1
|
Paavolainen O, Peurla M, Koskinen LM, Pohjankukka J, Saberi K, Tammelin E, Sulander SR, Valkonen M, Mourao L, Boström P, Brück N, Ruusuvuori P, Scheele CLGJ, Hartiala P, Peuhu E. Volumetric analysis of the terminal ductal lobular unit architecture and cell phenotypes in the human breast. Cell Rep 2024; 43:114837. [PMID: 39368089 DOI: 10.1016/j.celrep.2024.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The major lactiferous ducts of the human breast branch out and end at terminal ductal lobular units (TDLUs). Despite their functional and clinical importance, the three-dimensional (3D) architecture of TDLUs has remained undetermined. Our quantitative and volumetric imaging of healthy human breast tissue demonstrates that highly branched TDLUs, which exhibit increased proliferation, are uncommon in the resting tissue regardless of donor age, parity, or hormonal contraception. Overall, TDLUs have a consistent shape and branch parameters, and they contain a main subtree that dominates in bifurcation events and exhibits a more duct-like keratin expression pattern. Simulation of TDLU branching morphogenesis in three dimensions suggests that evolutionarily conserved mechanisms regulate mammary gland branching in humans and mice despite their anatomical differences. In all, our data provide structural insight into 3D anatomy and branching of the human breast and exemplify the power of volumetric imaging in gaining a deeper understanding of breast biology.
Collapse
Affiliation(s)
- Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Pohjankukka
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Kamyab Saberi
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ella Tammelin
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Suvi-Riitta Sulander
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Masi Valkonen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Larissa Mourao
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Nina Brück
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pekka Ruusuvuori
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Hartiala
- University of Turku, 20520 Turku, Finland; Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland; Medicity Research Laboratories and InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
2
|
Short KM, Tortelote GG, Jones LK, Diniz F, Edgington-Giordano F, Cullen-McEwen LA, Schröder J, Spencer A, Keniry A, Polo JM, Bertram JF, Blewitt ME, Smyth IM, El-Dahr SS. The Impact of Low Protein Diet on the Molecular and Cellular Development of the Fetal Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569988. [PMID: 38106143 PMCID: PMC10723346 DOI: 10.1101/2023.12.04.569988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. Methods We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development to affect nephron number. Results Single cell analysis at E14.5 and P0 revealed differences in the expression of genes and pathways involved in metabolism, cell cycle, epigenetic regulators and reciprocal inductive signals in most cell types analyzed, yielding imbalances and shifts in cellular energy production and cellular trajectories. In the nephron progenitor cells, LPD impeded cellular commitment and differentiation towards pre-tubular and renal vesicle structures. Confocal microscopy revealed a reduction in the number of pre-tubular aggregates and proliferation in nephron progenitor cells. We also found changes in branching morphogenesis, with a reduction in cell proliferation in the ureteric tips as well as reduced tip and tip parent lengths by optical projection tomography which causes patterning defects. Conclusions This unique profiling demonstrates how a fetal programming defect leads to low nephron endowment which is intricately linked to changes in both branching morphogenesis and the commitment of nephron progenitor cells. The commitment of progenitor cells is pivotal for nephron formation and is significantly influenced by nutritional factors, with a low protein diet driving alterations in this program which directly results in a reduced nephron endowment. Significance Statement While a mother's diet can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal developmental programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.
Collapse
|
3
|
Satta JP, Lindström R, Myllymäki SM, Lan Q, Trela E, Prunskaite-Hyyryläinen R, Kaczyńska B, Voutilainen M, Kuure S, Vainio SJ, Mikkola ML. Exploring the principles of embryonic mammary gland branching morphogenesis. Development 2024; 151:dev202179. [PMID: 39092607 DOI: 10.1242/dev.202179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Branching morphogenesis is a characteristic feature of many essential organs, such as the lung and kidney, and most glands, and is the net result of two tissue behaviors: branch point initiation and elongation. Each branched organ has a distinct architecture customized to its physiological function, but how patterning occurs in these ramified tubular structures is a fundamental problem of development. Here, we use quantitative 3D morphometrics, time-lapse imaging, manipulation of ex vivo cultured mouse embryonic organs and mice deficient in the planar cell polarity component Vangl2 to address this question in the developing mammary gland. Our results show that the embryonic epithelial trees are highly complex in topology owing to the flexible use of two distinct modes of branch point initiation: lateral branching and tip bifurcation. This non-stereotypy was contrasted by the remarkably constant average branch frequency, indicating a ductal growth invariant, yet stochastic, propensity to branch. The probability of branching was malleable and could be tuned by manipulating the Fgf10 and Tgfβ1 pathways. Finally, our in vivo data and ex vivo time-lapse imaging suggest the involvement of tissue rearrangements in mammary branch elongation.
Collapse
Affiliation(s)
- Jyoti P Satta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Riitta Lindström
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Ewelina Trela
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | | | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria Voutilainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu Kuure
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
- Kvantum Institute, Infotech Oulu, University of Oulu, Oulu 90014, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
4
|
Tham MS, Cottle DL, Zylberberg AK, Short KM, Jones LK, Chan P, Conduit SE, Dyson JM, Mitchell CA, Smyth IM. Deletion of Aurora kinase A prevents the development of polycystic kidney disease in mice. Nat Commun 2024; 15:371. [PMID: 38191531 PMCID: PMC10774271 DOI: 10.1038/s41467-023-44410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.
Collapse
Affiliation(s)
- Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Perkin Chan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Mederacke M, Conrad L, Doumpas N, Vetter R, Iber D. Geometric effects position renal vesicles during kidney development. Cell Rep 2023; 42:113526. [PMID: 38060445 DOI: 10.1016/j.celrep.2023.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development.
Collapse
Affiliation(s)
- Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Nikolaos Doumpas
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
6
|
Hannezo E, Scheele CLGJ. A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland. Methods Mol Biol 2023; 2608:183-205. [PMID: 36653709 DOI: 10.1007/978-1-0716-2887-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.
Collapse
Affiliation(s)
- Edouard Hannezo
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Dean CH, Cheong SS. Simple Models of Lung Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:17-28. [PMID: 37195524 DOI: 10.1007/978-3-031-26625-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Models are essential to further our understanding of lung development and regeneration and to facilitate identification and testing of potential treatments for lung diseases. A wide variety of rodent and human models are available that recapitulate one or more stages of lung development. This chapter describes the existing 'simple' in vitro, in silico and ex vivo models of lung development. We define which stage(s) of development each model recapitulates and highlight their pros and cons.
