edema in rats following GKS. Adult male Wistar rats were subjected to GKS at maximum doses of 60 Gy. Animals were sacrificed between 4 and 24 weeks after GKS. Immunohistochemistry, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction (RT-PCR) were employed for detecting VEGF expression. The vessel density was measured by CD31+ cell count and vascular structures were examined using electron microscopy. Brain water content and BBB permeability were measured in the present study. VEGF expression in the irradiated cortex progressively increased until 16 weeks after GKS when the maximal expression was reached, and then gradually decreased to the control level 24 weeks after GKS. These findings were confirmed by RT-PCR. A mild decrease in vessel density was observed 4 weeks after GKS, followed by an increase in vessel density between 8 and 20 weeks later. Furthermore, previous studies also demonstrated vascular damage, opening of the BBB and an increase in brain water content occurring simultaneously. To the best of our knowledge, these data demonstrated for the first time dynamic changes in VEGF expression following GKS and also suggest the importance of VEGF expression in pathological angiogenesis and edema formation following GKS.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Lin Ma
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Hecheng Ren
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Hongwei Zhao
- Department of Neurosurgery, Jixian People's Hospital, Tianjin 301900, P.R. China
| | - Yiqiang Pang
- Department of Neurosurgery, Fourth Hospital of Baotou, Baotou, Inner Mongolia 014030, P.R. China
| | - Yongheng Wang
- Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming Wei
- Department of Neurosurgery, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
29
|
Gutiérrez-González R, Pérez-Zamarron A, Rodríguez-Boto G. Normal perfusion pressure breakthrough phenomenon: experimental models. Neurosurg Rev 2014; 37:559-67. [PMID: 24777643 DOI: 10.1007/s10143-014-0549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 08/25/2013] [Accepted: 02/08/2014] [Indexed: 11/28/2022]
Abstract
One of the most life-threatening complications after the obliteration of intracranial arteriovenous malformations is the development of oedema and/or multifocal haemorrhage. Two main theories have been postulated so far in order to explain this situation. On one hand, "normal perfusion pressure breakthrough phenomenon" is based on the loss of cerebral vessel autoregulation due to the chronic vasodilation of perinidal microcirculation. On the other hand, the "occlusive hyperaemia" deals with thrombotic and venous obstruction phenomena that may also generate such manifestations. The aim of this study is to resume the main concepts of the "normal perfusion pressure breakthrough phenomenon" theory as well as the related animal models described up to date, their advantages and disadvantages, and the main conclusions obtained as a result of the experimental research.
Collapse
Affiliation(s)
- Raquel Gutiérrez-González
- Department of Neurosurgery, Fundación Jiménez Díaz (IIS-FJD), Avda Reyes Católicos 2, 28040, Madrid, Spain,
| | | | | |
Collapse
|
30
|
Miyake H, Nakagawa I, Takeshima Y, Nishimura F, Park YS, Nakamura M, Nakase H. Post-ischemic administration of vascular endothelial growth factor inhibitor in a rat model of cerebral venous infarction. Neurol Med Chir (Tokyo) 2014; 53:135-40. [PMID: 23524495 DOI: 10.2176/nmc.53.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral venous ischemia can result in severe brain edema. Inhibition of vascular endothelial growth factor (VEGF) activity by a neutralizing antibody can completely block the hypoxia-induced increase in vascular permeability. VEGF, which induces angiogenesis, also acts as a vascular permeability (VP) factor. We previously showed that inhibition of VEGF attenuates VP and reduces cerebral venous infarction (CVI) in the acute stage. The present study investigated the therapeutic time window during which inhibition of VEGF can reduce CVI in a rat two-vein occlusion (2-VO) model. A 2-VO model was created by photochemically occluding two adjacent cortical veins. Male Wistar rats (n = 42) were assigned to one of four groups: Group 1 was treated with a VEGF antagonist at 24 hours after 2-VO (n = 11); Group 2 was treated with phosphate-buffered solution (PBS) at 24 hours after 2-VO (n = 11); Group 3 was treated with a VEGF antagonist at 48 hours after 2-VO (n = 10); and Group 4 was treated with PBS at 48 hours after 2-VO (n = 10). The developing ischemic infarct was evaluated histologically at 7 days after 2-VO. CVI areas were significantly smaller in Group 1 than in Groups 2, 3, and 4 (p <0.05) but were similar when comparing Groups 3 and 4. Anti-VEGF therapy was effective in reducing CVI in rats if started within 24 hours after 2-VO.
