1
|
Zhou L, Wu Z, Li Y, Xiao L, Wang H, Wang G. Perinatal running training reversed postnatal anxiety and depressive-like behavior and cognitive impairment in mice following prenatal subchronic variable stress. Pharmacol Biochem Behav 2024; 245:173898. [PMID: 39489185 DOI: 10.1016/j.pbb.2024.173898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Pregnancy is a very complex and highly stressful time in women. Despite the high prevalence of postpartum depression, more than 50 % of mothers are undiagnosed or untreated, showing an urgent need to explore an effective preventive strategy. Regular physical activity has been suggested to be associated with an increased quality of life in pregnant and postpartum women. The purpose of this study was to determine whether perinatal running training can affect maternal care stress-related anxiety, depressive-like behavior, and cognitive changes in postpartum dams and to explore the possible underlying mechanism. METHODS 40 female C57BL/6J mice were divided into four groups: prenatal control (NC) and running training (EX) group (NC+EX), prenatal control and nonrunning training (RE) group (NC+RE), prenatal subchronic variable stress (SCVS) and running training group (SCVS+EX) and prenatal SCVS and non-running training group (SCVS+RE). Mice in prenatal stress groups were subjected to SCVS after pregnancy confirmed. Mice in running training groups subjected to running training throughout pregnancy and lactation. Then after the delivery, maternal behavior, cognitive changes, anxiety and depressive-like behaviors were tested. Then we measured the serum prolactin (PRL), hypothalamic-pituitary adrenal (HPA) axis activity, and adult hippocampus neurogenesis (AHN) in dams. RESULTS Compared to NC+RE, prenatal SCVS caused cognitive impairments, the decrease in maternal behavior, and anxiety and depressive-like behavior in SCVS+RE dams, accompanying increase in HPA axis activity and decreased the PRL levels and AHN in postpartum period. Then compared to SCVS+RE, perinatal running training mitigates cognitive impairments, increased maternal behavior, and alleviates anxiety and depressive-like behavior in SCVS+EX dams, accompanying the decreased HPA axis activity, and the increased PRL levels and AHN in postpartum period. CONCLUSION Overall, this study suggests that perinatal running training might improve maternal care and reverse prenatal stress-related cognitive impairment and anxiety and depressive-like behavior in postpartum dams.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, China
| | - Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
2
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
3
|
Kunkhyen T, Brechbill TR, Berg SPR, Pothuri P, Rangel AN, Gupta A, Cheetham CEJ. Cell type- and layer-specific plasticity of olfactory bulb interneurons following olfactory sensory neuron ablation. Sci Rep 2024; 14:17771. [PMID: 39090136 PMCID: PMC11294461 DOI: 10.1038/s41598-024-68649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Lifelong neurogenesis endows the mouse olfactory system with a capacity for regeneration that is unique in the mammalian nervous system. Throughout life, olfactory sensory neurons (OSNs) are generated from olfactory epithelium (OE) stem cells in the nose, while the subventricular zone generates neuroblasts that migrate to the olfactory bulb (OB) and differentiate into multiple populations of inhibitory interneurons. Methimazole (MMZ) selectively ablates OSNs, but OE neurogenesis enables OSN repopulation and gradual recovery of OSN input to the OB within 6 weeks. However, it is not known how OB interneurons are affected by this loss and subsequent regeneration of OSN input following MMZ treatment. We found that dopaminergic neuron density was significantly reduced 7-14 days post-MMZ but recovered substantially at 35 days. The density of parvalbumin-expressing interneurons was unaffected by MMZ; however, their soma size was significantly reduced at 7-14 days post-MMZ, recovering by 35 days. Surprisingly, we found a transient increase in the density of calretinin-expressing neurons in the glomerular and external plexiform layers, but not the granule cell layer, 7 days post-MMZ. This could not be accounted for by increased neurogenesis but may result from increased calretinin expression. Together, our data demonstrate cell type- and layer-specific changes in OB interneuron density and morphology after MMZ treatment, providing new insight into the range of plasticity mechanisms employed by OB circuits during loss and regeneration of sensory input.
Collapse
Affiliation(s)
- Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Taryn R Brechbill
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah P R Berg
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pranitha Pothuri
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexander N Rangel
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ashna Gupta
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Zhang D, Rubio Rodríguez-Kirby LA, Lin Y, Song M, Wang L, Wang L, Kanatani S, Jimenez-Beristain T, Dang Y, Zhong M, Kukanja P, Wang S, Chen XL, Gao F, Wang D, Xu H, Lou X, Liu Y, Chen J, Sestan N, Uhlén P, Kriegstein A, Zhao H, Castelo-Branco G, Fan R. Spatial dynamics of mammalian brain development and neuroinflammation by multimodal tri-omics mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605493. [PMID: 39091821 PMCID: PMC11291146 DOI: 10.1101/2024.07.28.605493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The ability to spatially map multiple layers of the omics information over different time points allows for exploring the mechanisms driving brain development, differentiation, arealization, and alterations in disease. Herein we developed and applied spatial tri-omic sequencing technologies, DBiT ARP-seq (spatial ATAC-RNA-Protein-seq) and DBiT CTRP-seq (spatial CUT&Tag-RNA-Protein-seq) together with multiplexed immunofluorescence imaging (CODEX) to map spatial dynamic remodeling in brain development and neuroinflammation. A spatiotemporal tri-omic atlas of the mouse brain was obtained at different stages from postnatal day P0 to P21, and compared to the regions of interest in the human developing brains. Specifically, in the cortical area, we discovered temporal persistence and spatial spreading of chromatin accessibility for the layer-defining transcription factors. In corpus callosum, we observed dynamic chromatin priming of myelin genes across the subregions. Together, it suggests a role for layer specific projection neurons to coordinate axonogenesis and myelination. We further mapped the brain of a lysolecithin (LPC) neuroinflammation mouse model and observed common molecular programs in development and neuroinflammation. Microglia, exhibiting both conserved and distinct programs for inflammation and resolution, are transiently activated not only at the core of the LPC lesion, but also at distal locations presumably through neuronal circuitry. Thus, this work unveiled common and differential mechanisms in brain development and neuroinflammation, resulting in a valuable data resource to investigate brain development, function and disease.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- These authors contributed equally
| | - Leslie A Rubio Rodríguez-Kirby
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
| | - Yingxin Lin
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mengyi Song
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Lijun Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shigeaki Kanatani
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tony Jimenez-Beristain
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yonglong Dang
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mei Zhong
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Xinyi Lisa Chen
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Fu Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dejiang Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hang Xu
- Binformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xing Lou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jinmiao Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Binformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Per Uhlén
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arnold Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Morizet D, Foucher I, Alunni A, Bally-Cuif L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat Commun 2024; 15:3306. [PMID: 38632253 PMCID: PMC11024210 DOI: 10.1038/s41467-024-47484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.
Collapse
Affiliation(s)
- David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
- Sorbonne Université, Collège doctoral, F-75005, Paris, France.
| | - Isabelle Foucher
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
| | - Alessandro Alunni
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, F-91190, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
6
|
Foucault L, Capeliez T, Angonin D, Lentini C, Bezin L, Heinrich C, Parras C, Donega V, Marcy G, Raineteau O. Neonatal brain injury unravels transcriptional and signaling changes underlying the reactivation of cortical progenitors. Cell Rep 2024; 43:113734. [PMID: 38349790 DOI: 10.1016/j.celrep.2024.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/β-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/β-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.
