1
|
Worthy AE, Anderson JT, Lane AR, Gomez-Perez L, Wang AA, Griffith RW, Rivard AF, Bikoff JB, Alvarez FJ. Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons, and heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569270. [PMID: 38076820 PMCID: PMC10705425 DOI: 10.1101/2023.11.29.569270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets according to neurogenesis timing, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Birthdate delineates two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8) V1 clades, showing that sequential neurogenesis produces different V1 subsets. Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression is positioned near the lateral motor column and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins. SIGNIFICANCE STATEMENT The complexity of spinal interneuron diversity and circuit organization represents a challenge to understand neural control of movement in normal adults as well as during motor development and in disease. Inhibitory interneurons are a core element of these spinal circuits. V1 interneurons comprise the largest group of inhibitory interneurons in the ventral horn, and their organization remains unclear. Here we present a comprehensive examination of V1 subtypes according to neurogenesis, placement in spinal motor circuits, and motoneuron synaptic targeting. V1 diversity increases during evolution from axial-swimming fishes to limb-based mammalian terrestrial locomotion. This increased diversity is reflected in the size and heterogeneity of the Foxp2-V1 clade, a group closely associated with limb motor pools. We show that Foxp2-V1 interneurons establish the densest direct inhibitory input to motoneurons, especially on cell bodies. These findings are particularly significant because recent studies have shown that motor neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) affect inhibitory V1 synapses on motoneuron cell bodies and Foxp2-V1 interneurons themselves in the earliest stages of pathology.
Collapse
|
2
|
Cai Y, Zhao Z, Shi M, Zheng M, Gong L, He M. Embryonic origins of forebrain oligodendrocytes revisited by combinatorial genetic fate mapping. eLife 2024; 13:RP95406. [PMID: 39259216 PMCID: PMC11390105 DOI: 10.7554/elife.95406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Multiple embryonic origins give rise to forebrain oligodendrocytes (OLs), yet controversies and uncertainty exist regarding their differential contributions. We established intersectional and subtractional strategies to genetically fate map OLs produced by medial ganglionic eminence/preoptic area (MGE/POA), lateral/caudal ganglionic eminences (LGE/CGE), and dorsal pallium in the mouse brain. We found that, contrary to the canonical view, LGE/CGE-derived OLs make minimum contributions to the neocortex and corpus callosum, but dominate piriform cortex and anterior commissure. Additionally, MGE/POA-derived OLs, instead of being entirely eliminated, make small but sustained contribution to cortex with a distribution pattern distinctive from those derived from the dorsal origin. Our study provides a revised and more comprehensive view of cortical and white matter OL origins, and established valuable new tools and strategies for future OL studies.
Collapse
Affiliation(s)
- Yuqi Cai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Zhirong Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mingyue Shi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mingfang Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ling Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman P, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 2024; 27:1400-1410. [PMID: 38802592 DOI: 10.1038/s41593-024-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C Hughes
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Human Cell Types, Allen Institute for Brain Science, Seattle, WA, USA
| | - Brittany G Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesse W Gammons
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charis M Webb
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hunter G Nolen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Plummer NW, Smith KG, Jensen P. A knock-in allele of Hand2 expressing Dre recombinase. Genesis 2024; 62:e23601. [PMID: 38703044 PMCID: PMC11088872 DOI: 10.1002/dvg.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
HAND2 is a basic helix-loop-helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among Hand2-expressing cells in the mouse, we have generated Hand2Dre, a knock-in allele expressing Dre recombinase. To avoid disrupting Hand2 function, the Dre cDNA is inserted at the 3' end of the Hand2 coding sequence following a viral 2A peptide. Hand2Dre homozygotes can therefore be used in complex crosses to increase the proportion of useful genotypes among offspring. Dre expression in mid-gestation Hand2Dre embryos is indistinguishable from wild-type Hand2 expression, and HandDre efficiently recombines rox target sites in vivo. In combination with existing Cre and Flp mouse lines, Hand2Dre will therefore extend the ability to perform genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by developmental expression of Hand2.
Collapse
Affiliation(s)
- Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
6
|
Contreras E, Liang C, Mahoney HL, Javier JL, Luce ML, Labastida Medina K, Bozza T, Schmidt TM. Flp-recombinase mouse line for genetic manipulation of ipRGCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592761. [PMID: 38766000 PMCID: PMC11100754 DOI: 10.1101/2024.05.06.592761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Light has myriad impacts on behavior, health, and physiology. These signals originate in the retina and are relayed to the brain by more than 40 types of retinal ganglion cells (RGCs). Despite a growing appreciation for the diversity of RGCs, how these diverse channels of light information are ultimately integrated by the ~50 retinorecipient brain targets to drive these light-evoked effects is a major open question. This gap in understanding primarily stems from a lack of genetic tools that specifically label, manipulate, or ablate specific RGC types. Here, we report the generation and characterization of a new mouse line (Opn4FlpO), in which FlpO is expressed from the Opn4 locus, to manipulate the melanopsin-expressing, intrinsically photosensitive retinal ganglion cells. We find that the Opn4FlpO line, when crossed to multiple reporters, drives expression that is confined to ipRGCs and primarily labels the M1-M3 subtypes. Labeled cells in this mouse line show the expected intrinsic, melanopsin-based light response and morphological features consistent with the M1-M3 subtypes. In alignment with the morphological and physiological findings, we see strong innervation of non-image forming brain targets by ipRGC axons, and weaker innervation of image forming targets in Opn4FlpO mice labeled using AAV-based and FlpO-reporter lines. Consistent with the FlpO insertion disrupting the endogenous Opn4 transcript, we find that Opn4FlpO/FlpO mice show deficits in the pupillary light reflex, demonstrating their utility for behavioral research in future experiments. Overall, the Opn4FlpO mouse line drives Flp-recombinase expression that is confined to ipRGCs and most effectively drives recombination in M1-M3 ipRGCs. This mouse line will be of broad use to those interested in manipulating ipRGCs through a Flp-based recombinase for intersectional studies or in combination with other, non-Opn4 Cre driver lines.
Collapse
Affiliation(s)
- E Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - C Liang
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - H L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - J L Javier
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - M L Luce
- Department of Neurobiology, Northwestern University, Evanston, IL
| | | | - T Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - T M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL
- Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
7
|
Izzo F, Myers RM, Ganesan S, Mekerishvili L, Kottapalli S, Prieto T, Eton EO, Botella T, Dunbar AJ, Bowman RL, Sotelo J, Potenski C, Mimitou EP, Stahl M, El Ghaity-Beckley S, Arandela J, Raviram R, Choi DC, Hoffman R, Chaligné R, Abdel-Wahab O, Smibert P, Ghobrial IM, Scandura JM, Marcellino B, Levine RL, Landau DA. Mapping genotypes to chromatin accessibility profiles in single cells. Nature 2024; 629:1149-1157. [PMID: 38720070 PMCID: PMC11139586 DOI: 10.1038/s41586-024-07388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.
Collapse
Affiliation(s)
- Franco Izzo
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saravanan Ganesan
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Levan Mekerishvili
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Sanjay Kottapalli
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tamara Prieto
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Elliot O Eton
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theo Botella
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew J Dunbar
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eleni P Mimitou
- New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Maximilian Stahl
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sebastian El Ghaity-Beckley
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - JoAnn Arandela
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Raviram
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel C Choi
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligné
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- SAIL: Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Smibert
- New York Genome Center, New York, NY, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph M Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bridget Marcellino
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ross L Levine
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Wilson LR, Plummer NW, Evsyukova IY, Patino D, Stewart CL, Smith KG, Konrad KS, Fry SA, Deal AL, Kilonzo VW, Panda S, Sciolino NR, Cushman JD, Jensen P. Partial or Complete Loss of Norepinephrine Differentially Alters Contextual Fear and Catecholamine Release Dynamics in Hippocampal CA1. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:51-60. [PMID: 38058990 PMCID: PMC10695841 DOI: 10.1016/j.bpsgos.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023] Open
Abstract
Background Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning. Methods We generated 2 new mouse models of altered locus coeruleus-norepinephrine (NE) synthesis and utilized them together with GRABNE and GRABDA sensors and in vivo fiber photometry to investigate NE and dopamine (DA) release dynamics in the dorsal hippocampal CA1 during contextual fear conditioning. Results Aversive foot shock increased both NE and DA release in the dorsal CA1, while freezing behavior associated with recall of fear memory was accompanied by decreased release. Moreover, we found that freezing at the recent time point was sensitive to both partial and complete loss of locus coeruleus-NE synthesis throughout prenatal and postnatal development, similar to previous observations of mice with global loss of NE synthesis beginning postnatally. In contrast, freezing at the remote time point was compromised only by complete loss of locus coeruleus-NE synthesis beginning prenatally. Conclusions Overall, these findings provide novel insights into the role of NE in contextual fear and the precise temporal dynamics of both NE and DA during freezing behavior and highlight complex relationships between genotype, sex, and NE signaling.