Collapse
Affiliation(s)
- Hitoshi Miyake
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Current therapeutic strategies for acute ischemic stroke focus on vessel recanalization or penumbral neuroprotection without consideration of collaterals. Collateral circulation defines the extent of the ischemic penumbra, providing blood flow to tissues at risk of infarction downstream from an occluded artery. Therefore, leptomeningeal collaterals are a principal delivery route for oxygen, nutrients and potential therapeutic agents. Understanding of collateral anatomy and physiology is essential for the development of effective stroke treatments. Diagnostic imaging modalities may illustrate the penumbra from the collateral perspective, defining regions of relative ischemic vulnerability. Although specific collateral therapeutics are unrealized, insight may be gleaned from subtle details of prior stroke studies. Future advances will result from nascent research in therapeutic arteriogenesis and gene therapy adapted to the specific features of the cerebral circulation.
Collapse
Affiliation(s)
- David S Liebeskind
- Comprehensive Stroke Center, University of Pennsylvania, 3 West Gates Building, 3400 Spruce Street, Philadelphia, PA 19104 4283, USA.
| |
Collapse
|
32
|
Soyer T, Ayva Ş, Boybeyi Ö, Aslan MK, Çakmak M. The effect of platelet rich fibrin on growth factor levels in urethral repair. J Pediatr Surg 2013; 48:2545-9. [PMID: 24314201 DOI: 10.1016/j.jpedsurg.2013.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
Abstract
AIM Platelet rich fibrin (PRF) is an autologous source of growth factors and promotes wound healing. An experimental study was performed to evaluate the effect of PRF on growth factor levels in urethral repair. MATERIALS AND METHODS Eighteen Wistar albino rats were included in the study. Rats were allocated in three groups (n:6): control (CG), sham (SG), and PRF (PRFG). In SG, a 5 mm vertical incision was performed in the penile urethra and repaired with 10/0 Vicryl® under a microscope. In PRFG, during the urethral repair as described in SG, 1 cc of blood was sampled from each rat and centrifuged for 10 minutes at 2400 rpm. PRF obtained from the centrifugation was placed on the repair site during closure. Penile urethras were sampled 24 hours after PRF application in PRFG and after urethral repair in SG. Transforming growth factor beta receptor (TGF-β-R-CD105), vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), as well as endothelial growth factor receptor (EGFR), were evaluated in subepithelia of the penile skin and urethra. Groups were compared for growth factor levels and growth factor receptor expression with the Kruskal Wallis test. RESULTS TGF-β-R levels were significantly decreased in SG when compared to CG (p<0.05). In PRFG, TGF-β-R was increased in both subepithelia of penile skin and urethra with respect to SG (p<0.05). When VEGF levels and its receptor expression were compared between SG and PRFG, VEGF levels were found to be increased in penile skin subepithelium, whereas VEGF-R expressions were decreased in urethral subepithelia in PRFG (p<0.05). There was no difference between groups for EGFR levels (p>0.05). CONCLUSION Use of PRF after urethral repair increases TGF-β-R and VEGF expressions in urethral tissue. PRF can be considered as an alternative measure to improve the success of urethral repair.
