1
|
Sukhan ZP, Cho Y, Hossen S, Cho DH, Kho KH. Molecular Characterization, Expression Analysis, and CRISPR/Cas9 Mediated Gene Disruption of Myogenic Regulatory Factor 4 (MRF4) in Nile Tilapia. Curr Issues Mol Biol 2024; 46:13725-13745. [PMID: 39727948 DOI: 10.3390/cimb46120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Myogenic regulator factors (MRFs) are essential for skeletal muscle development in vertebrates, including fish. This study aimed to characterize the role of myogenic regulatory factor 4 (MRF4) in muscle development in Nile tilapia by cloning NT-MRF4 from muscle tissues. To explore the function of NT-MRF4, CRISPR/Cas9 gene editing was employed. The NT-MRF4 cDNA was 1146 bp long and had encoded 225 amino acids, featuring a myogenic basic domain, a helix-loop-helix domain, and a nuclear localization signal. NT-MRF4 mRNA was exclusively expressed in adult muscle tissues, with expression also observed during embryonic and larval stages. Food-deprived Nile tilapia exhibited significantly lower NT-MRF4 mRNA levels than the controls while re-feeding markedly increased expression. The CRISPR/Cas9 gene editing of NT-MRF4 successfully generated two types of gene disruption, leading to a frame-shift mutation in the NT-MRF4 protein. Expression analysis of MRF and MEF2 genes in gene-edited (GE) Nile tilapia revealed that MyoG expressions nearly doubled compared to wild-type (WT) fish, suggesting that MyoG compensates for the loss of MRF4 function. Additionally, MEF2b, MEF2d, and MEF2a expressions significantly increased in GE Nile tilapia, supporting continued muscle development. Overall, these findings suggest that NT-MRF4 regulates muscle development, while MyoG may compensate for its inactivation to sustain normal muscle growth.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Doo Hyun Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
2
|
Shi DL, Grifone R, Zhang X, Li H. Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09685-5. [PMID: 39614020 DOI: 10.1007/s10974-024-09685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
RNA-binding proteins are critically involved in the post-transcriptional control of gene expression during embryonic development and in adult life, contributing to regulating cell differentiation and maintaining tissue homeostasis. Compared to the relatively well documented functions of transcription factors, the regulatory roles of RNA-binding proteins in muscle development and function remain largely elusive. However, deficiency of many RNA-binding proteins has been associated with muscular defects, neuromuscular disorders and heart diseases, such as myotonic dystrophy, amyotrophic lateral sclerosis, and cardiomyopathy. Rbm24 is highly conserved among vertebrates and is one of the best characterized RNA-binding proteins with crucial implication in the myogenic and cardiomyogenic programs. It presents the distinctive particularity of displaying highly restricted expression in both skeletal and cardiac muscles, with changes in subcellular localization during the process of differentiation. Functional analyses using different vertebrate models have clearly demonstrated its requirement for skeletal muscle differentiation and regeneration as well as for myocardium organization and cardiac function, by regulating the expression of both common and distinct target genes in these tissues. The challenge remains to decipher the dynamic feature of post-transcriptional circuits regulated by Rbm24 during skeletal myogenesis, cardiomyogenesis, and muscle repair. This review discusses current understanding of its function in striated muscles and its possible implication in human disease, with the aim of identifying research gaps for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS UMR7622, INSERM U1156, LBD, Paris, F-75005, France.
| | - Raphaëlle Grifone
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS UMR7622, INSERM U1156, LBD, Paris, F-75005, France
| | - Xiangmin Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongyan Li
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
3
|
Li W, Xu M, Shi X, Gu J, Guo J, Xu Y, Dai B. Effect of zoledronic acid on muscle metabolism in mice with osteoporosis combined with sarcopenia. BMC Musculoskelet Disord 2024; 25:937. [PMID: 39574042 PMCID: PMC11580508 DOI: 10.1186/s12891-024-08054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
OBJECTIVE To investigate the effects of zoledronic acid on muscle metabolism in mice with osteoporosis and sarcopenia and elucidate the possible underlying mechanism. METHODS Twenty-four 8-week-old male C57BL/6J mice were randomly divided into four groups: non-suspension (N-SUS), suspension (SUS), suspension + zoledronic acid (ZA), and suspension + PTH(PTH) groups. Equal doses of saline, zoledronic acid, and PTH were administered subcutaneously. After 4 weeks, the mice were sacrificed, and body weight and muscle mass (gastrocnemius and soleus) were measured, the right tibia of mice was taken for micro-CT examination, and the muscle specimens were analyzed using HE staining, ATPase staining, western blotting, and real-time PCR. RESULTS Compared with the N-SUS group, the bone mineral density (BMD), trabecular bone relative volume (BV/TV) and trabecular bone number (Tb.N) were significantly decreased in the SUS group (P < 0.01), the trabecular bone separation(Tb.Sp)was significantly increased (P < 0.01), which was reversed in ZA and PTH group (P < 0.01).Compared to the SUS group, the body and muscle weights of the ZA and PTH groups were significantly increased. Compared to the SUS group, the muscle structure was less damaged, the proportion of type I muscle fibers was increased, and the protein expression of β-catenin and AKT were upregulated in the ZA and PTH groups(P < 0.05). In addition, the mRNA expression levels of Wnt3a, Wnt16, Myf5, and PI3K were significantly increased (P < 0.05), where as those of Myogenic Differentiation Antigen(MyoD )and Myogenin (MyoG) were significantly decreased (P < 0.05). No significant differences were observed between the ZA and PTH groups. CONCLUSIONS Zoledronic acid can reduce muscle loss and damage by upregulating the mRNA expression of Wnt and PI3K and the protein expression of β-catenin and AKT.Our results provide a novel basis for the development of drugs for the treatment of osteoporosis combined with sarcopenia.
Collapse
Affiliation(s)
- Weilong Li
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China
| | - Ming Xu
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China
| | - Xuchao Shi
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China
| | - Jie Gu
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China
| | - Jian Guo
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China
| | - Yuanlin Xu
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China
| | - Bo Dai
- Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China.
| |
Collapse
|
4
|
Kim YA, Oh S, Park G, Park S, Park Y, Choi H, Kim M, Choi J. Characteristics of bovine muscle satellite cell from different breeds for efficient production of cultured meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1257-1272. [PMID: 39691610 PMCID: PMC11647411 DOI: 10.5187/jast.2023.e115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/19/2024]
Abstract
The purpose of this study was comparing in vitro performances of three breeds of donor satellite cells for cultured meat and selecting the optimal donor and providing insight into the selection of donors for cultured meat production. Cattle muscle satellite cells were isolated from the muscle tissue of Hanwoo, Holstein, and Jeju black cattle, and then sorted by fluorescence activated cell sorting (FACS). Regarding proliferation of satellite cells, all three breeds showed similar trends. The myogenic potential, based on PAX7 and MYOD mRNA expression levels, was similar or significantly higher for Holstein than other breeds. When the area, width, and fusion index of the myotube were calculated through immunofluorescence staining of myosin, it was expressed upward for Holstein in all experiments except myotube area at passage 8. In addition, it was confirmed that Holstein's muscle satellite cells showed an upward expression in the amount of gene and protein expression related to myogenic. In the case of gene expression of MYOG, DES, and MYH4 known to play a key role in differentiation into muscles, it was confirmed that Holstein's muscle satellite cells expressed higher levels. CAV3, IGF1 and TNNT1, which contribute to hypertrophy and differentiation of muscle cells, showed high expression in Holstein. Our results suggest using cells from Holstein cattle can increase the efficiency of cultured meat production, compared to Hanwoo and Jeju breeds, because the cells exhibit superior differentiation behavior which would lead to greater yields during the maturation phase of bioprocessing.
