1
|
Espiridion ED, Murdock AS, Guani LE, Arshoun A. Psychosis to Pancreatitis: A Case Study Exploring the Risks of Hypertriglyceridemia in a Patient Treated With Olanzapine. Cureus 2024; 16:e70585. [PMID: 39483579 PMCID: PMC11527500 DOI: 10.7759/cureus.70585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Olanzapine is an antipsychotic medication that is used in the management of schizophrenia and bipolar disorder, but it is not without any adverse effects. We present the following case of a 24-year-old man with a history of schizoaffective disorder, obesity, and anxiety, who developed hypertriglyceridemia-induced acute pancreatitis after six months on olanzapine. Despite his adherence to the medication, routine metabolic monitoring was not performed leading to a delayed diagnosis of hypertriglyceridemia and subsequent complications. The case underscores the critical need for regular metabolic monitoring in patients prescribed olanzapine to prevent severe adverse effects and guide timely intervention. Enhanced adherence to monitoring guidelines and consideration of alternative treatments may help mitigate such risks.
Collapse
Affiliation(s)
- Eduardo D Espiridion
- Psychiatry, Drexel University College of Medicine, Philadelphia, USA
- Psychiatry, Reading Hospital, Tower Health, West Reading, USA
| | - Andrew S Murdock
- Psychiatry, Drexel University College of Medicine, Philadelphia, USA
| | - Lorenzo E Guani
- Psychiatry, Drexel University College of Medicine, Philadelphia, USA
| | - Angelica Arshoun
- Psychiatry, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
2
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
3
|
Fadahunsi N, Lund J, Breum AW, Mathiesen CV, Larsen IB, Knudsen GM, Klein AB, Clemmensen C. Acute and long-term effects of psilocybin on energy balance and feeding behavior in mice. Transl Psychiatry 2022; 12:330. [PMID: 35953488 PMCID: PMC9372155 DOI: 10.1038/s41398-022-02103-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Psilocybin and other serotonergic psychedelics have re-emerged as therapeutics for neuropsychiatric disorders, including addiction. Psilocybin induces long-lasting effects on behavior, likely due to its profound ability to alter consciousness and augment neural connectivity and plasticity. Impaired synaptic plasticity in obesity contributes to 'addictive-like' behaviors, including heightened motivation for palatable food, and excessive food seeking and consumption. Here, we evaluate the effects of psilocybin on feeding behavior, energy metabolism, and as a weight-lowering agent in mice. We demonstrate that a single dose of psilocybin substantially alters the prefrontal cortex transcriptome but has no acute or long-lasting effects on food intake or body weight in diet-induced obese mice or in genetic mouse models of obesity. Similarly, sub-chronic microdosing of psilocybin has no metabolic effects in obese mice and psilocybin does not augment glucagon-like peptide-1 (GLP-1) induced weight loss or enhance diet-induced weight loss. A single high dose of psilocybin reduces sucrose preference but fails to counter binge-like eating behavior. Although these preclinical data discourage clinical investigation, there may be nuances in the mode of action of psychedelic drugs that are difficult to capture in rodent models, and thus require human evaluation to uncover.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Wollesen Breum
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella Beck Larsen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.4973.90000 0004 0646 7373Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Effects of olanzapine treatment on lipid profiles in patients with schizophrenia: a systematic review and meta-analysis. Sci Rep 2020; 10:17028. [PMID: 33046806 PMCID: PMC7552389 DOI: 10.1038/s41598-020-73983-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Olanzapine-induced dyslipidemia significantly increases the risk of cardiovascular disease in patients with schizophrenia. However, the clinical features of olanzapine-induced dyslipidemia remain hitherto unclear because of inconsistencies in the literature. This meta-analysis thus investigated the effects of olanzapine treatment on lipid profiles among patients with schizophrenia. Studies of the effects of olanzapine on lipids were obtained through the PubMed, Web of science, The Cochrane Library and Embase databases (up to January 1, 2020). Twenty-one studies and 1790 schizophrenia patients who received olanzapine therapy were included in our analysis. An olanzapine-induced increase was observed in plasma triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in patients with schizophrenia (all P < 0.05). Moreover, the time points analyzed included the following: baseline, 4 weeks, 6 weeks, 8 weeks, 12 weeks, and ≥ 24 weeks (data of ≥ 24 weeks were integrated). The significant elevation of TG, TC, and LDL-C was observed in patients with schizophrenia already by 4 weeks of olanzapine therapy (all P < 0.05), with no obvious changes observed in high-density lipoprotein cholesterol (HDL-C) (P > 0.05). In conclusion, olanzapine-induced dyslipidemia, characterized by increased TG, TC, and LDL-C levels, was observed in patients with schizophrenia already by 4 weeks of olanzapine treatment.