Collapse
Affiliation(s)
- Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Sek-Shir Cheong
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Hamon M, Cheng HM, Johnson M, Yanagawa N, Hauser PV. Effect of Hypoxia on Branching Characteristics and Cell Subpopulations during Kidney Organ Culture. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120801. [PMID: 36551007 PMCID: PMC9774677 DOI: 10.3390/bioengineering9120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
During early developmental stages, embryonic kidneys are not fully vascularized and are potentially exposed to hypoxic conditions, which is known to influence cell proliferation and survival, ureteric bud branching, and vascularization of the developing kidney. To optimize the culture conditions of in vitro cultured kidneys and gain further insight into the effect of hypoxia on kidney development, we exposed mouse embryonic kidneys isolated at E11.5, E12.5, and E13.5 to hypoxic and normal culture conditions and compared ureteric bud branching patterns, the growth of the progenitor subpopulation hoxb7+, and the expression patterns of progenitor and differentiation markers. Branching patterns were quantified using whole organ confocal imaging and gradient-vector-based analysis. In our model, hypoxia causes an earlier expression of UB tip cell markers, and a delay in stalk cell marker gene expression. The metanephric mesenchyme (MM) exhibited a later expression of differentiation marker FGF8, marking a delay in nephron formation. Hypoxia further delayed the expression of stroma cell progenitor markers, a delay in cortical differentiation markers, as well as an earlier expression of medullary and ureteral differentiation markers. We conclude that standard conditions do not apply universally and that tissue engineering strategies need to optimize suitable culture conditions for each application. We also conclude that adapting culture conditions to specific aspects of organ development in tissue engineering can help to improve individual stages of tissue generation.
Collapse
Affiliation(s)
- Morgan Hamon
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (M.H.); (P.V.H.)
| | - Hsiao-Min Cheng
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ming Johnson
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter V. Hauser
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (M.H.); (P.V.H.)
| |
Collapse
|
9
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Röck R, Rizzo L, Lienkamp SS. Kidney Development: Recent Insights from Technological Advances. Physiology (Bethesda) 2022; 37:0. [PMID: 35253460 DOI: 10.1152/physiol.00041.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kidney is a complex organ, and how it forms is a fascinating process. New technologies, such as single-cell transcriptomics, and enhanced imaging modalities are offering new approaches to understand the complex and intertwined processes during embryonic kidney development.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,PhD program "Molecular and Translational Biomedicine," Life Science Zurich Graduate School, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| |
Collapse
|
11
|
Dumbrava MG, Lacanlale JL, Rowan CJ, Rosenblum ND. Transforming growth factor beta signaling functions during mammalian kidney development. Pediatr Nephrol 2021; 36:1663-1672. [PMID: 32880018 DOI: 10.1007/s00467-020-04739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Aberrant transforming growth factor beta (TGFβ) signaling during embryogenesis is implicated in severe congenital abnormalities, including kidney malformations. However, the molecular mechanisms that underlie congenital kidney malformations related to TGFβ signaling remain poorly understood. Here, we review current understanding of the lineage-specific roles of TGFβ signaling during kidney development and how dysregulation of TGFβ signaling contributes to the pathogenesis of kidney malformation.
Collapse
Affiliation(s)
- Mihai G Dumbrava
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Jon L Lacanlale
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Christopher J Rowan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
| |
Collapse
|
12
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
13
|
Puelles VG, Combes AN, Bertram JF. Clearly imaging and quantifying the kidney in 3D. Kidney Int 2021; 100:780-786. [PMID: 34089762 DOI: 10.1016/j.kint.2021.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
For decades, measurements of kidney microanatomy using 2-dimensional sections has provided us with a detailed knowledge of kidney morphology under physiological and pathological conditions. However, the rapid development of tissue clearing methods in recent years, in combination with the development of novel 3-dimensional imaging modalities have provided new insights into kidney structure and function. This review article describes a range of novel insights into kidney development and disease obtained recently using these new methodological approaches. For example, in the developing kidney these approaches have provided new understandings of ureteric branching morphogenesis, nephron progenitor cell proliferation and commitment, interactions between ureteric tip cells and nephron progenitor cells, and the establishment of nephron segmentation. In whole adult mouse kidneys, tissue clearing combined with light sheet microscopy can image and quantify the total number of glomeruli, a major breakthrough in the field. Similar approaches have provided new insights into the structure of the renal vasculature and innervation, tubulointerstitial remodeling, podocyte loss and hypertrophy, cyst formation, the evolution of cellular crescents, and the structure of the glomerular filtration barrier. Many more advances in the understanding of kidney biology and pathology can be expected as additional clearing and imaging techniques are developed and adopted by more investigators.
Collapse
Affiliation(s)
- Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Anatomy and Developmental Biology, and Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, and Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, and Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
15
|
Abstract
The kidney plays an integral role in filtering the blood-removing metabolic by-products from the body and regulating blood pressure. This requires the establishment of large numbers of efficient and specialized blood filtering units (nephrons) that incorporate a system for vascular exchange and nutrient reabsorption as well as a collecting duct system to remove waste (urine) from the body. Kidney development is a dynamic process which generates these structures through a delicately balanced program of self-renewal and commitment of nephron progenitor cells that inhabit a constantly evolving cellular niche at the tips of a branching ureteric "tree." The former cells build the nephrons and the latter the collecting duct system. Maintaining these processes across fetal development is critical for establishing the normal "endowment" of nephrons in the kidney and perturbations to this process are associated both with mutations in integral genes and with alterations to the fetal environment.