Collapse
Affiliation(s)
- Louis Foucault
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Timothy Capeliez
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Diane Angonin
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Celia Lentini
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Laurent Bezin
- University Lyon, Université Claude Bernard Lyon 1, INSERM, Centre de Recherche en Neuroscience de Lyon U1028 - CNRS UMR5292, 69500 Bron, France
| | - Christophe Heinrich
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vanessa Donega
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
| | - Guillaume Marcy
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Olivier Raineteau
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
7
|
Marcy G, Foucault L, Babina E, Capeliez T, Texeraud E, Zweifel S, Heinrich C, Hernandez-Vargas H, Parras C, Jabaudon D, Raineteau O. Single-cell analysis of the postnatal dorsal V-SVZ reveals a role for Bmpr1a signaling in silencing pallial germinal activity. SCIENCE ADVANCES 2023; 9:eabq7553. [PMID: 37146152 PMCID: PMC10162676 DOI: 10.1126/sciadv.abq7553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ventricular-subventricular zone (V-SVZ) is the largest neurogenic region of the postnatal forebrain, containing neural stem cells (NSCs) that emerge from both the embryonic pallium and subpallium. Despite of this dual origin, glutamatergic neurogenesis declines rapidly after birth, while GABAergic neurogenesis persists throughout life. We performed single-cell RNA sequencing of the postnatal dorsal V-SVZ for unraveling the mechanisms leading to pallial lineage germinal activity silencing. We show that pallial NSCs enter a state of deep quiescence, characterized by high bone morphogenetic protein (BMP) signaling, reduced transcriptional activity and Hopx expression, while in contrast, subpallial NSCs remain primed for activation. Induction of deep quiescence is paralleled by a rapid blockade of glutamatergic neuron production and differentiation. Last, manipulation of Bmpr1a demonstrates its key role in mediating these effects. Together, our results highlight a central role of BMP signaling in synchronizing quiescence induction and blockade of neuronal differentiation to rapidly silence pallial germinal activity after birth.
Collapse
Affiliation(s)
- Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
- Univ Lyon, Université Claude Bernard Lyon 1, Bioinformatic Platform of the Labex Cortex, 69008 Lyon, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elodie Babina
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Timothy Capeliez
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Emeric Texeraud
- Univ Lyon, Université Claude Bernard Lyon 1, Bioinformatic Platform of the Labex Cortex, 69008 Lyon, France
| | - Stefan Zweifel
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Hector Hernandez-Vargas
- Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon Cedex 08, France
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| |
Collapse
|
8
|
Rinoldi C, Ziai Y, Zargarian SS, Nakielski P, Zembrzycki K, Haghighat Bayan MA, Zakrzewska AB, Fiorelli R, Lanzi M, Kostrzewska-Księżyk A, Czajkowski R, Kublik E, Kaczmarek L, Pierini F. In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6283-6296. [PMID: 36576451 DOI: 10.1021/acsami.2c17025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain-computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today's major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Anna Beata Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Roberto Fiorelli
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum University of Bologna, Bologna40136, Italy
| | | | - Rafał Czajkowski
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw02-093, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw02-093, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw02-093, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| |
Collapse
|
9
|
Roshan SA, Elangovan G, Gunaseelan D, Jayachandran SK, Kandasamy M, Anusuyadevi M. Pathogenomic Signature and Aberrant Neurogenic Events in Experimental Cerebral Ischemic Stroke: A Neurotranscriptomic-Based Implication for Dementia. J Alzheimers Dis 2023; 94:S289-S308. [PMID: 36776051 PMCID: PMC10473090 DOI: 10.3233/jad-220831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is caused due to neurovascular damage or thrombosis, leading to neuronal dysfunction, neuroinflammation, neurodegeneration, and regenerative failure responsible for neurological deficits and dementia. The valid therapeutic targets against cerebral stroke remain obscure. Thus, insight into neuropathomechanisms resulting from the aberrant expression of genes appears to be crucial. OBJECTIVE In this study, we have elucidated how neurogenesis-related genes are altered in experimental stroke brains from the available transcriptome profiles in correlation with transcriptome profiles of human postmortem stroke brain tissues. METHODS The transcriptome datasets available on the middle cerebral artery occlusion (MCAo) rat brains were obtained from the Gene Expression Omnibus, National Center for Biotechnology Information. Of the available datasets, 97 samples were subjected to the meta-analysis using the network analyst tool followed by Cytoscape-based enrichment mapping analysis. The key differentially expressed genes (DEGs) were validated and compared with transcriptome profiling of human stroke brains. RESULTS Results revealed 939 genes are differently expressed in the brains of the MCAo rat model of stroke, in which 30 genes are key markers of neural stem cells, and regulators of neurogenic processes. Its convergence with DEGs from human stroke brains has revealed common targets. CONCLUSION This study has established a panel of highly important DEGs to signify the potential therapeutic targets for neuroregenerative strategy against pathogenic events associated with cerebral stroke. The outcome of the findings can be translated to mitigate neuroregeneration failure seen in various neurological and metabolic disease manifestations with neurocognitive impairments.
Collapse
Affiliation(s)
- Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Gayathri Elangovan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharani Gunaseelan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Swaminathan K. Jayachandran
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Program (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
10
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Guo Y, Wang S, Chao X, Li D, Wang Y, Guo Q, Chen T. Multi-omics studies reveal ameliorating effects of physical exercise on neurodegenerative diseases. Front Aging Neurosci 2022; 14:1026688. [PMID: 36389059 PMCID: PMC9659972 DOI: 10.3389/fnagi.2022.1026688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, are heavy burdens to global health and economic development worldwide. Mounting evidence suggests that exercise, a type of non-invasive intervention, has a positive impact on the life quality of elderly with neurodegenerative diseases. X-omics are powerful tools for mapping global biochemical changes in disease and treatment. METHOD Three major databases were searched related to current studies in exercise intervention on neurodegenerative diseases using omics tools, including metabolomics, metagenomics, genomics, transcriptomics, and proteomics. RESULT We summarized the omics features and potential mechanisms associated with exercise and neurodegenerative diseases in the current studies. Three main mechanisms by which exercise affects neurodegenerative diseases were summed up, including adult neurogenesis, brain-derived neurotrophic factor (BDNF) signaling, and short-chain fatty acids (SCFAs) metabolism. CONCLUSION Overall, there is compelling evidence that exercise intervention is a feasible way of preventing the onset and alleviating the severity of neurodegenerative diseases. These studies highlight the importance of exercise as a complementary approach to the treatment and intervention of neurodegenerative diseases in addition to traditional treatments. More mechanisms on exercise interventions for neurodegenerative diseases, the specification of exercise prescriptions, and differentiated exercise programs should be explored so that they can actually be applied to the clinic.
Collapse
Affiliation(s)
- Yuhuai Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaowen Chao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ding Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
12
|
Kennedy L, Glesaaen ER, Palibrk V, Pannone M, Wang W, Al-Jabri A, Suganthan R, Meyer N, Austbø ML, Lin X, Bergersen LH, Bjørås M, Rinholm JE. Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. eLife 2022; 11:76451. [PMID: 35942676 PMCID: PMC9363115 DOI: 10.7554/elife.76451] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.
Collapse
Affiliation(s)
- Lauritz Kennedy
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emilie R Glesaaen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Al-Jabri
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Niklas Meyer
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marie Landa Austbø
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johanne E Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Fernández Acosta FJ, Luque-Molina I, Vecino R, Díaz-Guerra E, Defterali Ç, Pignatelli J, Vicario C. Morphological Diversity of Calretinin Interneurons Generated From Adult Mouse Olfactory Bulb Core Neural Stem Cells. Front Cell Dev Biol 2022; 10:932297. [PMID: 35846352 PMCID: PMC9277347 DOI: 10.3389/fcell.2022.932297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Neural stem cells (NSCs) in the olfactory bulb (OB) core can generate mature interneurons in the adult mice brain. The vast majority of these adult generated cells express the calcium-binding protein Calretinin (CalR), and they migrate towards different OB layers. However, these cells have yet to be fully characterized and hence, to achieve this we injected retroviral particles expressing GFP into the OB core of adult animals and found that the CalR+ neurons generated from NSCs mainly migrate to the granule cell layer (GCL) and glomerular layer (GL) in similar proportions. In addition, since morphology and function are closely related, we used three-dimensional imaging techniques to analyze the morphology of these adult born cells, describing new subtypes of CalR+ interneurons based on their dendritic arborizations and projections, as well as their localization in the GCL or GL. We also show that the migration and morphology of these newly generated neurons can be altered by misexpressing the transcription factor Tbr1 in the OB core. Therefore, the morphology acquired by neurons located in a specific OB layer is the result of a combination of both extrinsic (e.g., layer allocation) and intrinsic mechanisms (e.g., transcription factors). Defining the cellular processes and molecular mechanisms that govern adult neurogenesis might help better understand brain circuit formation and plasticity, as well as eventually opening the way to develop strategies for brain repair.
