1
|
Graham VA, Easterbrook L, Rayner E, Findlay-Wilson S, Flett L, Kennedy E, Fotheringham S, Kempster S, Almond N, Dowall S. Comparison of Chikungunya Virus-Induced Disease Progression and Pathogenesis in Type-I Interferon Receptor-Deficient Mice (A129) and Two Wild-Type (129Sv/Ev and C57BL/6) Mouse Strains. Viruses 2024; 16:1534. [PMID: 39459867 PMCID: PMC11512278 DOI: 10.3390/v16101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus causing a debilitating febrile illness with rheumatic disease symptoms of arthralgia and arthritis. Since its spread outside of Africa in 2005, it continues to cause outbreaks and disseminates into new territories. Intervention strategies are urgently required, including vaccination and antiviral approaches. To test efficacy, the use of small animal models is required. Two mouse strains, A129, with a deficiency in their type-I interferon (IFN) receptor, and C57BL/6 are widely used. A direct comparison of these strains alongside the wild-type parental strain of the A129 mice, 129Sv/Ev, was undertaken to assess clinical disease progression, viral loads in key tissues, histological changes and levels of sera biomarkers. Our results confirm the severe disease course in A129 mice which was not observed in the parental 129Sv/Ev strain. Of the two wild-type strains, viral loads were higher in 129Sv/Ev mice compared to C57BL/6 counterparts. Our results have established these models and parameters for the future testing of vaccines and antiviral approaches.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| |
Collapse
|
2
|
Genome Editing and Myocardial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1396:53-73. [PMID: 36454459 DOI: 10.1007/978-981-19-5642-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.
Collapse
|
3
|
Alebiosu OS, Adekanmbi OH. Aerofloral studies and allergenicity of dominant pollen types in Taraba and Bauchi States of Northeastern Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157076. [PMID: 35780899 DOI: 10.1016/j.scitotenv.2022.157076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders including allergic rhinitis and atopic dermatitis among hypersensitive individuals. The present study was conducted with a view to investigating monthly depositional rate of atmospheric palynomorphs to determine the influence of the immediate vegetation on airborne pollen distribution; allergenic activities of dominant atmospheric pollen types at selected study locations in Taraba and Bauchi States, Northeastern Nigeria. Bioaerosols were collected using Tauber-like pollen traps and subjected to standard palynological treatment procedures, microscopy and photomicrography. Plant enumeration within the surrounding vegetation revealed that some airborne pollen types were produced by local plants at the study locations. Spores of Nephrolepis sp., Pteris sp. and a trilete fern, as well as diatoms were also recovered. Crude protein contents of some dominant pollen types; Borreria verticillata (L.) G.F.W. Meyer and Panicum maximum Jacq. for Taraba State; Leucaena leucocephala (Lam.) de Wit. and Terminalia catappa L. for Bauchi State, were quantified and extracted to sensitize Mus musculus mice for serology (ELISA) and haematology (differential and total white blood cell counts). Statistical significance was tested and recorded in the correlation between levels of serological and haematological parameters elicited by each test group; differences between levels of these parameters elicited by each test group and those of the control, as well as at varying sensitization periods. In the Leucaena leucocephala test group, swollen body and histopathological morbid features showing more extensive areas of inflammatory cells and alveoli filled with fluid in the lungs, were recorded in two dead M. musculus, respectively. The study revealed that all the tested pollen types are possible allergens at the study locations, establishing a complexity of interaction among allergy mediators at varied periods of mice sensitization and forming a paradigm of human immune response to the different pollen allergens.
Collapse
|
4
|
Akoto T, Li JJ, Estes AJ, Karamichos D, Liu Y. The Underlying Relationship between Keratoconus and Down Syndrome. Int J Mol Sci 2022; 23:ijms231810796. [PMID: 36142709 PMCID: PMC9503764 DOI: 10.3390/ijms231810796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Keratoconus (KC) is one of the most significant corneal disorders worldwide, characterized by the progressive thinning and cone-shaped protrusion of the cornea, which can lead to severe visual impairment. The prevalence of KC varies greatly by ethnic groups and geographic regions and has been observed to be higher in recent years. Although studies reveal a possible link between KC and genetics, hormonal disturbances, environmental factors, and specific comorbidities such as Down Syndrome (DS), the exact cause of KC remains unknown. The incidence of KC ranges from 0% to 71% in DS patients, implying that as the worldwide population of DS patients grows, the number of KC patients may continue to rise significantly. As a result, this review aims to shed more light on the underlying relationship between KC and DS by examining the genetics relating to the cornea, central corneal thickness (CCT), and mechanical forces on the cornea, such as vigorous eye rubbing. Furthermore, this review discusses KC diagnostic and treatment strategies that may help detect KC in DS patients, as well as the available DS mouse models that could be used in modeling KC in DS patients. In summary, this review will provide improved clinical knowledge of KC in DS patients and promote additional KC-related research in these patients to enhance their eyesight and provide suitable treatment targets.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jiemin J. Li
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2015
| |
Collapse
|
5
|
Herbal Medicines against Hydatid Disease: A Systematic Review (2000-2021). Life (Basel) 2022; 12:life12050676. [PMID: 35629345 PMCID: PMC9145516 DOI: 10.3390/life12050676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Echinococcosis is a serious public health issue that affects people and livestock all over the world. Many synthetic and natural products have been examined in vitro and in vivo on Echinococcus species but only a few are used clinically, however, they may cause some complications and side effects. To overcome these limitations, new horizons of herbal drugs to cure echinococcosis are opening with every passing day. To summarize the developments during the last 21 years, we conducted this review of the literature to identify medicinal herbs utilized throughout the world that have anti-Echinococcus activity. From 2000 to 2021, data were carefully obtained from four English databases: Science Direct, PubMed, Scopus, and OpenGrey. Botanical name, extraction technique, extract quantities, efficacy, duration of treatment, year of publication, and half-maximal inhibitory concentration (IC50) values were all well noted. Ninety-one published papers, with 78 in vitro and 15 in vivo, fulfilled our selection criteria. Fifty-eight different plant species were thoroughly tested against Echinococcus granulosus. Zataria multiflora, Nigella sativa, Berberis vulgaris, Zingiber officinale (ginger), and Allium sativum were the most often utilized anti-Echinococcus herbs and the leaves of the herbs were extensively used. The pooled value of IC50 was 61 (95% CI 60−61.9) according to the random effect model and a large degree of diversity among studies was observed. The current systematic study described the medicinal plants with anti-Echinococcus activity, which could be investigated in future experimental and clinical studies to identify their in vivo efficacy, lethal effects, and mechanisms of action.
Collapse
|
6
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
7
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
8
|
McGirr JA, Martin CH. Few Fixed Variants between Trophic Specialist Pupfish Species Reveal Candidate Cis-Regulatory Alleles Underlying Rapid Craniofacial Divergence. Mol Biol Evol 2021; 38:405-423. [PMID: 32877534 PMCID: PMC7826174 DOI: 10.1093/molbev/msaa218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists-a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species-only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.