Collapse
Affiliation(s)
- Ian M Smyth
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Cai W, Wang Y, Zhang J, Zhang H, Luo T. Multi-scale simulation of early kidney branching morphogenesis. Phys Biol 2021; 18:026005. [PMID: 33395673 DOI: 10.1088/1478-3975/abd844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An important feature of the branch morphogenesis during kidney development is the termination of the tips on the outer surface of a kidney. This feature requires the avoidance of the intersection between the tips and existing ducts inside the kidney. Here, we started from a continuous model and implemented the coarse grained rules into a fast and discrete simulations. The ligand-receptor-based Turing mechanism suggests a repulsion that decreases exponentially with distance between interacting branches, preventing the intersection between neighboring branches. We considered this repulsive effect in numerical simulations and successfully reproduce the key features of the experimentally observed branch morphology for an E15.5 kidney. We examine the similarity of several geometrical parameters between the simulation results and experimental observations. The good agreement between the simulations and experiments suggests that the concentration decay caused by the absorption of glial cell line derived neurotrophic factor might be the key factor to affect the geometry in early kidney development.
Collapse
Affiliation(s)
- Wenran Cai
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Pbx1, Meis1, and Runx1 Expression Is Decreased in the Diaphragmatic and Pulmonary Mesenchyme of Rats with Nitrofen-Induced Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:120-125. [PMID: 32862424 DOI: 10.1055/s-0040-1714736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to originate from mesenchymal defects in pleuroperitoneal folds (PPFs) and primordial lungs. Pre-B-cell leukemia homeobox 1 (Pbx1), its binding partner myeloid ecotropic integration site 1 (Meis1), and runt-related transcription factor 1 (Runx1) are expressed in diaphragmatic and lung mesenchyme, functioning as transcription cofactors that modulate mesenchymal cell proliferation. Furthermore, Pbx1 -/- mice develop diaphragmatic defects and PH similar to human CDH. We hypothesized that diaphragmatic and pulmonary Pbx1, Meis1, and Runx1 expression is decreased in the nitrofen-induced CDH model. MATERIALS AND METHODS Time-mated rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on D13, D15, and D18, and were divided into control and nitrofen-exposed specimens. Diaphragmatic and pulmonary gene expression levels of Pbx1, Meis1, and Runx1 were analyzed by quantitative real-time polymerase chain reaction. Immunofluorescence-double-staining for Pbx1, Meis1, and Runx1 was combined with mesenchymal/myogenic markers Gata4 and myogenin to evaluate protein expression. RESULTS Relative mRNA expression of Pbx1, Meis1, and Runx1 was significantly decreased in PPFs (D13), developing diaphragms/lungs (D15), and muscularized diaphragms/differentiated lungs (D18) of nitrofen-exposed fetuses compared with controls. Confocal-laser-scanning-microscopy revealed markedly diminished Pbx1, Meis1, and Runx1 immunofluorescence in diaphragmatic and pulmonary mesenchyme, associated with less proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared with controls. CONCLUSION Decreased Pbx1, Meis1, and Runx1 expression during diaphragmatic development and lung branching morphogenesis may reduce mesenchymal cell proliferation, causing malformed PPFs and disrupted airway branching, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Beacon Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Yu W, Marshall WF, Metzger RJ, Brakeman PR, Morsut L, Lim W, Mostov KE. Simple Rules Determine Distinct Patterns of Branching Morphogenesis. Cell Syst 2020; 9:221-227. [PMID: 31557453 DOI: 10.1016/j.cels.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 10/25/2022]
Abstract
Many metazoan organs are comprised of branching trees of epithelial tubes; how patterning occurs in these trees is a fundamental problem of development. Commonly, branch tips fill the volume of the organ approximately uniformly, e.g., in mammalian lung, airway branch tips are dispersed roughly uniformly throughout the volume of the lung. In contrast, in the developing metanephric kidney, the tips of the ureteric bud tree are located close to the outer surface of the kidney rather than filling the kidney. Here, we describe a simple alteration in the branching rules that accounts for the difference between the kidney pattern that leads to tips near the organ surface versus previously known patterns that lead to the branch tips being dispersed throughout the organ. We further use a simple toy model to deduce from first principles how this rule change accounts for the differences in the two types of trees.
Collapse
Affiliation(s)
- Wei Yu
- Departments of Anatomy, University of California San Francisco, San Francisco, CA, USA; Cell and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Wallace F Marshall
- Center for Cellular Construction, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ross J Metzger
- Departments of Anatomy, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Paul R Brakeman
- Department of Pediatrics (Nephrology), University of California San Francisco, San Francisco, CA, USA
| | - Leonardo Morsut
- Cell and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Wendell Lim
- Cell and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Center for Cellular Construction, University of California San Francisco, San Francisco, CA, USA
| | - Keith E Mostov
- Departments of Anatomy, University of California San Francisco, San Francisco, CA, USA; Center for Cellular Construction, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken) 2020; 303:2578-2587. [PMID: 32790143 DOI: 10.1002/ar.24486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder. Generally speaking, the formation of these networks in different organs begins with the specification and differentiation of simple bud-like organ anlage, which then undergo a process of elaboration, typically by bifurcation. This process is often governed by the interaction of progenitor cells at the tips of the epithelia with neighboring mesenchymal cell populations which direct the branching process and which often themselves differentiate to form part of the adult organ. In the kidney, the tips of ureteric bud elaborate through a dynamic cell signaling relationship with overlying nephron progenitor cell populations. These cells sequentially commit to differentiation and the resulting nephrons reintegrate with the ureteric epithelium as development progresses. This review will describe recent advances in understanding the how the elaboration of the ureteric bud is patterned and consider the extent to which this process is shared with other organs.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Young RE, Jones MK, Hines EA, Li R, Luo Y, Shi W, Verheyden JM, Sun X. Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Dev Cell 2020; 53:73-85.e5. [PMID: 32142630 PMCID: PMC7540204 DOI: 10.1016/j.devcel.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023]
Abstract
Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary-Kayt Jones
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Hines
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rongbo Li
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Xin Sun
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Oherle K, Acker E, Bonfield M, Wang T, Gray J, Lang I, Bridges J, Lewkowich I, Xu Y, Ahlfeld S, Zacharias W, Alenghat T, Deshmukh H. Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs. Immunity 2020; 52:275-294.e9. [PMID: 32075728 PMCID: PMC7382307 DOI: 10.1016/j.immuni.2020.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 05/16/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.
Collapse
Affiliation(s)
- Katherine Oherle
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Elizabeth Acker
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Madeline Bonfield
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Timothy Wang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Ian Lang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - James Bridges
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shawn Ahlfeld
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - William Zacharias
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hitesh Deshmukh
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
22
|
Jafree DJ, Long DA, Scambler PJ, Moulding D. Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy. Methods Mol Biol 2020; 2067:103-126. [PMID: 31701448 DOI: 10.1007/978-1-4939-9841-8_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
- MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK.