Collapse
Affiliation(s)
| | - Inma Luque-Molina
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rebeca Vecino
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Çagla Defterali
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Vicario
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Carlos Vicario,
| |
Collapse
|
14
|
Shen G. Anxiety, Boredom, and Burnout Among EFL Teachers: The Mediating Role of Emotion Regulation. Front Psychol 2022; 13:842920. [PMID: 35360565 PMCID: PMC8960723 DOI: 10.3389/fpsyg.2022.842920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Teachers’ emotions are explicitly and conceptually presented as part of an educational system that affects and is affected by learner upshots, namely, learners’ self-emotions, behaviors, and cognition since educators and learners are involved in the outcomes of the school setting. English as a foreign language (EFL) educators recurrently experience emotional damages during involvement in their profession as burnout, stress, boredom, and anxiety. EFL teachers need to regulate their emotions when facing a multivariate class environment that provides each learner with undeniable uniqueness. The subject of the relationship between emotion regulation and the teacher’s emotions is receiving increasing attention in research. EFL teachers should be provided with an emotional regulation strategy to have a positive learning-instructing effect in the entire school community as fun learning activities, energetic students, enthusiastic educators, and strong relationships between the board of education. To focus on the role of teachers’ emotion on the one hand and the mediator role of emotional regulation, on the other hand, the current study endeavored to review the role of emotional regulation strategies more intensely to decrease negative emotions. Finally, some educational suggestions of the study regarding the educators’ behaviors are pinpointed.
Collapse
Affiliation(s)
- Guorong Shen
- School of Foreign Languages, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
15
|
Urbán N. Could a Different View of Quiescence Help Us Understand How Neurogenesis Is Regulated? Front Neurosci 2022; 16:878875. [PMID: 35431774 PMCID: PMC9008321 DOI: 10.3389/fnins.2022.878875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023] Open
Abstract
The majority of adult neural stem cells (aNSCs) are in a distinct metabolic state of reversible cell cycle exit also known as quiescence. The rate of aNSC activation determines the number of new neurons generated and directly influences the long-term maintenance of neurogenesis. Despite its relevance, it is still unclear how aNSC quiescence is regulated. Many factors contribute to this, like aNSC heterogeneity, the lack of reliable quiescence markers, the complexity of the neurogenic niches or the intricacy of the transcriptional and post-transcriptional mechanisms involved. In this perspective article I discuss possible solutions to these problems. But, first and foremost, I believe we require a model that goes beyond a simple transition toward activation. Instead, we must acknowledge the full complexity of aNSC states, which include not only activation but also differentiation and survival as behavioural outcomes. I propose a model where aNSCs dynamically transition through a cloud of highly interlinked cellular states driven by intrinsic and extrinsic cues. I also show how a new perspective enables us to integrate current results into a coherent framework leading to the formulation of new testable hypothesis. This model, like all others, is still far from perfect and will be reshaped by future findings. I believe that having a more complete view of aNSC transitions and embracing their complexity will bring us closer to understand how aNSC activity and neurogenesis are controlled throughout life.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
16
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. Front Neural Circuits 2021; 15:718221. [PMID: 34690707 PMCID: PMC8531203 DOI: 10.3389/fncir.2021.718221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.
Collapse
Affiliation(s)
- Simona Capsoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Alex Fogli Iseppe
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Centre for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Zhang Y, Xie B, Yuan Y, Zhou T, Xiao P, Wu Y, Shang Y, Yuan S, Zhang J. (R,S)-Ketamine Promotes Striatal Neurogenesis and Sensorimotor Recovery Through Improving Poststroke Depression–Mediated Decrease in Atrial Natriuretic Peptide. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:90-100. [PMID: 36324997 PMCID: PMC9616367 DOI: 10.1016/j.bpsgos.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Poststroke social isolation could worsen poststroke depression and dampen neurogenesis. (R,S)-ketamine has antidepressant and neuroprotective effects; however, its roles and mechanisms in social isolation–mediated depressive-like behaviors and sensorimotor recovery remain unclear. Methods Mice were subjected to transient middle cerebral artery occlusion, and then were pair-housed with ovariectomized female mice or were housed isolated (ISO) starting at 3 days postischemia. ISO mice received 2 weeks of (R,S)-ketamine treatment starting at 14 days postischemia. Primary ependymal epithelial cells and choroid plexus epithelial cells were cultured and treated with recombinant human atrial natriuretic peptide (ANP) protein. Results The poststroke social isolation model was successfully established using middle cerebral artery occlusion combined with poststroke isolation, as demonstrated by a more prominent depression-like phenotype in ISO mice compared with pair-housed mice. (R,S)-ketamine reversed ISO-mediated depressive-like behaviors and increased ANP levels in the atrium. The depression-like phenotype was negatively correlated with ANP levels in both the atrium and plasma. Atrial GLP-1 and GLP-1 receptor signaling was essential to the promoting effects of (R,S)-ketamine on the synthesis and secretion of ANP from the atrium in ISO mice. (R,S)-ketamine also increased ANP and TGF-β1 levels in the choroid plexus of ISO mice. Recombinant human ANP increased TGF-β1 levels in both the primarily cultured ependymal epithelial cells and choroid plexus epithelial cells. Furthermore, (R,S)-ketamine increased TGF-β1 levels in the ischemic hemisphere and promoted striatal neurogenesis and sensorimotor recovery via ANP in ISO mice. Conclusions (R,S)-ketamine alleviated poststroke ISO-mediated depressive-like behaviors and thus promoted striatal neurogenesis and sensorimotor recovery via ANP.
Collapse
|
19
|
Cebrian Silla A, Nascimento MA, Redmond SA, Mansky B, Wu D, Obernier K, Romero Rodriguez R, Gonzalez Granero S, García-Verdugo JM, Lim D, Álvarez-Buylla A. Single-cell analysis of the ventricular-subventricular zone reveals signatures of dorsal & ventral adult neurogenesis. eLife 2021; 10:67436. [PMID: 34259628 PMCID: PMC8443251 DOI: 10.7554/elife.67436] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis. Nerve cells, or neurons, are the central building blocks of brain circuits. Their damage, death or loss of function leads to cognitive decline. Neural stem/progenitor cells (NSPCs) first appear during embryo development, generating most of the neurons found in the nervous system. However, the adult brain retains a small subpopulation of NSPCs, which in some species are an important source of new neurons throughout life. In the adult mouse brain the largest population of NSPCs, known as B cells, is found in an area called the ventricular-subventricular zone (V-SVZ). These V-SVZ B cells have properties of specialized support cells known as astrocytes, but they can also divide and generate intermediate ‘progenitor cells’ called C cells. These, in turn, divide to generate large numbers of young ‘A cells’ neurons that undertake a long and complex migration from V-SVZ to the olfactory bulb, the first relay in the central nervous system for the processing of smells. Depending on their location in the V-SVZ, B cells can generate different kinds of neurons, leading to at least ten subtypes of neurons. Why this is the case is still poorly understood. To examine this question, Cebrián-Silla, Nascimento, Redmond, Mansky et al. determined which genes were expressed in B, C and A cells from different parts of the V-SVZ. While cells within each of these populations had different expression patterns, those that originated in the same V-SVZ locations shared a set of genes, many of which associated with regional specification in the developing brain. Some, however, were intriguingly linked to hormonal regulation. Salient differences between B cells depended on whether the cells originated closer to the top (‘dorsal’ position) or to the bottom of the brain (‘ventral’ position). This information was used to stain slices of mouse brains for the RNA and proteins produced by these genes in different regions. These experiments revealed dorsal and ventral territories containing B cells with distinct ‘gene expression’. This study highlights the heterogeneity of NSPCs, revealing key molecular differences among B cells in dorsal and ventral areas of the V-SVZ and reinforcing the concept that the location of NSPCs determines the types of neuron they generate. Furthermore, the birth of specific types of neurons from B cells that are so strictly localized highlights the importance of neuronal migration to ensure that young neurons with specific properties reach their appropriate destination in the olfactory bulb. The work by Cebrián-Silla, Nascimento, Redmond, Mansky et al. has identified sets of genes that are differentially expressed in dorsal and ventral regions which may contribute to regional regulation. Furthering the understanding of how adult NSPCs differ according to their location will help determine how various neuron types emerge in the adult brain.