Collapse
Affiliation(s)
- Leslie R. Wilson
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Nicholas W. Plummer
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Irina Y. Evsyukova
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Daniela Patino
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Casey L. Stewart
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kathleen G. Smith
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kathryn S. Konrad
- Social and Scientific Systems, Inc., a DLH Holdings Corp Company, Durham, North Carolina
| | - Sydney A. Fry
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Alex L. Deal
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Victor W. Kilonzo
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Sambit Panda
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Natale R. Sciolino
- Department of Physiology and Neurobiology, Department of Biomedical Engineering, Institute for System Genomics, Connecticut Institute for the Brain & Cognitive Sciences, University of Connecticut, Storrs, Connecticut
| | - Jesse D. Cushman
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Patricia Jensen
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| |
Collapse
|
9
|
Beppu AK, Zhao J, Yao C, Carraro G, Israely E, Coelho AL, Drake K, Hogaboam CM, Parks WC, Kolls JK, Stripp BR. Epithelial plasticity and innate immune activation promote lung tissue remodeling following respiratory viral infection. Nat Commun 2023; 14:5814. [PMID: 37726288 PMCID: PMC10509177 DOI: 10.1038/s41467-023-41387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
Epithelial plasticity has been suggested in lungs of mice following genetic depletion of stem cells but is of unknown physiological relevance. Viral infection and chronic lung disease share similar pathological features of stem cell loss in alveoli, basal cell (BC) hyperplasia in small airways, and innate immune activation, that contribute to epithelial remodeling and loss of lung function. We show that a subset of distal airway secretory cells, intralobar serous (IS) cells, are activated to assume BC fates following influenza virus infection. Injury-induced hyperplastic BC (hBC) differ from pre-existing BC by high expression of IL-22Ra1 and undergo IL-22-dependent expansion for colonization of injured alveoli. Resolution of virus-elicited inflammation results in BC to IS re-differentiation in repopulated alveoli, and increased local expression of protective antimicrobial factors, but fails to restore normal alveolar epithelium responsible for gas exchange.
Collapse
Affiliation(s)
- Andrew K Beppu
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Juanjuan Zhao
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Changfu Yao
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gianni Carraro
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Edo Israely
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anna Lucia Coelho
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Katherine Drake
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cory M Hogaboam
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - William C Parks
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jay K Kolls
- Tulane Center for Translational Research in Infection and Inflammation, School of Medicine, New Orleans, LA, 70112, USA
| | - Barry R Stripp
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
10
|
Machold R, Dellal S, Valero M, Zurita H, Kruglikov I, Meng JH, Hanson JL, Hashikawa Y, Schuman B, Buzsáki G, Rudy B. Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells. eLife 2023; 12:e85893. [PMID: 37665123 PMCID: PMC10581691 DOI: 10.7554/elife.85893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Shlomo Dellal
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Manuel Valero
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Hector Zurita
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ilya Kruglikov
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - John Hongyu Meng
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Jessica L Hanson
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Yoshiko Hashikawa
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Benjamin Schuman
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - György Buzsáki
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
11
|
Hostetler RE, Hu H, Agmon A. Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. eNeuro 2023; 10:ENEURO.0204-23.2023. [PMID: 37463742 PMCID: PMC10414551 DOI: 10.1523/eneuro.0204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used GFP-expressing and recombinase-expressing mouse lines to characterize genetically defined subtypes of SOM interneurons by morphologic, electrophysiological, and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electric transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of specific mouse driver lines. To address these issues, we crossed Flp and Cre driver lines with a dual-color intersectional reporter, allowing experimental access to several combinatorially defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye labeled from the pial surface to identify layer 1-projecting neurons and immunostained against several marker proteins, revealing correlations between genetic label, axonal target, and marker protein expression in the same neurons. Lastly, using whole-cell recordings ex vivo, we analyzed and compared electrophysiological properties between different intersectional subsets. We identified two layer 1-targeting subtypes with nonoverlapping marker protein expression and electrophysiological properties, which, together with a previously characterized layer 4-targeting subtype, account for >50% of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior.
Collapse
Affiliation(s)
- Rachel E Hostetler
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| | - Hang Hu
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| | - Ariel Agmon
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| |
Collapse
|
12
|
Bohic M, Upadhyay A, Eisdorfer JT, Keating J, Simon RC, Briones BA, Azadegan C, Nacht HD, Oputa O, Martinez AM, Bethell BN, Gradwell MA, Romanienko P, Ramer MS, Stuber GD, Abraira VE. A new Hoxb8FlpO mouse line for intersectional approaches to dissect developmentally defined adult sensorimotor circuits. Front Mol Neurosci 2023; 16:1176823. [PMID: 37603775 PMCID: PMC10437123 DOI: 10.3389/fnmol.2023.1176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023] Open
Abstract
Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop. This study establishes a new workflow for intersectional mouse-viral strategies to dissect adult spinal function based on developmental lineages in a modular fashion. To restrict manipulations to the spinal cord, we generate a brain-sparing Hoxb8FlpO mouse line restricting Flp recombinase expression to caudal tissue. Recapitulating endogenous Hoxb8 gene expression, Flp-dependent reporter expression is present in the caudal embryo starting day 9.5. This expression restricts Flp activity in the adult to the caudal brainstem and below. Hoxb8FlpO heterozygous and homozygous mice do not develop any of the sensory or locomotor phenotypes evident in Hoxb8 heterozygous or mutant animals, suggesting normal developmental function of the Hoxb8 gene and protein in Hoxb8FlpO mice. Compared to the variability of brain recombination in available caudal Cre and Flp lines, Hoxb8FlpO activity is not present in the brain above the caudal brainstem, independent of mouse genetic background. Lastly, we combine the Hoxb8FlpO mouse line with dorsal horn developmental lineage Cre mouse lines to express GFP in developmentally determined dorsal horn populations. Using GFP-dependent Cre recombinase viruses and Cre recombinase-dependent inhibitory chemogenetics, we target developmentally defined lineages in the adult. We show how developmental knock-out versus transient adult silencing of the same ROR𝛃 lineage neurons affects adult sensorimotor behavior. In summary, this new mouse line and viral approach provides a blueprint to dissect adult somatosensory circuit function using Cre/Flp genetic tools to target spinal cord interneurons based on genetic lineage.