Collapse
Affiliation(s)
- Yun-a Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sehyuk Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Gyutae Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yunhwan Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunsoo Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Minjung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
5
|
Johnson D, Tobo C, Au J, Nagarapu A, Ziemkiewicz N, Chauvin H, Robinson J, Shringarpure S, Tadiwala J, Brockhouse J, Flaveny CA, Garg K. Combined regenerative rehabilitation improves recovery following volumetric muscle loss injury in a rat model. J Biomed Mater Res B Appl Biomater 2024; 112:e35438. [PMID: 38923755 PMCID: PMC11210688 DOI: 10.1002/jbm.b.35438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 μm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Connor Tobo
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jeffrey Au
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Aakash Nagarapu
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Hannah Chauvin
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jessica Robinson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering
| |
Collapse
|
6
|
Wang X, Zong X, Ye M, Jin C, Xu T, Yang J, Gao C, Wang X, Yan H. Lysine Distinctively Manipulates Myogenic Regulatory Factors and Wnt/Ca 2+ Pathway in Slow and Fast Muscles, and Their Satellite Cells of Postnatal Piglets. Cells 2024; 13:650. [PMID: 38607088 PMCID: PMC11011516 DOI: 10.3390/cells13070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.
Collapse
Affiliation(s)
- Xiaofan Wang
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Xiaoyin Zong
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Mao Ye
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Chenglong Jin
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Tao Xu
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| |
Collapse
|
7
|
Lv ST, Gao K, Choe HM, Jin ZY, Chang SY, Quan BH, Yin XJ. Effects of myostatin gene knockout on porcine extraocular muscles. Anim Biotechnol 2023; 34:2150-2158. [PMID: 35658834 DOI: 10.1080/10495398.2022.2077741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Myostatin (MSTN), a negative regulator of skeletal muscle mass, is not well known in extraocular muscles (EOMs). EOMs are specialized skeletal muscles. Hence, in this study, the effect of MSTN on the superior rectus (SR) and superior oblique (SO) of 2-month-old MSTN knockout (MSTN-/-) and wild-type (WT) pigs of the same genotype was investigated. SR (P < 0.01) and SO (P < 0.001) fiber cross-sectional areas of MSTN-/- pigs were significantly larger than those of WT pigs. Compared with WT pigs, MSTN-/- SO displayed a decrease in type I fibers (WT: 27.24%, MSTN-/-: 10.32%, P < 0.001). Type IIb fibers were higher in MSTN-/- pigs than in WT pigs (WT: 30.38%, MSTN-/-: 62.24%, P < 0.001). The trend in SR was the same as that in SO, although the trend in SO was greater than that in SR. The expression of myogenic differentiation factor (MyoD) and myogenic (MyoG) showed a significant increase in MSTN-/- SO (about 2.5-fold and 2-fold, respectively at the gene expression level, about 1.5-fold at the protein level) compared with WT pigs. MSTN plays an important role in the development of EOMs and regulates the muscle fiber type by modulating the gene expression of MyoD and MyoG in pigs.
Collapse
Affiliation(s)
- Si-Tong Lv
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Kai Gao
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Shuang-Yan Chang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Biao-Hu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
8
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
9
|
Kadota Y, Yamanokuchi R, Ohnishi N, Matsuoka M, Kawakami T, Sato M, Suzuki S. Metallothionein Gene Deficiency Facilitates the Differentiation of C2C12 Myoblasts into Slow-Twitch Myotubes. Biol Pharm Bull 2023; 46:1240-1248. [PMID: 37661403 DOI: 10.1248/bpb.b23-00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Metallothionein (MT) 1 and 2 are ubiquitously expressed cysteine-rich, low molecular weight proteins. MT expression is upregulated in skeletal muscle during aging. MTs also play role in multiple types of skeletal muscle atrophy. Meanwhile, it has been reported that MT1 and MT2 gene deficiency increases myogenesis in MT knockout (MTKO) mice. However, little is known about the effect of MTs on muscle formation and atrophy. In this study, we investigated the effect of MT1 and MT2 gene knock-out using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) system in an in vitro skeletal muscle differentiation model (C2C12 cell line). MT deficiency promoted myogenic differentiation and myotube formation in C2C12 cells. Muscle-specific transcription factors MyoD and myogenin were found to be upregulated at the late stage of myotube differentiation in MTKO cells. Furthermore, the fast-twitch myosin heavy chain (MyHC) protein expression was similar in MTKO and mock-transfected myotubes, but slow-MyHC expression was higher in MTKO cells than in mock cells. The MT gene deletion did not affect the number of fast MyHC-positive myotubes but increased the number of slow MyHC-positive myotubes. Treatment with the antioxidant N-acetylcysteine (NAC) inhibited the increase in the number of slow MyHC-positive myotubes as well as slow-MyHC expression in MTKO cells. In contrast, NAC treatment did not alter the number of fast MyHC-positive myotubes or the expression of fast-MyHC in MTKO cells. These results suggest that the antioxidant effects of MTs may be involved in slow-twitch myofiber formation in skeletal muscle.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Ryo Yamanokuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Nodoka Ohnishi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Mami Matsuoka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | | | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
10
|
Takahashi Y, Yoshida I, Fujita K, Igarashi T, Iuchi Y. Faeces tea of cherry caterpillar (larvae of Phalera flavescens) promotes differentiation into myotubes, activates mitochondria, and suppresses the protein expression of ubiquitin ligase in C2C12. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a syndrome characterised by progressive and systemic loss of skeletal muscle mass and strength. In order to prevent sarcopenia and lead a healthy life, it is necessary to maintain muscle mass and prevent loss of muscle mass. Insect faeces have long been consumed as tea in China, both as a medicine and as a functional food. In the present work, we investigated the efficacy of cherry caterpillar faeces tea (PT) for treating sarcopenia, particularly concerning muscle building and atrophy suppression using C2C12 cells. PT treatment (0.2 mg/mL) increased myotube widths by approximately 40%, and increased the expression levels of Myod, Myog, and MYHC. Additionally, PGC1α, TFAM, SDHA, BCAT, and BCKDH were upregulated in a PT concentration-dependent manner. For PGC1α, which is the transcription coactivator, the protein expression level also increased in a concentration-dependent manner. The findings demonstrated that PT could stimulate PGC1α and activate mitochondria via branched-chain amino acid metabolism and the electron transport chain in C2C12 myoblasts. Furthermore, PT suppressed LPS-induce expression of IL6 and TNFα, and reduced the protein expression levels of the ubiquitin ligases Atrogin-1 and MuRF, which are major cause of muscle atrophy. These results indicated that PT could be effective for muscle building and suppression of atrophy.
Collapse
|
11
|
Kucharska-Gaca J, Adamski M, Biesek J. Goose Embryonic Development, Glucose and Thyroid Hormone Concentrations, and Eggshell Features Depend on Female Age and Laying Period. Animals (Basel) 2022; 12:2614. [PMID: 36230354 PMCID: PMC9559306 DOI: 10.3390/ani12192614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate embryonic development; analyze the glucose, triiodothyronine (T3), and thyroxine (T4) concentrations in the blood of embryos and goslings; and assess the structure and temperature (EST) of the eggshell. The eggs that were analyzed were from four laying seasons of White Kołuda® geese at three periods (90 eggs × 4 groups × 3 periods). The different embryo proportions, fetal membranes in the egg, and sizes of internal organs indicate a different growth rate and degree of embryo development depending on the laying age and laying period. The goose age influenced the hormone concentrations in the embryos' blood on the 28th day of incubation, which supports a relationship between the females' age and development. The eggshell thickness and density change depending on the laying age and the laying period. A decrease in eggshell thickness in the eggs up to the third season was found after the 16th day of incubation (simultaneously, the density showed an increasing trend). A lower EST distinguished the eggs from the oldest geese in the first half of the hatch. The formation of the chorioallantois membrane was associated with an increase in EST in the oldest geese.
