1
|
Boldizar H, Friedman A, Stanley T, Padilla M, Galdieri J, Sclar A, Stawicki TM. The role of cilia in the development, survival, and regeneration of hair cells. Biol Open 2024; 13:bio061690. [PMID: 39263863 DOI: 10.1242/bio.061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations impacting cilia genes lead to a class of human diseases known as ciliopathies. This is due to the role of cilia in the development, survival, and regeneration of many cell types. We investigated the extent to which disrupting cilia impacted these processes in lateral line hair cells of zebrafish. We found that mutations in two intraflagellar transport (IFT) genes, ift88 and dync2h1, which lead to the loss of kinocilia, caused increased hair cell apoptosis. IFT gene mutants also have a decreased mitochondrial membrane potential, and blocking the mitochondrial uniporter causes a loss of hair cells in wild-type zebrafish but not mutants, suggesting mitochondria dysfunction may contribute to the apoptosis seen in these mutants. These mutants also showed decreased proliferation during hair cell regeneration but did not show consistent changes in support cell number or proliferation during hair cell development. These results show that the loss of hair cells seen following disruption of cilia through either mutations in anterograde or retrograde IFT genes appears to be due to impacts on hair cell survival but not necessarily development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Hope Boldizar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Amanda Friedman
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Tess Stanley
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - María Padilla
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | | | - Arielle Sclar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
2
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
3
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
4
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Levic DS, Bagnat M. Polarized transport of membrane and secreted proteins during lumen morphogenesis. Semin Cell Dev Biol 2023; 133:65-73. [PMID: 35307284 PMCID: PMC9481742 DOI: 10.1016/j.semcdb.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
A ubiquitous feature of animal development is the formation of fluid-filled cavities or lumina, which transport gases and fluids across tissues and organs. Among different species, lumina vary drastically in size, scale, and complexity. However, all lumen formation processes share key morphogenetic principles that underly their development. Fundamentally, a lumen simply consists of epithelial cells that encapsulate a continuous internal space, and a common way of building a lumen is via opening and enlarging by filling it with fluid and/or macromolecules. Here, we discuss how polarized targeting of membrane and secreted proteins regulates lumen formation, mainly focusing on ion transporters in vertebrate model systems. We also discuss mechanistic differences observed among invertebrates and vertebrates and describe how the unique properties of the Na+/K+-ATPase and junctional proteins can promote polarization of immature epithelia to build lumina de novo in developing organs.
Collapse
Affiliation(s)
- Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Wang J, Thomas HR, Thompson RG, Waldrep SC, Fogerty J, Song P, Li Z, Ma Y, Santra P, Hoover JD, Yeo NC, Drummond IA, Yoder BK, Amack JD, Perkins B, Parant JM. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech 2022; 15:dmm049568. [PMID: 36533556 PMCID: PMC9844136 DOI: 10.1242/dmm.049568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yongjie Ma
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Peu Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jonathan D. Hoover
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Iain A. Drummond
- Davis Center for Aging and Regeneration, Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Drummond BE, Chambers BE, Wesselman HM, Gibson S, Arceri L, Ulrich MN, Gerlach GF, Kroeger PT, Leshchiner I, Goessling W, Wingert RA. osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2. Biomedicines 2022; 10:biomedicines10112868. [PMID: 36359386 PMCID: PMC9687957 DOI: 10.3390/biomedicines10112868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Knowledge about the genetic pathways that control nephron development is essential for better understanding the basis of congenital malformations of the kidney. The transcription factors Osr1 and Hand2 are known to exert antagonistic influences to balance kidney specification. Here, we performed a forward genetic screen to identify nephrogenesis regulators, where whole genome sequencing identified an osr1 lesion in the novel oceanside (ocn) mutant. The characterization of the mutant revealed that osr1 is needed to specify not renal progenitors but rather their maintenance. Additionally, osr1 promotes the expression of wnt2ba in the intermediate mesoderm (IM) and later the podocyte lineage. wnt2ba deficiency reduced podocytes, where overexpression of wnt2ba was sufficient to rescue podocytes and osr1 deficiency. Antagonism between osr1 and hand2 mediates podocyte development specifically by controlling wnt2ba expression. These studies reveal new insights about the roles of Osr1 in promoting renal progenitor survival and lineage choice.