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter J Scambler
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dale Moulding
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
23
|
Sui P, Li R, Zhang Y, Tan C, Garg A, Verheyden JM, Sun X. E3 ubiquitin ligase MDM2 acts through p53 to control respiratory progenitor cell number and lung size. Development 2019; 146:dev.179820. [PMID: 31767619 DOI: 10.1242/dev.179820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
Abstract
The respiratory lineage initiates from the specification of NKX2-1+ progenitor cells that ultimately give rise to a vast gas-exchange surface area. How the size of the progenitor pool is determined and whether this directly impacts final lung size remains poorly understood. Here, we show that epithelium-specific inactivation of Mdm2, which encodes an E3 ubiquitin ligase, led to lethality at birth with a striking reduction of lung size to a single vestigial lobe. Intriguingly, this lobe was patterned and contained all the appropriate epithelial cell types. The reduction of size can be traced to the progenitor stage, when p53, a principal MDM2 protein degradation target, was transiently upregulated. This was followed by a brief increase of apoptosis. Inactivation of the p53 gene in the Mdm2 mutant background effectively reversed the lung size phenotype, allowing survival at birth. Together, these findings demonstrate that p53 protein turnover by MDM2 is essential for the survival of respiratory progenitors. Unlike in the liver, in which genetic reduction of progenitors triggered compensation, in the lung, respiratory progenitor number is a key determinant factor for final lung size.
Collapse
Affiliation(s)
- Pengfei Sui
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA.,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.,Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200231, China
| | - Rongbo Li
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA.,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Yan Zhang
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA.,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Chunting Tan
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA
| | - Ankur Garg
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA
| | - Jamie M Verheyden
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA .,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Xin Sun
- Department of Pediatrics, Department of Biological Sciences, University of California, San Diego, CA 92130, USA .,Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
24
|
Multiscale dynamics of branching morphogenesis. Curr Opin Cell Biol 2019; 60:99-105. [DOI: 10.1016/j.ceb.2019.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
|
25
|
Rutledge EA, Parvez RK, Short KM, Smyth IM, McMahon AP. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev Biol 2019; 454:156-169. [PMID: 31242448 DOI: 10.1016/j.ydbio.2019.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Adamts18 encodes a secreted metalloprotease restricted to branch-tip progenitor pools directing the morphogenesis of multiple mammalian organs. Adamts18 was targeted to explore a potential role in branching morphogenesis. In the kidney, an arborized collecting system develops through extensive branching morphogenesis of an initial epithelial outgrowth of the mesonephric duct, the ureteric bud. Adamts18 mutants displayed a weakly penetrant phenotype: duplicated ureteric outgrowths forming enlarged, bi-lobed kidneys with an increased nephron endowment. In contrast, Adamts18 mutants showed a fully penetrant lung phenotype: epithelial growth was markedly reduced and early secondary branching scaled to the reduced length of the primary airways. Furthermore, there was a pronounced delay in the appearance of differentiated cell types in both proximal and distally positions of the developing airways. Adamts18 is closely related to Adamts16. In the kidney but not the lung, broad epithelial Adamts16 expression overlaps Adamts18 in branch tips. However, compound Adamts16/18 mutants displayed a comparable low penetrance duplicated ureteric phenotype, ruling out a possible role for Adamts16 as a functional modifier of the Adamts18 kidney phenotype. Given the predicted action of secreted Adamts18 metalloprotease, and broad expression of Adamts18 in branching organ systems, these findings suggest distinct requirements for matrix modelling in the morphogenesis of epithelial networks.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Kieran M Short
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
26
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Expression of dispatched RND transporter family member 1 is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2019; 35:35-40. [PMID: 30382378 DOI: 10.1007/s00383-018-4374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to be caused by a malformation of the diaphragmatic and pulmonary mesenchyme. Dispatched RND transporter family member 1 (Disp-1) encodes a transmembrane protein that regulates the release of cholesterol and palmitoyl, which is critical for normal diaphragmatic and airway development. Disp-1 is strongly expressed in mesenchymal compartments of fetal diaphragms and lungs. Recently, Disp-1 mutations have been identified in patients with CDH. We hypothesized that diaphragmatic and pulmonary Disp-1 expression is decreased in the nitrofen-induced CDH model. METHODS Time-mated rats received nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms and lungs were microdissected on selected endpoints D13, D15 and D18; and divided into control and nitrofen-exposed specimens (n = 12 per sample, time-point and experimental group). Diaphragmatic and pulmonary Disp-1 expression was evaluated by qRT-PCR. Immunofluorescence double staining for Disp-1 was combined with diaphragmatic and pulmonary mesenchymal markers Wt-1 and Sox-9 to localize protein expression in fetal diaphragms and lungs. RESULTS Relative mRNA levels of Disp-1 were significantly decreased in pleuroperitoneal folds/primordial lungs on D13 (0.18 ± 0.08 vs. 0.46 ± 0.41; p < 0.05/1.06 ± 0.27 vs. 1.34 ± 0.79; p < 0.05), developing diaphragms/lungs on D15 (0.18 ± 0.06 vs. 0.44 ± 0.23; p < 0.05/0.73 ± 0.36 vs. 1.16 ± 0.27; p < 0.05) and fully muscularized diaphragms/differentiated lungs on D18 (0.22 ± 0.18 vs. 0.32 ± 0.23; p < 0.05/0.56 ± 0.16 vs. 0.77 ± 0.14; p < 0.05) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished Disp-1 immunofluorescence predominately in the diaphragmatic and pulmonary mesenchyme of nitrofen-exposed fetuses on D13, D15 and D18, associated with a clear reduction of proliferating mesenchymal cells. CONCLUSIONS Decreased Disp-1 expression during diaphragmatic development and lung branching morphogenesis may interrupt mesenchymal cell proliferation, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.,Department of Pediatric Surgery, The Royal London Hospital, London, UK
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Lang C, Conrad L, Michos O. Mathematical Approaches of Branching Morphogenesis. Front Genet 2018; 9:673. [PMID: 30631344 PMCID: PMC6315180 DOI: 10.3389/fgene.2018.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Many organs require a high surface to volume ratio to properly function. Lungs and kidneys, for example, achieve this by creating highly branched tubular structures during a developmental process called branching morphogenesis. The genes that control lung and kidney branching share a similar network structure that is based on ligand-receptor reciprocal signalling interactions between the epithelium and the surrounding mesenchyme. Nevertheless, the temporal and spatial development of the branched epithelial trees differs, resulting in organs of distinct shape and size. In the embryonic lung, branching morphogenesis highly depends on FGF10 signalling, whereas GDNF is the driving morphogen in the kidney. Knockout of Fgf10 and Gdnf leads to lung and kidney agenesis, respectively. However, FGF10 plays a significant role during kidney branching and both the FGF10 and GDNF pathway converge on the transcription factors ETV4/5. Although the involved signalling proteins have been defined, the underlying mechanism that controls lung and kidney branching morphogenesis is still elusive. A wide range of modelling approaches exists that differ not only in the mathematical framework (e.g., stochastic or deterministic) but also in the spatial scale (e.g., cell or tissue level). Due to advancing imaging techniques, image-based modelling approaches have proven to be a valuable method for investigating the control of branching events with respect to organ-specific properties. Here, we review several mathematical models on lung and kidney branching morphogenesis and suggest that a ligand-receptor-based Turing model represents a potential candidate for a general but also adaptive mechanism to control branching morphogenesis during development.