Collapse
Affiliation(s)
- Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- Neuroscience PhD Program at Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Jaclyn T. Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- School of Medicine, Oregon Health and Science University, Portland, OR, United States
- M.D./PhD Program in Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Brandy A. Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Chloe Azadegan
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Hannah D. Nacht
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Olisemeka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Alana M. Martinez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Bridget N. Bethell
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Mark A. Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Victoria E. Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
13
|
Porras-García E, Mas-Nieto M, Delgado-García JM, Domínguez-Del-Toro E. Noradrenergic projections regulate the acquisition of classically conditioned eyelid responses in wild-type and are impaired in kreisler mice. Sci Rep 2023; 13:11458. [PMID: 37454229 PMCID: PMC10349844 DOI: 10.1038/s41598-023-38278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
During embryonic development, heterozygous mutant kreisler mice undergo ectopic expression of the Hoxa3 gene in the rostral hindbrain, affecting the opioid and noradrenergic systems. In this model, we have investigated behavioral and cognitive processes in their adulthood. We confirmed that pontine and locus coeruleus neuronal projections are impaired, by using startle and pain tests and by analyzing immunohistochemical localization of tyrosine hydroxylase. Our results showed that, even if kreisler mice are able to generate eyelid reflex responses, there are differences with wild-types in the first component of the response (R1), modulated by the noradrenergic system. The acquisition of conditioned motor responses is impaired in kreisler mice when using the trace but not the delay paradigm, suggesting a functional impairment in the hippocampus, subsequently confirmed by reduced quantification of alpha2a receptor mRNA expression in this area but not in the cerebellum. Moreover, we demonstrate the involvement of adrenergic projection in eyelid classical conditioning, as clonidine prevents the appearance of eyelid conditioned responses in wild-type mice. In addition, hippocampal motor learning ability was restored in kreisler mice by administration of adrenergic antagonist drugs, and a synergistic effect was observed following simultaneous administration of idazoxan and naloxone.
Collapse
Affiliation(s)
- Elena Porras-García
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Magdalena Mas-Nieto
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| | - José María Delgado-García
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| | | |
Collapse
|
14
|
Sokolowski JD, Soldozy S, Sharifi KA, Norat P, Kearns KN, Liu L, Williams AM, Yağmurlu K, Mastorakos P, Miller GW, Kalani MYS, Park MS, Kellogg RT, Tvrdik P. Preclinical models of middle cerebral artery occlusion: new imaging approaches to a classic technique. Front Neurol 2023; 14:1170675. [PMID: 37409019 PMCID: PMC10318149 DOI: 10.3389/fneur.2023.1170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Stroke remains a major burden on patients, families, and healthcare professionals, despite major advances in prevention, acute treatment, and rehabilitation. Preclinical basic research can help to better define mechanisms contributing to stroke pathology, and identify therapeutic interventions that can decrease ischemic injury and improve outcomes. Animal models play an essential role in this process, and mouse models are particularly well-suited due to their genetic accessibility and relatively low cost. Here, we review the focal cerebral ischemia models with an emphasis on the middle cerebral artery occlusion technique, a "gold standard" in surgical ischemic stroke models. Also, we highlight several histologic, genetic, and in vivo imaging approaches, including mouse stroke MRI techniques, that have the potential to enhance the rigor of preclinical stroke evaluation. Together, these efforts will pave the way for clinical interventions that can mitigate the negative impact of this devastating disease.
Collapse
Affiliation(s)
- Jennifer D. Sokolowski
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, Westchester Medical Center, Valhalla, NY, United States
| | - Khadijeh A. Sharifi
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Kathryn N. Kearns
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Lei Liu
- Department of Neurological Surgery and Neuroscience, Northwestern University, Chicago, IL, United States
| | - Ashley M. Williams
- School of Medicine, Morsani College of Medicine, Tampa, FL, United States
| | - Kaan Yağmurlu
- Department of Neurological Surgery, University of Tennessee, Memphis, TN, United States
| | - Panagiotis Mastorakos
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - G. Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - M. Yashar S. Kalani
- Department of Neurological Surgery, St. John's Neuroscience Institute, Tulsa, OK, United States
| | - Min S. Park
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Ryan T. Kellogg
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Hostetler RE, Hu H, Agmon A. Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526850. [PMID: 36778499 PMCID: PMC9915678 DOI: 10.1101/2023.02.02.526850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used transgenic mouse lines to identify and characterize subtypes of SOM interneurons by morphological, electrophysiological and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electro-transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of type-specific mouse driver lines. To begin to address these issues we crossed Flp and Cre driver mouse lines and a dual-color combinatorial reporter, allowing experimental access to genetically defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye-labeled from the pial surface to identify layer 1-projecting neurons, and immunostained against several marker proteins, allowing correlation of genetic label, axonal target and marker protein expression in the same neurons. Using whole-cell recordings ex-vivo, we compared electrophysiological properties between intersectional and transgenic SOM subsets. We identified two layer 1-targeting intersectional subsets with non-overlapping marker protein expression and electrophysiological properties which, together with a previously characterized layer 4-targeting subtype, account for about half of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior. SIGNIFICANCE STATEMENT Inhibitory neurons are critically important for proper development and function of the cerebral cortex. Although a minority population, they are highly diverse, which poses a major challenge to investigating their contributions to cortical computations and animal and human behavior. As a step towards understanding this diversity we crossed genetically modified mouse lines to allow detailed examination of genetically-defined groups of the most diverse inhibitory subtype, somatostatin-containing interneurons. We identified and characterized three somatostatin subtypes in the deep cortical layers with distinct combinations of anatomical, neurochemical and electrophysiological properties. Future studies could now use these genetic tools to examine how these different subtypes are integrated into the cortical circuit and what roles they play during sensory, cognitive or motor behavior.
Collapse
Affiliation(s)
- Rachel E Hostetler
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Hang Hu
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Ariel Agmon
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| |
Collapse
|
16
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
17
|
Huang DF, Lin CW, Yang TY, Lien CC, Yang CH, Huang HS. An intersectional genetic approach for simultaneous cell type-specific labelling and gene knockout in the mouse. Development 2023; 150:287021. [PMID: 36786332 DOI: 10.1242/dev.201198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Precise genome manipulation in specific cell types and subtypes in vivo is crucial for neurobiological research because of the cellular heterogeneity of the brain. Site-specific recombinase systems in the mouse, such as Cre-loxP, improve cell type-specific genome manipulation; however, undesirable expression of cell type-specific Cre can occur. This could be due to transient expression during early development, natural expression in more than one cell type, kinetics of recombinases, sensitivity of the Cre reporter, and disruption in cis-regulatory elements by transgene insertion. Moreover, cell subtypes cannot be distinguished in cell type-specific Cre mice. To address these issues, we applied an intersectional genetic approach in mouse using triple recombination systems (Cre-loxP, Flp-FRT and Dre-rox). As a proof of principle, we labelled heterogeneous cell subtypes and deleted target genes within given cell subtypes by labelling neuropeptide Y (NPY)-, calretinin (calbindin 2) (CR)- and cholecystokinin (CCK)-expressing GABAergic neurons in the brain followed by deletion of RNA-binding Fox-1 homolog 3 (Rbfox3) in our engineered mice. Together, our study applies an intersectional genetic approach in vivo to generate engineered mice serving dual purposes of simultaneous cell subtype-specific labelling and gene knockout.
Collapse
Affiliation(s)
- De-Fong Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chao-Wen Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Tzu-Yin Yang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
18
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
19
|
McKinney A, Hu M, Hoskins A, Mohammadyar A, Naeem N, Jing J, Patel SS, Sheth BR, Jiang X. Cellular composition and circuit organization of the locus coeruleus of adult mice. eLife 2023; 12:e80100. [PMID: 36734517 PMCID: PMC9934863 DOI: 10.7554/elife.80100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
The locus coeruleus (LC) houses the vast majority of noradrenergic neurons in the brain and regulates many fundamental functions, including fight and flight response, attention control, and sleep/wake cycles. While efferent projections of the LC have been extensively investigated, little is known about its local circuit organization. Here, we performed large-scale multipatch recordings of noradrenergic neurons in adult mouse LC to profile their morpho-electric properties while simultaneously examining their interactions. LC noradrenergic neurons are diverse and could be classified into two major morpho-electric types. While fast excitatory synaptic transmission among LC noradrenergic neurons was not observed in our preparation, these mature LC neurons connected via gap junction at a rate similar to their early developmental stage and comparable to other brain regions. Most electrical connections form between dendrites and are restricted to narrowly spaced pairs or small clusters of neurons of the same type. In addition, more than two electrically coupled cell pairs were often identified across a cohort of neurons from individual multicell recording sets that followed a chain-like organizational pattern. The assembly of LC noradrenergic neurons thus follows a spatial and cell-type-specific wiring principle that may be imposed by a unique chain-like rule.