Collapse
Affiliation(s)
- Bridgette E. Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah M. Wesselman
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Gibson
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liana Arceri
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marisa N. Ulrich
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F. Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul T. Kroeger
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women’s Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wolfram Goessling
- Brigham and Women’s Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Brigham and Women’s Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
- Correspondence: ; Tel.: +1-574-631-0907
| |
Collapse
|
8
|
Zhao F, Tian S, Wu Q, Li Z, Ye L, Zhuang Y, Wang M, Xie Y, Zou S, Teng W, Tong Y, Tang D, Mahato AK, Benhamed M, Liu Z, Zhang Y. Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. PLANT COMMUNICATIONS 2022; 3:100304. [PMID: 35605195 PMCID: PMC9284283 DOI: 10.1016/j.xplc.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Triticeae species, including wheat, barley, and rye, are critical for global food security. Mapping agronomically important genes is crucial for elucidating molecular mechanisms and improving crops. However, Triticeae includes many wild relatives with desirable agronomic traits, and frequent introgressions occurred during Triticeae evolution and domestication. Thus, Triticeae genomes are generally large and complex, making the localization of genes or functional elements that control agronomic traits challenging. Here, we developed Triti-Map, which contains a suite of user-friendly computational packages specifically designed and optimized to overcome the obstacles of gene mapping in Triticeae, as well as a web interface integrating multi-omics data from Triticeae for the efficient mining of genes or functional elements that control particular traits. The Triti-Map pipeline accepts both DNA and RNA bulk-segregated sequencing data as well as traditional QTL data as inputs for locating genes and elucidating their functions. We illustrate the usage of Triti-Map with a combination of bulk-segregated ChIP-seq data to detect a wheat disease-resistance gene with its promoter sequence that is absent from the reference genome and clarify its evolutionary process. We hope that Triti-Map will facilitate gene isolation and accelerate Triticeae breeding.
Collapse
Affiliation(s)
- Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Tian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghao Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002 China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002 China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Ajay Kumar Mahato
- Laboratory of Genome Informatics (LGI) In-charge Bioinformatics Wing-A, First Floor Center for DNA Fingerprinting and Diagnostics Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay 91405, France
| | - Zhiyong Liu
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
9
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
10
|
Meserve JH, Nelson JC, Marsden KC, Hsu J, Echeverry FA, Jain RA, Wolman MA, Pereda AE, Granato M. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet 2021; 17:e1008943. [PMID: 34061829 PMCID: PMC8195410 DOI: 10.1371/journal.pgen.1008943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/11/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry Hsu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fabio A. Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Roshan A. Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marc A. Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Levic DS, Ryan S, Marjoram L, Honeycutt J, Bagwell J, Bagnat M. Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. J Cell Biol 2020; 219:133852. [PMID: 32328632 PMCID: PMC7147097 DOI: 10.1083/jcb.201908225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial cell physiology critically depends on the asymmetric distribution of channels and transporters. However, the mechanisms targeting membrane proteins to the apical surface are still poorly understood. Here, we performed a visual forward genetic screen in the zebrafish intestine and identified mutants with defective apical targeting of membrane proteins. One of these mutants, affecting the vacuolar H+-ATPase gene atp6ap1b, revealed specific requirements for luminal acidification in apical, but not basolateral, membrane protein sorting and transport. Using a low temperature block assay combined with genetic and pharmacologic perturbation of luminal pH, we monitored transport of newly synthesized membrane proteins from the TGN to apical membrane in live zebrafish. We show that vacuolar H+-ATPase activity regulates sorting of O-glycosylated proteins at the TGN, as well as Rab8-dependent post-Golgi trafficking of different classes of apical membrane proteins. Thus, luminal acidification plays distinct and specific roles in apical membrane biogenesis.
Collapse
Affiliation(s)
| | - Sean Ryan
- Department of Cell Biology, Duke University, Durham, NC
| | | | | | | | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC
| |
Collapse
|
12
|
Henson HE, Taylor MR. A sart1 Zebrafish Mutant Results in Developmental Defects in the Central Nervous System. Cells 2020; 9:cells9112340. [PMID: 33105605 PMCID: PMC7690441 DOI: 10.3390/cells9112340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
The spliceosome consists of accessory proteins and small nuclear ribonucleoproteins (snRNPs) that remove introns from RNA. As splicing defects are associated with degenerative conditions, a better understanding of spliceosome formation and function is essential. We provide insight into the role of a spliceosome protein U4/U6.U5 tri-snRNP-associated protein 1, or Squamous cell carcinoma antigen recognized by T-cells (Sart1). Sart1 recruits the U4.U6/U5 tri-snRNP complex to nuclear RNA. The complex then associates with U1 and U2 snRNPs to form the spliceosome. A forward genetic screen identifying defects in choroid plexus development and whole-exome sequencing (WES) identified a point mutation in exon 12 of sart1 in Danio rerio (zebrafish). This mutation caused an up-regulation of sart1. Using RNA-Seq analysis, we identified additional upregulated genes, including those involved in apoptosis. We also observed increased activated caspase 3 in the brain and eye and down-regulation of vision-related genes. Although splicing occurs in numerous cells types, sart1 expression in zebrafish was restricted to the brain. By identifying sart1 expression in the brain and cell death within the central nervous system (CNS), we provide additional insights into the role of sart1 in specific tissues. We also characterized sart1's involvement in cell death and vision-related pathways.