Collapse
Affiliation(s)
| | | | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
12
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Zhou H, Liao Y, Chen D, Yu B. Effects of breeds and dietary nutrient levels on expression patterns of paired box genes and myogenic regulatory factors in pigs. Arch Anim Nutr 2022; 75:474-488. [PMID: 35227137 DOI: 10.1080/1745039x.2021.2006542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Two experiments were conducted to investigate the effects of different breeds and dietary nutrient levels on expressions of paired box (Pax) genes and myogenic regulatory factors (MRFs) in pigs. Thirty Large White (LW) barrows and thirty Chenghua (CH, a native breed of China) barrows were performed in experiment 1. Results exhibited that in the CH pigs the abundances of Pax3 at 105 and 220 d of age, Mrf4 at 63 d of age, Myf5 and Mrf4 at 220 d of age were higher than those in the LW pigs (p < 0.05). Meanwhile, the expressions of MyHC-І and ІІa in the CH pigs were upregulated, and the abundance of MyHC-ІІb were downregulated compared with those in the LW pigs at 105 and 220 d of age (p < 0.05). Moreover, the meat quality of the CH pigs was better than in the LW pigs (p < 0.05). In experiment 2, sixty LW pigs were randomly assigned to two dietary treatments meeting their nutrient requirements (NRC) or a diet with moderately reduced digestible energy, crude protein and Lys level by 560 kJ/kg, 1.48% and 0.34%, respectively (LOW diet). The results showed that the reduced dietary nutrient level increased (p < 0.05) the expressions of MyoG and Mrf4 at 105 d of age, Pax3, Myf5, and Mrf4 at 220 d of age, and upregulated (p < 0.05) the abundance of MyHC-ІІa at 105 and 220 d of age in LW pigs. In addition, a decrease in dietary nutrient level improved the meat quality in LW pigs (p < 0.05). Collectively, the expressions of Pax genes and MRFs were markedly different between the CH and LW pigs. The CH pigs exhibited higher expression levels of Pax3, Myf5, Mrf4, MyHC-І and ІІa, which may improved the meat quality. A decrease in dietary nutrient level upregulated the abundances Pax3, Mrf4, Myf5, MyoG, and MyHC-ІІa, and might enhance the meat quality in the LW pigs.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuxue Liao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Dietary Alaska Pollack Protein Induces Acute and Sustainable Skeletal Muscle Hypertrophy in Rats. Nutrients 2022; 14:nu14030547. [PMID: 35276908 PMCID: PMC8837972 DOI: 10.3390/nu14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Our previous studies suggested that Alaska pollack protein (APP) intake increases skeletal muscle mass and that it may cause a slow-to-fast shift in muscle fiber type in rats fed a high-fat diet after 56 days of feeding. In this study, we explored whether dietary APP induces acute and sustainable skeletal muscle hypertrophy in rats fed a normal-fat diet. Male 5-week-old Sprague–Dawley rats were divided into four groups and fed a purified ingredient-based high-fat diet or a purified ingredient-based normal-fat diet with casein or APP, containing the same amount of crude protein. Dietary APP significantly increased gastrocnemius muscle mass (105~110%) after 2, 7 days of feeding, regardless of dietary fat content. Rats were separated into two groups and fed a normal-fat diet with casein or APP. Dietary APP significantly increased gastrocnemius muscle mass (110%) after 56 days of feeding. Dietary APP significantly increased the cross-sectional area of the gastrocnemius skeletal muscle and collagen-rich connective tissue after 7 days of feeding. It decreased the gene expression of Mstn /Myostatin, Trim63/MuRF1, and Fbxo32/atrogin-1, but not other gene expression, such as serum IGF-1 after 7 days of feeding. No differences were observed between casein and APP groups with respect to the percentage of Type I, Type IIA, and Type IIX or IIB fibers, as determined by myosin ATPase staining after 7 days of feeding. In the similar experiment, the puromycin-labeled peptides were not different between dietary casein and APP after 2 days of feeding. These results demonstrate that APP induces acute and sustainable skeletal muscle hypertrophy in rats, regardless of dietary fat content. Dietary APP, as a daily protein source, may be an approach for maintaining or increasing muscle mass.
Collapse
|
15
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|
16
|
Bengtsen M, Winje IM, Eftestøl E, Landskron J, Sun C, Nygård K, Domanska D, Millay DP, Meza-Zepeda LA, Gundersen K. Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genet 2021; 17:e1009907. [PMID: 34752468 PMCID: PMC8604348 DOI: 10.1371/journal.pgen.1009907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/19/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle cells have different phenotypes adapted to different usage, and can be grossly divided into fast/glycolytic and slow/oxidative types. While most muscles contain a mixture of such fiber types, we aimed at providing a genome-wide analysis of the epigenetic landscape by ChIP-Seq in two muscle extremes, the fast/glycolytic extensor digitorum longus (EDL) and slow/oxidative soleus muscles. Muscle is a heterogeneous tissue where up to 60% of the nuclei can be of a different origin. Since cellular homogeneity is critical in epigenome-wide association studies we developed a new method for purifying skeletal muscle nuclei from whole tissue, based on the nuclear envelope protein Pericentriolar material 1 (PCM1) being a specific marker for myonuclei. Using antibody labelling and a magnetic-assisted sorting approach, we were able to sort out myonuclei with 95% purity in muscles from mice, rats and humans. The sorting eliminated influence from the other cell types in the tissue and improved the myo-specific signal. A genome-wide comparison of the epigenetic landscape in EDL and soleus reflected the differences in the functional properties of the two muscles, and revealed distinct regulatory programs involving distal enhancers, including a glycolytic super-enhancer in the EDL. The two muscles were also regulated by different sets of transcription factors; e.g. in soleus, binding sites for MEF2C, NFATC2 and PPARA were enriched, while in EDL MYOD1 and SIX1 binding sites were found to be overrepresented. In addition, more novel transcription factors for muscle regulation such as members of the MAF family, ZFX and ZBTB14 were identified. Complex tissues like skeletal muscle contain a variety of cells which confound the analysis of each cell type when based on homogenates, thus only about half of the cell nuclei in muscles reside inside the muscle cells. We here describe a labelling and sorting technique that allowed us to study the epigenetic landscape in purified muscle cell nuclei leaving the other cell types out. Differences between a fast/glycolytic and a slow/oxidative muscle were studied. While all skeletal muscle fibers have a similar make up and basic function, they differ in their physiology and the way they are used. Thus, some fibers are fast contracting but fatigable, and are used for short lasting explosive tasks such as sprinting. Other fibers are slow and are used for more prolonged tasks such as standing or long distance running. Since fiber type correlate with metabolic profile these features can also be related to metabolic diseases. We here show that the epigenetic landscape differed in gene loci corresponding to the differences in functional properties, and revealed that the two types are enriched in different gene regulatory networks. Exercise can alter muscle phenotype, and the epigenetic landscape might be related to how plastic different properties are.