Collapse
Affiliation(s)
| | | | - Odyssé Michos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
28
|
Kersbergen A, Best SA, Dworkin S, Ah-Cann C, de Vries ME, Asselin-Labat ML, Ritchie ME, Jane SM, Sutherland KD. Lung morphogenesis is orchestrated through Grainyhead-like 2 (Grhl2) transcriptional programs. Dev Biol 2018; 443:1-9. [DOI: 10.1016/j.ydbio.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023]
|
29
|
Ishiyama H, Ishikawa A, Kitazawa H, Fujii S, Matsubayashi J, Yamada S, Takakuwa T. Branching morphogenesis of the urinary collecting system in the human embryonic metanephros. PLoS One 2018; 13:e0203623. [PMID: 30192900 PMCID: PMC6128595 DOI: 10.1371/journal.pone.0203623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/23/2018] [Indexed: 11/23/2022] Open
Abstract
An elaborate system of ducts collects urine from all nephrons, and this structure is known as the urinary collecting system (UCS). This study focused on how the UCS is formed during human embryogenesis. Fifty human embryos between the Carnegie stage (CS) 14 and CS23 were selected from the Kyoto Collection at the Congenital Anomaly Research Center of Kyoto University, Japan. Metanephroses, including the UCS, were segmented on serial digital virtual histological sections. Three-dimensional images were computationally reconstructed for morphological and quantitative analyses. A CS timeline was plotted. It consisted of the 3-D structural morphogenesis of UCS and quantification of the total amount of end-branching, average and maximum numbers of generations, deviation in the metanephros, differentiation of the urothelial epithelium in the renal pelvis, and timing of the rapid expansion of the renal pelvis. The first UCS branching generation occurred by CS16. The average branching generation reached a maximum of 8.74 ± 1.60 and was already the twelfth in CS23. The total end-branching number squared between the start and the end of the embryonic period. UCS would reach the fifteenth branching generation soon after CS23. The number of nephrons per UCS end-branch was low (0.21 ± 0.14 at CS19, 1.34 ± 0.49 at CS23), indicating that the bifid branching occurred rapidly and that the formation of nephrons followed after. The renal pelvis expanded mainly in CS23, which was earlier than that reported in a previous study. The number of nephrons connected to the UCS in the expanded group (246.0 ± 13.2) was significantly larger than that of the pre-expanded group (130.8 ± 80.1) (P < 0.05). The urothelial epithelium differentiated from the zeroth to the third generations at CS23. Differentiation may have continued up until the tenth generation to allow for renal pelvis expansion. The branching speed was not uniform. There were significantly more branching generations in the polar- than in the interpolar regions (P < 0.05). Branching speed reflects the growth orientation required to form the metanephros. Further study will be necessary to understand the renal pelvis expansion mechanism in CS23. Our CS-based timeline enabled us to map UCS formation and predict functional renal capacity after differentiation and growth.
Collapse
Affiliation(s)
- Hana Ishiyama
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Ishikawa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruka Kitazawa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sena Fujii
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
30
|
Short KM, Combes AN, Lisnyak V, Lefevre JG, Jones LK, Little MH, Hamilton NA, Smyth IM. Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration. eLife 2018; 7:38992. [PMID: 30063208 PMCID: PMC6115188 DOI: 10.7554/elife.38992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Branching morphogenesis of the ureteric bud is integral to kidney development; establishing the collecting ducts of the adult organ and driving organ expansion via peripheral interactions with nephron progenitor cells. A recent study suggested that termination of tip branching within the developing kidney involved stochastic exhaustion in response to nephron formation, with such a termination event representing a unifying developmental process evident in many organs. To examine this possibility, we have profiled the impact of nephron formation and maturation on elaboration of the ureteric bud during mouse kidney development. We find a distinct absence of random branch termination events within the kidney or evidence that nephrogenesis impacts the branching program or cell proliferation in either tip or progenitor cell niches. Instead, organogenesis proceeds in a manner indifferent to the development of these structures. Hence, stochastic cessation of branching is not a unifying developmental feature in all branching organs. During development and before birth, many organs develop from branched tubes. Whether forming the airways of the lungs, the collecting ducts of the kidneys or the milk ducts of the breast, there are many similarities between these structures. Given their shared tree-like structures, one possibility is that these tissues all form through the same general process. A key challenge is understanding why branched networks develop and pattern in such a way as to assume their functional roles in the adult organ. A unifying theory, which proposes that certain tips stop growing in a random manner, has been proposed to solve this problem. In this theory, the branched mammary gland structures stop growing when the tips of the structure impinge on neighbouring branches. In the kidney, this cessation has been proposed to occur when nephrons – the structures that filter urine from blood – form near the end of the collecting ducts. By growing kidneys in the laboratory and studying developing kidneys in mice, Short et al. investigated whether nephrons do affect collecting duct growth and branch development. The results of these experiments instead suggest that nephron formation has no effect on duct growth or branching. The nephrons also do not appear to affect how quickly the duct cells grow and divide. Moreover, there is no evidence that the cell proliferation in individual branch tips ceases randomly by any other mechanism. Overall, the experiments Short et al. performed suggest that a unifying theory of branching in developing organs may not hold true, at least not in the way that has been envisioned previously.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Anatomy and Neuroscience, School of Biomedical Sciences, University of Melbourne, Parkville, Australia
| | - Valerie Lisnyak
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - James G Lefevre
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Anatomy and Neuroscience, School of Biomedical Sciences, University of Melbourne, Parkville, Australia.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Nicholas A Hamilton
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Rowan CJ, Li W, Martirosyan H, Erwood S, Hu D, Kim YK, Sheybani-Deloui S, Mulder J, Blake J, Chen L, Rosenblum ND. Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 2018; 145:dev.159947. [PMID: 29945868 DOI: 10.1242/dev.159947] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