Collapse
Affiliation(s)
- Hannah E. Henson
- Chemical Biology and Therapeutics Department, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-731-661-5520
| | - Michael R. Taylor
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
13
|
Molinari E, Sayer JA. Disease Modeling To Understand the Pathomechanisms of Human Genetic Kidney Disorders. Clin J Am Soc Nephrol 2020; 15:855-872. [PMID: 32139361 PMCID: PMC7274277 DOI: 10.2215/cjn.08890719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The class of human genetic kidney diseases is extremely broad and heterogeneous. Accordingly, the range of associated disease phenotypes is highly variable. Many children and adults affected by inherited kidney disease will progress to ESKD at some point in life. Extensive research has been performed on various different disease models to investigate the underlying causes of genetic kidney disease and to identify disease mechanisms that are amenable to therapy. We review some of the research highlights that, by modeling inherited kidney disease, contributed to a better understanding of the underlying pathomechanisms, leading to the identification of novel genetic causes, new therapeutic targets, and to the development of new treatments. We also discuss how the implementation of more efficient genome-editing techniques and tissue-culture methods for kidney research is providing us with personalized models for a precision-medicine approach that takes into account the specificities of the patient and the underlying disease. We focus on the most common model systems used in kidney research and discuss how, according to their specific features, they can differentially contribute to biomedical research. Unfortunately, no definitive treatment exists for most inherited kidney disorders, warranting further exploitation of the existing disease models, as well as the implementation of novel, complex, human patient-specific models to deliver research breakthroughs.
Collapse
Affiliation(s)
- Elisa Molinari
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Bagwell J, Norman J, Ellis K, Peskin B, Hwang J, Ge X, Nguyen SV, McMenamin SK, Stainier DY, Bagnat M. Notochord vacuoles absorb compressive bone growth during zebrafish spine formation. eLife 2020; 9:51221. [PMID: 31995030 PMCID: PMC7012607 DOI: 10.7554/elife.51221] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
The vertebral column or spine assembles around the notochord rod which contains a core made of large vacuolated cells. Each vacuolated cell possesses a single fluid-filled vacuole, and loss or fragmentation of these vacuoles in zebrafish leads to spine kinking. Here, we identified a mutation in the kinase gene dstyk that causes fragmentation of notochord vacuoles and a severe congenital scoliosis-like phenotype in zebrafish. Live imaging revealed that Dstyk regulates fusion of membranes with the vacuole. We find that localized disruption of notochord vacuoles causes vertebral malformation and curving of the spine axis at those sites. Accordingly, in dstyk mutants the spine curves increasingly over time as vertebral bone formation compresses the notochord asymmetrically, causing vertebral malformations and kinking of the axis. Together, our data show that notochord vacuoles function as a hydrostatic scaffold that guides symmetrical growth of vertebrae and spine formation.