Collapse
Affiliation(s)
- Mads Bengtsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kamilla Nygård
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Leonardo A. Meza-Zepeda
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
17
|
Wen Y, Englund DA, Peck BD, Murach KA, McCarthy JJ, Peterson CA. Myonuclear transcriptional dynamics in response to exercise following satellite cell depletion. iScience 2021; 24:102838. [PMID: 34368654 PMCID: PMC8326190 DOI: 10.1016/j.isci.2021.102838] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle is composed of post-mitotic myofibers that form a syncytium containing hundreds of myonuclei. Using a progressive exercise training model in the mouse and single nucleus RNA-sequencing (snRNA-seq) for high-resolution characterization of myonuclear transcription, we show myonuclear functional specialization in muscle. After 4 weeks of exercise training, snRNA-seq reveals that resident muscle stem cells, or satellite cells, are activated with acute exercise but demonstrate limited lineage progression while contributing to muscle adaptation. In the absence of satellite cells, a portion of nuclei demonstrates divergent transcriptional dynamics associated with mixed-fate identities compared with satellite cell replete muscles. These data provide a compendium of information about how satellite cells influence myonuclear transcription in response to exercise.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Davis A Englund
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Grifone R, Saquet A, Desgres M, Sangiorgi C, Gargano C, Li Z, Coletti D, Shi DL. Rbm24 displays dynamic functions required for myogenic differentiation during muscle regeneration. Sci Rep 2021; 11:9423. [PMID: 33941806 PMCID: PMC8093301 DOI: 10.1038/s41598-021-88563-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle has a remarkable capacity of regeneration after injury, but the regulatory network underlying this repair process remains elusive. RNA-binding proteins play key roles in the post-transcriptional regulation of gene expression and the maintenance of tissue homeostasis and plasticity. Rbm24 regulates myogenic differentiation during early development, but its implication in adult muscle is poorly understood. Here we show that it exerts multiple functions in muscle regeneration. Consistent with its dynamic subcellular localization during embryonic muscle development, Rbm24 also displays cytoplasm to nucleus translocation during C2C12 myoblast differentiation. In adult mice, Rbm24 mRNA is enriched in slow-twitch muscles along with myogenin mRNA. The protein displays nuclear localization in both slow and fast myofibers. Upon injury, Rbm24 is rapidly upregulated in regenerating myofibers and accumulates in the myonucleus of nascent myofibers. Through satellite cell transplantation, we demonstrate that Rbm24 functions sequentially to regulate myogenic differentiation and muscle regeneration. It is required for myogenin expression at early stages of muscle injury and for muscle-specific pre-mRNA alternative splicing at late stages of regeneration. These results identify Rbm24 as a multifaceted regulator of myoblast differentiation. They provide insights into the molecular pathway orchestrating the expression of myogenic factors and muscle functional proteins during regeneration.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France.
| | - Audrey Saquet
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Manon Desgres
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Claudia Sangiorgi
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Caterina Gargano
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Dario Coletti
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France.,Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Histology and Medical Embryology Section, Sapienza University of Rome, 00161, Rome, Italy
| | - De-Li Shi
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
19
|
Abundant Synthesis of Netrin-1 in Satellite Cell-Derived Myoblasts Isolated from EDL Rather Than Soleus Muscle Regulates Fast-Type Myotube Formation. Int J Mol Sci 2021; 22:ijms22094499. [PMID: 33925862 PMCID: PMC8123454 DOI: 10.3390/ijms22094499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
Resident myogenic stem cells (satellite cells) are attracting attention for their novel roles in myofiber type regulation. In the myogenic differentiation phase, satellite cells from soleus muscle (slow fiber-abundant) synthesize and secrete higher levels of semaphorin 3A (Sema3A, a multifunctional modulator) than those derived from extensor digitorum longus (EDL; fast fiber-abundant), suggesting the role of Sema3A in forming slow-twitch myofibers. However, the regulatory mechanisms underlying fast-twitch myotube commitment remain unclear. Herein, we focused on netrin family members (netrin-1, -3, and -4) that compete with Sema3A in neurogenesis and osteogenesis. We examined whether netrins affect fast-twitch myotube generation by evaluating their expression in primary satellite cell cultures. Initially, netrins are upregulated during myogenic differentiation. Next, we compared the expression levels of netrins and their cell membrane receptors between soleus- and EDL-derived satellite cells; only netrin-1 showed higher expression in EDL-derived satellite cells than in soleus-derived satellite cells. We also performed netrin-1 knockdown experiments and additional experiments with recombinant netrin-1 in differentiated satellite cell-derived myoblasts. Netrin-1 knockdown in myoblasts substantially reduced fast-type myosin heavy chain (MyHC) expression; exogenous netrin-1 upregulated fast-type MyHC in satellite cells. Thus, netrin-1 synthesized in EDL-derived satellite cells may promote myofiber type commitment of fast muscles.
Collapse
|
20
|
Scaricamazza S, Salvatori I, Ferri A, Valle C. Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity? Cells 2021; 10:525. [PMID: 33801336 PMCID: PMC8000428 DOI: 10.3390/cells10030525] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the "dying back" phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.
Collapse
Affiliation(s)
- Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| |
Collapse
|
21
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
22
|
Kruse R, Petersson SJ, Christensen LL, Kristensen JM, Sabaratnam R, Ørtenblad N, Andersen M, Højlund K. Effect of long-term testosterone therapy on molecular regulators of skeletal muscle mass and fibre-type distribution in aging men with subnormal testosterone. Metabolism 2020; 112:154347. [PMID: 32853647 DOI: 10.1016/j.metabol.2020.154347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long-term testosterone replacement therapy (TRT) increases muscle mass in elderly men with subnormal testosterone levels. However, the molecular mechanisms underlying this effect of TRT on protein balance in human skeletal muscle in vivo remain to be established. METHODS Here, we examined skeletal muscle biopsies obtained before and 24-h after the last dose of treatment with either testosterone gel (n = 12) or placebo (n = 13) for 6 months in aging men with subnormal bioavailable testosterone levels. The placebo-controlled, testosterone-induced changes (β-coefficients) in mRNA levels, protein expression and phosphorylation were examined by quantitative real-time PCR and western blotting. RESULTS Long-term TRT increased muscle mass by β = 1.6 kg (p = 0.01) but had no significant effect on mRNA levels of genes involved in myostatin/activin/SMAD or IGF1/FOXO3 signalling, muscle-specific E3-ubiquitin ligases, upstream transcription factors (MEF2C, PPARGC1A-4) or myogenic factors. However, TRT caused a sustained decrease in protein expression of SMAD2 (β = -36%, p = 0.004) and SMAD3 (β = -32%, p = 0.001), which was accompanied by reduced protein expression of the muscle-specific E3-ubiquitin ligases, MuRF1 (β = -26%, p = 0.004) and Atrogin-1/MAFbx (β = -20%, p = 0.04), but with no changes in FOXO3 signalling. Importantly, TRT did not affect muscle fibre type distribution between slow-oxidative (type 1), fast-oxidative (type 2a) and fast-glycolytic (type 2×) muscle fibres. CONCLUSIONS Our results indicate that long-term TRT of elderly men with subnormal testosterone levels increases muscle mass, at least in part, by decreasing protein breakdown through the ubiquitin proteasome pathway mediated by a sustained suppression of SMAD-signalling and muscle-specific E3-ubiquitin ligases.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Stine J Petersson
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Louise L Christensen
- Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Jonas M Kristensen
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark; Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, DK-5230 Odense, Denmark
| | - Marianne Andersen
- Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark.
| |
Collapse
|
23
|
Xuan MF, Luo ZB, Wang JX, Guo Q, Han SZ, Jin SS, Kang JD, Yin XJ. Shift from slow- to fast-twitch muscle fibres in skeletal muscle of newborn heterozygous and homozygous myostatin-knockout piglets. Reprod Fertil Dev 2020; 31:1628-1636. [PMID: 31104696 DOI: 10.1071/rd19103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily that negatively regulates skeletal muscle development. A lack of MSTN induces muscle hypertrophy and increases formation of fast-twitch (Type II) muscle fibres. This study investigated muscle development in newborn heterozygous (MSTN+/-) and homozygous (MSTN-/-) MSTN-knockout piglets. Detailed morphological and gene and protein expression analyses were performed of the biceps femoris, semitendinosus and diaphragm of MSTN+/-, MSTN-/- and wild-type (WT) piglets. Haematoxylin-eosin staining revealed that the cross-sectional area of muscle fibres was significantly larger in MSTN-knockout than WT piglets. ATPase staining demonstrated that the percentage of Type IIb and IIa muscle fibres was significantly higher in MSTN-/- and MSTN+/- piglets respectively than in WT piglets. Western blotting showed that protein expression of myosin heavy chain-I was reduced in muscles of MSTN-knockout piglets. Quantitative reverse transcription-polymerase chain reaction revealed that, compared with WT piglets, myogenic differentiation factor (MyoD) mRNA expression in muscles was 1.3- to 2-fold higher in MSTN+/- piglets and 1.8- to 3.5-fold higher MSTN-/- piglets (P<0.05 and P<0.01 respectively). However, expression of myocyte enhancer factor 2C (MEF2C) mRNA in muscles was significantly lower in MSTN+/- than WT piglets (P<0.05). MSTN plays an important role in skeletal muscle development and regulates muscle fibre type by modulating the gene expression of MyoD and MEF2C in newborn piglets.