Collapse
Affiliation(s)
- Andrew McKinney
- Neuroscience Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Ming Hu
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | | | | | | | - Junzhan Jing
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Saumil S Patel
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Bhavin R Sheth
- Department of Electrical and Computer Engineering, University of HoustonHoustonUnited States
- Center for NeuroEngineering and Cognitive Science, University of HoustonHoustonUnited States
| | - Xiaolong Jiang
- Neuroscience Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Ophthalmology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
20
|
Waterhouse BD, Predale HK, Plummer NW, Jensen P, Chandler DJ. Probing the structure and function of locus coeruleus projections to CNS motor centers. Front Neural Circuits 2022; 16:895481. [PMID: 36247730 PMCID: PMC9556855 DOI: 10.3389/fncir.2022.895481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The brainstem nucleus locus coeruleus (LC) sends projections to the forebrain, brainstem, cerebellum and spinal cord and is a source of the neurotransmitter norepinephrine (NE) in these areas. For more than 50 years, LC was considered to be homogeneous in structure and function such that NE would be released uniformly and act simultaneously on the cells and circuits that receive LC projections. However, recent studies have provided evidence that LC is modular in design, with segregated output channels and the potential for differential release and action of NE in its projection fields. These new findings have prompted a radical shift in our thinking about LC operations and demand revision of theoretical constructs regarding impact of the LC-NE system on behavioral outcomes in health and disease. Within this context, a major gap in our knowledge is the relationship between the LC-NE system and CNS motor control centers. While we know much about the organization of the LC-NE system with respect to sensory and cognitive circuitries and the impact of LC output on sensory guided behaviors and executive function, much less is known about the role of the LC-NE pathway in motor network operations and movement control. As a starting point for closing this gap in understanding, we propose using an intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon Collaterals) as well as established ex vivo electrophysiological assays to characterize efferent connectivity and physiological attributes of mouse LC-motor network projection neurons. The novel hypothesis to be tested is that LC cells with projections to CNS motor centers are scattered throughout the rostral-caudal extent of the nucleus but collectively display a common set of electrophysiological properties. Additionally, we expect to find these LC projection neurons maintain an organized network of axon collaterals capable of supporting selective, synchronous release of NE in motor circuitries for the purpose of coordinately regulating operations across networks that are responsible for balance and movement dynamics. Investigation of this hypothesis will advance our knowledge of the role of the LC-NE system in motor control and provide a basis for treating movement disorders resulting from disease, injury, or normal aging.
Collapse
Affiliation(s)
- Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,*Correspondence: Barry D. Waterhouse,
| | - Haven K. Predale
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| | - Nicholas W. Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| |
Collapse
|
21
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
22
|
Sciolino NR, Hsiang M, Mazzone CM, Wilson LR, Plummer NW, Amin J, Smith KG, McGee CA, Fry SA, Yang CX, Powell JM, Bruchas MR, Kravitz AV, Cushman JD, Krashes MJ, Cui G, Jensen P. Natural locus coeruleus dynamics during feeding. SCIENCE ADVANCES 2022; 8:eabn9134. [PMID: 35984878 PMCID: PMC9390985 DOI: 10.1126/sciadv.abn9134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher M. Mazzone
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Leslie R. Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jaisal Amin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher A. McGee
- Comparative Medicine, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sydney A. Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Cindy X. Yang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jeanne M. Powell
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael R. Bruchas
- Departments of Anesthesiology and Pharmacology, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | | | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael J. Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
In Vivo Methods to Monitor Cardiomyocyte Proliferation. J Cardiovasc Dev Dis 2022; 9:jcdd9030073. [PMID: 35323621 PMCID: PMC8950582 DOI: 10.3390/jcdd9030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Adult mammalian cardiomyocytes demonstrate scarce cycling and even lower proliferation rates in response to injury. Signals that enhance cardiomyocyte proliferation after injury will be groundbreaking, address unmet clinical needs, and represent new strategies to treat cardiovascular diseases. In vivo methods to monitor cardiomyocyte proliferation are critical to addressing this challenge. Fortunately, advances in transgenic approaches provide sophisticated techniques to quantify cardiomyocyte cycling and proliferation.
Collapse
|
24
|
Lee HW, Xu Y, He L, Choi W, Gonzalez D, Jin SW, Simons M. Role of Venous Endothelial Cells in Developmental and Pathologic Angiogenesis. Circulation 2021; 144:1308-1322. [PMID: 34474596 DOI: 10.1161/circulationaha.121.054071] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiogenesis is a dynamic process that involves expansion of a preexisting vascular network that can occur in a number of physiological and pathological settings. Despite its importance, the origin of the new angiogenic vasculature is poorly defined. In particular, the primary subtype of endothelial cells (capillary, venous, arterial) driving this process remains undefined. METHODS Endothelial cells were fate-mapped with the use of genetic markers specific to arterial and capillary cells. In addition, we identified a novel venous endothelial marker gene (Gm5127) and used it to generate inducible venous endothelium-specific Cre and Dre driver mouse lines. Contributions of these various types of endothelial cells to angiogenesis were examined during normal postnatal development and in disease-specific setting. RESULTS Using a comprehensive set of endothelial subtype-specific inducible reporter mice, including tip, arterial, and venous endothelial reporter lines, we showed that venous endothelial cells are the primary endothelial subtype responsible for the expansion of an angiogenic vascular network. During physiological angiogenesis, venous endothelial cells proliferate, migrating against the blood flow and differentiating into tip, capillary, and arterial endothelial cells of the new vasculature. Using intravital 2-photon imaging, we observed venous endothelial cells migrating against the blood flow to form new blood vessels. Venous endothelial cell migration also plays a key role in pathological angiogenesis. This was observed both in formation of arteriovenous malformations in mice with inducible endothelium-specific Smad4 deletion mice and in pathological vessel growth seen in oxygen-induced retinopathy. CONCLUSIONS Our studies establish that venous endothelial cells are the primary endothelial subtype responsible for normal expansion of vascular networks, formation of arteriovenous malformations, and pathological angiogenesis. These observations highlight the central role of the venous endothelium in normal development and disease pathogenesis.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT
| | - Yanying Xu
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (Y.X.)
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H.)
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (W.C., S.-W.J.)
| | - David Gonzalez
- Department of Genetics (D.G.), Yale University School of Medicine, New Haven, CT
| | - Suk-Won Jin
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (W.C., S.-W.J.)
| | - Michael Simons
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
25
|
Ubina T, Vahedi-Hunter T, Agnew-Svoboda W, Wong W, Gupta A, Santhakumar V, Riccomagno MM. ExBoX - a simple Boolean exclusion strategy to drive expression in neurons. J Cell Sci 2021; 134:272538. [PMID: 34515305 PMCID: PMC8572001 DOI: 10.1242/jcs.257212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
The advent of modern single-cell biology has revealed the striking molecular diversity of cell populations once thought to be more homogeneous. This newly appreciated complexity has made intersectional genetic approaches essential to understanding and probing cellular heterogeneity at the functional level. Here, we build on previous knowledge to develop a simple adeno-associated virus (AAV)-based approach to define specific subpopulations of cells by Boolean exclusion logic (AND NOT). This expression by Boolean exclusion (ExBoX) system encodes for a gene of interest that is turned on by a particular recombinase (Cre or FlpO) and turned off by another. ExBoX allows for the specific transcription of a gene of interest in cells expressing only the activating recombinase, but not in cells expressing both. We show the ability of the ExBoX system to tightly regulate expression of fluorescent reporters in vitro and in vivo, and further demonstrate the adaptability of the system by achieving expression of a variety of virally delivered coding sequences in the mouse brain. This simple strategy will expand the molecular toolkit available for cell- and time-specific gene expression in a variety of systems. Summary: The generation of a novel AAV-based intersectional approach to define and target specific subpopulations of cells in time and space via a Expression by Boolean Exclusion (ExBoX) system.