Collapse
Affiliation(s)
- Joseph A McGirr
- Environmental Toxicology Department, University of California, Davis, CA
| | - Christopher H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
9
|
Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, Haleem S, Rooman M, Norin S, Khan SN. A systematic review of medicinal plants used against Echinococcus granulosus. PLoS One 2020; 15:e0240456. [PMID: 33048959 PMCID: PMC7553295 DOI: 10.1371/journal.pone.0240456] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic helminthiasis caused by different species of the genus Echinococcus, and is a major economic and public health concern worldwide. Synthetic anthelmintics are most commonly used to control CE, however, prolonged use of these drugs may result in many adverse effects. This study aims to discuss the in vitro/in vivo scolicidal efficacy of different medicinal plants and their components used against Echinococcus granulosus. Google Scholar, ScienceDirect, PubMed and Scopus were used to retrieve the published literature from 2000-2020. A total of 62 published articles met the eligibility criteria and were reviewed. A total of 52 plant species belonging to 22 families have been reported to be evaluated as scolicidal agents against E. granulosus worldwide. Most extensively used medicinal plants against E. granulosus belong to the family Lamiaceae (25.0%) followed by Apiaceae (11.3%). Among various plant parts, leaves (36.0%) were most commonly used. Essential oils of Zataria multiflora and Ferula asafetida at a concentration of 0.02, and 0.06 mg/ml showed 100% in vitro scolicidal activity after 10 min post application, respectively. Z. multiflora also depicted high in vivo efficacy by decreasing weight and size while also causing extensive damage to the germinal layer of the cysts. Plant-based compounds like berberine, thymol, and thymoquinone have shown high efficacy against E. granulosus. These plant species and compounds could be potentially used for the development of an effective drug against E. granulosus, if further investigated for in vivo efficacy, toxicity, and mechanism of drug action in future research.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Marina Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Taj Ali Khan
- Department of Biotechnology and Genetics Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sumbal Haleem
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Sadia Norin
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Choi WJ, Maga AM, Kim ES, Wang RK. A feasibility study of OCT for anatomical and vascular phenotyping of mouse embryo. JOURNAL OF BIOPHOTONICS 2020; 13:e201960225. [PMID: 32067352 DOI: 10.1002/jbio.201960225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The embryo phenotyping of genetic murine model is invaluable when investigating functions of genes underlying embryonic development and birth defect. Although traditional imaging technologies such as ultrasound are very useful for evaluating phenotype of murine embryos, the use of advanced techniques for phenotyping is desirable to obtain more information from genetic research. This letter tests the feasibility of optical coherence tomography (OCT) as a high-throughput phenotyping tool for murine embryos. Three-dimensional OCT imaging is performed for live and cleared mouse embryos in the late developmental stage (embryonic day 17.5). By using a dynamic focusing method and OCT angiography (OCTA) approach, our OCT imaging of the embryo exhibits rapid and clean visualization of organ structures deeper than 5 mm and complex microvasculature of perfused blood vessels in the murine embryonic body. This demonstration suggests that OCT imaging can be useful for comprehensively assessing embryo anatomy and angiography of genetically engineered mice.
Collapse
Affiliation(s)
- Woo J Choi
- School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - A M Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Development Biology and Regenerative Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Eun S Kim
- School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Álvarez-Aznar A, Martínez-Corral I, Daubel N, Betsholtz C, Mäkinen T, Gaengel K. Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreER T2 lines. Transgenic Res 2019; 29:53-68. [PMID: 31641921 PMCID: PMC7000517 DOI: 10.1007/s11248-019-00177-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The CreERT2/loxP system is widely used to induce conditional gene deletion in mice. One of the main advantages of the system is that Cre-mediated recombination can be controlled in time through Tamoxifen administration. This has allowed researchers to study the function of embryonic lethal genes at later developmental timepoints. In addition, CreERT2 mouse lines are commonly used in combination with reporter genes for lineage tracing and mosaic analysis. In order for these experiments to be reliable, it is crucial that the cell labeling approach only marks the desired cell population and their progeny, as unfaithful expression of reporter genes in other cell types or even unintended labeling of the correct cell population at an undesired time point could lead to wrong conclusions. Here we report that all CreERT2 mouse lines that we have studied exhibit a certain degree of Tamoxifen-independent, basal, Cre activity. Using Ai14 and Ai3, two commonly used fluorescent reporter genes, we show that those basal Cre activity levels are sufficient to label a significant amount of cells in a variety of tissues during embryogenesis, postnatal development and adulthood. This unintended labelling of cells imposes a serious problem for lineage tracing and mosaic analysis experiments. Importantly, however, we find that reporter constructs differ greatly in their susceptibility to basal CreERT2 activity. While Ai14 and Ai3 easily recombine under basal CreERT2 activity levels, mTmG and R26R-EYFP rarely become activated under these conditions and are therefore better suited for cell tracking experiments.
Collapse
Affiliation(s)
- A Álvarez-Aznar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - I Martínez-Corral
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - N Daubel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - C Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Department of Medicine Huddinge, Karolinska Institutet, Novum, Blickagången 6, 141 57, Huddinge, Sweden
| | - T Mäkinen
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - K Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden.
| |
Collapse
|
12
|
Franca MM, Han X, Funari MFA, Lerario AM, Nishi MY, Fontenele EGP, Domenice S, Jorge AAL, Garcia-Galiano D, Elias CF, Mendonca BB. Exome Sequencing Reveals the POLR3H Gene as a Novel Cause of Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2019; 104:2827-2841. [PMID: 30830215 PMCID: PMC6543511 DOI: 10.1210/jc.2018-02485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a cause of female infertility. However, the genetic etiology of this disorder remains unknown in most patients with POI. OBJECTIVE To investigate the genetic etiology of idiopathic POI. PATIENTS AND METHODS We performed whole-exome sequencing of 11 families with idiopathic POI. To gain insights into the potential mechanisms associated with this mutation, we generated two mouse lines via clustered regularly interspaced short palindromic repeats/Cas9 technology. RESULTS A pathogenic homozygous missense mutation (c.149A>G; p.Asp50Gly) in the POLR3H gene in two unrelated families was identified. Pathogenic mutations in this subunit have not been associated with human disorders. Loss-of-function Polr3h mutation in mice caused early embryonic lethality. Mice with homozygous point mutation (Polr3hD50G) were viable but showed delayed pubertal development, characterized by late first estrus or preputial separation. The Polr3hD50G female and male mice showed decreased fertility later in life, associated with small litter size and increased time to pregnancy or to impregnate a female. Polr3hD50G mice displayed decreased expression of ovarian Foxo3a and lower numbers of primary follicles. CONCLUSION Our manuscript provides a case of POI caused by missense mutation in POLR3H, expanding the knowledge of molecular pathways of the ovarian function and human infertility. Screening of the POLR3H gene may elucidate POI cases without previously identified genetic causes, supporting approaches of genetic counseling.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Xingfa Han
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Isotope Research Laboratory, Sichuan Agricultural University, Ya’an, China
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Sequenciamento em Larga Escala, Faculdade de Medicina Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eveline G P Fontenele
- Serviço de Endocrinologia e Diabetes do Hospital Universitario Walter Cantidio, Universidade Federal do Ceara, Fortaleza, CE, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica/LIM25, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Berenice B. Mendonca, MD, PhD, Hospital das Clinicas, Laboratorio de Hormonios e Genetica Molecular, Avenida Doutor Eneas de Carvalho Aguiar, 155, 2nd Andar, Bloco 6 CEP: 05403-900, São Paulo, Brazil. E-mail: ; or Carol F. Elias, PhD, 1137 East Catherine Street, 7732B Med Sci II, Ann Arbor, Michigan 48109-5622. E-mail:
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Sequenciamento em Larga Escala, Faculdade de Medicina Universidade de São Paulo, São Paulo, SP, Brazil
- Correspondence and Reprint Requests: Berenice B. Mendonca, MD, PhD, Hospital das Clinicas, Laboratorio de Hormonios e Genetica Molecular, Avenida Doutor Eneas de Carvalho Aguiar, 155, 2nd Andar, Bloco 6 CEP: 05403-900, São Paulo, Brazil. E-mail: ; or Carol F. Elias, PhD, 1137 East Catherine Street, 7732B Med Sci II, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
13
|
Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3:8. [PMID: 30911676 PMCID: PMC6423228 DOI: 10.1038/s41698-019-0080-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
The development of genetic engineering in the 1970s marked a new frontier in genome-editing technology. Gene-editing technologies have provided a plethora of benefits to the life sciences. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/ Cas9) system is a versatile technology that provides the ability to add or remove DNA in the genome in a sequence-specific manner. Serious efforts are underway to improve the efficiency of CRISPR/Cas9 targeting and thus reduce off-target effects. Currently, various applications of CRISPR/Cas9 are used in cancer biology and oncology to perform robust site-specific gene editing, thereby becoming more useful for biological and clinical applications. Many variants and applications of CRISPR/Cas9 are being rapidly developed. Experimental approaches that are based on CRISPR technology have created a very promising tool that is inexpensive and simple for developing effective cancer therapeutics. This review discusses diverse applications of CRISPR-based gene-editing tools in oncology and potential future cancer therapies.