Collapse
Affiliation(s)
- Mei-Fu Xuan
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Zhao-Bo Luo
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Jun-Xia Wang
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Qing Guo
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Song-Shan Jin
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China; and Corresponding authors. Emails: ;
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China; and Corresponding authors. Emails: ;
| |
Collapse
|
24
|
Expression of key myogenic, fibrogenic and adipogenic genes in Longissimus thoracis and Masseter muscles in cattle. Animal 2020; 14:1510-1519. [DOI: 10.1017/s1751731120000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
26
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
27
|
Fujitani M, Mizushige T, Kawabata F, Uozumi K, Yasui M, Hayamizu K, Uchida K, Okada S, Keshab B, Kishida T. Dietary Alaska pollack protein improves skeletal muscle weight recovery after immobilization-induced atrophy in rats. PLoS One 2019; 14:e0217917. [PMID: 31199814 PMCID: PMC6570023 DOI: 10.1371/journal.pone.0217917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
The promotion of muscle recovery after immobilization is important to preserve an optimum health status. Here, we examined the effect of dietary Alaska pollack protein (APP) on skeletal muscle weight after atrophy induced by hind limb immobilization using plaster immobilization technique. Rat left limb was casted with a wetted plaster cast under anesthesia. After 2 weeks of feeding, the cast was removed and the rats were divided into three groups, namely, a baseline group, high-fat casein diet group, and high-fat APP diet group. After 3 weeks of feeding, the skeletal muscles (soleus, extensor digitorum longus [EDL], and gastrocnemius) were sampled. The estimated weight gains of soleus, gastrocnemius, and EDL muscle in the immobilized limbs were significantly larger in the rats fed with APP diet as compared with those fed with casein diet. In soleus muscle, dietary APP increased the expression of Igf1 and Myog genes in the immobilized limbs after the recovery period.
Collapse
Affiliation(s)
- Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Takafumi Mizushige
- Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, Minemachi, Utsunomiya, Tochigi, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, Aomori, Japan
| | - Keisuke Uozumi
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Machi Yasui
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Kohsuke Hayamizu
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Kenji Uchida
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food Function R&D Center, Nippon Suisan Kaisha, Ltd., Tokyo, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | - Bhattarai Keshab
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food and Health Sciences Research Centre, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- * E-mail:
| |
Collapse
|
28
|
Hong OK, Choi YH, Kwon HS, Jeong HK, Son JW, Lee SS, Kim SR, Yoon KH, Yoo SJ. Long-term insulin treatment leads to a change in myosin heavy chain fiber distribution in OLETF rat skeletal muscle. J Cell Biochem 2019; 120:2404-2412. [PMID: 30230025 DOI: 10.1002/jcb.27571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
The objective of this study was to investigate molecular and physiological changes in response to long-term insulin glargine treatment in the skeletal muscle of OLETF rats. Male Otsuka Long-Evans Tokushima Fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats aged 24 weeks were randomly allocated to either treatment with insulin for 24 weeks or no treatment, resulting in three groups. Insulin glargine treatment in OLETF rats (OLETF-G) for 24 weeks resulted in changes in blood glucose levels in intraperitoneal glucose tolerance tests compared with age-matched, untreated OLETF rats (OLETF-C), and the area under the curve was significantly decreased for OLETF-G rats compared with OLETF-C rats (P < 0.05). The protein levels of MHC isoforms were altered in gastrocnemius muscle of OLETF rats, and the proportions of myosin heavy chain type I and II fibers were lower and higher, respectively, in OLETF-G compared with OLETF-C rats. Activation of myokines (IL-6, IL-15, FNDC5, and myostatin) in gastrocnemius muscle was significantly inhibited in OLETF-G compared with OLETF-C rats ( P < 0.05). MyoD and myogenin levels were decreased, while IGF-I and GLUT4 levels were increased, in the skeletal muscle of OLETF-G rats ( P < 0.05). Insulin glargine treatment significantly increased the phosphorylation levels of AMPK, SIRT1, and PGC-1α. Together, our results suggested that changes in the distribution of fiber types by insulin glargine could result in downregulation of myokines and muscle regulatory proteins. The effects were likely associated with activation of the AMPK/SIRT1/PGC-1α signaling pathway. Changes in these proteins may at least partly explain the effect of insulin in skeletal muscle of diabetes mellitus.
Collapse
Affiliation(s)
- Oak-Kee Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon-Hee Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Kyoung Jeong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Jang-Won Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Seong-Su Lee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Sung-Rae Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Kun-Ho Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul, Republic of Korea
| | - Soon Jib Yoo
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| |
Collapse
|
29
|
Zambelli V, Sigurtà A, Rizzi L, Zucca L, Delvecchio P, Bresciani E, Torsello A, Bellani G. Angiotensin-(1-7) exerts a protective action in a rat model of ventilator-induced diaphragmatic dysfunction. Intensive Care Med Exp 2019; 7:8. [PMID: 30659381 PMCID: PMC6338614 DOI: 10.1186/s40635-018-0218-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ventilator-induced diaphragmatic dysfunction (VIDD) is a common event during mechanical ventilation (MV) leading to rapid muscular atrophy and contractile dysfunction. Recent data show that renin-angiotensin system is involved in diaphragmatic skeletal muscle atrophy after MV. In particular, angiotensin-II can induce marked diaphragm muscle wasting, whereas angiotensin-(1–7) (Ang-(1–7)) could counteract this activity. This study was designed to evaluate the effects of the treatment with Ang-(1–7) in a rat model of VIDD with neuromuscular blocking agent infusion. Moreover, we studied whether the administration of A-779, an antagonist of Ang-(1–7) receptor (Mas), alone or in combination with PD123319, an antagonist of AT2 receptor, could antagonize the effects of Ang-(1–7). Methods Sprague-Dawley rats underwent prolonged MV (8 h), while receiving an iv infusion of sterile saline 0.9% (vehicle) or Ang-(1–7) or Ang-(1–7) + A-779 or Ang-(1–7) + A-779 + PD123319. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis, quantitative real-time PCR, and Western blot analysis. Results MV resulted in a significant reduction of diaphragmatic contractility in all groups of treatment. Ang-(1–7)-treated rats showed higher muscular fibers cross-sectional area and lower atrogin-1 and myogenin mRNA levels, compared to vehicle treatment. Treatment with the antagonists of Mas and Ang-II receptor 2 (AT2R) caused a significant reduction of muscular contractility and an increase of atrogin-1 and MuRF-1 mRNA levels, not affecting the cross-sectional fiber area and myogenin mRNA levels. Conclusions Systemic Ang-(1–7) administration during MV exerts a protective role on the muscular fibers of the diaphragm preserving muscular fibers anatomy, and reducing atrophy. The involvement of Mas and AT2R in the mechanism of action of Ang-(1–7) still remains controversial.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Anna Sigurtà
- Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Rizzi
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Letizia Zucca
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Paolo Delvecchio
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giacomo Bellani
- Department of Medicine, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
30
|
Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate Promotes Myoblast Differentiation and Myotube Hypertrophy via a Pathway Involving MyoD In Vitro and Enhances Muscle Regeneration In Vivo. Int J Mol Sci 2018; 19:ijms19113649. [PMID: 30463265 PMCID: PMC6274869 DOI: 10.3390/ijms19113649] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Lactate is a metabolic substrate mainly produced in muscles, especially during exercise. Recently, it was reported that lactate affects myoblast differentiation; however, the obtained results are inconsistent and the in vivo effect of lactate remains unclear. Our study thus aimed to evaluate the effects of lactate on myogenic differentiation and its underlying mechanism. The differentiation of C2C12 murine myogenic cells was accelerated in the presence of lactate and, consequently, myotube hypertrophy was achieved. Gene expression analysis of myogenic regulatory factors showed significantly increased myogenic determination protein (MyoD) gene expression in lactate-treated cells compared with that in untreated ones. Moreover, lactate enhanced gene and protein expression of myosin heavy chain (MHC). In particular, lactate increased gene expression of specific MHC isotypes, MHCIIb and IId/x, in a dose-dependent manner. Using a reporter assay, we showed that lactate increased promoter activity of the MHCIIb gene and that a MyoD binding site in the promoter region was necessary for the lactate-induced increase in activity. Finally, peritoneal injection of lactate in mice resulted in enhanced regeneration and fiber hypertrophy in glycerol-induced regenerating muscles. In conclusion, physiologically high lactate concentrations modulated muscle differentiation by regulating MyoD-associated networks, thereby enhancing MHC expression and myotube hypertrophy in vitro and, potentially, in vivo.