Collapse
Affiliation(s)
- Tutku Soyer
- Department of Pediatric Surgery, Hacettepe University, School of Medicine, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
33
|
Jian H, Yi-Fang W, Qi L, Xiao-Song H, Gui-Yun Z. Cerebral blood flow and metabolic changes in hippocampal regions of a modified rat model with chronic cerebral hypoperfusion. Acta Neurol Belg 2013; 113:313-7. [PMID: 23111782 DOI: 10.1007/s13760-012-0154-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) causes neurodegeneration which contributes to the cognitive impairment. This study utilized a modified rat model with CCH to investigate cerebral blood flow (CBF) and hippocampal metabolic changes. CBF was measured by laser Doppler flowmetry. Various metabolic ratios were evaluated from selective volumes of interest (VOI) in left hippocampal regions using in vivo proton magnetic resonance spectroscopy ((1)H-MRS). The ultrastructural changes with special respect to ribosomes in rat hippocampal CA1 neurons were studied by electron microscopy. CBF decreased immediately after CCH and remained reduced significantly at 1 day and 3 months postoperatively. (1)H-MRS revealed that CCH led to a significant decrease of N-acetyl aspartate/creatine (NAA/Cr) ratio in the hippocampal VOI in the model rats compared with the sham-operated control rats. However, no changes of myo-inositol/Cr, choline/Cr and glutamate and glutamine/Cr ratios between the model and control groups were observed. Under electron microscopy, most rosette-shaped polyribosomes were relatively evenly distributed in the hippocampal CA1 neuronal cytoplasms of the control rats. After CCH, most ribosomes were clumped into large abnormal aggregates in the model rats. Our data suggests that both permanent decrease of CBF and reduction of NAA/Cr ratio in the hippocampal regions may be related to the cognitive deficits in rats with CCH.
Collapse
|
34
|
Ng T, Cheung YT, Ng QS, Ho HK, Chan A. Vascular endothelial growth factor inhibitors and cognitive impairment: evidence and controversies. Expert Opin Drug Saf 2013; 13:83-92. [PMID: 23931162 DOI: 10.1517/14740338.2013.828034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Chemotherapy-induced cognitive impairment, or 'chemobrain,' has been well established in the literature. However, neurocognitive toxic effect induced by targeted therapies such as anti-angiogenic agents is poorly investigated. Recently, emerging evidence suggests vascular endothelial growth factor (VEGF) to have a possible role in brain cognition giving rise to concerns whether VEGF inhibitors (VEGFIs) may induce neurotoxic effect on cancer patients' cognitive function. AREAS COVERED The aim of this review was to evaluate the plausible mechanisms underlying VEGF and cognition, and to highlight the evidence and controversies surrounding the cognitive issues associated with the use of VEGFIs. EXPERT OPINION This review paper has brought attention to the potential cognitive issues associated with the use of VEGFIs and has added a new, unexplored dimension to the problem of cancer treatment-related cognitive changes. However, the lack of evidence warrants the need for more well-designed studies to quantify the prevalence and severity of VEGFI-induced cognitive impairment in the cancer population, and to establish the role of VEGF in human cognitive function.
Collapse
Affiliation(s)
- Terence Ng
- National University of Singapore , Singapore , Singapore
| | | | | | | | | |
Collapse
|
35
|
Hai J, Lin Q, Deng DF, Pan QG, Ding MX. The pre-treatment effect on brain injury during restoration of normal perfusion pressure with hemodilution in a new rat model of chronic cerebral hypoperfusion. Neurol Res 2013; 29:583-7. [PMID: 17535558 DOI: 10.1179/016164107x166254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To investigate the effect of hemodilution with high-concentration human serum albumin (HSA) on brain injury in a rat model of chronic cerebral hypoperfusion associated with arteriovenous malformations. METHODS The animal model was established by creating a fistula through an end-to-side anastomosis between the right distal external jugular vein and the ipsilateral common carotid artery, followed by ligation of the left vein draining the transverse sinus and bilateral external carotid arteries. The agent (20% HSA) or control solution (0.9% sodium chloride) was administered intravenously at a dosage of 1% body weight 24 hours before ligation of the fistula. Blood-brain barrier (BBB) disruption was judged by extravasation of Evans blue (EB) dye. EB, water content and the changes of myeloperoxidase (MPO) activity and superoxide dismutase (SOD) activity in rat brains 24 hours after ligation of the fistula were determined. RESULTS EB and water content in rat brains of the pre-treated group were significantly decreased compared with the control group accompanied by reduction of MPO activity and enhancement of SOD activity. DISCUSSION Hemodilution with high-concentration HSA has a certain pre-treatment effect on brain injury after ligation of the fistula in rat model of chronic cerebral hypoperfusion, which may be resulted from improved microcirculation, decrease in inflammatory cell infiltration and inactivation of oxygen free radicals.