Collapse
Affiliation(s)
- Teresa Ubina
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Tyler Vahedi-Hunter
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Will Agnew-Svoboda
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Wenny Wong
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Akshay Gupta
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Vijayalakshmi Santhakumar
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| | - Martin M Riccomagno
- Neuroscience Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
26
|
Lane AR, Cogdell IC, Jessell TM, Bikoff JB, Alvarez FJ. Genetic targeting of adult Renshaw cells using a Calbindin 1 destabilized Cre allele for intersection with Parvalbumin or Engrailed1. Sci Rep 2021; 11:19861. [PMID: 34615947 PMCID: PMC8494874 DOI: 10.1038/s41598-021-99333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Renshaw cells (RCs) are one of the most studied spinal interneurons; however, their roles in motor control remain enigmatic in part due to the lack of experimental models to interfere with RC function, specifically in adults. To overcome this limitation, we leveraged the distinct temporal regulation of Calbindin (Calb1) expression in RCs to create genetic models for timed RC manipulation. We used a Calb1 allele expressing a destabilized Cre (dgCre) theoretically active only upon trimethoprim (TMP) administration. TMP timing and dose influenced RC targeting efficiency, which was highest within the first three postnatal weeks, but specificity was low with many other spinal neurons also targeted. In addition, dgCre showed TMP-independent activity resulting in spontaneous recombination events that accumulated with age. Combining Calb1-dgCre with Parvalbumin (Pvalb) or Engrailed1 (En1) Flpo alleles in dual conditional systems increased cellular and timing specificity. Under optimal conditions, Calb1-dgCre/Pvalb-Flpo mice targeted 90% of RCs and few dorsal horn neurons; Calb1-dgCre/En1-Flpo mice showed higher specificity, but only a maximum of 70% of RCs targeted. Both models targeted neurons throughout the brain. Restricted spinal expression was obtained by injecting intraspinally AAVs carrying dual conditional genes. These results describe the first models to genetically target RCs bypassing development.
Collapse
Affiliation(s)
- Alicia R Lane
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA
| | | | - Thomas M Jessell
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
27
|
Dual recombinases-based genetic lineage tracing for stem cell research with enhanced precision. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2060-2072. [PMID: 33847909 DOI: 10.1007/s11427-020-1889-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
Stem cell research has become a hot topic in biology, as the understanding of stem cell biology can provide new insights for both regenerative medicine and clinical treatment of diseases. Accurately deciphering the fate of stem cells is the basis for understanding the mechanism and function of stem cells during tissue repair and regeneration. Cre-loxP-mediated recombination has been widely applied in fate mapping of stem cells for many years. However, nonspecific labeling by conventional cell lineage tracing strategies has led to discrepancies or even controversies in multiple fields. Recently, dual recombinase-mediated lineage tracing strategies have been developed to improve both the resolution and precision of stem cell fate mapping. These new genetic strategies also expand the application of lineage tracing in studying cell origin and fate. Here, we review cell lineage tracing methods, especially dual genetic approaches, and then provide examples to describe how they are used to study stem cell fate plasticity and function in vivo.
Collapse
|
28
|
Miczán V, Kelemen K, Glavinics JR, László ZI, Barti B, Kenesei K, Kisfali M, Katona I. NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic Interneurons. Cereb Cortex 2021; 31:1786-1806. [PMID: 33230531 PMCID: PMC7869086 DOI: 10.1093/cercor/bhaa326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular repertoire of the "Ca2+-signaling toolkit" supports the specific kinetic requirements of Ca2+-dependent processes in different neuronal types. A well-known example is the unique expression pattern of calcium-binding proteins, such as parvalbumin, calbindin, and calretinin. These cytosolic Ca2+-buffers control presynaptic and somatodendritic processes in a cell-type-specific manner and have been used as neurochemical markers of GABAergic interneuron types for decades. Surprisingly, to date no typifying calcium-binding proteins have been found in CB1 cannabinoid receptor/cholecystokinin (CB1/CCK)-positive interneurons that represent a large population of GABAergic cells in cortical circuits. Because CB1/CCK-positive interneurons display disparate presynaptic and somatodendritic Ca2+-transients compared with other interneurons, we tested the hypothesis that they express alternative calcium-binding proteins. By in silico data mining in mouse single-cell RNA-seq databases, we identified high expression of Necab1 and Necab2 genes encoding N-terminal EF-hand calcium-binding proteins 1 and 2, respectively, in CB1/CCK-positive interneurons. Fluorescent in situ hybridization and immunostaining revealed cell-type-specific distribution of NECAB1 and NECAB2 throughout the isocortex, hippocampal formation, and basolateral amygdala complex. Combination of patch-clamp electrophysiology, confocal, and STORM super-resolution microscopy uncovered subcellular nanoscale differences indicating functional division of labor between the two calcium-binding proteins. These findings highlight NECAB1 and NECAB2 as predominant calcium-binding proteins in CB1/CCK-positive interneurons.
Collapse
Affiliation(s)
- Vivien Miczán
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary
| | - Krisztina Kelemen
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș 540142, Romania
| | - Judit R Glavinics
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Zsófia I László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest 1083, Hungary
| | - Benjámin Barti
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest 1083, Hungary
| | - Kata Kenesei
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Máté Kisfali
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
29
|
Neurochemically and Hodologically Distinct Ascending VGLUT3 versus Serotonin Subsystems Comprise the r2- Pet1 Median Raphe. J Neurosci 2021; 41:2581-2600. [PMID: 33547164 DOI: 10.1523/jneurosci.1667-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2 -high versus r2-Pet1Vglut3 -high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2- high and r2-Pet1Vglut3- high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3- high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1 + precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.
Collapse
|
30
|
Bradley LA, Young A, Li H, Billcheck HO, Wolf MJ. Loss of Endogenously Cycling Adult Cardiomyocytes Worsens Myocardial Function. Circ Res 2021; 128:155-168. [PMID: 33146578 DOI: 10.1161/circresaha.120.318277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE Endogenously cycling adult cardiomyocytes increase after myocardial infarction (MI) but remain scarce and are generally thought not to contribute to myocardial function. However, this broadly held assumption has not been tested, mainly because of the lack of transgenic reporters that restrict Cre expression to adult cardiomyocytes that reenter the cell cycle. OBJECTIVE We created and validated a new transgenic mouse, αMHC (alpha myosin heavy chain)-MerDreMer-Ki67p-RoxedCre (denoted αDKRC [cardiomyocyte-specific αMHC-MerDreMer-Ki67p-RoxedCre]) that restricts Cre expression to cycling adult cardiomyocytes and uniquely integrates spatial and temporal adult cardiomyocyte cycling events based on the DNA specificities of orthologous Dre and Cre recombinases. We then created αDKRC::DTA mice that expressed an inducible diphtheria toxin in adult cycling cardiomyocytes and examined the effects of ablating these endogenously cycling cardiomyocytes on myocardial function after ischemic-reperfusion (I/R) MI. METHODS AND RESULTS A tandem αDKRC transgene was designed, validated in cultured cells, and used to make transgenic mice. The αDKRC transgene integrated between MYH6 and MYH7 and did not disrupt expression of the surrounding genes. Compared with controls, αDKRC::RLTG (Rox-Lox-tdTomato-eGFP) mice treated with Tamoxifen expressed tdTomato+ in cardiomyocytes with rare Bromodeoxyuridine+, eGFP+ cardiomyocytes, consistent with reentry of the cell cycle. We then pretreated αDKRC::RLTG mice with Tamoxifen to activate the reporter before sham or reperfusion (I/R) MI surgeries. Compared with Sham surgery, the I/R MI group had increased single and paired eGFP+ (enhanced green fluorescent protein)+ cardiomyocytes predominantly in the border zones (5.8±0.5 versus 3.3±0.3 cardiomyocytes per 10-micron section, N=8-9 mice per group, n=16-24 sections per mouse), indicative of cycled cardiomyocytes. The single to paired eGFP+ cardiomyocyte ratio was ≈9 to 1 (5.2±0.4 single versus 0.6±0.2 paired cardiomyocytes) in the I/R MI group after MI, suggesting that cycling cardiomyocytes were more likely to undergo polyploidy than replication. The ablation of endogenously cycling adult cardiomyocytes in αDKRC::DTA (diphtheria) mice caused progressive worsening left ventricular chamber size and function after I/R MI, compared with controls. CONCLUSIONS Although scarce, endogenously cycling adult cardiomyocytes contribute to myocardial function after injury, suggesting that these cells may be physiologically relevant.