Collapse
Affiliation(s)
- Sakuka Tsukamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayako Shibasaki
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayano Naka
- Laboratory of Applied Nutrition, Faculty of Human Life and Environmental Sciences, Ochanomizu University, Tokyo 112-8610, Japan..
| | - Hazuki Saito
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
- The Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
31
|
Nagatomo F, Takemura A, Roy RR, Fujino H, Kondo H, Ishihara A. Mild hyperbaric oxygen inhibits the growth-related decline in skeletal muscle oxidative capacity and prevents hyperglycemia in rats with type 2 diabetes mellitus. J Diabetes 2018; 10:753-763. [PMID: 29633563 DOI: 10.1111/1753-0407.12666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Humans and animals with type 2 diabetes mellitus (T2DM) exhibit low skeletal muscle oxidative capacity and impaired glucose metabolism. The aim of the present study was to investigate the effects of exposure to mild hyperbaric oxygen on these changes in obese rats with T2DM. METHODS Five-week-old non-diabetic Long-Evans Tokushima Otsuka (LETO) and diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats were divided into normobaric (LETO-NB and OLETF-NB) and mild hyperbaric oxygen (LETO-MHO and OLETF-MHO) groups. The LETO-MHO and OLETF-MHO groups received 1266 hPa with 36% oxygen for 3 h daily for 22 weeks. RESULTS Fasting and non-fasting blood glucose, HbA1c, and triglyceride levels were lower in the OLETF-MHO group than in the OLETF-NB group (P < 0.05). In the soleus muscle, peroxisome proliferator-activated receptor δ/β (Pparδ/β), Pparγ, and PPARγ coactivator-1α (Pgc-1α) mRNA levels were lower in the OLETF-NB group than in all other groups (P < 0.05), whereas myogenin (Myog) and myogenic factor 5 (Myf5) mRNA levels were higher in the OLETF-MHO group than in the LETO-NB and OLETF-NB groups (P < 0.05). The soleus muscles in the OLETF-NB group contained only low-oxidative Type I fibers, whereas those in all other groups contained high-oxidative Type IIA and Type IIC fibers in addition to Type I fibers. CONCLUSIONS Exposure to mild hyperbaric oxygen inhibits the decline in skeletal muscle oxidative capacity and prevents the hyperglycemia associated with T2DM. Pgc-1α, Myog, and Myf5 mRNA levels appear to be closely associated with skeletal muscle oxidative capacity in rats with T2DM.
Collapse
Affiliation(s)
- Fumiko Nagatomo
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Ai Takemura
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Roland R Roy
- Department of Integrative Biology and Physiology and Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hidemi Fujino
- Division of Rehabilitation Sciences, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hiroyo Kondo
- Department of Food Sciences and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. Eur J Appl Physiol 2018; 118:2097-2110. [PMID: 30006671 DOI: 10.1007/s00421-018-3943-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Physical health and function depend upon both genetic inheritance and environmental factors (e.g., exercise training). PURPOSE To enhance the understanding of heritability/adaptability, we explored the skeletal muscle health and physiological performance of monozygotic (MZ) twins with > 30 years of chronic endurance training vs. no specific/consistent exercise. METHODS One pair of male MZ twins (age = 52 years; Trained Twin, TT; Untrained Twin, UT) underwent analyses of: (1) anthropometric characteristics and blood profiles, (2) markers of cardiovascular and pulmonary health, and (3) skeletal muscle size, strength, and power and molecular markers of muscle health. RESULTS This case study represents the most comprehensive physiological comparison of MZ twins with this length and magnitude of differing exercise history. TT exhibited: (1) lower body mass, body fat%, resting heart rate, blood pressure, cholesterol, triglycerides, and plasma glucose, (2) greater relative cycling power, anaerobic endurance, and aerobic capacity (VO2max), but lower muscle size/strength and poorer muscle quality, (3) more MHC I (slow-twitch) and fewer MHC IIa (fast-twitch) fibers, (4) greater AMPK protein expression, and (5) greater PAX7, IGF1Ec, IGF1Ea, and FN14 mRNA expression than UT. CONCLUSIONS Several measured differences are the largest reported between MZ twins (TT expressed 55% more MHC I fibers, 12.4 ml/kg/min greater VO2max, and 8.6% lower body fat% vs. UT). These data collectively (a) support utilizing chronic endurance training to improve body composition and cardiovascular health and (b) suggest the cardiovascular and skeletal muscle systems exhibit greater plasticity than previously thought, further highlighting the importance of studying MZ twins with large (long-term) differences in exposomes.
Collapse
|
33
|
FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget 2018; 8:10662-10674. [PMID: 27793012 PMCID: PMC5354690 DOI: 10.18632/oncotarget.12891] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/19/2016] [Indexed: 02/03/2023] Open
Abstract
FoxO1, a member of the forkhead transcription factor forkhead box protein O (FoxO) family, is predominantly expressed in most muscle types. FoxO1 is a key regulator of muscle growth, metabolism, cell proliferation and differentiation. In the past two decades, many researches have indicated that FoxO1 is a negative regulator of skeletal muscle differentiation while contrasting opinions consider that FoxO1 is crucial for myoblast fusion. FoxO1 is expressed much higher in fast twitch fiber enriched muscles than in slow muscles and is also closely related to muscle fiber type specification. In this review, we summarize the molecular mechanisms of FoxO1 in the regulation of skeletal muscle differentiation and fiber type specification.