Collapse
Affiliation(s)
- Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University, 389 XinCun Rd, Shanghai 200065, China.
| | | | | | | | | |
Collapse
|
36
|
Neuropilin-1 modulates vascular endothelial growth factor-induced poly(ADP-ribose)-polymerase leading to reduced cerebrovascular apoptosis. Neurobiol Dis 2013; 59:111-25. [PMID: 23816753 DOI: 10.1016/j.nbd.2013.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/21/2013] [Accepted: 06/15/2013] [Indexed: 01/13/2023] Open
Abstract
Cerebral ischemia is encompassed by cerebrovascular apoptosis, yet the mechanisms behind apoptosis regulation are not fully understood. We previously demonstrated inhibition of endothelial apoptosis by vascular endothelial growth factor (VEGF) through upregulation of poly(ADP-ribose)-polymerase (PARP) expression. However, PARP overactivation through oxidative stress can lead to necrosis. This study tested the hypothesis that neuropilin-1 (NP-1), an alternative VEGF receptor, regulates the response to cerebral ischemia by modulating PARP expression and, in turn, apoptosis inhibition by VEGF. In endothelial cell culture, NP-1 colocalized with VEGF receptor-2 (VEGFR-2) and acted as its coreceptor. This significantly enhanced VEGF-induced PARP mRNA and protein expression demonstrated by receptor-specific inhibitors and VEGF-A isoforms. NP-1 augmented the inhibitory effect of VEGF/VEGFR-2 interaction on apoptosis induced by adhesion inhibition through the αV-integrin inhibitor cRGDfV. NP-1/VEGFR-2 signal transduction involved JNK and Akt. In rat models of permanent and temporary middle cerebral artery occlusion, the ischemic cerebral hemispheres displayed endothelial and neuronal apoptosis next to increased endothelial NP-1 and VEGFR-2 expression compared to non-ischemic cerebral hemispheres, sham-operated or untreated controls. Increased vascular superoxide dismutase-1 and catalase expression as well as decreased glycogen reserves indicated oxidative stress in the ischemic brain. Of note, protein levels of intact PARP remained stable despite pro-apoptotic conditions through increased PARP mRNA production during cerebral ischemia. In conclusion, NP-1 is upregulated in conditions of imminent cerebrovascular apoptosis to reinforce apoptosis inhibition and modulate VEGF-dependent PARP expression and activation. We propose that NP-1 is a key modulator of VEGF maintaining cerebrovascular integrity during ischemia. Modulating the function of NP-1 to target PARP could help to prevent cellular damage in cerebrovascular disease.
Collapse
|
37
|
Marín-Prida J, Pavón-Fuentes N, Llópiz-Arzuaga A, Fernández-Massó JR, Delgado-Roche L, Mendoza-Marí Y, Santana SP, Cruz-Ramírez A, Valenzuela-Silva C, Nazábal-Gálvez M, Cintado-Benítez A, Pardo-Andreu GL, Polentarutti N, Riva F, Pentón-Arias E, Pentón-Rol G. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats. Toxicol Appl Pharmacol 2013; 272:49-60. [PMID: 23732081 DOI: 10.1016/j.taap.2013.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 01/23/2023]
Abstract
Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem Int 2012; 62:189-97. [PMID: 23228346 DOI: 10.1016/j.neuint.2012.11.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/10/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
Abstract
We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p<0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | |
Collapse
|
39
|
Abstract
Bilateral internal carotid artery ligation (BICL) rat model is one of the chronic cerebral hypoperfusion animal models used for investigating brain dysfunction related diseases. Cerebral blood flow decreases in different cerebral regions in a time-dependent manner after the BICL. However little is known about the cerebral vasculature change in the brain after the BICL. In the current study, the bilateral internal carotid arteries of the juvenile rats were permanently ligated and the change of the cerebral vasculature was studied 7, 14 and 21 days after the BICL. In the juvenile rats, 7 days after the BICL, the functional vascular area was decreased significantly in the anterior half of the cerebral cortex, but it had only little decrease in the posterior half of the cerebral cortex and hippocampus. However, at the time points of 14 and 21 days after the surgery, the functional vascular area throughout the whole cerebral cortex and hippocampus was almost similar to those in the sham control rats. In conclusion, the results from our current study showed that in the BICL hypoperfusion model in young rats, the brain functional vascular area was impaired initially in certain brain regions after the artery ligation, but likely to be quickly self-recovered late after. The results suggest that the brain vasculature in young rats has plasticity to external insult caused by cerebral hypoperfusion.