Collapse
Affiliation(s)
- Arantxa Cebrian Silla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Marcos Assis Nascimento
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Stephanie A Redmond
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Benjamin Mansky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - David Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Ricardo Romero Rodriguez
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Susana Gonzalez Granero
- Instituto Cavanilles, Universidad de Valencia, y Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, CIBERNED, Valencia, Spain
| | - Jose Manuel García-Verdugo
- Instituto Cavanilles, Universidad de Valencia, y Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, CIBERNED, Valencia, Spain
| | - Daniel Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Arturo Álvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
20
|
Rinoldi C, Lanzi M, Fiorelli R, Nakielski P, Zembrzycki K, Kowalewski T, Urbanek O, Grippo V, Jezierska-Woźniak K, Maksymowicz W, Camposeo A, Bilewicz R, Pisignano D, Sanai N, Pierini F. Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules 2021; 22:3084-3098. [PMID: 34151565 PMCID: PMC8462755 DOI: 10.1021/acs.biomac.1c00524] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Intrinsically
conducting polymers (ICPs) are widely used to fabricate
biomaterials; their application in neural tissue engineering, however,
is severely limited because of their hydrophobicity and insufficient
mechanical properties. For these reasons, soft conductive polymer
hydrogels (CPHs) are recently developed, resulting in a water-based
system with tissue-like mechanical, biological, and electrical properties.
The strategy of incorporating ICPs as a conductive component into
CPHs is recently explored by synthesizing the hydrogel around ICP
chains, thus forming a semi-interpenetrating polymer network (semi-IPN).
In this work, a novel conductive semi-IPN hydrogel is designed and
synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide)
hydrogel where polythiophene is introduced as an ICP to provide the
system with good electrical properties. The fabrication of the hybrid
hydrogel in an aqueous medium is made possible by modifying and synthesizing
the monomers of polythiophene to ensure water solubility. The morphological,
chemical, thermal, electrical, electrochemical, and mechanical properties
of semi-IPNs were fully investigated. Additionally, the biological
response of neural progenitor cells and mesenchymal stem cells in
contact with the conductive semi-IPN was evaluated in terms of neural
differentiation and proliferation. Lastly, the potential of the hydrogel
solution as a 3D printing ink was evaluated through the 3D laser printing
method. The presented results revealed that the proposed 3D printable
conductive semi-IPN system is a good candidate as a scaffold for neural
tissue applications.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum University of Bologna, Bologna 40136, Italy
| | - Roberto Fiorelli
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Tomasz Kowalewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Valentina Grippo
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurology and Neurosurgery, University of Warmia and Mazury in Olsztyn, Olsztyn 11-041, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, University of Warmia and Mazury in Olsztyn, Olsztyn 11-041, Poland
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa 56127, Italy
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - Dario Pisignano
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa 56127, Italy.,Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
21
|
Defteralı Ç, Moreno-Estellés M, Crespo C, Díaz-Guerra E, Díaz-Moreno M, Vergaño-Vera E, Nieto-Estévez V, Hurtado-Chong A, Consiglio A, Mira H, Vicario C. Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo. Stem Cells 2021; 39:1253-1269. [PMID: 33963799 DOI: 10.1002/stem.3393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/20/2021] [Indexed: 01/05/2023]
Abstract
Although previous studies suggest that neural stem cells (NSCs) exist in the adult olfactory bulb (OB), their location, identity, and capacity to generate mature neurons in vivo has been little explored. Here, we injected enhanced green fluorescent protein (EGFP)-expressing retroviral particles into the OB core of adult mice to label dividing cells and to track the differentiation/maturation of any neurons they might generate. EGFP-labeled cells initially expressed adult NSC markers on days 1 to 3 postinjection (dpi), including Nestin, GLAST, Sox2, Prominin-1, and GFAP. EGFP+ -doublecortin (DCX) cells with a migratory morphology were also detected and their abundance increased over a 7-day period. Furthermore, EGFP-labeled cells progressively became NeuN+ neurons, they acquired neuronal morphologies, and they became immunoreactive for OB neuron subtype markers, the most abundant representing calretinin expressing interneurons. OB-NSCs also generated glial cells, suggesting they could be multipotent in vivo. Significantly, the newly generated neurons established and received synaptic contacts, and they expressed presynaptic proteins and the transcription factor pCREB. By contrast, when the retroviral particles were injected into the subventricular zone (SVZ), nearly all (98%) EGFP+ -cells were postmitotic when they reached the OB core, implying that the vast majority of proliferating cells present in the OB are not derived from the SVZ. Furthermore, we detected slowly dividing label-retaining cells in this region that could correspond to the population of resident NSCs. This is the first time NSCs located in the adult OB core have been shown to generate neurons that incorporate into OB circuits in vivo.
Collapse
Affiliation(s)
- Çağla Defteralı
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mireia Moreno-Estellés
- Unidad de Neurobiología Molecular, Área de Biología Celular y del Desarrollo, CNM-ISCIII, Majadahonda, Spain.,Instituto de Biomedicina de Valencia-CSIC (IBV-CSIC), Valencia, Spain
| | - Carlos Crespo
- Departamento de Biología Celular, Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina (BIOTECMED), Universitat de Valencia, Valencia, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Díaz-Moreno
- Unidad de Neurobiología Molecular, Área de Biología Celular y del Desarrollo, CNM-ISCIII, Majadahonda, Spain
| | - Eva Vergaño-Vera
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anahí Hurtado-Chong
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonella Consiglio
- Institute of Biomedicine, Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Helena Mira
- Unidad de Neurobiología Molecular, Área de Biología Celular y del Desarrollo, CNM-ISCIII, Majadahonda, Spain.,Instituto de Biomedicina de Valencia-CSIC (IBV-CSIC), Valencia, Spain
| | - Carlos Vicario
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
22
|
Mizrak D, Bayin NS, Yuan J, Liu Z, Suciu RM, Niphakis MJ, Ngo N, Lum KM, Cravatt BF, Joyner AL, Sims PA. Single-Cell Profiling and SCOPE-Seq Reveal Lineage Dynamics of Adult Ventricular-Subventricular Zone Neurogenesis and NOTUM as a Key Regulator. Cell Rep 2021; 31:107805. [PMID: 32579931 PMCID: PMC7396151 DOI: 10.1016/j.celrep.2020.107805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
In the adult ventricular-subventricular zone (V-SVZ), neural stem cells (NSCs) generate new olfactory bulb (OB) neurons and glia throughout life. To map adult neuronal lineage progression, we profiled >56,000 V-SVZ and OB cells by single-cell RNA sequencing (scRNA-seq). Our analyses reveal the molecular diversity of OB neurons, including fate-mapped neurons, lineage progression dynamics, and an NSC intermediate enriched for Notum, which encodes a secreted WNT antagonist. SCOPE-seq technology, which links live-cell imaging with scRNA-seq, uncovers cell-size transitions during NSC differentiation and preferential NOTUM binding to proliferating neuronal precursors. Consistently, application of NOTUM protein in slice cultures and pharmacological inhibition of NOTUM in slice cultures and in vivo demonstrated that NOTUM negatively regulates V-SVZ proliferation. Timely, context-dependent neurogenesis demands adaptive signaling among neighboring progenitors. Our findings highlight a critical regulatory state during NSC activation marked by NOTUM, which attenuates WNT-stimulated proliferation in NSC progeny.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhouzerui Liu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Radu M Suciu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Micah J Niphakis
- Lundbeck La Jolla Research Center, Inc., 10835 Road to the Cure, Suite 250, San Diego, CA 92121, USA
| | - Nhi Ngo
- Lundbeck La Jolla Research Center, Inc., 10835 Road to the Cure, Suite 250, San Diego, CA 92121, USA
| | - Kenneth M Lum
- Lundbeck La Jolla Research Center, Inc., 10835 Road to the Cure, Suite 250, San Diego, CA 92121, USA