Collapse
|
34
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
36
|
Li Y, Zhang H, Chen YP, Ying ZX, Su WP, Zhang LL, Wang T. Effects of dietary l-methionine supplementation on the growth performance, carcass characteristics, meat quality, and muscular antioxidant capacity and myogenic gene expression in low birth weight pigs1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Y. Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - H. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - Y. P. Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - Z. X. Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - W. P. Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - L. L. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - T. Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| |
Collapse
|
37
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
38
|
Ignacio DL, Silvestre DHS, Anne-Palmer E, Bocco BMLC, Fonseca TL, Ribeiro MO, Gereben B, Bianco AC, Werneck-de-Castro JP. Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Thyroid 2017; 27:577-586. [PMID: 27967605 PMCID: PMC5385430 DOI: 10.1089/thy.2016.0392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myogenesis is positively regulated by thyroid hormone (triiodothyronine [T3]), which is amplified by the type 2 deiodinase (D2) activation of thyroxine to T3. Global inactivation of the Dio2 gene impairs skeletal muscle (SKM) differentiation and regeneration in response to muscle injury. Given that newborn and adult mice with late developmental SKM Dio2 disruption do not develop a significant phenotype, it was hypothesized that D2 plays an early role in this process. METHODS This was tested in mice with SKM disruption of Dio2 driven by two early developmental promoters: MYF5 and MYOD. RESULTS MYF5 myoblasts in culture differentiate normally into myotubes, despite loss of almost all D2 activity. Dio2 mRNA levels in developing SKM obtained from MYF5-D2KO embryos (E18.5) were about 54% of control littermates, but the expression of the T3-responsive genes Myh1 and 7 and Atp2a1 and 2 were not affected. In MYF5-D2KO and MYOD-D2KO neonatal hind-limb muscle, the expression of Myh1 and 7 and Atp2a2 remained unaffected, despite 60-70% loss in D2 activity and/or mRNA. Only in MYOD-D2KO neonatal muscle was there a 40% reduction in Atp2a1 mRNA. Postnatal growth of both mouse models and SKM function as assessed by exercise capacity and measurement of muscle strength were normal. Furthermore, an analysis of the adult soleus revealed no changes in the expression of T3-responsive genes, except for an about 18% increase in MYOD-D2KO SOL Myh7 mRNA. CONCLUSION Two mouse models of early developmental disruption of Dio2 in myocyte precursor exhibit no significant SKM phenotype.
Collapse
Affiliation(s)
- Daniele L Ignacio
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Diego H S Silvestre
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Elena Anne-Palmer
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Barbara M L C Bocco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 4 Department of Translational Medicine, Federal University of São Paulo , São Paulo, Brazil
| | - Tatiana L Fonseca
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Miriam O Ribeiro
- 5 Developmental Disorders Program, Center for Biological and Health Sciences, Mackenzie Presbyterian University , São Paulo, Brazil
| | - Balázs Gereben
- 6 Department of Endocrine Neurobiology, Institute of Experimental Medicine , Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio C Bianco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Joao P Werneck-de-Castro
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Peggion C, Massimino ML, Biancotto G, Angeletti R, Reggiani C, Sorgato MC, Bertoli A, Stella R. Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis. Anal Bioanal Chem 2017; 409:2143-2153. [PMID: 28078418 DOI: 10.1007/s00216-016-0160-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method. Graphical Abstract Methods for myosin heavy chain (MyHC) quantification: a comparison of classical methods and selected reaction monitoring (SRM)-based mass spectrometry approaches.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Maria Lina Massimino
- CNR Neuroscience Institute, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Giancarlo Biancotto
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Roberto Angeletti
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Maria Catia Sorgato
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy.,CNR Neuroscience Institute, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy.
| | - Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy.
| |
Collapse
|
40
|
Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci Rep 2016; 6:36589. [PMID: 27833113 PMCID: PMC5105143 DOI: 10.1038/srep36589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Stress response is tightly linked to meat quality. The current understanding of the intrinsic mechanism of meat deterioration under stress is limited. Here, male piglets were randomly assigned to cortisol and control groups. Our results showed that when serum cortisol level was significantly increased, the meat color at 1 h postmortem, muscle bundle ratio, apoptosis rate, and gene expression levels of calcium channel and cell apoptosis including SERCA1, IP3R1, BAX, Bcl-2, and Caspase-3, were notably increased. However, the value of drip loss at 24 h postmortem and serum CK were significantly decreased. Additionally, a large number of differentially expressed genes (DEGs) in GC regulation mechanism were screened out using transcriptome sequencing technology. A total of 223 DEGs were found, including 80 up-regulated genes and 143 down-regulated genes. A total of 204 genes were enriched in GO terms, and 140 genes annotated into in KEGG database. Numerous genes were primarily involved in defense, inflammatory and wound responses. This study not only identifies important genes and signalling pathways that may affect the meat quality but also offers a reference for breeding and feeding management to provide consumers with better quality pork products.
Collapse
|
41
|
Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice. Nutrients 2016; 8:nu8090543. [PMID: 27598198 PMCID: PMC5037530 DOI: 10.3390/nu8090543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023] Open
Abstract
Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.
Collapse
|
42
|
Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit. PLoS One 2016; 11:e0160057. [PMID: 27532680 PMCID: PMC4988792 DOI: 10.1371/journal.pone.0160057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/13/2016] [Indexed: 01/12/2023] Open
Abstract
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.
Collapse
|
43
|
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 2016; 7:12397. [PMID: 27484840 PMCID: PMC4976255 DOI: 10.1038/ncomms12397] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.
Collapse
|
44
|
Pacagnelli FL, Aguiar AF, Campos DHS, Castan EP, de Souza RWA, de Almeida FLA, Carani F, Carvalho RF, Cicogna AC, Silva MDP. Training improves the oxidative phenotype of muscle during the transition from cardiac hypertrophy to heart failure without altering MyoD and myogenin. Exp Physiol 2016; 101:1075-85. [PMID: 27219629 DOI: 10.1113/ep085552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/19/2016] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity. The purpose of this study was to investigate the effects of physical training (PT) on phenotypic features (fibre-type content) and myogenic regulatory factors (MyoD and myogenin) in rat skeletal muscle during the transition from cardiac hypertrophy to heart failure. We used the model of ascending aortic stenosis (AS) to induce heart failure in male Wistar rats. Sham-operated animals were used as age-matched controls. At 18 weeks after surgery, rats with ventricular dysfunction were randomized into the following four groups: sham-operated, untrained (Sham-U; n = 8); sham-operated, trained (Sham-T; n = 6); aortic stenosis, untrained (AS-U; n = 6); and aortic stenosis, trained (AS-T; n = 8). The AS-T and Sham-T groups were submitted to a 10 week aerobic PT programme, while the AS-U and Sham-U groups remained untrained for the same period of time. After the PT programme, the animals were killed and the soleus muscles collected for phenotypic and molecular analyses. Physical training promoted type IIa-to-I fibre conversion in the trained groups (Sham-T and AS-T) compared with the untrained groups (Sham-U and AS-U). No significant (P > 0.05) differences were found in type I or IIa fibre content in the AS-U group compared with the Sham-U group. Additionally, there were no significant (P > 0.05) differences in the myogenic regulatory factors MyoD and myogenin (gene and protein) expression between the groups. Therefore, our results indicate that PT may be a suitable strategy to improve the oxidative phenotype in skeletal muscle during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin.