Normal kidney function depends on the proper development of the nephron: the functional unit of the kidney. Reciprocal signaling interactions between the stroma and nephron progenitor compartment have been proposed to control nephron development. Here, we show that removal of hedgehog intracellular effector smoothened (Smo-deficient mutants) in the cortical stroma results in an abnormal renal capsule, and an expanded nephron progenitor domain with an accompanying decrease in nephron number via a block in epithelialization. We show that stromal-hedgehog-Smo signaling acts through a GLI3 repressor. Whole-kidney RNA sequencing and analysis of FACS-isolated stromal cells identified impaired TGFβ2 signaling in Smo-deficient mutants. We show that neutralization and knockdown of TGFβ2 in explants inhibited nephrogenesis. In addition, we demonstrate that concurrent deletion of Tgfbr2 in stromal and nephrogenic cells in vivo results in decreased nephron formation and an expanded nephrogenic precursor domain similar to that observed in Smo-deficient mutant mice. Together, our data suggest a mechanism whereby a stromal hedgehog-TGFβ2 signaling axis acts to control nephrogenesis.
Collapse
Affiliation(s)
- Christopher J Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Winny Li
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hovhannes Martirosyan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Steven Erwood
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Di Hu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sepideh Sheybani-Deloui
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jaap Mulder
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Nephrology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Joshua Blake
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lin Chen
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Division of Nephrology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
32
|
Lambert B, MacLean AL, Fletcher AG, Combes AN, Little MH, Byrne HM. Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis. J Math Biol 2018; 76:1673-1697. [PMID: 29392399 PMCID: PMC5906521 DOI: 10.1007/s00285-018-1208-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Indexed: 12/11/2022]
Abstract
The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.
Collapse
Affiliation(s)
- Ben Lambert
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Adam L MacLean
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
| |
Collapse
|
33
|
Large Scale Imaging by Fine Spatial Alignment of Multi-Scanning Data with Gel Cube Device. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol 2018; 433:166-176. [DOI: 10.1016/j.ydbio.2017.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
|
35
|
Desgrange A, Heliot C, Skovorodkin I, Akram SU, Heikkilä J, Ronkainen VP, Miinalainen I, Vainio SJ, Cereghini S. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development 2017; 144:4704-4719. [PMID: 29158444 DOI: 10.1242/dev.154336] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
Kidney development depends crucially on proper ureteric bud branching giving rise to the entire collecting duct system. The transcription factor HNF1B is required for the early steps of ureteric bud branching, yet the molecular and cellular events regulated by HNF1B are poorly understood. We report that specific removal of Hnf1b from the ureteric bud leads to defective cell-cell contacts and apicobasal polarity during the early branching events. High-resolution ex vivo imaging combined with a membranous fluorescent reporter strategy show decreased mutant cell rearrangements during mitosis-associated cell dispersal and severe epithelial disorganization. Molecular analysis reveals downregulation of Gdnf-Ret pathway components and suggests that HNF1B acts both upstream and downstream of Ret signaling by directly regulating Gfra1 and Etv5 Subsequently, Hnf1b deletion leads to massively mispatterned ureteric tree network, defective collecting duct differentiation and disrupted tissue architecture, which leads to cystogenesis. Consistently, mRNA-seq analysis shows that the most impacted genes encode intrinsic cell-membrane components with transporter activity. Our study uncovers a fundamental and recurring role of HNF1B in epithelial organization during early ureteric bud branching and in further patterning and differentiation of the collecting duct system in mouse.
Collapse
Affiliation(s)
- Audrey Desgrange
- Sorbonne Universités, UPMC Université Paris 06, IBPS - UMR7622, F-75005 Paris, France .,CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Developmental Biology Laboratory, F-75005 Paris, France
| | - Claire Heliot
- Sorbonne Universités, UPMC Université Paris 06, IBPS - UMR7622, F-75005 Paris, France.,CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Developmental Biology Laboratory, F-75005 Paris, France
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, Biocenter, University of Oulu; Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Saad U Akram
- Center for Machine Vision Research and Signal Analysis (CMVS), University of Oulu, FIN-90014, Oulu, Finland
| | - Janne Heikkilä
- Center for Machine Vision Research and Signal Analysis (CMVS), University of Oulu, FIN-90014, Oulu, Finland
| | | | | | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter, University of Oulu; Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Silvia Cereghini
- Sorbonne Universités, UPMC Université Paris 06, IBPS - UMR7622, F-75005 Paris, France .,CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Developmental Biology Laboratory, F-75005 Paris, France
| |
Collapse
|
36
|
Lefevre JG, Short KM, Lamberton TO, Michos O, Graf D, Smyth IM, Hamilton NA. Branching morphogenesis in the developing kidney is governed by rules that pattern the ureteric tree. Development 2017; 144:4377-4385. [PMID: 29038307 DOI: 10.1242/dev.153874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022]
Abstract
Metanephric kidney development is orchestrated by the iterative branching morphogenesis of the ureteric bud. We describe an underlying patterning associated with the ramification of this structure and show that this pattern is conserved between developing kidneys, in different parts of the organ and across developmental time. This regularity is associated with a highly reproducible branching asymmetry that is consistent with locally operative growth mechanisms. We then develop a class of tip state models to represent elaboration of the ureteric tree and describe rules for 'half-delay' branching morphogenesis that describe almost perfectly the patterning of this structure. Spatial analysis suggests that the observed asymmetry may arise from mutual suppression of bifurcation, but not extension, between the growing ureteric tips, and demonstrates that disruption of patterning occurs in mouse mutants in which the distribution of tips on the surface of the kidney is altered. These findings demonstrate that kidney development occurs by way of a highly conserved reiterative pattern of asymmetric bifurcation that is governed by intrinsic and locally operative mechanisms.