Collapse
Affiliation(s)
- Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, United States
| | - James Norman
- Department of Cell Biology, Duke University, Durham, United States
| | - Kathryn Ellis
- Department of Cell Biology, Duke University, Durham, United States
| | - Brianna Peskin
- Department of Cell Biology, Duke University, Durham, United States
| | - James Hwang
- Department of Cell Biology, Duke University, Durham, United States
| | - Xiaoyan Ge
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Stacy V Nguyen
- Biology Department, Boston College, Boston, United States
| | | | - Didier Yr Stainier
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, United States
| |
Collapse
|
15
|
Chambers BE, Gerlach GF, Clark EG, Chen KH, Levesque AE, Leshchiner I, Goessling W, Wingert RA. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development 2019; 146:dev.172387. [PMID: 31160420 DOI: 10.1242/dev.172387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Renal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular compartments with discrete physiological identities. Here, from a forward genetic screen using zebrafish, we report the discovery that transcription factor AP-2 alpha (tfap2a) coordinates a gene regulatory network that activates the terminal differentiation program of distal segments in the pronephros. We found that tfap2a acts downstream of Iroquois homeobox 3b (irx3b), a distal lineage transcription factor, to operate a circuit consisting of tfap2b, irx1a and genes encoding solute transporters that dictate the specialized metabolic functions of distal nephron segments. Interestingly, this regulatory node is distinct from other checkpoints of differentiation, such as polarity establishment and ciliogenesis. Thus, our studies reveal insights into the genetic control of differentiation, where tfap2a is essential for regulating a suite of segment transporter traits at the final tier of zebrafish pronephros ontogeny. These findings have relevance for understanding renal birth defects, as well as efforts to recapitulate nephrogenesis in vivo to facilitate drug discovery and regenerative therapies.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karen H Chen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anna E Levesque
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Pandey G, Westhoff JH, Schaefer F, Gehrig J. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model. Int J Mol Sci 2019; 20:ijms20061290. [PMID: 30875791 PMCID: PMC6471943 DOI: 10.3390/ijms20061290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is being increasingly used in biomedical research and drug discovery to conduct large-scale compound screening. However, there is a lack of accessible methodologies to enable automated imaging and scoring of tissue-specific phenotypes at enhanced resolution. Here, we present the development of an automated imaging pipeline to identify chemical modifiers of glomerular cyst formation in a zebrafish model for human cystic kidney disease. Morpholino-mediated knockdown of intraflagellar transport protein Ift172 in Tg(wt1b:EGFP) embryos was used to induce large glomerular cysts representing a robustly scorable phenotypic readout. Compound-treated embryos were consistently aligned within the cavities of agarose-filled microplates. By interfacing feature detection algorithms with automated microscopy, a smart imaging workflow for detection, centring and zooming in on regions of interests was established, which enabled the automated capturing of standardised higher resolution datasets of pronephric areas. High-content screening datasets were processed and analysed using custom-developed heuristic algorithms implemented in common open-source image analysis software. The workflow enables highly efficient profiling of entire compound libraries and scoring of kidney-specific morphological phenotypes in thousands of zebrafish embryos. The demonstrated toolset covers all the aspects of a complex whole organism screening assay and can be adapted to other organs, specimens or applications.
Collapse
Affiliation(s)
- Gunjan Pandey
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Franz Schaefer
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jochen Gehrig
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
| |
Collapse
|
17
|
Eisa-Beygi S, Benslimane FM, El-Rass S, Prabhudesai S, Abdelrasool MKA, Simpson PM, Yalcin HC, Burrows PE, Ramchandran R. Characterization of Endothelial Cilia Distribution During Cerebral-Vascular Development in Zebrafish ( Danio rerio). Arterioscler Thromb Vasc Biol 2018; 38:2806-2818. [PMID: 30571172 PMCID: PMC6309420 DOI: 10.1161/atvbaha.118.311231] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective- Endothelial cells (ECs) sense and respond to flow-induced mechanical stress, in part, via microtubule-based projections called primary cilia. However, many critical steps during vascular morphogenesis occur independent of flow. The involvement of cilia in regulating these stages of cranial vascular morphogenesis is poorly understood because cilia have not been visualized in primary head vessels. The objective of this study was to investigate involvement of cilia in regulating the early stages of cranial vascular morphogenesis. Approach and Results- Using high-resolution imaging of the Tg(kdrl:mCherry-CAAX) y171 ;(bactin::Arl13b:GFP) zebrafish line, we showed that cilia are enriched in the earliest formed cranial vessels that assemble via vasculogenesis and in angiogenic hindbrain capillaries. Cilia were more prevalent around the boundaries of putative intravascular spaces in primary and angiogenic vessels. Loss of cardiac contractility and blood flow, because of knockdown of cardiac troponin T type 2a ( tnnt2a) expression, did not affect the distribution of cilia in primary head vasculature. In later stages of development, cilia were detected in retinal vasculature, areas of high curvature, vessel bifurcation points, and during vessel anastomosis. Loss of genes crucial for cilia biogenesis ( ift172 and ift81) induced intracerebral hemorrhages in an EC-autonomous manner. Exposure to high shear stress induced premature cilia disassembly in brain ECs and was associated with intracerebral hemorrhages. Conclusions- Our study suggests a functional role for cilia in brain ECs, which is associated with the emergence and remodeling of the primary cranial vasculature. This cilia function is flow-independent, and cilia in ECs are required for cerebral-vascular stability.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA 53226
| | | | - Suzan El-Rass
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | - Patricia E. Burrows
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA 53226
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee WI 53226