Collapse
Affiliation(s)
- Leigh A Bradley
- Department of Medicine (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Alexander Young
- Department of Medicine (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Hongbin Li
- Department of Medicine (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Helen O Billcheck
- Department of Medicine (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
| | - Matthew J Wolf
- Department of Medicine (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (L.A.B., A.Y., H.L., H.O.B., M.J.W.), University of Virginia, Charlottesville
| |
Collapse
|
31
|
Royer DJ, Cook DN. Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:292-301. [PMID: 33397743 PMCID: PMC8581969 DOI: 10.4049/jimmunol.2000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Nonhematopoietic cells are emerging as important contributors to many inflammatory diseases, including allergic asthma. Recent advances have led to a deeper understanding of how these cells interact with traditional immune cells, thereby modulating their activities in both homeostasis and disease. In addition to their well-established roles in gas exchange and barrier function, lung epithelial cells express an armament of innate sensors that can be triggered by various inhaled environmental agents, leading to the production of proinflammatory molecules. Advances in cell lineage tracing and single-cell RNA sequencing have expanded our knowledge of rare, but immunologically important nonhematopoietic cell populations. In parallel with these advances, novel reverse genetic approaches are revealing how individual genes in different lung-resident nonhematopoietic cell populations contribute to the initiation and maintenance of asthma. This knowledge is already revealing new pathways that can be selectively targeted to treat distinct forms of asthma.
Collapse
Affiliation(s)
- Derek J Royer
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
32
|
Turrero García M, Stegmann SK, Lacey TE, Reid CM, Hrvatin S, Weinreb C, Adam MA, Nagy MA, Harwell CC. Transcriptional profiling of sequentially generated septal neuron fates. eLife 2021; 10:71545. [PMID: 34851821 PMCID: PMC8694698 DOI: 10.7554/elife.71545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Collapse
Affiliation(s)
| | - Sarah K Stegmann
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,Biological and Biomedical Sciences PhD program at Harvard UniversityCambridgeUnited States
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States,PhD Program in Systems Biology at Harvard UniversityCambridgeUnited States
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
33
|
Thorsen AS, Khamis D, Kemp R, Colombé M, Lourenço FC, Morrissey E, Winton D. Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing. Dis Model Mech 2021; 14:dmm046706. [PMID: 33093165 PMCID: PMC7823168 DOI: 10.1242/dmm.046706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Somatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described. The clonal biology of the intestinal epithelium following Cre-mediated stabilisation of β-catenin reveals that, within tumours, many new clones rapidly become extinct. Surviving clones show accelerated population of tumour glands compared to normal intestinal crypts but in a non-uniform manner, indicating that intra-tumour glands follow heterogeneous dynamics. In tumour-adjacent epithelia, clone sizes are smaller than in the background epithelia, as a whole. This suggests a zone of ∼seven crypt diameters within which clone expansion is inhibited by tumours and that may facilitate their growth.
Collapse
Affiliation(s)
- Ann-Sofie Thorsen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Doran Khamis
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Filipe C. Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
34
|
Mesenteric Neural Crest Cells Are the Embryological Basis of Skip Segment Hirschsprung's Disease. Cell Mol Gastroenterol Hepatol 2020; 12:1-24. [PMID: 33340715 PMCID: PMC8082118 DOI: 10.1016/j.jcmgh.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Defective rostrocaudal colonization of the gut by vagal neural crest cells (vNCCs) results in Hirschsprung's disease (HSCR), which is characterized by aganglionosis in variable lengths of the distal bowel. Skip segment Hirschsprung's disease (SSHD), referring to a ganglionated segment within an otherwise aganglionic intestine, contradicts HSCR pathogenesis and underscores a significant gap in our understanding of the development of the enteric nervous system. Here, we aimed to identify the embryonic origin of the ganglionic segments in SSHD. METHODS Intestinal biopsy specimens from HSCR patients were prepared via the Swiss-roll technique to search for SSHD cases. NCC migration from the neural tube to the gut was spatiotemporally traced using targeted cell lineages and gene manipulation in mice. RESULTS After invading the mesentery surrounding the foregut, vNCCs separated into 2 populations: mesenteric NCCs (mNCCs) proceeded to migrate along the mesentery, whereas enteric NCCs invaded the foregut to migrate along the gut. mNCCs not only produced neurons and glia within the gut mesentery, but also continuously complemented the enteric NCC pool. Two new cases of SSHD were identified from 183 HSCR patients, and Ednrb-mutant mice, but not Ret-/- mice, showed a high incidence rate of SSHD-like phenotypes. CONCLUSIONS mNCCs, a subset of vNCCs that migrate into the gut via the gut mesentery to give rise to enteric neurons, could provide an embryologic explanation for SSHD. These findings lead to novel insights into the development of the enteric nervous system and the etiology of HSCR.
Collapse
|
35
|
Evolution of in vivo dopamine monitoring techniques. Pharmacol Biochem Behav 2020; 200:173078. [PMID: 33278398 DOI: 10.1016/j.pbb.2020.173078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023]
Abstract
The brain dopamine system is central to numerous behavioral processes, including movement, learning, and motivation. Accordingly, disruptions of this neural system underlie numerous neurological and psychiatric disorders. Current understanding of how dopamine neurotransmission contributes to behavior and its dysfunction has been driven by technological advancements that permit spatiotemporally-defined measurements of dopaminergic signaling in behaving animals. In this review, we will discuss the evolution of in vivo neural monitoring technologies for measuring dopamine neuron function. We focus on the dopamine system for two reasons: (1) the central role of dopamine neurotransmission in normal behavior and disease, and (2) dopamine neuron measurements have long been at the forefront of in vivo neural monitoring technologies. We will provide a brief overview of standard techniques for monitoring dopamine function, including electrophysiology, microdialysis, and voltammetry. Then, we will discuss recent advancements in optical technologies using genetically-encoded fluorescent proteins (GEFPs), including a critical evaluation of their advantages and limitations.
Collapse
|
36
|
Beier C, Zhang Z, Yurgel M, Hattar S. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. J Comp Neurol 2020; 529:1863-1875. [PMID: 33104235 PMCID: PMC10081000 DOI: 10.1002/cne.25061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Retinal ganglion cells (RGCs), the output neurons of the retina, allow us to perceive our visual environment. RGCs respond to rod/cone input through the retinal circuitry, however, a small population of RGCs are in addition intrinsically photosensitive (ipRGCs) and project to unique targets in the brain to modulate a broad range of subconscious visual behaviors such as pupil constriction and circadian photoentrainment. Despite the discovery of ipRGCs nearly two decades ago, there is still little information about how or if conventional RGCs (non-ipRGCs) target ipRGC-recipient nuclei to influence subconscious visual behavior. Using a dual recombinase fluorescent reporter strategy, we showed that conventional RGCs innervate many subconscious ipRGC-recipient nuclei, apart from the suprachiasmatic nucleus. We revealed previously unrecognized stratification patterns of retinal innervation from ipRGCs and conventional RGCs in the ventral portion of the lateral geniculate nucleus. Further, we found that the percent innervation of ipRGCs and conventional RGCs across ipsi- and contralateral nuclei differ. Our data provide a blueprint to understand how conventional RGCs and ipRGCs innervate different brain regions to influence subconscious visual behaviors.
Collapse
Affiliation(s)
- Corinne Beier
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| | - Ze Zhang
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Garcia-Gonzalez I, Mühleder S, Fernández-Chacón M, Benedito R. Genetic Tools to Study Cardiovascular Biology. Front Physiol 2020; 11:1084. [PMID: 33071802 PMCID: PMC7541935 DOI: 10.3389/fphys.2020.01084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Progress in biomedical science is tightly associated with the improvement of methods and genetic tools to manipulate and analyze gene function in mice, the most widely used model organism in biomedical research. The joint effort of numerous individual laboratories and consortiums has contributed to the creation of a large genetic resource that enables scientists to image cells, probe signaling pathways activities, or modify a gene function in any desired cell type or time point, à la carte. However, as these tools significantly increase in number and become more sophisticated, it is more difficult to keep track of each tool's possibilities and understand their advantages and disadvantages. Knowing the best currently available genetic technology to answer a particular biological question is key to reach a higher standard in biomedical research. In this review, we list and discuss the main advantages and disadvantages of available mammalian genetic technology to analyze cardiovascular cell biology at higher cellular and molecular resolution. We start with the most simple and classical genetic approaches and end with the most advanced technology available to fluorescently label cells, conditionally target their genes, image their clonal expansion, and decode their lineages.