Collapse
|
40
|
Ma Y, Zechariah A, Qu Y, Hermann DM. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 2012; 90:1873-82. [DOI: 10.1002/jnr.23088] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/03/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
|
41
|
Yang J, Guo L, Liu R, Liu H. Neuroprotective effects of VEGF administration after focal cerebral ischemia/reperfusion: Dose response and time window. Neurochem Int 2012; 60:592-6. [DOI: 10.1016/j.neuint.2012.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/25/2012] [Accepted: 02/20/2012] [Indexed: 01/17/2023]
|
42
|
Maarouf CL, Daugs ID, Kokjohn TA, Walker DG, Hunter JM, Kruchowsky JC, Woltjer R, Kaye J, Castaño EM, Sabbagh MN, Beach TG, Roher AE. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS One 2011; 6:e27291. [PMID: 22087282 PMCID: PMC3210154 DOI: 10.1371/journal.pone.0027291] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer's disease (AD) dementia and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Aβ/tau metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical in AD dementia, such as soluble or insoluble Aβ40, Aβ42 and tau were quantified by ELISA. Interestingly, only Aβ42 demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium derived factor levels were lower. The lack of clear Aβ-related pathological/biochemical demarcation between AD and ND-HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity, must play important roles in cognitive failure.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jane C. Kruchowsky
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Kaye
- Layton Aging and Alzheimer's Disease Center, Department of Neurology, Oregon Health and Science University, United States of America
| | | | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| |
Collapse
|
43
|
Developmental venous anomalies with capillary stain: a subgroup of symptomatic DVAs? Neuroradiology 2011; 54:475-80. [DOI: 10.1007/s00234-011-0890-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
44
|
Ma Y, Qu Y, Fei Z. Vascular endothelial growth factor in cerebral ischemia. J Neurosci Res 2011; 89:969-78. [DOI: 10.1002/jnr.22628] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 12/28/2022]
|
45
|
Hai J, Lin Q, Su SH, Zhang L, Wan JF, Lu Y. Chronic cerebral hypoperfusion in rats causes proteasome dysfunction and aggregation of ubiquitinated proteins. Brain Res 2010; 1374:73-81. [PMID: 21167821 DOI: 10.1016/j.brainres.2010.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022]
Abstract
The deposition of abnormal protein aggregates is a feature of several neurodegenerative diseases. We have employed a rat model to investigate whether chronic cerebral hypoperfusion (CCH) induces proteasome dysfunction and the accumulation of ubiquitinated proteins and aggregates in the CNS. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blotting. Proteasome peptidase activity was studied by peptidase activity assays. EPTA EM and immunogold EM revealed that CCH led to the accumulation of protein aggregates in rat hippocampal CA1 neurons. High-resolution confocal microscopy demonstrated the presence of ubiquitin-positive protein aggregates surrounding nuclei and along dendrites. Western blotting revealed that levels of free ubiquitin were significantly reduced and that levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements revealed that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. These data suggest that reduced proteasome activity following CCH could impair the removal of abnormally folded proteins via the ubiquitin-proteasome pathway, leading to the accumulation of potentially toxic protein aggregates that could contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | | | | | | | | | | |
Collapse
|
46
|
Mracskó É, Hugyecz M, Institóris Á, Farkas E, Bari F. Changes in pro-oxidant and antioxidant enzyme levels during cerebral hypoperfusion in rats. Brain Res 2010; 1321:13-9. [DOI: 10.1016/j.brainres.2009.11.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/28/2009] [Accepted: 11/27/2009] [Indexed: 10/20/2022]
|
47
|
Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab 2009; 29:1620-43. [PMID: 19654590 DOI: 10.1038/jcbfm.2009.100] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurovascular remodeling has been recently recognized as a promising target for neurologic therapies. Hopes have emerged that, by stimulating vessel growth, it may be possible to stabilize brain perfusion, and at the same time promote neuronal survival, brain plasticity, and neurologic recovery. In this review, we outline the role of vascular endothelial growth factor (VEGF) in the ischemic brain, analyzing how this growth factor contributes to brain remodeling. Studies with therapeutic VEGF administration resulted in quite variable results depending on the route and time point of delivery. Local VEGF administration consistently enhanced neurologic recovery, whereas acute intravenous delivery exacerbated brain infarcts due to enhanced brain edema. Future studies should answer the following questions: (1) whether increased vessel density translates into improvements in blood flow in the hemodynamically compromised brain; (2) how VEGF influences brain plasticity and contributes to motor and nonmotor recovery; (3) what are the actions of VEGF not only in young animals with preserved vasculature, on which previous studies have been conducted, but also in aged animals and in animals with preexisting atherosclerosis; and (4) whether the effects of VEGF can be mimicked by pharmacological compounds or by cell-based therapies. Only on the basis of such information can more definite conclusions be made with regard to whether the translation of therapeutic angiogenesis into clinics is promising.