Collapse
|
5
|
Wargent ET, Martin-Gronert MS, Cripps RL, Heisler LK, Yeo GSH, Ozanne SE, Arch JRS, Stocker CJ. Developmental programming of appetite and growth in male rats increases hypothalamic serotonin (5-HT)5A receptor expression and sensitivity. Int J Obes (Lond) 2020; 44:1946-1957. [PMID: 32719434 DOI: 10.1038/s41366-020-0643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.
Collapse
Affiliation(s)
- Edward T Wargent
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK
| | - Malgorzata S Martin-Gronert
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Roselle L Cripps
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lora K Heisler
- The Rowett, Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Jonathan R S Arch
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK
| | - Claire J Stocker
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK.
| |
Collapse
|
6
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
7
|
Kesić M, Baković P, Horvatiček M, Proust BLJ, Štefulj J, Čičin-Šain L. Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines With Altered Serotonin Homeostasis. Front Neurosci 2020; 14:219. [PMID: 32269507 PMCID: PMC7109468 DOI: 10.3389/fnins.2020.00219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Central and peripheral pools of biogenic monoamine serotonin (5-hydroxytryptamine [5HT]) exert opposite effects on the body weight regulation: increase in brain 5HT activity is expected to decrease body weight, whereas increase in peripheral 5HT activity will increase body weight and adiposity. In a genetic model of rats with constitutionally high- or low-5HT homeostasis (hyperserotonergic/hyposerotonergic rats), we have studied how individual differences in endogenous 5HT tone modulate net energy balance of the organism. The high-5HT and low-5HT sublines of the model were developed by selective breeding toward extreme platelet activities of 5HT transporter, a key molecule determining 5HT bioavailability/activity. In animals from high-5HT and low-5HT sublines, we assessed physiological characteristics associated with body weight homeostasis and expression profile of a large scale of body weight–regulating genes in hypothalamus, a major brain region controlling energy balance. Results showed that under standard chow diet animals from the high-5HT subline, as compared to low-5HT animals, have lifelong increased body weight (by 12%), higher absolute daily food intake (by 9%), and different pattern of fat distribution (larger amount of white adipose tissue and lower amount of brown adipose tissue). A large number of body weight–regulating hypothalamic genes were analyzed for their mRNA expression: 24 genes by reverse transcription–quantitative polymerase chain reaction (n = 9–10 rats/subline) including neuropeptides and their receptors, growth factors, transcriptional factors, and receptors for peripheral signals, and a total of 84 genes of various classes by polymerase chain reaction array (pools of six rats/subline). Only few genes showed significant differences in mRNA expression levels between 5HT sublines (e.g. neuropeptide Y receptor, fibroblast growth factor 10), but high-5HT animals displayed a clear trend to upregulation of mRNAs for a number of orexigenic signaling peptides, their receptors, and other molecules with orexigenic activity. Receptors for peripheral signals (leptin, insulin) and molecules in their downstream signaling were not altered, indicating no changes in central insulin/leptin resistance. At the protein level, there were no differences in the content of hypothalamic leptin receptor between 5HT sublines, but significant sex and age effects were observed. Results show that higher constitutive/individual 5HT tone favors higher body weight and adiposity probably due to concurrent upregulation of several hypothalamic orexigenic pathways.