Collapse
Affiliation(s)
- James G Lefevre
- Division of Genomics and Development of Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kieran M Short
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Timothy O Lamberton
- Division of Genomics and Development of Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Odyssé Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Ian M Smyth
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia .,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Nicholas A Hamilton
- Division of Genomics and Development of Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Chen YW, Huang SX, de Carvalho ALRT, Ho SH, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova JL, Bhattacharya J, Liang AF, Palermo LM, Porotto M, Moscona A, Snoeck HW. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 2017; 19:542-549. [PMID: 28436965 PMCID: PMC5777163 DOI: 10.1038/ncb3510] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Abstract
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.
Collapse
Affiliation(s)
- Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Sarah Xuelian Huang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Stefano Volpi
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- U.O. Pediatria 2, Istituto Giannina Gaslini, Genoa, Italy
| | - Luigi D Notarangelo
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jahar Bhattacharya
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alice F. Liang
- OCS Microscopy Core, New York University Langone Medical Center, New York, NY 10016
| | - Laura M Palermo
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, NY 10032, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, NY 10032, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
38
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs. Pediatr Surg Int 2017; 33:139-143. [PMID: 27833996 DOI: 10.1007/s00383-016-4005-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. METHODS Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. RESULTS Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. CONCLUSION Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Short KM, Smyth IM. Imaging, Analysing and Interpreting Branching Morphogenesis in the Developing Kidney. Results Probl Cell Differ 2017; 60:233-256. [PMID: 28409348 DOI: 10.1007/978-3-319-51436-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The kidney develops as an outgrowth of the epithelial nephric duct known as the ureteric bud, in a position specified by a range of rostral and caudal factors which serve to ensure two kidneys form in the appropriate positions in the body. At its simplest level, kidney development can be viewed as the process by which this single bud then undergoes a process of arborisation to form a complex connected network of ducts which will serve to drain urine from the nephrons in the adult organ. The process of bud elaboration is dictated by factors expressed by both the bud itself and by surrounding cells of the metanephric mesenchyme which control cell division and bifurcation. These cells play two critical roles. Firstly, they potentiate the ongoing elaboration of the ureteric tree: remove them and branching ceases. Secondly, they harbour progenitor cells which are fated to undergo their own process of tubulogenesis to form the nephrons of the adult organ. In this chapter, we will discuss how the ureteric bud arises in the developing embryo, how it undergoes branching, how we can measure and study this process and finally the likely relevance that this process has for our understanding of congenital and acquired kidney disease.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
40
|
Short KM, Smyth IM. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol 2016; 12:754-767. [DOI: 10.1038/nrneph.2016.157] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Brzóska HŁ, d'Esposito AM, Kolatsi-Joannou M, Patel V, Igarashi P, Lei Y, Finnell RH, Lythgoe MF, Woolf AS, Papakrivopoulou E, Long DA. Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int 2016; 90:1274-1284. [PMID: 27597235 PMCID: PMC5126096 DOI: 10.1016/j.kint.2016.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
The mammalian kidney contains nephrons comprising glomeruli and tubules joined to ureteric bud-derived collecting ducts. It has a characteristic bean-like shape, with near-complete rostrocaudal symmetry around the hilum. Here we show that Celsr1, a planar cell polarity (PCP) gene implicated in neural tube morphogenesis, is required for ureteric tree growth in early development and later in gestation prevents tubule overgrowth. We also found an interaction between Celsr1 and Vangl2 (another PCP gene) in ureteric tree growth, most marked in the caudal compartment of the kidneys from compound heterozygous mutant mice with a stunted rump. Furthermore, these genes together are required for the maturation of glomeruli. Interestingly, we demonstrated patients with CELSR1 mutations and spina bifida can have significant renal malformations. Thus, PCP genes are important in mammalian kidney development and have an unexpected role in rostrocaudal patterning during organogenesis.
Collapse
Affiliation(s)
- Hortensja Ł Brzóska
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Angela M d'Esposito
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern School of Medicine, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yunping Lei
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
42
|
Laresgoiti U, Nikolić MZ, Rao C, Brady JL, Richardson RV, Batchen EJ, Chapman KE, Rawlins EL. Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate. Development 2016; 143:3686-3699. [PMID: 27578791 PMCID: PMC5087639 DOI: 10.1242/dev.134023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/17/2016] [Indexed: 01/23/2023]
Abstract
Insufficient alveolar gas exchange capacity is a major contributor to lung disease. During lung development, a population of distal epithelial progenitors first produce bronchiolar-fated and subsequently alveolar-fated progeny. The mechanisms controlling this bronchiolar-to-alveolar developmental transition remain largely unknown. We developed a novel grafting assay to test if lung epithelial progenitors are intrinsically programmed or if alveolar cell identity is determined by environmental factors. These experiments revealed that embryonic lung epithelial identity is extrinsically determined. We show that both glucocorticoid and STAT3 signalling can control the timing of alveolar initiation, but that neither pathway is absolutely required for alveolar fate specification; rather, glucocorticoid receptor and STAT3 work in parallel to promote alveolar differentiation. Thus, developmental acquisition of lung alveolar fate is a robust process controlled by at least two independent extrinsic signalling inputs. Further elucidation of these pathways might provide therapeutic opportunities for restoring alveolar capacity.