Collapse
Affiliation(s)
- Xueli Tian
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Satyananda Patel
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
14
|
Chao T, Liu Z, Zhang Y, Zhang L, Huang R, He L, Gu Y, Chen Z, Zheng Q, Shi L, Zheng W, Qi X, Kong E, Zhang Z, Lawrence T, Liang Y, Lu L. Precise and Rapid Validation of Candidate Gene by Allele Specific Knockout With CRISPR/Cas9 in Wild Mice. Front Genet 2019; 10:124. [PMID: 30838037 PMCID: PMC6390232 DOI: 10.3389/fgene.2019.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
It is a tempting goal to identify causative genes underlying phenotypic differences among inbred strains of mice, which is a huge reservoir of genetic resources to understand mammalian pathophysiology. In particular, the wild-derived mouse strains harbor enormous genetic variations that have been acquired during evolutionary divergence over 100s of 1000s of years. However, validating the genetic variation in non-classical strains was extremely difficult, until the advent of CRISPR/Cas9 genome editing tools. In this study, we first describe a T cell phenotype in both wild-derived PWD/PhJ parental mice and F1 hybrids, from a cross to C57BL/6 (B6) mice, and we isolate a genetic locus on Chr2, using linkage mapping and chromosome substitution mice. Importantly, we validate the identification of the functional gene controlling this T cell phenotype, Cd44, by allele specific knockout of the PWD copy, leaving the B6 copy completely intact. Our experiments using F1 mice with a dominant phenotype, allowed rapid validation of candidate genes by designing sgRNA PAM sequences that only target the DNA of the PWD genome. We obtained 10 animals derived from B6 eggs fertilized with PWD sperm cells which were subjected to microinjection of CRISPR/Cas9 gene targeting machinery. In the newborns of F1 hybrids, 80% (n = 10) had allele specific knockout of the candidate gene Cd44 of PWD origin, and no mice showed mistargeting of the B6 copy. In the resultant allele-specific knockout F1 mice, we observe full recovery of T cell phenotype. Therefore, our study provided a precise and rapid approach to functionally validate genes that could facilitate gene discovery in classic mouse genetics. More importantly, as we succeeded in genetic manipulation of mice, allele specific knockout could provide the possibility to inactivate disease alleles while keeping the normal allele of the gene intact in human cells.
Collapse
Affiliation(s)
- Tianzhu Chao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhuangzhuang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yu Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Rong Huang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Le He
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yanrong Gu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhijun Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qianqian Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lijin Shi
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Wenping Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinhui Qi
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liaoxun Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Abstract
Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.
Collapse
|
16
|
Lam D, Lively S, Schlichter LC. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K + channels and migration. J Neuroinflammation 2017; 14:166. [PMID: 28830445 PMCID: PMC5567442 DOI: 10.1186/s12974-017-0941-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.
Collapse
Affiliation(s)
- Doris Lam
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Reggiani C, Coppens S, Sekhara T, Dimov I, Pichon B, Lufin N, Addor MC, Belligni EF, Digilio MC, Faletra F, Ferrero GB, Gerard M, Isidor B, Joss S, Niel-Bütschi F, Perrone MD, Petit F, Renieri A, Romana S, Topa A, Vermeesch JR, Lenaerts T, Casimir G, Abramowicz M, Bontempi G, Vilain C, Deconinck N, Smits G. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Genome Med 2017; 9:67. [PMID: 28724449 PMCID: PMC5518101 DOI: 10.1186/s13073-017-0452-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. METHODS Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. RESULTS Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. CONCLUSIONS While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.
Collapse
Affiliation(s)
- Claudio Reggiani
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Sandra Coppens
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Tayeb Sekhara
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
- Present address: Neuropediatrics, Clinique Saint-Anne Saint-Rémy - CHIREC, Brussels, 1070 Belgium
| | - Ivan Dimov
- Faculté de Médecine, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Bruno Pichon
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Nicolas Lufin
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Marie-Claude Addor
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Elga Fabia Belligni
- Department of Public Health and Pediatrics, University of Torino, Turin, 10126 Italy
| | | | - Flavio Faletra
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
| | | | - Marion Gerard
- Laboratory of Medical Genetics, CHU de Caen - Hôpital Clémenceau, Caen, 14033 Caen Cedex, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, 44093 Nantes Cedex 1, France
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, South Glasgow University Hospitals, Glasgow, G51 4TF UK
| | - Florence Niel-Bütschi
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Maria Dolores Perrone
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
- Present address: Assisted Fertilization Department, Casa di Cura Città di Udine, Udine, 33100 Italy
| | - Florence Petit
- Service de Génétique, CHRU de Lille - Hôpital Jeanne de Flandre, Lille, 59000 France
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100 Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, 53100 Italy
| | - Serge Romana
- Service d’Histologie Embryologie Cytogénétique, Hôpital Necker Enfants Malades, Paris, 75015 France
- Université Paris Descartes - Institut IMAGINE, Paris, 75015 France
| | - Alexandra Topa
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, 413 45 Sweden
| | | | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
- AI lab, Vrije Universiteit Brussel, Brussels, 1050 Belgium
| | - Georges Casimir
- Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Marc Abramowicz
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Catheline Vilain
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Nicolas Deconinck
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| |
Collapse
|
18
|
Beedie SL, Diamond AJ, Fraga LR, Figg WD, Vargesson N. Vertebrate embryos as tools for anti-angiogenic drug screening and function. Reprod Toxicol 2017; 70:49-59. [PMID: 27888069 PMCID: PMC6357960 DOI: 10.1016/j.reprotox.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
The development of new angiogenic inhibitors highlights a need for robust screening assays that adequately capture the complexity of vessel formation, and allow for the quantitative evaluation of the teratogenicity of new anti-angiogenic agents. This review discusses the use of screening assays in vertebrate embryos, specifically focusing upon chicken and zebrafish embryos, for the detection of anti-angiogenic agents.