| |
Collapse
|
18
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Drummond BE, Wingert RA. Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. CANCER CELL & MICROENVIRONMENT 2018; 5:e1630. [PMID: 29707605 PMCID: PMC5922780 DOI: 10.14800/ccm.1630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specialized renal epithelial cells known as podocytes are essential components of the filtering structures within the kidney that coordinate the process of removing waste from the bloodstream. Podocyte loss initiates many human kidney diseases as it triggers subsequent damage to the kidney, leading to progressive loss of function that culminates with end stage renal failure. Podocyte morphology, function and gene expression profiles are well conserved between zebrafish and humans, making the former a relevant model to study podocyte development and model kidney diseases. Recently, we reported that whole genome sequencing of the zeppelin (zep) zebrafish mutant, which exhibits podocyte abrogation, revealed that the causative lesion for this defect was a splicing mutation in the breast cancer 2, early onset (brca2) gene. This was a surprising and novel discovery, as previous research on brca2/BRCA2 in a number of vertebrate animal models had not implicated an explicit role for this gene in kidney mesoderm development. Interestingly, the abrogation of the podocyte lineage in zep mutants was also accompanied by the formation of a larger interrenal (IR) gland, which is analogous to the adrenal gland in mammals, and suggested a fate switch between the renal and inter renal mesodermal derivatives. Mirroring these findings, knockdown of brca2 also recapitulated the loss of podocytes and increased IR population. In addition, brca2 overexpression was sufficient to partially rescue podocytes in zep mutants, and induced ectopic podocyte formation in wild-type embryos. Interestingly, immunofluorescence studies indicated that zep mutants had elevated P-h2A.X levels, suggesting that DNA repair is dysfunctional in these animals and contributes to the zep phenotype. Moving forward, this unique zebrafish mutant provides a new model to further explore how brca2 contributes to the development of tissues including the kidney mesoderm-roles which may have implications for renal diseases as well.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
20
|
Genetic Screen for Postembryonic Development in the Zebrafish ( Danio rerio): Dominant Mutations Affecting Adult Form. Genetics 2017; 207:609-623. [PMID: 28835471 DOI: 10.1534/genetics.117.300187] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.
Collapse
|
21
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
22
|
Kroeger PT, Drummond BE, Miceli R, McKernan M, Gerlach GF, Marra AN, Fox A, McCampbell KK, Leshchiner I, Rodriguez-Mari A, BreMiller R, Thummel R, Davidson AJ, Postlethwait J, Goessling W, Wingert RA. The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Dev Biol 2017; 428:148-163. [PMID: 28579318 DOI: 10.1016/j.ydbio.2017.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
Abstract
The zebrafish kidney is conserved with other vertebrates, making it an excellent genetic model to study renal development. The kidney collects metabolic waste using a blood filter with specialized epithelial cells known as podocytes. Podocyte formation is poorly understood but relevant to many kidney diseases, as podocyte injury leads to progressive scarring and organ failure. zeppelin (zep) was isolated in a forward screen for kidney mutants and identified as a homozygous recessive lethal allele that causes reduced podocyte numbers, deficient filtration, and fluid imbalance. Interestingly, zep mutants had a larger interrenal gland, the teleostean counterpart of the mammalian adrenal gland, which suggested a fate switch with the related podocyte lineage since cell proliferation and cell death were unchanged within the shared progenitor field from which these two identities arise. Cloning of zep by whole genome sequencing (WGS) identified a splicing mutation in breast cancer 2, early onset (brca2)/fancd1, which was confirmed by sequencing of individual fish. Several independent brca2 morpholinos (MOs) phenocopied zep, causing edema, reduced podocyte number, and increased interrenal cell number. Complementation analysis between zep and brca2ZM_00057434 -/- zebrafish, which have an insertional mutation, revealed that the interrenal lineage was expanded. Importantly, overexpression of brca2 rescued podocyte formation in zep mutants, providing critical evidence that the brca2 lesion encoded by zep specifically disrupts the balance of nephrogenesis. Taken together, these data suggest for the first time that brca2/fancd1 is essential for vertebrate kidney ontogeny. Thus, our findings impart novel insights into the genetic components that impact renal development, and because BRCA2/FANCD1 mutations in humans cause Fanconi anemia and several common cancers, this work has identified a new zebrafish model to further study brca2/fancd1 in disease.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel Miceli
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael McKernan
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Annemarie Fox
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kristen K McCampbell
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | | | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ryan Thummel
- Departments of Anatomy and Cell Biology and Opthamology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, NZ
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
23
|
Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F, Jun S, Zhihua R. Application of Zebrafish Models in Inflammatory Bowel Disease. Front Immunol 2017; 8:501. [PMID: 28515725 PMCID: PMC5413514 DOI: 10.3389/fimmu.2017.00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and remitting inflammatory disease with unclear etiology. As a clinically frequent disease, it can affect individuals throughout their lives, with multiple complications. Unfortunately, traditional murine models are not efficient for the further study of IBD. Thus, effective and convenient animal models are needed. Zebrafish have been used as model organisms to investigate IBD because of their suggested highly genetic similarity to humans and their superiority as laboratory models. The zebrafish model has been used to study the composition of intestinal microbiota, novel genes, and therapeutic approaches. The pathogenesis of IBD is still unclear and many risk factors remain unidentified. In this review, we compare traditional murine models and zebrafish models in terms of advantages, pathogenesis, and drug discovery screening for IBD. We also review the progress and deficiencies of the zebrafish model for scientific applications.