Collapse
Affiliation(s)
- Usua Laresgoiti
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Marko Z Nikolić
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Chandrika Rao
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jane L Brady
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Rachel V Richardson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emma J Batchen
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Karen E Chapman
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
43
|
Hokke S, Puelles VG, Armitage JA, Fong K, Bertram JF, Cullen-McEwen LA. Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice. PLoS One 2016; 11:e0161578. [PMID: 27547968 PMCID: PMC4993378 DOI: 10.1371/journal.pone.0161578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation. HFD dams were overweight and glucose intolerant prior to mating but not in late gestation. Offspring of NFD and HFD dams had similar body weights at embryonic day (E)15.5, E18.5 and at postnatal day (PN)21. HFD offspring had normal ureteric tree development and nephron number at E15.5. However, using unbiased stereology, kidneys of HFD offspring were found to have 20-25% more nephrons than offspring of NFD dams at E18.5 and PN21. Offspring of HFD dams with body weight and glucose profiles similar to NFD dams prior to pregnancy also had an elevated nephron endowment. At 9 months of age, adult offspring of HFD dams displayed mild fasting hyperglycaemia but similar body weights to NFD offspring. Renal function and morphology, measured by transcutaneous clearance of FITC-sinistrin and stereology respectively, were normal. This study demonstrates that maternal fat feeding augments offspring nephron endowment with no long-term consequences for offspring renal health. Future studies assessing the effects of a chronic stressor on adult mice with augmented nephron number are warranted, as are studies investigating the molecular mechanisms that result in high nephron endowment.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Victor G. Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - James A. Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - John F. Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Luise A. Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors. Proc Natl Acad Sci U S A 2016; 113:7557-62. [PMID: 27335464 DOI: 10.1073/pnas.1603310113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.
Collapse
|
45
|
Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, Kusaba T, Gojo S. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep 2016; 6:26792. [PMID: 27244673 PMCID: PMC4886582 DOI: 10.1038/srep26792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Reconstitution of total nephron segments after resection in the adult kidney has not been achieved; however, whether the neonatal kidney can maintain the capacity for neo-nephrogenesis after resection is unknown. We performed partial resection of the kidney in neonatal rats on postnatal days 1 (P1x kidney) and 4 (P4x kidney) and examined morphological changes and relevant factors. The P1x kidney bulged into the newly formed cortex from the wound edge, while nephrogenesis failure was prominent in the P4x kidney. Twenty-eight days post-resection, the glomerular number, cortex area, and collecting duct were preserved in the P1x kidney, whereas these parameters were markedly decreased in the P4x kidney. During normal development, Six2 expression and Six2+ nephron progenitor cells in the cap mesenchyme both rapidly disappear after birth. However, time course analysis for the P1x kidney showed that Six2 expression and Six2+ cells were well preserved in the tissue surrounding the resected area even 2 days after resection. In conclusion, our results indicate that kidneys in early neonate rats retain the capability for neo-nephrogenesis after resection; however, this ability is lost soon after birth, which may be attributed to a declining amount of Six2+ cells.
Collapse
Affiliation(s)
- Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Ryo Ishida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Takaomi Adachi
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| |
Collapse
|
46
|
Urdy S, Goudemand N, Pantalacci S. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues. Curr Top Dev Biol 2016; 119:227-90. [PMID: 27282028 DOI: 10.1016/bs.ctdb.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas.
Collapse
Affiliation(s)
- S Urdy
- University of Zürich, Institute of Physics, Zürich, Switzerland.
| | - N Goudemand
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Lyon Cedex 07, France
| | - S Pantalacci
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratory of Biology and Modelling of the Cell, UMR 5239, INSERM U1210, Lyon Cedex 07, France
| |
Collapse
|
47
|
Herriges JC, Verheyden JM, Zhang Z, Sui P, Zhang Y, Anderson MJ, Swing DA, Zhang Y, Lewandoski M, Sun X. FGF-Regulated ETV Transcription Factors Control FGF-SHH Feedback Loop in Lung Branching. Dev Cell 2016; 35:322-32. [PMID: 26555052 DOI: 10.1016/j.devcel.2015.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/17/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023]
Abstract
The mammalian lung forms its elaborate tree-like structure following a largely stereotypical branching sequence. While a number of genes have been identified to play essential roles in lung branching, what coordinates the choice between branch growth and new branch formation has not been elucidated. Here we show that loss of FGF-activated transcription factor genes, Etv4 and Etv5 (collectively Etv), led to prolonged branch tip growth and delayed new branch formation. Unexpectedly, this phenotype is more similar to mutants with increased rather than decreased FGF activity. Indeed, an increased Fgf10 expression is observed, and reducing Fgf10 dosage can attenuate the Etv mutant phenotype. Further evidence indicates that ETV inhibits Fgf10 via directly promoting Shh expression. SHH in turn inhibits local Fgf10 expression and redirects growth, thereby initiating new branches. Together, our findings establish ETV as a key node in the FGF-ETV-SHH inhibitory feedback loop that dictates branching periodicity.
Collapse
Affiliation(s)
- John C Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jamie M Verheyden
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhen Zhang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Pengfei Sui
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Zhang
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Deborah A Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Yan Zhang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
48
|
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. PLoS Biol 2016; 14:e1002382. [PMID: 26894589 PMCID: PMC4760680 DOI: 10.1371/journal.pbio.1002382] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.
Collapse
Affiliation(s)
- Paul Riccio
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| |
Collapse
|
49
|
Combes AN. Towards a quantitative model of kidney morphogenesis. Nephrology (Carlton) 2016; 20:312-4. [PMID: 25619899 DOI: 10.1111/nep.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 11/29/2022]
Abstract
Kidney growth is dependent on functional interactions between mesenchymal nephron progenitors, the ureteric epithelium and surrounding stroma, which together make up the nephrogenic niche. Signalling between these populations regulates nephron progenitor maintenance, branching morphogenesis and nephron induction. Nephron endowment is sensitive to changes in the size of the nephron progenitor pool and to decreases in factors that promote branching morphogenesis. However, determining the morphogenic consequences of these disruptions in vivo has been challenging as quantitating kidney morphogenesis is hampered by the size, opacity and three-dimensional complexity of the tissue. The recent application of whole mount immunofluorescence and tissue clearing, coupled with multiscale imaging and quantitative analysis, has begun to give insights into the dynamics of kidney formation. This review focuses on how the quantitative nature of this approach has enabled mathematical modelling of cell cycle lengths, growth rates, cell number and branching rates and is advancing our understanding of kidney organogenesis.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Iber D, Karimaddini Z, Ünal E. Image-based modelling of organogenesis. Brief Bioinform 2015; 17:616-27. [DOI: 10.1093/bib/bbv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 01/05/2023] Open
|