Collapse
Affiliation(s)
- Shaunna L Beedie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK; Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Alexandra J Diamond
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Lucas Rosa Fraga
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
19
|
Wu YL, Lo CW. Diverse application of MRI for mouse phenotyping. Birth Defects Res 2017; 109:758-770. [PMID: 28544650 DOI: 10.1002/bdr2.1051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/15/2017] [Indexed: 02/01/2023]
Abstract
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. MRI is a versatile and noninvasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. Birth Defects Research 109:758-770, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Panchal K, Tiwari AK. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89:1331-1345. [PMID: 28320100 DOI: 10.1016/j.biopha.2017.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| |
Collapse
|
21
|
Santos C, Vilanova M, Medeiros R, Gil da Costa RM. HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. Virus Res 2017; 235:49-57. [DOI: 10.1016/j.virusres.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
22
|
Zdora MC, Vila-Comamala J, Schulz G, Khimchenko A, Hipp A, Cook AC, Dilg D, David C, Grünzweig C, Rau C, Thibault P, Zanette I. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue. BIOMEDICAL OPTICS EXPRESS 2017; 8:1257-1270. [PMID: 28271016 PMCID: PMC5330582 DOI: 10.1364/boe.8.001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 05/23/2023]
Abstract
The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.
Collapse
Affiliation(s)
- Marie-Christine Zdora
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT,
UK
| | - Joan Vila-Comamala
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,
Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | - Anna Khimchenko
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | | | - Andrew C. Cook
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | - Daniel Dilg
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | | | | | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- School of Materials, University of Manchester, Manchester M1 7HS,
UK
- Department of Otolaryngology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611,
USA
| | - Pierre Thibault
- Department of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ,
UK
| | - Irene Zanette
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| |
Collapse
|
23
|
Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, Abiodun OO, Batbaatar A, Li Z, Song D, Xiong Q, Ullah R, Khan S, Basnet BB, Kumar B, Islam R, Adnan M. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 2017; 31:202-264. [DOI: 10.1002/ptr.5751] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Sehrish Sadia
- College of life sciences; Beijing Normal University; Beijing China
| | - Kaiwen Pan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Ihteram Ullah
- Center for Agricultural Resources Research, Chinese Academy of Sciences; Shijiazhuang; Hebei China
| | - Sakina Mussarat
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| | - Feng Sun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Olatunji Olusanya Abiodun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
- Department of Botany; Obafemi Awolowo University; Ile-Ife Osun State Nigeria
| | | | - Zilong Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Dagang Song
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Qinli Xiong
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Riaz Ullah
- Department of Chemistry; Government College Ara Khel; Frontier Region Kohat Pakistan
| | - Suliman Khan
- Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
| | - Buddha Bahadur Basnet
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Central Department of Biotechnology; Tribhuvan University; Kathmandu Nepal
| | - Brawin Kumar
- Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - Rabiul Islam
- Department of Crop Physiology and Ecology; Hajee Mohammad Danesh Science and Technology University; Dinajpur Bangladesh
- Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan China
| | - Muhammad Adnan
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| |
Collapse
|
24
|
Liu H, Lyu J, Liu H, Gao Y, Guo J, He H, Han Z, Zhang Y, Wu Q. Computational identification of putative lincRNAs in mouse embryonic stem cell. Sci Rep 2016; 6:34892. [PMID: 27713513 PMCID: PMC5054606 DOI: 10.1038/srep34892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023] Open
Abstract
As the regulatory factors, lncRNAs play critical roles in embryonic stem cells. And lincRNAs are most widely studied lncRNAs, however, there might still might exist a large member of uncovered lncRNAs. In this study, we constructed the de novo assembly of transcriptome to detect 6,701 putative long intergenic non-coding transcripts (lincRNAs) expressed in mouse embryonic stem cells (ESCs), which might be incomplete with the lack coverage of 5' ends assessed by CAGE peaks. Comparing the TSS proximal regions between the known lincRNAs and their closet protein coding transcripts, our results revealed that the lincRNA TSS proximal regions are associated with the characteristic genomic and epigenetic features. Subsequently, 1,293 lincRNAs were corrected at their 5' ends using the putative lincRNA TSS regions predicted by the TSS proximal region prediction model based on genomic and epigenetic features. Finally, 43 putative lincRNAs were annotated by Gene Ontology terms. In conclusion, this work provides a novel catalog of mouse ESCs-expressed lincRNAs with the relatively complete transcript length, which might be useful for the investigation of transcriptional and post-transcriptional regulation of lincRNA in mouse ESCs and even mammalian development.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Lyu
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hongbo Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yang Gao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Guo
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengbin Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
25
|
Schoenrock SA, Oreper D, Young N, Ervin RB, Bogue MA, Valdar W, Tarantino LM. Ovariectomy results in inbred strain-specific increases in anxiety-like behavior in mice. Physiol Behav 2016; 167:404-412. [PMID: 27693591 DOI: 10.1016/j.physbeh.2016.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Women are at an increased risk for developing affective disorders during times of hormonal flux, including menopause when the ovaries cease production of estrogen. However, while all women undergo menopause, not all develop an affective disorder. Increased vulnerability can result from genetic predisposition, environmental factors and gene by environment interactions. In order to investigate interactions between genetic background and estrogen depletion, we performed bilateral ovariectomy, a surgical procedure that results in estrogen depletion and is thought to model the post-menopausal state, in a genetically defined panel of 37 inbred mouse strains. Seventeen days post-ovariectomy, we assessed behavior in two standard rodent assays of anxiety- and depressive-like behavior, the open field and forced swim tests. We detected a significant interaction between ovariectomy and genetic background on anxiety-like behavior in the open field. No strain specific effects of ovariectomy were observed in the forced swim assay. However, we did observe significant strain effects for all behaviors in both the open field and forced swim tests. This study is the largest to date to look at the effects of ovariectomy on behavior and provides evidence that ovariectomy interacts with genetic background to alter anxiety-like behavior in an animal model of menopause.
Collapse
Affiliation(s)
- Sarah Adams Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Daniel Oreper
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Bioinformatics and Computational Biology Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy Young
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Robin Betsch Ervin
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - William Valdar
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Lisa M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
26
|
Reiding KR, Hipgrave Ederveen AL, Rombouts Y, Wuhrer M. Murine Plasma N-Glycosylation Traits Associated with Sex and Strain. J Proteome Res 2016; 15:3489-3499. [PMID: 27546880 DOI: 10.1021/acs.jproteome.6b00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation is an abundant and important protein modification with large influence on the properties and interactions of glycoconjugates. Human plasma N-glycosylation has been the subject of frequent investigation, revealing strong associations with physiological and pathological conditions. Less well-characterized is the plasma N-glycosylation of the mouse, the most commonly used animal model for studying human diseases, particularly with regard to differences between strains and sexes. For this reason, we used MALDI-TOF(/TOF)-MS(/MS) assisted by linkage-specific derivatization of the sialic acids to comparatively analyze the plasma N-glycosylation of both male and female mice originating from BALB/c, CD57BL/6, CD-1, and Swiss Webster strains. The combined use of this analytical method and the recently developed data processing software named MassyTools allowed the relative quantification of the N-glycan species within plasma, the distinction between α2,3- and α2,6-linked N-glycolylneuraminic acids (due to respective lactonization and ethyl esterification), the detection of sialic acid O-acetylation, as well as the characterization of branching sialylation (Neu5Gcα2,3-Hex-[Neu5Gcα2,6-]HexNAc). When analyzing the glycosylation according to mouse sex, we found that female mice present a considerably higher degree of core fucosylation (2-4-fold depending on the strain), galactosylation, α2,6-linked sialylation, and larger high-mannose type glycan species compared with their male counterparts. Male mice, on the contrary, showed on average higher α2,3-linked sialylation, branching sialylation, and putative bisection. These differences together with sialic acid acetylation proved to be strain-specific as well. Interestingly, the outbred strains CD-1 and Swiss Webster displayed considerably larger interindividual variation than inbred strains BALB/c and CD57BL/6, suggesting a strong hereditable component of the observed plasma N-glycome.