Collapse
Affiliation(s)
- Li Hanyang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Liu Xuanzhe
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chen Xuyang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiu Yujia
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Fu Jiarong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Shen Jun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ran Zhihua
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
24
|
Umans RA, Henson HE, Mu F, Parupalli C, Ju B, Peters JL, Lanham KA, Plavicki JS, Taylor MR. CNS angiogenesis and barriergenesis occur simultaneously. Dev Biol 2017; 425:101-108. [PMID: 28365243 DOI: 10.1016/j.ydbio.2017.03.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/24/2017] [Accepted: 03/18/2017] [Indexed: 01/04/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously.
Collapse
Affiliation(s)
- Robyn A Umans
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hannah E Henson
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fangzhou Mu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Chaithanyarani Parupalli
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer L Peters
- Cell and Tissue Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kevin A Lanham
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Jessica S Plavicki
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Michael R Taylor
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
25
|
He M, Agbu S, Anderson KV. Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 2017; 27:110-125. [PMID: 27765513 PMCID: PMC5258846 DOI: 10.1016/j.tcb.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Biochemistry, Cell, and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
26
|
Raghupathy RK, Zhang X, Alhasani RH, Zhou X, Mullin M, Reilly J, Li W, Liu M, Shu X. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish. Cell Biochem Funct 2016; 34:429-40. [PMID: 27470972 DOI: 10.1002/cbf.3205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.
Collapse
Affiliation(s)
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem H Alhasani
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
27
|
Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3-GENES GENOMES GENETICS 2016; 6:2225-35. [PMID: 27207957 PMCID: PMC4938675 DOI: 10.1534/g3.116.030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hair cells possess a single primary cilium, called the kinocilium, early in development. While the kinocilium is lost in auditory hair cells of most species it is maintained in vestibular hair cells. It has generally been believed that the primary role of the kinocilium and cilia-associated genes in hair cells is in the establishment of the polarity of actin-based stereocilia, the hair cell mechanotransduction apparatus. Through genetic screening and testing of candidate genes in zebrafish (Danio rerio) we have found that mutations in multiple cilia genes implicated in intraflagellar transport (dync2h1, wdr35, ift88, and traf3ip), and the ciliary transition zone (cc2d2a, mks1, and cep290) lead to resistance to aminoglycoside-induced hair cell death. These genes appear to have differing roles in hair cells, as mutations in intraflagellar transport genes, but not transition zone genes, lead to defects in kinocilia formation and processes dependent upon hair cell mechanotransduction activity. These mutants highlight a novel role of cilia-associated genes in hair cells, and provide powerful tools for further study.
Collapse
|
28
|
Song Z, Zhang X, Jia S, Yelick PC, Zhao C. Zebrafish as a Model for Human Ciliopathies. J Genet Genomics 2016; 43:107-20. [DOI: 10.1016/j.jgg.2016.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
|
29
|
Cherukuri PF, Maduro V, Fuentes-Fajardo KV, Lam K, Adams DR, Tifft CJ, Mullikin JC, Gahl WA, Boerkoel CF. Replicate exome-sequencing in a multiple-generation family: improved interpretation of next-generation sequencing data. BMC Genomics 2015; 16:998. [PMID: 26602380 PMCID: PMC4659195 DOI: 10.1186/s12864-015-2107-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background Whole-exome sequencing (WES) is rapidly evolving into a tool of choice for rapid, and inexpensive identification of molecular genetic lesions within targeted regions of the human genome. While biases in WES coverage of nucleotides in targeted regions are recognized, it is not well understood how repetition of WES improves the interpretation of sequencing results in a clinical diagnostic setting. Method To address this, we compared independently generated exome-capture of six individuals from three-generations sequenced in triplicate. This generated between 48x-86x mean target depth of high-quality mapped bases (>Q20) for each technical replicate library. Cumulatively, we achieved 179 - 208x average target coverage for each individual in the pedigree. Using this experimental design, we evaluated stochastics in WES interpretation, genotyping sensitivity, and accuracy to detect de novo variants. Results In this study, we show that repetition of WES improved the interpretation of the capture target regions after aggregating the data (93.5 - 93.9 %). Compared to 81.2 - 89.6 % (50.2-55.4 Mb of 61.7 M) coverage of targeted bases at ≥20x in the individual technical replicates, the aggregated data covered 93.5 - 93.9 % of targeted bases (57.7 – 58.0 of 61.7 M) at ≥20x threshold, suggesting a 4.3 – 12.7 % improvement in coverage. Each individual’s aggregate dataset recovered 3.4 – 6.4 million bases within variable targeted regions. We uncovered technical variability (2-5 %) inherent to WES technique. We also show improved interpretation in assessing clinically important regions that lack interpretation under current conditions, affecting 12–16 of the 56 genes recommended for secondary analysis by American College of Medical Genetics (ACMG). We demonstrate that comparing technical replicate WES datasets and their derived aggregate data can effectively address overall WES genotyping discrepancies. Conclusion We describe a method to evaluate the reproducibility and stochastics in exome library preparation, and delineate the advantages of aggregating the data derived from technical replicates. The implications of this study are directly applicable to improved experimental design and provide an opportunity to rapidly, efficiently, and accurately arrive at reliable candidate nucleotide variants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Praveen F Cherukuri
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA.