Collapse
|
45
|
Murphy RJL, Dupont-Versteegden EE, Peterson CA, Houle JD. Two Experimental Strategies to Restore Muscle Mass in Adult Rats Following Spinal Cord Injury. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spinal cord injury decreases muscle mass and is associated with myofiber type trans formations in skeletal muscles. The present study evaluated the potential of motor- assisted cycling exercise or transplantation of fetal spinal cord tissue into the lesion cavity to inhibit or minimize these changes in skeletal muscles of 27 adult female Sprague-Dawley rats. Soleus (SO) and tibialis anterior (TA) muscles were studied 30 to 32 days after injury/intervention in the following groups: uninjured control ani mals (Con); spinal cord injured only (Tx); Tx with a 4-week exercise program con sisting of five weekly 60-minute sessions of cycling exercise initiated 5 days after in jury (TxEx); and Tx with fetal spinal cord tissue transplanted into the lesion cavity at the time of injury (TxTp). SO and TA muscle to body weight ratios were reduced significantly in the Tx group (24-30% decrease vs Con, p < 0.05) but were maintained with regular cycling exercise (6-8% decrease vs Con, no significant difference). The transplant had a beneficial effect on TA muscle mass (16% decrease vs Con, no sig nificant difference) but was not effective in limiting the effects of Tx on SO muscle mass. Immunohistochemistry and Northern analysis of TA and SO muscles revealed a Tx-induced reduction in myofiber cross sectional area (22% and 33% vs Con re spectively, p < 0.05) as well as a conversion in myosin heavy chain (MyHC) expres sion toward faster MyHC isoforms. Moreover, one month after injury, there was an increase in myofibers expressing more than one MyHC. mRNA encoding MyoD, a muscle-specific transcription factor, was increased in SO muscles suggesting that it may be involved in the long-term adaptations following spinal cord transection. Although cycling exercise was effective in preventing the decrease in myofiber area in both TA and SO, it did not inhibit the transformations of myofiber type. TA myofiber area was maintained in transplant recipients, however, this treatment was without conse quence on the size of SO myofibers. These results suggest that some of the normally observed spinal cord injury-induced skeletal muscle adaptations are minimized after one month of cycling exercise or fetal spinal cord tissue transplants. Key Words: Myosin heavy chain—Exercise—MyoD—Fetal tissue transplantation—Fiber types.
Collapse
|
46
|
Zhang X, Chen Y, Pan J, Liu X, Chen H, Zhou X, Yuan Z, Wang X, Mo D. iTRAQ-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig. BMC Genomics 2016; 17:137. [PMID: 26911206 PMCID: PMC4766617 DOI: 10.1186/s12864-016-2464-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
Background Pig (Sus scrofa) is a major source of dietary proteins for human consumption and is becoming a valuable model in agricultural and biomedical research. The recently developed isobaric tag for relative and absolute quantitation (iTRAQ) method allows sensitive and accurate protein quantification. Here, we performed the first iTRAQ-based quantitative proteomic analyses of Landrace (LR) and Wuzhishan (WZS) pig longissimus dorsi muscle tissues during early embryonic development. Results The iTRAQ-based early embryonic longissimus dorsi muscle study of LR and WZS ranging from 21 to 42 days post coitus (dpc) identified a total of 4431 proteins from17,214 peptides, which were matched with 36,4025 spectra at a false discovery rate of 5 %. In both WZS and LR, the largest amount of differentially expressed proteins (DEPs) were found between 28 and 35 dpc. 252 breed-DEPs were selected by GO analysis, including 8 myofibrillar proteins. Only MYHCI/IIA mRNA were detected due to early embryonic stages, and significantly higher expression of them were found in WZS during these 4 stages. MYHCI was first found in WZS at 28 dpc and expressed in both breeds at later stages, while MYHCII protein was not detected until 35 dpc in both breeds. Thus, 33 myogenic breed-DEPs selected from last two stages were analyzed by STRING, which showed that some myofibrillar proteins (MYH1, TPM4, MYH10, etc.) and functional proteins (CSRP2, CASQ2, OTC, etc.), together with candidate myogenic proteins (H3F3A, HDGFRP2, etc.), probably participate in the regulatory network of myofiber formation. Conclusion Our iTRAQ-based early embryonic longissimus dorsi muscle study of LR and WZS provides new data on the in vivo muscle development distinctions during early embryonic development, which contributes to the improved understanding in the regulation mechanism of early myogenesis in agricultural animals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2464-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xumeng Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Jinchun Pan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China.
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Hu Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Zhuning Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Xilong Wang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China.
| | - Delin Mo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
47
|
Wiberg R, Jonsson S, Novikova LN, Kingham PJ. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury. PLoS One 2015; 10:e0142699. [PMID: 26691660 PMCID: PMC4686181 DOI: 10.1371/journal.pone.0142699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury.
Collapse
Affiliation(s)
- Rebecca Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Samuel Jonsson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Liudmila N. Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
48
|
Zhang Y, Li W, Zhu M, Li Y, Xu Z, Zuo B. FHL3 differentially regulates the expression of MyHC isoforms through interactions with MyoD and pCREB. Cell Signal 2015; 28:60-73. [PMID: 26499038 DOI: 10.1016/j.cellsig.2015.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022]
Abstract
In skeletal muscle, muscle fiber types are defined by four adult myosin heavy chain (MyHC) isoforms. Four and a half LIM domain protein 3 (FHL3) regulates myoblasts differentiation and gene expression by acting as a transcriptional co-activator or co-repressor. However, how FHL3 regulates MyHC expression is currently not clear. In this study, we found that FHL3 down-regulated the expression of MyHC 1/slow and up-regulated the expression of MyHC 2a and MyHC 2b, whereas no significant effect was found on MyHC 2x expression. MyoD and phosphorylated cAMP response element binding protein (pCREB) played important roles in the regulation of MyHC 1/slow and MyHC 2a expression by FHL3, respectively. FHL3 could interact with MyoD, CREB and pCREB in vivo. pCREB had stronger interaction with the cyclic AMP-responsive elements (CRE) of the MyHC 2a promoter compared with CREB, and FHL3 significantly affected the binding capacity of pCREB to CRE. We established a model in which FHL3 promotes the expression of MyHC 2a through CREB-mediated transcription and inhibits the expression of MyHC 1/slow by inhibiting MyoD transcription activity during myogenesis. Our data support the notion that FHL3 plays important roles in the regulation of muscle fiber type composition.
Collapse
Affiliation(s)
- Yunxia Zhang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wentao Li
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mingfei Zhu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuan Li
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
49
|
Park KHJ. Mechanisms of Muscle Denervation in Aging: Insights from a Mouse Model of Amyotrophic Lateral Sclerosis. Aging Dis 2015; 6:380-9. [PMID: 26425392 DOI: 10.14336/ad.2015.0506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Abstract
Muscle denervation at the neuromuscular junction (NMJ) is thought to be a contributing factor in age-related muscle weakness. Therefore, understanding the mechanisms that modulate NMJ innervation is a key to developing therapies to combat age-related muscle weakness affecting the elderly. Two mouse models, one lacking the Cu/Zn superoxide dismutase (SOD1) gene and another harboring the transgenic mutant human SOD1 gene, display progressive changes at the NMJ, including muscle endplate fragmentation, nerve terminal sprouting, and denervation. These changes at the NMJ share many of the common features observed in the NMJs of aged mice. In this review, research findings demonstrating the effects of PGC-1α, IGF-1, GDNF, MyoD, myogenin, and miR-206 on NMJ innervation patterns in the G93A SOD1 mice will be highlighted in the context of age-related muscle denervation.
Collapse
Affiliation(s)
- Kevin H J Park
- Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
50
|
Chandra S, Terragni J, Zhang G, Pradhan S, Haushka S, Johnston D, Baribault C, Lacey M, Ehrlich M. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Hum Mol Genet 2015; 24:4660-73. [PMID: 26041816 PMCID: PMC4512632 DOI: 10.1093/hmg/ddv198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes.
Collapse
Affiliation(s)
- Sruti Chandra
- Program in Human Genetics, Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70122, USA
| | | | | | | | - Stephen Haushka
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA, and
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Carl Baribault
- Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA 70122, USA
| | - Michelle Lacey
- Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA 70122, USA
| | - Melanie Ehrlich
- Program in Human Genetics, Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70122, USA,
| |
Collapse
|