Collapse
Affiliation(s)
- Karli R Reiding
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| | - Agnes L Hipgrave Ederveen
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| | - Yoann Rombouts
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Manfred Wuhrer
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| |
Collapse
|
27
|
Powder KE, Albertson RC. Cichlid fishes as a model to understand normal and clinical craniofacial variation. Dev Biol 2016; 415:338-346. [PMID: 26719128 PMCID: PMC4914429 DOI: 10.1016/j.ydbio.2015.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023]
Abstract
We have made great strides towards understanding the etiology of craniofacial disorders, especially for 'simple' Mendelian traits. However, the facial skeleton is a complex trait, and the full spectrum of genetic, developmental, and environmental factors that contribute to its final geometry remain unresolved. Forward genetic screens are constrained with respect to complex traits due to the types of genes and alleles commonly identified, developmental pleiotropy, and limited information about the impact of environmental interactions. Here, we discuss how studies in an evolutionary model - African cichlid fishes - can complement traditional approaches to understand the genetic and developmental origins of complex shape. Cichlids exhibit an unparalleled range of natural craniofacial morphologies that model normal human variation, and in certain instances mimic human facial dysmorphologies. Moreover, the evolutionary history and genomic architecture of cichlids make them an ideal system to identify the genetic basis of these phenotypes via quantitative trait loci (QTL) mapping and population genomics. Given the molecular conservation of developmental genes and pathways, insights from cichlids are applicable to human facial variation and disease. We review recent work in this system, which has identified lbh as a novel regulator of neural crest cell migration, determined the Wnt and Hedgehog pathways mediate species-specific bone morphologies, and examined how plastic responses to diet modulate adult facial shapes. These studies have not only revealed new roles for existing pathways in craniofacial development, but have identified new genes and mechanisms involved in shaping the craniofacial skeleton. In all, we suggest that combining work in traditional laboratory and evolutionary models offers significant potential to provide a more complete and comprehensive picture of the myriad factors that are involved in the development of complex traits.
Collapse
Affiliation(s)
- Kara E Powder
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA.
| | - R Craig Albertson
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
28
|
Mangiavini L, Merceron C, Schipani E. Analysis of Mouse Growth Plate Development. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2016; 6:67-130. [PMID: 26928664 PMCID: PMC5493209 DOI: 10.1002/9780470942390.mo150094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To investigate skeletal development, pathophysiological mechanisms of cartilage and bone disease, and eventually assess innovative treatments, the mouse is a very important resource. During embryonic development, mesenchymal condensations are formed, and cells within these mesenchymal condensations either directly differentiate into osteoblasts and give origin to intramembranous bone, or differentiate into chondrocytes and form a cartilaginous anlage. The cartilaginous anlage or fetal growth plate is then replaced with bone. This process is also called endochondral bone development, and it is responsible for the generation of most of our skeleton. Here we discuss in detail the most common in vivo and in vitro techniques our laboratory is currently using for the analysis of the mouse fetal growth plate during development.
Collapse
Affiliation(s)
- Laura Mangiavini
- Department of Orthopaedic Surgery, Department of Medicine, Division of Endocrinology and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christophe Merceron
- Department of Orthopaedic Surgery, Department of Medicine, Division of Endocrinology and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Inserm, UMRS 791-LIOAD, Centre for Osteoarticular and Dental Tissue Engineering, Group STEP ‘Skeletal Tissue Engineering and Physiopathology’, Nantes, France
- Faculty of Dental Surgery, LUNAM, Nantes University, Nantes, France
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, Department of Medicine, Division of Endocrinology and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
29
|
Abstract
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.
Collapse
|
30
|
El Hakam Kamareddin C, Magnol L, Blanquet V. A new Otogelin ENU mouse model for autosomal-recessive nonsyndromic moderate hearing impairment. SPRINGERPLUS 2015; 4:730. [PMID: 26636018 PMCID: PMC4659790 DOI: 10.1186/s40064-015-1537-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Approximately 10 % of the population worldwide suffers from hearing loss (HL) and about 60 % of persons with early onset HL have hereditary hearing loss due to genetic mutations. Highly efficient mutagenesis in mice with the chemical mutagen, ethylnitrosourea (ENU), associated with relevant phenotypic tools represents a powerful approach in producing mouse models for hearing impairment. A benefit of this strategy is to generate alleles to form a series revealing the full spectrum of gene function in vivo. It can also mimic the range of human mutations and polymorphisms for HL. In the course of a genome ENU mutagenesis program, we selected a new mouse model for hearing defect based on a dysmorphological screen. We identified by gene mapping the mutation responsible for this phenotype and characterized it at the histological level of the inner ear and evaluated the vestibule by following the recommendations of the standard operating procedures, IMPReSS. We have identified and characterized a new recessive allele of the otogelin gene, Otogvbd/vbd, due to a homozygous one base pair substitution at the splice donor site of intron 29. This mutation leads to a frame-shift and a premature stop codon. We observed a decrease in the amount of sensory cells in the maculae of Otogvbd/vbd mice as well as an apparent drastically decreased density to almost absence of the otoconial membrane. Compared to Otogtm1Prs and twister, the two other existing otogelin alleles, the detailed analysis of Otogvbd/vbd revealed that these mice share some common behavioural characteristics either with Otogtm1Prs or twister whereas the fine vestibular phenotype and the hearing defect are different. Our results emphasize the importance of detecting and characterizing a new allele of a gene in order to get comprehensive information about the gene function.
Collapse
Affiliation(s)
- Carole El Hakam Kamareddin
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| | - Laetitia Magnol
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| | - Veronique Blanquet
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| |
Collapse
|
31
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
Affiliation(s)
- Janelle A. Jiminez
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Trina C. Uwiera
- />Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - G. Douglas Inglis
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
| | - Richard R. E. Uwiera
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
32
|
Limitations of Current in Vivo Mouse Models for the Study of Chikungunya Virus Pathogenesis. Med Sci (Basel) 2015; 3:64-77. [PMID: 29083392 PMCID: PMC5635755 DOI: 10.3390/medsci3030064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes febrile chikungunya fever (CHIKF) in humans. This disease is debilitating and characterized by acute fever onset and chronic incapacitating polyarthralgia. CHIKF pathogenesis remains poorly defined with no approved vaccines and therapies. Recent outbreaks in the Caribbean islands have elevated concerns over the possibility of a global pandemic. Tremendous efforts have been made to develop relevant mouse models to enable the study of infection and immunity against this viral disease. Among them, the more common C57BL/6 mouse model demonstrated the ability to recapitulate the symptoms shown in infected humans, including self-limiting arthritis, myositis, and tenosynovitis. This has facilitated the unraveling of some key factors involved in disease pathogenesis of CHIKF. However, the stark differences in immune response between humans and mouse models necessitate the development of an animal model with an immune system that is more genetically similar to the human system for a better representation. In this paper, we aim to uncover the limitations of the C57BL/6 model and discuss alternative mouse models for CHIKV research.