Collapse
Affiliation(s)
| | | | | | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
38
|
Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, Inoue M, Cheung KYM, Yuen E, Pichamoorthy N, Hong ASO, Deisseroth K. Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals. Neuron 2020; 107:836-853.e11. [PMID: 32574559 PMCID: PMC7687746 DOI: 10.1016/j.neuron.2020.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
Abstract
The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.
Collapse
Affiliation(s)
- Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Evans
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathy Y M Cheung
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Elle Yuen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Alice S O Hong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Alzate-Correa D, Mei-Ling Liu J, Jones M, Silva TM, Alves MJ, Burke E, Zuñiga J, Kaya B, Zaza G, Aslan MT, Blackburn J, Shimada MY, Fernandes-Junior SA, Baer LA, Stanford KI, Kempton A, Smith S, Szujewski CC, Silbaugh A, Viemari JC, Takakura AC, Garcia AJ, Moreira TS, Czeisler CM, Otero JJ. Neonatal apneic phenotype in a murine congenital central hypoventilation syndrome model is induced through non-cell autonomous developmental mechanisms. Brain Pathol 2020; 31:84-102. [PMID: 32654284 PMCID: PMC7881415 DOI: 10.1111/bpa.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.
Collapse
Affiliation(s)
- Diego Alzate-Correa
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jillian Mei-Ling Liu
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mikayla Jones
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Talita M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elizabeth Burke
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Zuñiga
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Behiye Kaya
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mehmet Tahir Aslan
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marina Y Shimada
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Silvio A Fernandes-Junior
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lisa A Baer
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amber Kempton
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sakima Smith
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Abby Silbaugh
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jean-Charles Viemari
- P3M Team, Institut de Neurosciences de la Timone, UMR 7289 AMU-CNRS, Marseille, France
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Catherine M Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - José J Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
40
|
Mapping of Extrinsic Innervation of the Gastrointestinal Tract in the Mouse Embryo. J Neurosci 2020; 40:6691-6708. [PMID: 32690615 DOI: 10.1523/jneurosci.0309-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Precise extrinsic afferent (visceral sensory) and efferent (sympathetic and parasympathetic) innervation of the gut is fundamental for gut-brain cross talk. Owing to the limitation of intrinsic markers to distinctively visualize the three classes of extrinsic axons, which intimately associate within the gut mesentery, detailed information on the development of extrinsic gut-innervating axons remains relatively sparse. Here, we mapped extrinsic innervation of the gut and explored the relationships among various types of extrinsic axons during embryonic development in mice. Visualization with characterized intrinsic markers revealed that visceral sensory, sympathetic, and parasympathetic axons arise from different anatomic locations, project in close association via the gut mesentery, and form distinctive innervation patterns within the gut from embryonic day (E)10.5 to E16.5. Genetic ablation of visceral sensory trajectories results in the erratic extension of both sympathetic and parasympathetic axons, implicating that afferent axons provide an axonal scaffold to route efferent axons. Coculture assay further confirmed the attractive effect of sensory axons on sympathetic axons. Taken together, our study provides key information regarding the development of extrinsic gut-innervating axons occurring through heterotypic axonal interactions and provides an anatomic basis to uncover neural circuit assembly in the gut-brain axis (GBA).SIGNIFICANCE STATEMENT Understanding the development of extrinsic innervation of the gut is essential to unravel the bidirectional neural communication between the brain and the gut. Here, with characterized intrinsic markers targeting vagal sensory, spinal sensory, sympathetic, and parasympathetic axons, respectively, we comprehensively traced the spatiotemporal development of extrinsic axons to the gut during embryonic development in mice. Moreover, in line with the somatic nervous system, pretarget sorting via heterotypic axonal interactions is revealed to play critical roles in patterning extrinsic efferent trajectories to the gut. These findings provide basic anatomic information to explore the mechanisms underlying the process of assembling neural circuitry in the gut-brain axis (GBA).
Collapse
|
41
|
Granger AJ, Wang W, Robertson K, El-Rifai M, Zanello AF, Bistrong K, Saunders A, Chow BW, Nuñez V, Turrero García M, Harwell CC, Gu C, Sabatini BL. Cortical ChAT + neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. eLife 2020; 9:57749. [PMID: 32613945 PMCID: PMC7360370 DOI: 10.7554/elife.57749] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 01/15/2023] Open
Abstract
The mouse cerebral cortex contains neurons that express choline acetyltransferase (ChAT) and are a potential local source of acetylcholine. However, the neurotransmitters released by cortical ChAT+ neurons and their synaptic connectivity are unknown. We show that the nearly all cortical ChAT+ neurons in mice are specialized VIP+ interneurons that release GABA strongly onto other inhibitory interneurons and acetylcholine sparsely onto layer 1 interneurons and other VIP+/ChAT+ interneurons. This differential transmission of ACh and GABA based on the postsynaptic target neuron is reflected in VIP+/ChAT+ interneuron pre-synaptic terminals, as quantitative molecular analysis shows that only a subset of these are specialized to release acetylcholine. In addition, we identify a separate, sparse population of non-VIP ChAT+ neurons in the medial prefrontal cortex with a distinct developmental origin that robustly release acetylcholine in layer 1. These results demonstrate both cortex-region heterogeneity in cortical ChAT+ interneurons and target-specific co-release of acetylcholine and GABA.
Collapse
Affiliation(s)
- Adam J Granger
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Mahmoud El-Rifai
- Neurobiology Imaging Facility, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Andrea F Zanello
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Karina Bistrong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Brian W Chow
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Vicente Nuñez
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
42
|
An Intersectional Viral-Genetic Method for Fluorescent Tracing of Axon Collaterals Reveals Details of Noradrenergic Locus Coeruleus Structure. eNeuro 2020; 7:ENEURO.0010-20.2020. [PMID: 32354756 PMCID: PMC7294462 DOI: 10.1523/eneuro.0010-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/28/2023] Open
Abstract
Understanding the function of broadly projecting neurons depends on comprehensive knowledge of the distribution and targets of their axon collaterals. While retrograde tracers and, more recently, retrograde viral vectors have been used to identify efferent projections, they have limited ability to reveal the full pattern of axon collaterals from complex, heterogeneous neuronal populations. Here we describe TrAC (tracing axon collaterals), an intersectional recombinase-based viral-genetic strategy that allows simultaneous visualization of axons from a genetically defined neuronal population and a projection-based subpopulation. To test this new method, we have applied TrAC to analysis of locus coeruleus norepinephrine (LC-NE)-containing neurons projecting to medial prefrontal cortex (mPFC) and primary motor cortex (M1) in laboratory mice. TrAC allowed us to label each projection-based LC-NE subpopulation, together with all remaining LC-NE neurons, in isolation from other noradrenergic populations. This analysis revealed mPFC-projecting and M1-projecting LC-NE subpopulations differ from each other and from the LC as a whole in their patterns of axon collateralization. Thus, TrAC complements and extends existing axon tracing methods by permitting analyses that have not previously been possible with complex genetically defined neuronal populations.