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| | - Karin V Fuentes-Fajardo
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| | - Kevin Lam
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| | | | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| |
Collapse
|
30
|
Chen CH, Merriman AF, Savage J, Willer J, Wahlig T, Katsanis N, Yin VP, Poss KD. Transient laminin beta 1a Induction Defines the Wound Epidermis during Zebrafish Fin Regeneration. PLoS Genet 2015; 11:e1005437. [PMID: 26305099 PMCID: PMC4549328 DOI: 10.1371/journal.pgen.1005437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
The first critical stage in salamander or teleost appendage regeneration is creation of a specialized epidermis that instructs growth from underlying stump tissue. Here, we performed a forward genetic screen for mutations that impair this process in amputated zebrafish fins. Positional cloning and complementation assays identified a temperature-sensitive allele of the ECM component laminin beta 1a (lamb1a) that blocks fin regeneration. lamb1a, but not its paralog lamb1b, is sharply induced in a subset of epithelial cells after fin amputation, where it is required to establish and maintain a polarized basal epithelial cell layer. These events facilitate expression of the morphogenetic factors shha and lef1, basolateral positioning of phosphorylated Igf1r, patterning of new osteoblasts, and regeneration of bone. By contrast, lamb1a function is dispensable for juvenile body growth, homeostatic adult tissue maintenance, repair of split fins, or renewal of genetically ablated osteoblasts. fgf20a mutations or transgenic Fgf receptor inhibition disrupt lamb1a expression, linking a central growth factor to epithelial maturation during regeneration. Our findings reveal transient induction of lamb1a in epithelial cells as a key, growth factor-guided step in formation of a signaling-competent regeneration epidermis. Unlike mammals, adult teleost fish and urodele amphibians can fully regenerate lost appendages. Understanding what initiates regeneration in these vertebrates is of great interest to the scientific community. It has long been known that the epidermis that forms quickly over an amputated limb stump is critical for initiating regenerative programs. Yet, little of understood of the molecular and cellular mechanisms by which a simple adult epithelium transforms into this key signaling source. Here, we performed a large-scale, unbiased genetic screen for epithelial signaling deficiencies during the regeneration of amputated adult zebrafish fins, from which we identified several new mutants. One gene identified from this screen disrupts a specific component of the extracellular matrix material Laminin, Laminin beta 1a, a factor that we find to be dispensable in uninjured adult animals but required for all stages fin regeneration. Transient induction of this component by amputation polarizes the basal layer of the nascent epithelium, and, in turn, facilitates the synthesis of signaling factors, the positioning of ligand receptors, and the patterning of new bone cells. We also find that normal induction of Laminin beta 1a by injury relies on the function of Fibroblast growth factors, secreted polypeptide signals that are released early upon injury. Our results identify key early steps in the endogenous program for vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Alexander F. Merriman
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jeremiah Savage
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Jason Willer
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Taylor Wahlig
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Viravuth P. Yin
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Candela H, Casanova-Sáez R, Micol JL. Getting started in mapping-by-sequencing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:606-12. [PMID: 25359627 DOI: 10.1111/jipb.12305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/28/2014] [Indexed: 05/06/2023]
Abstract
Next-generation sequencing (NGS) technologies allow the cost-effective sequencing of whole genomes and have expanded the scope of genomics to novel applications, such as the genome-wide characterization of intraspecific polymorphisms and the rapid mapping and identification of point mutations. Next-generation sequencing platforms, such as the Illumina HiSeq2000 platform, are now commercially available at affordable prices and routinely produce an enormous amount of sequence data, but their wide use is often hindered by a lack of knowledge on how to manipulate and process the information produced. In this review, we focus on the strategies that are available to geneticists who wish to incorporate these novel approaches into their research but who are not familiar with the necessary bioinformatic concepts and computational tools. In particular, we comprehensively summarize case studies where the use of NGS technologies has led to the identification of point mutations, a strategy that has been dubbed "mapping-by-sequencing", and review examples from plants and other model species such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster. As these technologies are becoming cheaper and more powerful, their use is also expanding to allow mutation identification in species with larger genomes, such as many crop plants.