Collapse
|
33
|
Ng J, Trask JS, Smith DG, Kanthaswamy S. Heterospecific SNP diversity in humans and rhesus macaque (Macaca mulatta). J Med Primatol 2015; 44:194-201. [PMID: 25963897 DOI: 10.1111/jmp.12174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conservation of single nucleotide polymorphisms (SNPs) between human and other primates (i.e., heterospecific SNPs) in candidate genes can be used to assess the utility of those organisms as models for human biomedical research. METHODS A total of 59,691 heterospecific SNPs in 22 rhesus macaques and 20 humans were analyzed for human trait associations and 4207 heterospecific SNPs biallelic in both taxa were compared for genetic variation. RESULTS Variation comparisons at the 4207 SNPs showed that humans were more genetically diverse than rhesus macaques with observed and expected heterozygosities of 0.337 and 0.323 vs. 0.119 and 0.102, and minor allele frequencies of 0.239 and 0.063, respectively. In total, 431 of the 59,691 heterospecific SNPs are reportedly associated with human-specific traits. CONCLUSION While comparisons between human and rhesus macaque genomes are plausible, functional studies of heterospecific SNPs are necessary to determine whether rhesus macaque alleles are associated with the same phenotypes as their corresponding human alleles.
Collapse
Affiliation(s)
- Jillian Ng
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
| | - Jessica Satkoski Trask
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Sree Kanthaswamy
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA.,School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Abstract
At present, no animal models fully embody exfoliation syndrome or exfoliation glaucoma. Both genetic and environmental factors appear critical for disease manifestation, and both must be considered when generating animal models. Because mice provide a powerful mammalian platform for modeling complex disease, this paper focuses on mouse models of exfoliation syndrome and exfoliation glaucoma.
Collapse
|
35
|
Enard W. Mouse models of human evolution. Curr Opin Genet Dev 2014; 29:75-80. [DOI: 10.1016/j.gde.2014.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/13/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
36
|
Shapiro F, Barone L, Johnson A, Flynn E. The cn/cn dwarf mouse. Histomorphometric, ultrastructural, and radiographic study in mutants corresponding to human acromesomelic dysplasia Maroteaux type (AMDM). BMC Musculoskelet Disord 2014; 15:347. [PMID: 25319082 PMCID: PMC4219045 DOI: 10.1186/1471-2474-15-347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The cn/cn dwarf mouse is caused by a loss-of-function mutation in the natriuretic peptide receptor 2 (NPR-2) gene which helps positively regulate endochondral longitudinal bone growth. The gene mutation corresponds to that in the human skeletal dysplasia Acromesomelic Dysplasia Maroteaux type (AMDM). This study assesses histomorphometric, ultrastructural and radiographic correlates of the growth abnormality. METHODS Ten litters of cn/cn and cn/+littermates at ages ranging from 2.5 to 6.5 weeks were studied by skeletal radiographs, histomorphometry and physeal ultrastructure. Skeletal radiographs were done on 2 cn/cn and 2 cn/+littermates at 5 weeks of age. Humeral, femoral, and tibial lengths were measured from 34 intact bones (17 cn/cn, 17 cn/+) at 2.5 to 6.5 weeks. Growth plate histomorphometry in 50 bones (26 cn/cn and 24 cn/+) determined the hypertrophic zone/entire physeal cartilage ratios in 204 sections (87 cn/+, 117 cn/cn) at 3 time periods (2.5-3, 4-4.5, and 6-6.5 weeks). Electron microscopy assessed 6 cn/cn and 6 cn/+age and site-matched physeal cartilage. RESULTS Cn/cn mice were two thirds the size of the cn/+. Cn/cn bones were normal in shape or only minimally deformed except for the radius with mid-diaphyseal bowing. Length ratios of cn/cn humeri, femurs, and tibias were a mean of 0.65 (± 0.03, n = 34, 17 ratios) compared to cn/+bones. The main physeal abnormality was a markedly shortened hypertrophic zone with the ratio of hypertrophic zone to entire physis 0.17 (± 0.063) in the cn/cn and 0.30 (± 0.052) in the cn/+mice. Ratio assessments were similar comparing humeral, femoral, and tibial growth plates as were ratios from each of the 3 time periods. Ultrastructural assessments from the resting zone to the lower hypertrophic zone-metaphyseal junction showed no specific individual cell abnormalities in cn/cn compared to cn/+physes. CONCLUSIONS The disorder causes a shortened physeal hypertrophic zone but normal ultrastructure of cn/cn chondrocytes points to abnormality primarily affecting the hypertrophic zone rather than a structural cell or matrix synthesis problem.
Collapse
Affiliation(s)
- Frederic Shapiro
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratory, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
37
|
Pirih FQ, Hiyari S, Leung HY, Barroso ADV, Jorge ACA, Perussolo J, Atti E, Lin YL, Tetradis S, Camargo PM. A Murine Model of Lipopolysaccharide-Induced Peri-Implant Mucositis and Peri-Implantitis. J ORAL IMPLANTOL 2014; 41:e158-64. [PMID: 24967609 DOI: 10.1563/aaid-joi-d-14-00068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dental implants are a widely used treatment option for tooth replacement. However, they are susceptible to inflammatory diseases such as peri-implant mucositis and peri-implantitis, which are highly prevalent and may lead to implant loss. Unfortunately, the understanding of the pathogenesis of peri-implant mucositis and peri-implantitis is fragmented and incomplete. Therefore, the availability of a reproducible animal model to study these inflammatory diseases would facilitate the dissection of their pathogenic mechanisms. The objective of this study is to propose a murine model of experimental peri-implant mucositis and peri-implantitis. Screw-shaped titanium implants were placed in the upper healed edentulous alveolar ridges of C57BL/6J mice 8 weeks after tooth extraction. Following 4 weeks of osseointegration, Porphyromonas gingivalis -lipolysaccharide (LPS) injections were delivered to the peri-implant soft tissues for 6 weeks. No-injections and vehicle injections were utilized as controls. Peri-implant mucositis and peri-implantitis were assessed clinically, radiographically (microcomputerized tomograph [CT]), and histologically following LPS-treatment. LPS-injections resulted in a significant increase in soft tissue edema around the head of the implants as compared to the control groups. Micro-CT analysis revealed significantly greater bone loss in the LPS-treated implants. Histological analysis of the specimens demonstrated that the LPS-group had increased soft tissue vascularity, which harbored a dense mixed inflammatory cell infiltrate, and the bone exhibited noticeable osteoclast activity. The induction of peri-implant mucositis and peri-implantitis in mice via localized delivery of bacterial LPS has been demonstrated. We anticipate that this model will contribute to the development of more effective preventive and therapeutic approaches for these 2 conditions.
Collapse
Affiliation(s)
- Flavia Q Pirih
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| | - Sarah Hiyari
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| | - Ho-Yin Leung
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| | - Ana D V Barroso
- 2 Universidade Federal do Espirito Santo, School of Dentistry, Brazil
| | - Adrian C A Jorge
- 3 Universidade Estadual de Ponta Grossa, School of Dentistry, Brazil
| | | | - Elisa Atti
- 4 University of California, Los Angeles, School of Dentistry, Section of Oral Radiology, Los Angeles, Calif
| | - Yi-Ling Lin
- 5 University of California, Los Angeles, School of Dentistry, Section of Oral Pathology, Los Angeles, Calif
| | - Sotirios Tetradis
- 4 University of California, Los Angeles, School of Dentistry, Section of Oral Radiology, Los Angeles, Calif
| | - Paulo M Camargo
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| |
Collapse
|
38
|
Moresco EMY, Li X, Beutler B. Going forward with genetics: recent technological advances and forward genetics in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1462-73. [PMID: 23608223 DOI: 10.1016/j.ajpath.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/05/2013] [Indexed: 12/24/2022]
Abstract
Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forward genetic experimentation. We review the forward genetic approach and its future in the context of recent technological advances, in particular massively parallel DNA sequencing, induced pluripotent stem cells, and haploid embryonic stem cells.