Collapse
|
48
|
Cognitive dysfunction induced by chronic cerebral hypoperfusion in a rat model associated with arteriovenous malformations. Brain Res 2009; 1301:80-8. [PMID: 19761762 DOI: 10.1016/j.brainres.2009.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/27/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
The relationship between chronic cerebral hypoperfusion and cognitive function has not been completely delineated. In the present studies, we developed an experimental model associated with arteriovenous malformation to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neuropathological changes. The rat model was established by creating a fistula through an end-to-side anastomosis between the right distal external jugular vein and the ipsilateral common carotid artery, followed by ligation of the left vein draining the transverse sinus and bilateral external carotid arteries. Age-matched rats comprised a control group. Three months after surgery, cognitive functions were evaluated by the Morris water maze and hippocampal long-term potentiation (LTP). Neuropathological changes were examined using light and electron microscopic techniques. We found that both learning capacity and spatial memory were significantly impaired in rats with chronic cerebral hypoperfusion concomitant with LTP inhibition and neurodegeneration in the hippocampal CA1 region of model rats compared with control rats. In addition, model rats showed a decrease at the protein level of cyclic AMP response element binding (CREB) phosphorylation in hippocampal tissues. Therefore, cognitive impairment caused by chronic cerebral hypoperfusion associated with arteriovenous malformations may be partially explained by the neurodegeneration and reduction of CREB phosphorylation in rat hippocampus.
Collapse
|
49
|
Nonischemic cerebral venous hypertension promotes a pro-angiogenic stage through HIF-1 downstream genes and leukocyte-derived MMP-9. J Cereb Blood Flow Metab 2009; 29:1482-90. [PMID: 19471278 PMCID: PMC2745831 DOI: 10.1038/jcbfm.2009.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral venous hypertension (VH) and angiogenesis are implicated in the pathogenesis of brain arteriovenous malformation and dural arteriovenous fistulae. We studied the association of VH and angiogenesis using a mouse brain VH model. Sixty mice underwent external jugular vein and common carotid artery (CCA) anastomosis (VH model), CCA ligation, or sham dissection (n=20). Hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF) and stromal-cell-derived factor-1alpha (SDF-1alpha) expression, and matrix metalloproteinase (MMP) activity were analyzed. We found VH animals had higher (P<0.05) sagittal sinus pressure (8+/-1 mm Hg) than control groups (1+/-1 mm Hg). Surface cerebral blood flow and mean arterial pressure did not change. Hypoxia-inducible factor-1alpha, VEGF, and SDF-1alpha expression increased (P<0.05). Neutrophils and MMP-9 activity increased 10-fold 1 day after surgery, gradually decreased afterward, and returned to baseline 2 weeks after surgery. Macrophages began to increase 3 days after surgery (P<0.05), which coincided with the changes in SDF-1alpha expression. Capillary density in the parasagittal cortex increased 17% compared with the controls. Our findings suggest that mild nonischemic VH results in a pro-angiogenic stage in the brain by upregulating HIF-1 and its downstream targets, VEGF and SDF-1alpha, increasing leukocyte infiltration and MMP-9 activity.
Collapse
|
50
|
Sun BL, Hu DM, Yuan H, Ye WJ, Wang XC, Xia ZL, Zhang SM, Wang LX. Extract of Ginkgo Biloba Promotes the Expression of VEGF Following Subarachnoid Hemorrhage in Rats. Int J Neurosci 2009; 119:995-1005. [DOI: 10.1080/00207450902815842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|