| | - Benjamin F Cravatt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Wu Z, Xiao L, Wang H, Wang G. Neurogenic hypothesis of positive psychology in stress-induced depression: Adult hippocampal neurogenesis, neuroinflammation, and stress resilience. Int Immunopharmacol 2021; 97:107653. [PMID: 33915495 DOI: 10.1016/j.intimp.2021.107653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Stress is an important risk factor for depression. Emerging evidence supports the hypothesis that stress-mediated neuroinflammation destroys brain function and leads to anxiety-like and depression-like behaviors. Previous studies of stress-induced depression have mainly focused on pathological damage; however, the rise of positive psychology has attracted the interest of many researchers in environmental enrichment to promote stress resilience. The hippocampus is one of the most severely damaged brain regions in stress-induced depression. In addition, the hippocampus is one of the most unique regions in the brain, as new neurons are produced in the adult hippocampus, a process known as adult hippocampal neurogenesis (AHN). AHN is an important core component of the neurogenic hypothesis and has also become a major innovative breakthrough in positive psychology, in which environmental enrichment mediates stress resilience. Neuroinflammation, by activating microglia and releasing some proinflammatory cytokines, is increasingly shown to be one of the key determinant pathophysiological factors that negatively affects AHNand cognitive reserve. AHN is mainly related to remodeling stress response mechanisms, such as memory clearing, emotional control, and pattern separation, suggesting that a correlation may exist between neuroinflammation and AHN in stress resilience. Therefore, we summarized the previous research results to systematically expound on the relationship between AHN, stress resilience, and neuroinflammation. We hope this neurogenic hypothesis of positive psychology in stress-induced depression will provide a new perspective for the study of depression and antidepressant therapy.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
24
|
Dray N, Mancini L, Binshtok U, Cheysson F, Supatto W, Mahou P, Bedu S, Ortica S, Than-Trong E, Krecsmarik M, Herbert S, Masson JB, Tinevez JY, Lang G, Beaurepaire E, Sprinzak D, Bally-Cuif L. Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell 2021; 28:1457-1472.e12. [PMID: 33823144 PMCID: PMC8363814 DOI: 10.1016/j.stem.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9–12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations. NSC activation events are spatiotemporally coordinated within adult NSC populations This involves inhibition by neural progenitors (relying on Notch) and by dividing NSCs A dynamic lattice model shows that these interactions are linked by lineage progression NSCs dynamics generate an intrinsic niche that maintains the NSC population long-term
Collapse
Affiliation(s)
- Nicolas Dray
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France.
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Udi Binshtok
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Felix Cheysson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, 75015 Paris, France; Anti-infective Evasion and Pharmacoepidemiology Team, Centre for Epidemiology and Public Health (CESP), INSERM/UVSQ, Villejuif Cedex, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Sébastien Bedu
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Sara Ortica
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Emmanuel Than-Trong
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Monika Krecsmarik
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Sébastien Herbert
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; Image Analysis Hub, Institut Pasteur, 75015 Paris, France
| | - Jean-Baptiste Masson
- Department of Neuroscience and Department of Computational Biology, Institut Pasteur, 75015 Paris, France
| | | | - Gabriel Lang
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France.
| |
Collapse
|
25
|
High-resolution mouse subventricular zone stem-cell niche transcriptome reveals features of lineage, anatomy, and aging. Proc Natl Acad Sci U S A 2020; 117:31448-31458. [PMID: 33229571 DOI: 10.1073/pnas.2014389117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult neural stem cells (NSC) serve as a reservoir for brain plasticity and origin for certain gliomas. Lineage tracing and genomic approaches have portrayed complex underlying heterogeneity within the major anatomical location for NSC, the subventricular zone (SVZ). To gain a comprehensive profile of NSC heterogeneity, we utilized a well-validated stem/progenitor-specific reporter transgene in concert with single-cell RNA sequencing to achieve unbiased analysis of SVZ cells from infancy to advanced age. The magnitude and high specificity of the resulting transcriptional datasets allow precise identification of the varied cell types embedded in the SVZ including specialized parenchymal cells (neurons, glia, microglia) and noncentral nervous system cells (endothelial, immune). Initial mining of the data delineates four quiescent NSC and three progenitor-cell subpopulations formed in a linear progression. Further evidence indicates that distinct stem and progenitor populations reside in different regions of the SVZ. As stem/progenitor populations progress from neonatal to advanced age, they acquire a deficiency in transition from quiescence to proliferation. Further data mining identifies stage-specific biological processes, transcription factor networks, and cell-surface markers for investigation of cellular identities, lineage relationships, and key regulatory pathways in adult NSC maintenance and neurogenesis.
Collapse
|
26
|
Endoplasmic reticulum stress-related neuroinflammation and neural stem cells decrease in mice exposure to paraquat. Sci Rep 2020; 10:17757. [PMID: 33082501 PMCID: PMC7576831 DOI: 10.1038/s41598-020-74916-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022] Open
Abstract
Paraquat (PQ), a widely used herbicide, could cause neurodegenerative diseases, yet the mechanism remains incompletely understood. This study aimed to investigate the direct effect of PQ on NSC in vivo and its possible mechanism. Adult C57BL/6 mice were subcutaneously injected with 2 mg/kg PQ, 20 mg/kg PQ or vehicle control once a week for 2 weeks, and sacrificed 1 week after the last PQ injection. Furthermore, extra experiments with Tauroursodeoxycholic Acid (TUDCA) intervention were performed to observe the relationship between ER stress, neuroinflammation and the neural stem cell (NSC) impairment. The results showed that 20 mg/kg PQ caused the NSC number decrease in both subgranular zones (SGZ) and subventricular zone (SVZ). Further analysis indicated that the 20 mg/kg PQ suppressed the proliferation of NSC, without affecting the apoptosis. Moreover, 20 mg/kg PQ also induced ER stress in microglia and caused neuroinflammation in SGZ and SVZ. Interestingly, the ER stress inhibitor could simultaneously ameliorate the neuroinflammation and NSC reduction. These data suggested that increased ER stress in microglia might be a possible pathway for PQ-induced neuroinflammation and NSC impairment. That is a previously unknown mechanism for PQ neurotoxicity.
Collapse
|
27
|
Kouremenou I, Piper M, Zalucki O. Adult Neurogenesis in the Olfactory System: Improving Performance for Difficult Discrimination Tasks? Bioessays 2020; 42:e2000065. [PMID: 32767425 DOI: 10.1002/bies.202000065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Indexed: 02/04/2023]
Abstract
What is the function of new neurons entering the olfactory bulb? Many insights regarding the molecular control of adult neurogenesis have been uncovered, but the purpose of new neurons entering the olfactory bulb has been difficult to ascertain. Here, studies investigating the role of adult neurogenesis in olfactory discrimination in mice are reviewed. Studies in which adult neurogenesis is affected are highlighted, with a focus on the role of environment enrichment and what happens during ageing. There is evidence for a role of adult neurogenesis in fine discrimination tasks, as underscored by studies that enhance adult neurogenesis. This is also observed in ageing studies, where older mice with reduced levels of adult neurogenesis perform poorly in olfactory discrimination. Differences in methodology that could account for alternative conclusions, and the importance of specificity in methods being used to investigate the effect of adult neurogenesis in olfactory performance are emphasized.
Collapse
Affiliation(s)
- Ioanna Kouremenou
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
28
|
Coré N, Erni A, Hoffmann HM, Mellon PL, Saurin AJ, Beclin C, Cremer H. Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6. eLife 2020; 9:58215. [PMID: 32762844 PMCID: PMC7440913 DOI: 10.7554/elife.58215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023] Open
Abstract
Different subtypes of interneurons, destined for the olfactory bulb, are continuously generated by neural stem cells located in the ventricular and subventricular zones along the lateral forebrain ventricles of mice. Neuronal identity in the olfactory bulb depends on the existence of defined microdomains of pre-determined neural stem cells along the ventricle walls. The molecular mechanisms underlying positional identity of these neural stem cells are poorly understood. Here, we show that the transcription factor Vax1 controls the production of two specific neuronal subtypes. First, it is directly necessary to generate Calbindin expressing interneurons from ventro-lateral progenitors. Second, it represses the generation of dopaminergic neurons by dorsolateral progenitors through inhibition of Pax6 expression. We present data indicating that this repression occurs, at least in part, via activation of microRNA miR-7.