Collapse
Affiliation(s)
- Eva Marie Y Moresco
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75235-8505, USA
| | | | | |
Collapse
|
39
|
Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:475280. [PMID: 24689041 PMCID: PMC3943389 DOI: 10.1155/2014/475280] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 02/07/2023]
Abstract
Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction.
Collapse
|
40
|
Tang E, Arany P. Photobiomodulation and implants: implications for dentistry. J Periodontal Implant Sci 2013; 43:262-8. [PMID: 24455438 PMCID: PMC3891857 DOI: 10.5051/jpis.2013.43.6.262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022] Open
Abstract
The use of dental implants has become a mainstay of rehabilitative and restorative dentistry. With an impressive clinical success rate, there remain a few minor clinical issues with the use of implants such as peri-implant mucositis and peri-implantitis. The use of laser technology with implants has a fascinating breadth of applications, beginning from their precision manufacturing to clinical uses for surgical site preparation, reducing pain and inflammation, and promoting osseointegration and tissue regeneration. This latter aspect is the focus of this review, which outlines various studies of implants and laser therapy in animal models. The use of low level light therapy or photobiomodulation has demonstrated its efficacy in these studies. Besides more research studies to understand its molecular mechanisms, significant efforts are needed to standardize the clinical dosing and delivery protocols for laser therapy to ensure the maximal efficacy and safety of this potent clinical tool for photobiomodulation.
Collapse
Affiliation(s)
- Elieza Tang
- Cell Regulation and Control Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Praveen Arany
- Cell Regulation and Control Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Walkin L, Herrick SE, Summers A, Brenchley PE, Hoff CM, Korstanje R, Margetts PJ. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. FIBROGENESIS & TISSUE REPAIR 2013; 6:18. [PMID: 24294831 PMCID: PMC3849643 DOI: 10.1186/1755-1536-6-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022]
Abstract
In humans, a number of genetic factors have been linked to the development of fibrosis in a variety of different organs. Seeking a wider understanding of this observation in man is ethically important. There is mounting evidence suggesting that inbred mouse strains with different genetic backgrounds demonstrate variable susceptibility to a fibrotic injury. We performed a systematic review of the literature describing strain and organ specific response to injury in order to determine whether genetic susceptibility plays a role in fibrogenesis. Data were collected from studies that were deemed eligible for analysis based on set inclusion criteria, and findings were assessed in relation to strain of mouse, type of injury and organ of investigation. A total of 44 studies were included covering 21 mouse strains and focusing on fibrosis in the lung, liver, kidney, intestine and heart. There is evidence that mouse strain differences influence susceptibility to fibrosis and this appears to be organ specific. For instance, C57BL/6J mice are resistant to hepatic, renal and cardiac fibrosis but susceptible to pulmonary and intestinal fibrosis. However, BALB/c mice are resistant to pulmonary fibrosis but susceptible to hepatic fibrosis. Few studies have assessed the effect of the same injury stimulus in different organ systems using the same strains of mouse. Such mouse strain studies may prove useful in elucidating the genetic as well as epigenetic factors in humans that could help determine why some people are more susceptible to the development of certain organ specific fibrosis than others.
Collapse
Affiliation(s)
- Louise Walkin
- School of Medicine, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- 3.107 Blond McIndoe Laboratory, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Sarah E Herrick
- School of Medicine, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Angela Summers
- Manchester Institute of Nephrology and Transplantation, Manchester Royal Infirmary, Grafton St, Manchester M13 9WL, UK
| | - Paul E Brenchley
- Manchester Institute of Nephrology and Transplantation, Manchester Royal Infirmary, Grafton St, Manchester M13 9WL, UK
| | - Catherine M Hoff
- Baxter Healthcare, Renal Division Scientific Affairs, Baxter Healthcare Corporation, McGaw Park, Chicago, Illinois, 60015-4625, USA
| | - Ron Korstanje
- The Jackson Laboratory, 600 Main St, Bar Harbor, Maine 04609, USA
| | - Peter J Margetts
- Department of Pathology and Molecular Medicine and Division of Nephrology, McMaster University, 1200 Main St West, Hamilton, Ontario, L8S4L8, Canada
| |
Collapse
|
42
|
Erbilgin A, Siemers N, Kayne P, Yang WP, Berliner J, Lusis AJ. Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arterioscler Thromb Vasc Biol 2013; 33:2509-17. [PMID: 23990205 DOI: 10.1161/atvbaha.113.301989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Endothelial cells are central to the initiation of atherosclerosis, yet there has been limited success in studying their gene expression in the mouse aorta. To address this, we developed a method for determining the global transcriptional changes that occur in the mouse endothelium in response to atherogenic conditions and applied it to investigate inflammatory stimuli. APPROACH AND RESULTS We characterized a method for the isolation of endothelial cell RNA with high purity directly from mouse aortas and adapted this method to allow for the treatment of aortas ex vivo before RNA collection. Expression array analysis was performed on endothelial cell RNA isolated from control and hyperlipidemic prelesion mouse aortas, and 797 differentially expressed genes were identified. We also examined the effect of additional atherogenic conditions on endothelial gene expression, including ex vivo treatment with inflammatory stimuli, acute hyperlipidemia, and age. Of the 14 most highly differentially expressed genes in endothelium from prelesion aortas, 8 were also perturbed significantly by ≥ 1 atherogenic conditions: 2610019E17Rik, Abca1, H2-Ab1, H2-D1, Pf4, Ppbp, Pvrl2, and Tnnt2. CONCLUSIONS We demonstrated that RNA can be isolated from mouse aortic endothelial cells after in vivo and ex vivo treatments of the murine vessel wall. We applied these methods to identify a group of genes, many of which have not been described previously as having a direct role in atherosclerosis, that were highly regulated by atherogenic stimuli and may play a role in early atherogenesis.
Collapse
Affiliation(s)
- Ayca Erbilgin
- From the Departments of Microbiology, Immunology, and Molecular Genetics (A.E., A.J.L.), Pathology and Laboratory Medicine (J.B.), Medicine (A.J.L.), and Human Genetics (A.J.L.), University of California, Los Angeles; and Bristol-Myers Squibb, Applied Genomics, Princeton, NJ (N.S., P.K., W.-p.Y.)