Collapse
|
43
|
Cardot-Ruffino V, Chauvet V, Caligaris C, Bertrand-Chapel A, Chuvin N, Pommier RM, Valcourt U, Vincent D, Martel S, Aires S, Kaniewski B, Dubus P, Cassier P, Sentis S, Bartholin L. Generation of an Fsp1 (fibroblast-specific protein 1)-Flpo transgenic mouse strain. Genesis 2020; 58:e23359. [PMID: 32191380 PMCID: PMC7317532 DOI: 10.1002/dvg.23359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Recombination systems represent a major breakthrough in the field of genetic model engineering. The Flp recombinases (Flp, Flpe, and Flpo) bind and cleave DNA Frt sites. We created a transgenic mouse strain ([Fsp1‐Flpo]) expressing the Flpo recombinase in fibroblasts. This strain was obtained by random insertion inside mouse zygotes after pronuclear injection. Flpo expression was placed under the control of the promoter of Fsp1 (fibroblast‐specific protein 1) gene, whose expression starts after gastrulation at Day 8.5 in cells of mesenchymal origin. We verified the correct expression and function of the Flpo enzyme by several ex vivo and in vivo approaches. The [Fsp1‐Flpo] strain represents a genuine tool to further target the recombination of transgenes with Frt sites specifically in cells of mesenchymal origin or with a fibroblastic phenotype.
Collapse
Affiliation(s)
- Victoire Cardot-Ruffino
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Véronique Chauvet
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Cassandre Caligaris
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Adrien Bertrand-Chapel
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Nicolas Chuvin
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Roxane M Pommier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Ulrich Valcourt
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - David Vincent
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Sylvie Martel
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Sophie Aires
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Bastien Kaniewski
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Pierre Dubus
- INSERM, Univ Bordeaux UMR1053 Bordeaux Research in Translational Oncology, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France
| | - Philippe Cassier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France.,Departement d'Oncologie Médicale, Centre Léon Bérard, Lyon, France
| | - Stéphanie Sentis
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Laurent Bartholin
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
44
|
Serowoky MA, Arata CE, Crump JG, Mariani FV. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 2020; 147:147/5/dev179325. [PMID: 32161063 DOI: 10.1242/dev.179325] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E Arata
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
45
|
Poulin JF, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci 2020; 43:155-169. [PMID: 32101709 PMCID: PMC7285906 DOI: 10.1016/j.tins.2020.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/13/2019] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Abstract
Dysfunctional dopamine (DA) signaling has been associated with a broad spectrum of neuropsychiatric disorders, prompting investigations into how midbrain DA neuron heterogeneity may underpin this variety of behavioral symptoms. Emerging literature indeed points to functional heterogeneity even within anatomically defined DA clusters. Recognizing the need for a systematic classification scheme, several groups have used single-cell profiling to catalog DA neurons based on their gene expression profiles. We aim here not only to synthesize points of congruence but also to highlight key differences between the molecular classification schemes derived from these studies. In doing so, we hope to provide a common framework that will facilitate investigations into the functions of DA neuron subtypes in the healthy and diseased brain.
Collapse
Affiliation(s)
- Jean-Francois Poulin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zachary Gaertner
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
46
|
Sapkota D, Dougherty JD. An inducible Cre mouse line to sparsely target nervous system cells, including Remak Schwann cells. Neural Dev 2020; 15:2. [PMID: 32079539 PMCID: PMC7031956 DOI: 10.1186/s13064-020-00140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/13/2020] [Indexed: 11/28/2022] Open
Abstract
Nerves of the peripheral nervous system contain two classes of Schwann cells: myelinating Schwann cells that ensheath large caliber axons and generate the myelin sheath, and Remak Schwann cells that surround smaller axons and do not myelinate. While tools exist for genetic targeting of Schwann cell precursors and myelinating Schwann cells, such reagents have been challenging to generate specifically for the Remak population, in part because many of the genes that mark this population in maturity are also robustly expressed in Schwann cell precursors. To circumvent this challenge, we utilized BAC transgenesis to generate a mouse line expressing a tamoxifen-inducible Cre under the control of a Remak-expressed gene promoter (Egr1). However, as Egr1 is also an activity dependent gene expressed by some neurons, we flanked this Cre by flippase (Flpe) recognition sites, and coinjected a BAC expressing Flpe under control of a pan-neuronal Snap25 promoter to excise the Cre transgene from these neuronal cells. Genotyping and inheritance demonstrate that the two BACs co-integrated into a single locus, facilitating maintenance of the line. Anatomical studies following a cross to a reporter line show sparse tamoxifen-dependent recombination in Remak Schwann cells within the mature sciatic nerve. However, depletion of neuronal Cre activity by Flpe is partial, with some neurons and astrocytes also showing evidence of Cre reporter activity in the central nervous system. Thus, this mouse line will be useful in mosaic loss-of-function studies, lineage tracing studies following injury, live cell imaging studies, or other experiments benefiting from sparse labeling.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, Campus Box 8232, 4566 Scott Ave, St. Louis, MO, 63110-1093, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, Campus Box 8232, 4566 Scott Ave, St. Louis, MO, 63110-1093, USA. .,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
47
|
Liu K, Tang M, Jin H, Liu Q, He L, Zhu H, Liu X, Han X, Li Y, Zhang L, Tang J, Pu W, Lv Z, Wang H, Ji H, Zhou B. Triple-cell lineage tracing by a dual reporter on a single allele. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49927-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Zhao H, Zhou B. Dual genetic approaches for deciphering cell fate plasticity in vivo: more than double. Curr Opin Cell Biol 2019; 61:101-109. [DOI: 10.1016/j.ceb.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
|
49
|
Liu K, Tang M, Jin H, Liu Q, He L, Zhu H, Liu X, Han X, Li Y, Zhang L, Tang J, Pu W, Lv Z, Wang H, Ji H, Zhou B. Triple-cell lineage tracing by a dual reporter on a single allele. J Biol Chem 2019; 295:690-700. [PMID: 31771978 DOI: 10.1074/jbc.ra119.011349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic lineage tracing is widely used to study organ development and tissue regeneration. Multicolor reporters are a powerful platform for simultaneously tracking discrete cell populations. Here, combining Dre-rox and Cre-loxP systems, we generated a new dual-recombinase reporter system, called Rosa26 traffic light reporter (R26-TLR), to monitor red, green, and yellow fluorescence. Using this new reporter system with the three distinct fluorescent reporters combined on one allele, we found that the readouts of the two recombinases Cre and Dre simultaneously reflect Cre+Dre-, Cre-Dre+, and Cre+Dre+ cell lineages. As proof of principle, we show specific labeling in three distinct progenitor/stem cell populations, including club cells, AT2 cells, and bronchoalveolar stem cells, in Sftpc-DreER;Scgb1a1-CreER;R26-TLR mice. By using this new dual-recombinase reporter system, we simultaneously traced the cell fate of these three distinct cell populations during lung repair and regeneration, providing a more comprehensive picture of stem cell function in distal airway repair and regeneration. We propose that this new reporter system will advance developmental and regenerative research by facilitating a more sophisticated genetic approach to studying in vivo cell fate plasticity.
Collapse
Affiliation(s)
- Kuo Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Muxue Tang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Hengwei Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Qiaozhen Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Lingjuan He
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Libo Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Juan Tang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Haixiao Wang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
50
|
Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci 2019; 39:8239-8249. [PMID: 31619493 PMCID: PMC6794927 DOI: 10.1523/jneurosci.1164-19.2019] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is a seemingly singular and compact neuromodulatory nucleus that is a prominent component of disparate theories of brain function due to its broad noradrenergic projections throughout the CNS. As a diffuse neuromodulatory system, noradrenaline affects learning and decision making, control of sleep and wakefulness, sensory salience including pain, and the physiology of correlated forebrain activity (ensembles and networks) and brain hemodynamic responses. However, our understanding of the LC is undergoing a dramatic shift due to the application of state-of-the-art methods that reveal a nucleus of many modules that provide targeted neuromodulation. Here, we review the evidence supporting a modular LC based on multiple levels of observation (developmental, genetic, molecular, anatomical, and neurophysiological). We suggest that the concept of the LC as a singular nucleus and, alongside it, the role of the LC in diverse theories of brain function must be reconsidered.
Collapse
Affiliation(s)
- Dan J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, Missouri 63110, Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, and Washington University Pain Center, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- Bristol Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | - Nelson K Totah
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany 72076,
- Helsinki Institute of Life Science, Helsinki 00014, Finland, and
- School of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|