Collapse
Affiliation(s)
- Nathalie Coré
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | - Andrea Erni
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, United States
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, United States
| | - Andrew J Saurin
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | | | - Harold Cremer
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| |
Collapse
|
29
|
Mira H, Morante J. Neurogenesis From Embryo to Adult - Lessons From Flies and Mice. Front Cell Dev Biol 2020; 8:533. [PMID: 32695783 PMCID: PMC7339912 DOI: 10.3389/fcell.2020.00533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
The human brain is composed of billions of cells, including neurons and glia, with an undetermined number of subtypes. During the embryonic and early postnatal stages, the vast majority of these cells are generated from neural progenitors and stem cells located in all regions of the neural tube. A smaller number of neurons will continue to be generated throughout our lives, in localized neurogenic zones, mainly confined at least in rodents to the subependymal zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues interacting with temporal and regional intrinsic programs are thought to be critical for increasing neuronal diversity, but their underlying mechanisms need further elucidation. In this review, we discuss the recent findings in Drosophila and mammals on the types of cell division and cell interactions used by neural progenitors and stem cells to sustain neurogenesis, and how they are influenced by glia.
Collapse
Affiliation(s)
- Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
30
|
The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection. Mol Neurobiol 2020; 57:3646-3657. [PMID: 32564285 PMCID: PMC7398899 DOI: 10.1007/s12035-020-01947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/13/2020] [Indexed: 01/27/2023]
Abstract
Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.
Collapse
|
31
|
Akter M, Kaneko N, Sawamoto K. Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: Similarities and dissimilarities between rodents and primates. Neurosci Res 2020; 167:64-69. [PMID: 32553727 DOI: 10.1016/j.neures.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The ventricular-subventricular zone (V-SVZ) is located in the walls of the lateral ventricles and produces new neurons in the postnatal brain of mammals, including humans. Immature new neurons called "neuroblasts" generated by neural stem cells in the V-SVZ migrate toward their final destinations and contribute to brain development and plasticity. In this review, we describe recent progress in understanding the similarities and dissimilarities in postnatal neurogenesis and neuronal migration between rodents and primates. In rodents, most new V-SVZ-derived neurons migrate along the rostral migratory stream towards the olfactory bulb, where they differentiate into interneurons. In contrast, in humans, the extensive migration of new neurons towards the neocortex continues for several months after birth and might be involved in the development of the expanded neocortex. The mode of migration and the fate of neuroblasts seem to change depending on their environment, destination, and roles in the brain. A better understanding of these similarities and differences between rodents and primates will help translate important findings from animal models and may contribute to the development of clinical strategies for brain repair.
Collapse
Affiliation(s)
- Mariyam Akter
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
32
|
Sánchez-González R, Figueres-Oñate M, Ojalvo-Sanz AC, López-Mascaraque L. Cell Progeny in the Olfactory Bulb After Targeting Specific Progenitors with Different UbC-StarTrack Approaches. Genes (Basel) 2020; 11:genes11030305. [PMID: 32183100 PMCID: PMC7140809 DOI: 10.3390/genes11030305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The large phenotypic variation in the olfactory bulb may be related to heterogeneity in the progenitor cells. Accordingly, the progeny of subventricular zone (SVZ) progenitor cells that are destined for the olfactory bulb is of particular interest, specifically as there are many facets of these progenitors and their molecular profiles remain unknown. Using modified StarTrack genetic tracing strategies, specific SVZ progenitor cells were targeted in E12 mice embryos, and the cell fate of these neural progenitors was determined in the adult olfactory bulb. This study defined the distribution and the phenotypic diversity of olfactory bulb interneurons from specific SVZ-progenitor cells, focusing on their spatial pallial origin, heterogeneity, and genetic profile.
Collapse
|
33
|
Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F. Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages. Cell Rep 2020; 26:394-406.e5. [PMID: 30625322 PMCID: PMC6368857 DOI: 10.1016/j.celrep.2018.12.044] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice. This revealed regional and sex differences among adult V-SVZ cells. We uncovered lineage potency bias at the single-cell level among lateral and septal wall astrocytes toward neurogenesis and oligodendrogenesis, respectively. Finally, we identified transcription factor co-expression modules marking key temporal steps in neurogenic and oligodendrocyte lineage progression. Our data suggest functionally important spatial diversity in neurogenesis and oligodendrogenesis in the adult brain and reveal molecular correlates of adult NSC dormancy and lineage specialization. Mizrak et al. performed large-scale, single-cell RNA sequencing of the adult ventricular-subventricular zone neural stem cell niche. They identify regional differences between the lateral wall and septal wall, as well as sex differences in cell types and signaling pathways.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Valerie Crotet
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
34
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
35
|
Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. Sci Rep 2019; 9:19689. [PMID: 31873158 PMCID: PMC6927974 DOI: 10.1038/s41598-019-56156-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.
Collapse
|
36
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Kim HJ, Ogura S, Otabe T, Kamegawa R, Sato M, Kataoka K, Miyata K. Fine-Tuning of Hydrophobicity in Amphiphilic Polyaspartamide Derivatives for Rapid and Transient Expression of Messenger RNA Directed Toward Genome Engineering in Brain. ACS CENTRAL SCIENCE 2019; 5:1866-1875. [PMID: 31807688 PMCID: PMC6891845 DOI: 10.1021/acscentsci.9b00843] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 05/14/2023]
Abstract
Rapid and transient expression of in vitro transcribed mRNA (IVT mRNA) in target cells is a current major challenge in genome engineering therapy. To improve mRNA delivery efficiency, a series of amphiphilic polyaspartamide derivatives were synthesized to contain various hydrophobic moieties with cationic diethylenetriamine (DET) moieties in the side chain and systematically compared as mRNA delivery vehicles (or mRNA-loaded polyplexes). The obtained results demonstrated that the side chain structures of polyaspartamide derivatives were critical for the mRNA delivery efficiency of polyplexes. Interestingly, when the mRNA delivery efficiencies (or the luciferase expression levels in cultured cells) were plotted against an octanol-water partition coefficient (log P) as an indicator of hydrophobicity, a log P threshold was clearly observed to obtain high levels of mRNA expression. Indeed, 3.5 orders of magnitude difference in the expression level is observed between -2.45 and -2.31 in log P. This threshold of log P for the mRNA transfection efficiency apparently correlated with those for the polyplex stability and cellular uptake efficiency. Among the polyaspartamide derivatives with log P > -2.31, a polyaspartamide derivative with 11 residues of 2-cyclohexylethyl (CHE) moieties and 15 residues of DET moieties in the side chains elicited the highest mRNA expression in cultured cells. The optimized polyplex further accomplished highly efficient, rapid, and transient IVT mRNA expression in mouse brain after intracerebroventricular and intrathecal injection. Ultimately, the polyplex allowed for the highly efficient target gene deletion via the expression of Streptococcus pyogenes Cas9 nuclease-coding IVT mRNA in the ependymal layer of ventricles in a reporter mouse model. These results demonstrate the utility of log P driven polymer design for in vivo IVT mRNA delivery.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Center
for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- E-mail:
| | - Satomi Ogura
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Otabe
- Graduate
School of Arts and Sciences, The University
of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Rimpei Kamegawa
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Moritoshi Sato
- Graduate
School of Arts and Sciences, The University
of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazunori Kataoka
- Innovation
Center of NanoMedicine, Kawasaki Institute
of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Institute
for Future Initiatives, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanjiro Miyata
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- E-mail:
| |
Collapse
|
38
|
Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95:42-53. [PMID: 30639325 PMCID: PMC6710163 DOI: 10.1016/j.semcdb.2019.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/02/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration. Understanding the cross-talk between neural stem cells and their niche components is essential for the development of therapies against neurological disorders in which neural stem cells function is altered. In this review, we describe and discuss recent studies that identified novel components in the neural stem cell niche. These discoveries bring new concepts to the field. Here, we evaluate these recent advances that change our understanding of the neural stem cell niche heterogeneity and its influence on neural stem cell function.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia C O Bitencourt
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Al-Dalahmah O, Campos Soares L, Nicholson J, Draijer S, Mundim M, Lu VM, Sun B, Tyler T, Adorján I, O'Neill E, Szele FG. Galectin-3 modulates postnatal subventricular zone gliogenesis. Glia 2019; 68:435-450. [PMID: 31626379 PMCID: PMC6916335 DOI: 10.1002/glia.23730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
Postnatal subventricular zone (SVZ) neural stem cells generate forebrain glia, namely astrocytes and oligodendrocytes. The cues necessary for this process are unclear, despite this phase of brain development being pivotal in forebrain gliogenesis. Galectin‐3 (Gal‐3) is increased in multiple brain pathologies and thereby regulates astrocyte proliferation and inflammation in injury. To study the function of Gal‐3 in inflammation and gliogenesis, we carried out functional studies in mouse. We overexpressed Gal‐3 with electroporation and using immunohistochemistry surprisingly found no inflammation in the healthy postnatal SVZ. This allowed investigation of inflammation‐independent effects of Gal‐3 on gliogenesis. Loss of Gal‐3 function via knockdown or conditional knockout reduced gliogenesis, whereas Gal‐3 overexpression increased it. Gal‐3 overexpression also increased the percentage of striatal astrocytes generated by the SVZ but decreased the percentage of oligodendrocytes. These novel findings were further elaborated with multiple analyses demonstrating that Gal‐3 binds to the bone morphogenetic protein receptor one alpha (BMPR1α) and increases bone morphogenetic protein (BMP) signaling. Conditional knockout of BMPR1α abolished the effect of Gal‐3 overexpression on gliogenesis. Gain‐of‐function of Gal‐3 is relevant in pathological conditions involving the human forebrain, which is particularly vulnerable to hypoxia/ischemia during perinatal gliogenesis. Hypoxic/ischemic injury induces astrogliosis, inflammation and cell death. We show that Gal‐3 immunoreactivity was increased in the perinatal human SVZ and striatum after hypoxia/ischemia. Our findings thus show a novel inflammation‐independent function for Gal‐3; it is necessary for gliogenesis and when increased in expression can induce astrogenesis via BMP signaling.