| | | | | | | | | | | |
Collapse
|
43
|
Ding Y, Liu W, Deng Y, Jomok B, Yang J, Huang W, Clark KJ, Zhong TP, Lin X, Ekker SC, Xu X. Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circ Res 2013; 112:606-17. [PMID: 23283723 PMCID: PMC3603352 DOI: 10.1161/circresaha.112.300603] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Mutagenesis screening is a powerful genetic tool for probing biological mechanisms underlying vertebrate development and human diseases. However, the increased colony management efforts in vertebrates impose a significant challenge for identifying genes affecting a particular organ, such as the heart, especially those exhibiting adult phenotypes on depletion. OBJECTIVE We aim to develop a facile approach that streamlines colony management efforts via enriching cardiac mutants, which enables us to screen for adult phenotypes. METHODS AND RESULTS The transparency of the zebrafish embryos enabled us to score 67 stable transgenic lines generated from an insertional mutagenesis screen using a transposon-based protein trapping vector. Fifteen lines with cardiac monomeric red fluorescent protein reporter expression were identified. We defined the molecular nature for 10 lines and bred them to homozygosity, which led to the identification of 1 embryonic lethal, 1 larval lethal, and 1 adult recessive mutant exhibiting cardiac hypertrophy at 1 year of age. Further characterization of these mutants uncovered an essential function of methionine adenosyltransferase II, α a (mat2aa) in cardiogenesis, an essential function of mitochondrial ribosomal protein S18B (mrps18b) in cardiac mitochondrial homeostasis, as well as a function of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b) in adult cardiac hypertrophy. CONCLUSIONS We demonstrate that transposon-based gene trapping is an efficient approach for identifying both embryonic and adult recessive mutants with cardiac expression. The generation of a zebrafish insertional cardiac mutant collection shall facilitate the annotation of a vertebrate cardiac genome, as well as enable heart-based adult screens.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Genetics and Development Biology, College of Life Sciences, Hunan Normal University, P.R. China
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Beninio Jomok
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Tao P. Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
44
|
Belizário JE, Akamini P, Wolf P, Strauss B, Xavier-Neto J. New routes for transgenesis of the mouse. J Appl Genet 2012; 53:295-315. [PMID: 22569888 DOI: 10.1007/s13353-012-0096-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/01/2012] [Accepted: 04/05/2012] [Indexed: 12/19/2022]
Abstract
Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
45
|
Sheppard O, Wiseman FK, Ruparelia A, Tybulewicz VLJ, Fisher EMC. Mouse models of aneuploidy. ScientificWorldJournal 2012; 2012:214078. [PMID: 22262951 PMCID: PMC3259538 DOI: 10.1100/2012/214078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 11/16/2011] [Indexed: 02/07/2023] Open
Abstract
Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states.
Collapse
Affiliation(s)
- Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
46
|
Devoy A, Bunton-Stasyshyn RKA, Tybulewicz VL, Smith AJ, Fisher EM. Genomically humanized mice: technologies and promises. Nat Rev Genet 2011; 13:14-20. [PMID: 22179716 PMCID: PMC4782217 DOI: 10.1038/nrg3116] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models have become an invaluable tool for understanding human health and disease owing to our ability to manipulate the mouse genome exquisitely. Recent progress in genomic analysis has led to an increase in the number and type of disease-causing mutations detected and has also highlighted the importance of non-coding regions. As a result, there is increasing interest in creating 'genomically' humanized mouse models, in which entire human genomic loci are transferred into the mouse genome. The technical challenges towards achieving this aim are large but are starting to be tackled with success.
Collapse
Affiliation(s)
- Anny Devoy
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK , +44 203 456 7890
| | - Rosie KA Bunton-Stasyshyn
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, , +44 203 456 7890
| | - Victor L.J. Tybulewicz
- MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK, ; +44 20 8816 2184
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK; and the MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, ; +44 131 651 7244
| | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, ; +44 203 456 7890
| |
Collapse
|
47
|
Abstract
In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described.
Collapse
Affiliation(s)
- Siân E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | | |
Collapse
|
48
|
Landrette SF, Xu T. Somatic genetics empowers the mouse for modeling and interrogating developmental and disease processes. PLoS Genet 2011; 7:e1002110. [PMID: 21814514 PMCID: PMC3140981 DOI: 10.1371/journal.pgen.1002110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
With recent advances in genomic technologies, candidate human disease genes are being mapped at an accelerated pace. There is a clear need to move forward with genetic tools that can efficiently validate these mutations in vivo. Murine somatic mutagenesis is evolving to fulfill these needs with tools such as somatic transgenesis, humanized rodents, and forward genetics. By combining these resources one is not only able to model disease for in vivo verification, but also to screen for mutations and pathways integral to disease progression and therapeutic intervention. In this review, we briefly outline the current advances in somatic mutagenesis and discuss how these new tools, especially the piggyBac transposon system, can be applied to decipher human biology and disease.
Collapse
Affiliation(s)
- Sean F. Landrette
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Tian Xu
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
- Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Center for Biomedical Research, School of Life Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
49
|
Hantschel C, Wagener A, Neuschl C, Teupser D, Brockmann GA. Features of the metabolic syndrome in the Berlin Fat Mouse as a model for human obesity. Obes Facts 2011; 4:270-7. [PMID: 21921649 PMCID: PMC6444685 DOI: 10.1159/000330819] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Berlin Fat Mouse BFMI860 is a polygenic obesity mouse model which harbors a natural major gene defect resulting in early onset of obesity. To elucidate adult bodily responses in BFMI860 mice that develop juvenile obesity, we studied features of the metabolic syndrome at 20 weeks. METHODS We examined fat deposition patterns, adipokines, lipid profiles in serum, glucose homeostasis, and insulin sensitivity in mice that were fed either a standard maintenance (SMD) or a high-fat diet (HFD). RESULTS Like many obese humans, BFMI860 mice showed hyperleptinemia accompanied by hypoadiponectinemia already at SMD that was further unbalanced as a result of HFD. Furthermore, BFMI860 mice had high triglyceride concentrations. However, triglyceride clearance after an oral oil gavage was impaired on SMD but improved on HFD. The oral and intraperitoneal glucose as well as the insulin tolerance tests provided evidence for reduced insulin sensitivity under SMD and insulin resistance on HFD. BFMI860 mice can maintain normal glucose clearance over a wide range of feeding conditions according to an adaptation via increasing the insulin concentrations. CONCLUSIONS BFMI860 mice show obesity, dyslipidemia, and insulin resistance as three major components of the metabolic syndrome. As these mice develop the described phenotype as a result of a major gene defect, they are a unique model for the investigation of genetic and pathophysiological mechanisms underlying the observed features of the metabolic syndrome and to search for potential strategies to revert the adverse effects under controlled conditions.
Collapse
Affiliation(s)
- Claudia Hantschel
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
| | - Asja Wagener
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
| | - Christina Neuschl
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
| | - Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Gudrun A. Brockmann
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
- * Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany, Tel. +49 30 2093-6449/6089, Fax -6397,
| |
Collapse
|
50
|
Festing MFW. Inbred Strains Should Replace Outbred Stocks in Toxicology, Safety Testing, and Drug Development. Toxicol Pathol 2010; 38:681-90. [DOI: 10.1177/0192623310373776] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Methods of toxicity testing, barely changed for several decades, need to be improved. One way forward would be to use a small battery of inbred strains instead of the single outbred stock currently used in toxicity screening. Inbred strains are more stable, more uniform, more repeatable, and better defined than outbred stocks. Genetic variation would be observed as the difference between strains. Safety could be based on the most susceptible strain. Sometimes it may be possible to identify the genes involved. Mechanisms could be explored using gene expression profiling of susceptible and resistant strains. Two committees of toxicologists have concluded that the use of inbred strains, by controlling interindividual variability, would reduce the number of animals needed in toxicity screening, although both “preferred” outbred stocks. This preference appears to have been based on intuition rather than scientific principles. Data from a previously published study on the response to chloramphenicol in an outbred stock and four inbred strains is used to explain the advantages of the multistrain design. Toxicologists, safety pharmacologists, regulatory authorities, and pharmaceutical companies should take a critical look at the types of animals they use if they want to reduce the attrition rate of new drugs.
Collapse
|