Collapse
Affiliation(s)
- Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|
32
|
TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun 2015; 6:7074. [PMID: 26044572 PMCID: PMC4468853 DOI: 10.1038/ncomms8074] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. Severe congenital development defects such as Jeune syndrome can result from the malfunction of primary cilia and dynein. Here Schmidts et al. report unique biallelic null mutations in a gene encoding a dynein light chain, helping to explain the nature of ciliopathies in human patients.
Collapse
|
33
|
Marjoram L, Bagnat M. Infection, Inflammation and Healing in Zebrafish: Intestinal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2015; 3:147-153. [PMID: 26236567 PMCID: PMC4520400 DOI: 10.1007/s40139-015-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn’s disease and ulcerative colitis, contribute to significant morbidity and mortality globally. Despite an increase in incidence, IBD onset is still poorly understood. Mouse models of IBD recapitulate several aspects of human disease, but limited accessibility for live imaging and the lack of forward genetics highlight the need for new model systems for disease onset characterization. Zebrafish represent a powerful platform to model IBD using forward and reverse genetics, live imaging of transgenic lines and physiological assays. In this review, we address current models of IBD in zebrafish and newly developed reagents available for future studies.
Collapse
Affiliation(s)
- Lindsay Marjoram
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-4899,
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-681-9268 ,
| |
Collapse
|
34
|
Phillips JB, Westerfield M. Zebrafish models in translational research: tipping the scales toward advancements in human health. Dis Model Mech 2015; 7:739-43. [PMID: 24973743 PMCID: PMC4073263 DOI: 10.1242/dmm.015545] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.
Collapse
Affiliation(s)
- Jennifer B Phillips
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA
| | - Monte Westerfield
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA.
| |
Collapse
|
35
|
Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc Natl Acad Sci U S A 2015; 112:2770-5. [PMID: 25730872 DOI: 10.1073/pnas.1424089112] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset.
Collapse
|
36
|
Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 2014; 15:662-76. [PMID: 25139187 DOI: 10.1038/nrg3745] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The long-lasting success of forward genetic screens relies on the simple molecular basis of the characterized phenotypes, which are typically caused by mutations in single genes. Mapping the location of causal mutations using genetic crosses has traditionally been a complex, multistep procedure, but next-generation sequencing now allows the rapid identification of causal mutations at single-nucleotide resolution even in complex genetic backgrounds. Recent advances of this mapping-by-sequencing approach include methods that are independent of reference genome sequences, genetic crosses and any kind of linkage information, which make forward genetics amenable for species that have not been considered for forward genetic screens so far.
Collapse
Affiliation(s)
- Korbinian Schneeberger
- Genome Plasticity and Computational Genetics, Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
37
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
38
|
Davis EE, Frangakis S, Katsanis N. Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1960-1970. [PMID: 24887202 DOI: 10.1016/j.bbadis.2014.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 12/15/2022]
Abstract
Rapid advances and cost erosion in exome and genome analysis of patients with both rare and common genetic disorders have accelerated gene discovery and illuminated fundamental biological mechanisms. The thrill of discovery has been accompanied, however, with the sobering appreciation that human genomes are burdened with a large number of rare and ultra rare variants, thereby posing a significant challenge in dissecting both the effect of such alleles on protein function and also the biological relevance of these events to patient pathology. In an effort to develop model systems that are able to generate surrogates of human pathologies, a powerful suite of tools have been developed in zebrafish, taking advantage of the relatively small (compared to invertebrate models) evolutionary distance of that genome to humans, the orthology of several organs and signaling processes, and the suitability of this organism for medium and high throughput phenotypic screening. Here we will review the use of this model organism in dissecting human genetic disorders; we will highlight how diverse strategies have informed disease causality and genetic architecture; and we will discuss relative strengths and limitations of these approaches in the context of medical genome sequencing. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA.
| | - Stephan Frangakis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|