Collapse
Affiliation(s)
- Osama Al-Dalahmah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Luana Campos Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - James Nicholson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Swip Draijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Mayara Mundim
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Victor M Lu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - István Adorján
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Figueres-Oñate M, Sánchez-Villalón M, Sánchez-González R, López-Mascaraque L. Lineage Tracing and Cell Potential of Postnatal Single Progenitor Cells In Vivo. Stem Cell Reports 2019; 13:700-712. [PMID: 31543472 PMCID: PMC6829765 DOI: 10.1016/j.stemcr.2019.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
Understanding the contribution of adult neural progenitor cells (NPCs) and their lineage potential is a great challenge in neuroscience. To reveal progenitor diversity and cell-lineage relationships of postnatal NPCs in the subventricular zone (SVZ), we performed in vivo lineage-tracing genetic analysis using the UbC-StarTrack. We determined the progeny of single SVZ-NPCs, the number of cells per clone, the dispersion of sibling cells, and the cell types within clones. Long-term analysis revealed that both the cell-dispersion pattern and number of cells comprising clones varied depending on the glial/neuronal nature of sibling cells. Sibling-olfactory interneurons were primarily located within the same layer, while sibling-glial cells populated SVZ-adjacent areas. Sibling astrocytes and interneurons did not form big clones, whereas oligodendroglial-lineage clones comprised the largest clones originated in adult brains. These results demonstrate the existence of SVZ postnatal bipotential progenitors that give rise to clones widely dispersed across the olfactory bulb and SVZ-adjacent areas. Bipotent postnatal progenitors produce clones of olfactory neurons and glial cells Different clonal cell patterns in astroglial, oligodendroglial, and neuronal lineages Sibling neuroblasts migrating to the olfactory bulb widespread along the RMS axis Sibling astrocytes and interneurons form discrete cell clones
Collapse
|
41
|
Marcy G, Raineteau O. Contributions of Single-Cell Approaches for Probing Heterogeneity and Dynamics of Neural Progenitors Throughout Life: Concise Review. Stem Cells 2019; 37:1381-1388. [DOI: 10.1002/stem.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208; Bron France
- Neurogenetics Department; Ecole Pratique des Hautes Etudes, PSL Research University; Paris France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208; Bron France
| |
Collapse
|
42
|
Donega V, Marcy G, Lo Giudice Q, Zweifel S, Angonin D, Fiorelli R, Abrous DN, Rival-Gervier S, Koehl M, Jabaudon D, Raineteau O. Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period. Cell Rep 2019. [PMID: 29514086 DOI: 10.1016/j.celrep.2018.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Progenitors of cortical glutamatergic neurons (Glu progenitors) are usually thought to switch fate before birth to produce astrocytes. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal radial glial cells that persist after birth in the dorsal subventricular zone and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing reveals a dysregulation of transcriptional programs, which parallels changes in m6A methylation and correlates with the gradual decline in cortical neurogenesis observed in vivo. Rescuing experiments show that postnatal progenitors are partially permissive to genetic and pharmacological manipulations. Our study provides an in-depth characterization of postnatal Glu progenitors and identifies potential therapeutic targets for promoting brain repair.
Collapse
Affiliation(s)
- Vanessa Donega
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Neurogenetics Department, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Quentin Lo Giudice
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Stefan Zweifel
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Diane Angonin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Roberto Fiorelli
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
| | - Djoher Nora Abrous
- Neurocentre Magendie, Neurogenesis and Physiopathology Group, Inserm, U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Sylvie Rival-Gervier
- Stem Cell and Brain Research Institute U1208, Université Claude Bernard Lyon 1, Inserm, INRA, USC1361, 69500 Bron, France
| | - Muriel Koehl
- Neurocentre Magendie, Neurogenesis and Physiopathology Group, Inserm, U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland.
| |
Collapse
|
43
|
OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis. eNeuro 2019; 6:ENEURO.0262-18.2019. [PMID: 31064838 PMCID: PMC6506823 DOI: 10.1523/eneuro.0262-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/09/2023] Open
Abstract
Proliferation and migration during adult neurogenesis are regulated by a microenvironment of signaling molecules originating from local vasculature, from CSF produced by the choroid plexus, and from local supporting cells including astrocytes. Here, we focus on the function of OTX2 homeoprotein transcription factor in the mouse adult ventricular-subventricular zone (V-SVZ), which generates olfactory bulb neurons. We find that OTX2 secreted by choroid plexus is transferred to the supporting cells of the V-SVZ and rostral migratory stream. Deletion of Otx2 in choroid plexus affects neuroblast migration and reduces the number of olfactory bulb newborn neurons. Adult neurogenesis was also decreased by expressing secreted single-chain antibodies to sequester OTX2 in the CSF, demonstrating the importance of non-cell-autonomous OTX2. We show that OTX2 activity modifies extracellular matrix components and signaling molecules produced by supporting astrocytes. Thus, we reveal a multilevel and non-cell-autonomous role of a homeoprotein and reinforce the choroid plexus and astrocytes as key niche compartments affecting adult neurogenesis.
Collapse
|
44
|
Angelova A, Platel JC, Béclin C, Cremer H, Coré N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol 2019; 527:1245-1260. [PMID: 30592042 DOI: 10.1002/cne.24621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/10/2022]
Abstract
During postnatal olfactory bulb (OB) neurogenesis, predetermined stem cells residing in the ventricular-subventricular zone continuously generate progenitors that migrate in the rostral migratory stream and integrate into the OB. Although the vast majority of these postnatally generated interneurons are inhibitory, a sub-fraction represents glutamatergic neurons that integrate into the superficial glomerular layer. In the present work, we demonstrate that the bHLH transcription factor NeuroD6 is specifically and transitorily expressed in the dorsal neurogenic lineage that generates glutamatergic juxtaglomerular cells (JGCs) for the OB. Using lineage tracing combined with whole brain clearing, we provide new insight into timing of generation, morphology, and connectivity of glutamatergic JGCs. Specifically, we show that all glutamatergic JGCs send complex axons with varying projection patterns into different layers of the OB. Moreover, we find that, contrary to GABAergic OB interneurons, glutamatergic JGCs survive under sensory deprivation, indicating that inhibitory and excitatory populations are differentially susceptible to environmental stimulation.
Collapse
Affiliation(s)
- Alexandra Angelova
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Jean-Claude Platel
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Christophe Béclin
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Harold Cremer
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Nathalie Coré
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| |
Collapse
|
45
|
Akkermann R, Azim K. Insights into ligand expression heterogeneity across multiple cell types in the adult forebrain that regulates neural stem cell behavior. Neural Regen Res 2019; 14:1369-1371. [PMID: 30964056 PMCID: PMC6524504 DOI: 10.4103/1673-5374.251304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rainer Akkermann
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kasum Azim
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
46
|
Scoggin JL, Kemp BS, Rivera DA, Murray TA. PICS: a platform for planar imaging of curved surfaces of brain and other tissue. Brain Struct Funct 2019; 224:1947-1956. [PMID: 30903358 DOI: 10.1007/s00429-019-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Optical imaging of wholemount tissue samples provides greater understanding of structure-function relationships as the architecture of these specimens is generally well preserved. However, difficulties arise when attempting to stitch together images of multiple regions of larger, oddly shaped specimens. These difficulties include (1) maintaining consistent signal-to-noise ratios when the overlying sample surface is uneven, (2) ensuring sample viability when live samples are required, and (3) stabilizing the specimen in a fixed position in a flowing medium without distorting the tissue sample. To address these problems, we designed a simple and cost-efficient device that can be 3D-printed and machined. The design for the device, named the Platform for Planar Imaging of Curved Surfaces (PICS), consists of a sample holder, or "cap" with gaps for fluid flow and a depression for securing the sample in a fixed position without glue or pins, a basket with two arms that move along an external radius to rotate the sample around a central axis, and a customizable platform designed to fit on a commercially available temperature control system for slice electrophysiology. We tested the system using wholemounts of the murine subventricular zone (SVZ), which has a high degree of curvature, to assess sample viability and image quality through cell movement for over an hour for each sample. Using the PICS system, tissues remained viable throughout the imaging sessions, there were no noticeable decreases in the image SNR across an imaging plane, and there was no noticeable displacement of the specimen due to fluid flow.
Collapse
Affiliation(s)
- Jessica L Scoggin
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA
| | - Benjamin S Kemp
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA
| | - Daniel A Rivera
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA.
| |
Collapse
|
47
|
Barazzuol L, Hopkins SR, Ju L, Jeggo PA. Distinct response of adult neural stem cells to low versus high dose ionising radiation. DNA Repair (Amst) 2019; 76:70-75. [PMID: 30822688 DOI: 10.1016/j.dnarep.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Radiosusceptibility is the sensitivity of a biological organism to ionising radiation (IR)-induced carcinogenesis, an outcome of IR exposure relevant following low doses. The tissue response is strongly influenced by the DNA damage response (DDR) activated in stem and progenitor cells. We previously reported that in vivo exposure to 2 Gy X-rays activates apoptosis, proliferation arrest and premature differentiation in neural progenitor cells (transit amplifying cells and neuroblasts) but not in neural stem cells (NSCs) of the largest neurogenic region of the adult brain, the subventricular zone (SVZ). These responses promote adult quiescent NSC (qNSC) activation after 2 Gy. In contrast, neonatal (P5) SVZ neural progenitors continue proliferating and do not activate qNSCs. Significantly, the human and mouse neonatal brain is radiosusceptible. Here, we examine the response of stem and progenitor cells in the SVZ to low IR doses (50-500 mGy). We observe a linear dose-response for apoptosis but, in contrast, proliferation arrest and neuroblast differentiation require a threshold dose of 200 or 500 mGy, respectively. Importantly, qNSCs were not activated at doses below 500 mGy. Thus, full DDR activation in the neural stem cell compartment in vivo necessitates a threshold dose, which can be considered of significance when evaluating IR-induced cancer risk and dose extrapolation.
Collapse
Affiliation(s)
- Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands.
| | - Suzanna R Hopkins
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Limei Ju
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
48
|
Benito N, Gaborieau E, Sanz Diez A, Kosar S, Foucault L, Raineteau O, De Saint Jan D. A Pool of Postnatally Generated Interneurons Persists in an Immature Stage in the Olfactory Bulb. J Neurosci 2018; 38:9870-9882. [PMID: 30282727 PMCID: PMC6596244 DOI: 10.1523/jneurosci.1216-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/01/2023] Open
Abstract
Calretinin (CR)-expressing periglomerular (PG) cells are the most abundant interneurons in the glomerular layer of the olfactory bulb. They are predominately generated postnatally from the septal and dorsal subventricular zones that continue producing them well into adulthood. Yet, little is known about their properties and functions. Using transgenic approaches and patch-clamp recording in mice of both sexes we show that CR(+) PG cells of both septal and dorsal origin have homogeneous morphological and electrophysiological properties. However, unlike other PG cells, these axonless neurons express a surprisingly small repertoire of voltage-activated channels and do not fire or fire at most a single and often small action potential. Moreover, they are not innervated by olfactory sensory neurons and receive little synaptic inputs from mitral or tufted cells at excitatory synapses where NMDA receptors predominate. These membrane and synaptic properties, that resemble those of newborn immature neurons not yet integrated in the network, persist over time and limit the recruitment of CR(+) PG cells by afferent inputs that strongly drive local network activity. Together, our results show that postnatally generated CR(+) PG cells continuously supply a large pool of neurons with unconventional properties. These data also question the contribution of CR(+) PG cells in olfactory bulb computation.SIGNIFICANCE STATEMENT Calretinin-expressing PG cells are by far the most abundant interneurons in the glomerular layer of the olfactory bulb. They are continuously produced during postnatal life, including adulthood, from neural stem cells located in the subventricular zones. Surprisingly, unlike other postnatally generated newborn neurons that quickly integrate into preexisting olfactory bulb networks, calretinin-expressing PG cells retain immature properties that limit their recruitment in local network activity for weeks, if not months, as if they would never fully mature. The function of this so far unsuspected pool of latent neurons is still unknown.
Collapse
Affiliation(s)
- Nuria Benito
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| | - Elodie Gaborieau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Alvaro Sanz Diez
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| | - Seher Kosar
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| |
Collapse
|
49
|
Gaborieau E, Hurtado-Chong A, Fernández M, Azim K, Raineteau O. A dual role for the transcription factor Sp8 in postnatal neurogenesis. Sci Rep 2018; 8:14560. [PMID: 30266956 PMCID: PMC6162233 DOI: 10.1038/s41598-018-32134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) of the postnatal subventricular zone (SVZ) continue producing distinct subtypes of olfactory bulb (OB) interneurons throughout life. Understanding the transcriptional coding of this diversity remains a great challenge of modern neurosciences. Interneurons expressing calretinin (CalR) represent the main interneuron subtype produced in the glomerular cell layer (GL) after birth. Previous studies have suggested that their specification relies on expression of the transcription factor Sp8 by SVZ NSCs. In this study, we performed fate mapping of NSCs that generate CalR+ or non-CalR+ interneurons, in order to assess the pattern of Sp8 expression during postnatal neurogenesis. We highlight a complex pattern of Sp8 expression, which appears to be expressed in all interneurons lineages, before getting gradually restricted to maturing CalR+ interneurons. To decipher the early and late functions of Sp8 in postnatal OB neurogenesis, we combined transient, permanent and conditional genetic approaches to manipulate Sp8 at distinct neurogenic stages. While Sp8 plays an early role in controlling proliferation in all lineages, it is not involved in the early specification of CalR+ periglomerular interneurons, but plays a crucial role in their long term survival. Together, our results highlight a crucial and dual role for Sp8 during postnatal neurogenesis.
Collapse
Affiliation(s)
- Elodie Gaborieau
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | | | - Maria Fernández
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Kasum Azim
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Olivier Raineteau
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France. .,Brain Research Institute, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
50
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|