Collapse
Affiliation(s)
- Maja Kesić
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Petra Baković
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marina Horvatiček
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bastien Lucien Jean Proust
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jasminka Štefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lipa Čičin-Šain
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
Tavares GA, do Amaral Almeida LC, de Souza JA, de Souza FL, Feitosa Braz GR, Silva BT, da Silva Santos AM, Lagranha CJ, de Souza SL. Early weaning modulates eating behavior and promotes hypofunction of the serotonergic (5HT) system in juvenile male rats. Int J Dev Neurosci 2020; 80:209-219. [PMID: 32083748 DOI: 10.1002/jdn.10018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022] Open
Abstract
Early life stress (ELS) has been associated with developmental impairments. Early weaning (EW) is a postnatal stress model consisting of interruption of lactation and maternal care. The 5HT-system has been associated with neurobehavioral modulations promoted by ELS. Thus, the present work aims to investigate the effects of early weaning on feeding behavior and serotonergic system of juvenile male rats. For this, rats were submitted to early (PND15) or natural (PND30) weaning and had the body weight, food intake in circadian phases, and food intake in response to fenfluramine assessed. mRNA expression of serotoninergic receptors (5HT1A and 5HT2C) and transporter (SERT) was assessed in the hypothalamus and brainstem, as well as NPY and POMC mRNA expression in hypothalamus. The results show that early weaning promoted changes in the percentage of weight gain during lactation period and increase in body weight at PND40. It was also observed that EW promoted increase and decrease in food intake in light and dark phase, respectively, and leads to a decreased action of fenfluramine on inhibition of food intake. In addition, early weaning promoted increased NPY and SERT mRNA expression in the hypothalamus and 5HT2C in the brainstem. Together, the data indicate that the stress caused by early weaning impairs the eating behavior of juvenile male rats through hypofunction of the 5HT-system.
Collapse
Affiliation(s)
- Gabriel Araújo Tavares
- Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
| | | | - Julliet Araújo de Souza
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | | | - Glauber Rudá Feitosa Braz
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Bruna Times Silva
- Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | - Cláudia Jacques Lagranha
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil.,Academic Center of Vitória-CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Sandra Lopes de Souza
- Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med 2019; 17:112. [PMID: 31215494 PMCID: PMC6582584 DOI: 10.1186/s12916-019-1346-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Atypical antipsychotics, also known as second-generation antipsychotics, are commonly prescribed as treatment for psychotic disorders in adults, as well as in children and adolescents with behavioral problems. However, in many cases, second-generation antipsychotics have unwanted side effects, such as weight gain, potentially further increasing risk for morbidities including obesity, diabetes, and cardiovascular disease. While various mechanisms for this weight gain have been proposed, including effects on metabolic hormone signaling, recent evidence points to the importance of the gut microbiome in this process. The microbial communities residing within the gut are affected by second-generation antipsychotics and can confer weight gain. MAIN TEXT This review summarizes recent findings and presents data linking second-generation antipsychotics, gut microbiota alterations and weight gain. The review focuses on children and adolescent populations, which have not previously received much attention, but are of great interest because they may be most vulnerable to gut microbiome changes and may carry long-term metabolic effects into adulthood. CONCLUSIONS We present correlations between second-generation antipsychotics, gut microbiota alterations and weight gain, and suggest some mechanisms that may link them. A better understanding of the underlying mechanisms may lead to the design of improved treatments for psychotic disorders with fewer harmful side effects.
Collapse
|
10
|
Weight Loss in Women Taking Flibanserin for Hypoactive Sexual Desire Disorder (HSDD): Insights Into Potential Mechanisms. Sex Med Rev 2019; 7:575-586. [PMID: 31196764 DOI: 10.1016/j.sxmr.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Flibanserin, a multifunctional serotonin receptor agonist and antagonist, is currently approved in the United States and Canada for the treatment of acquired, generalized hypoactive sexual desire disorder (HSDD) in premenopausal women. A post hoc analysis of HSDD clinical trial data found that flibanserin treatment was associated with statistically significant weight loss relative to placebo, even though study patients were not selected for being overweight/obese and were provided no expectation for weight reduction or interventions intended to promote weight loss. AIM To understand possible mechanisms by which flibanserin may produce weight loss. METHODS A literature review was performed using Medline database for relevant publications on the mechanisms of action by which flibanserin may provide weight loss and the links between sexual function and weight management. MAIN OUTCOME MEASURES Examination of (i) biopsychosocial factors regulating sexual desire, food intake, and weight regulation; (ii) clinical pharmacology of flibanserin; (iii) neurobiology of brain reward circuitry; and (iv) identification of possible mechanisms common to flibanserin and weight loss. RESULTS Based on flibanserin clinical trial data, there was no consistent correlation between weight loss and improvement in sexual function, as assessed by HSDD outcome measures. Nausea, a common adverse event associated with flibanserin use, also did not appear to be a contributing factor to weight loss. Hypothetical links between flibanserin treatment and weight loss include modulation of peripheral 5-HT2A receptors and factors such as improved mood and improved sleep. CONCLUSION Mechanisms of flibanserin-induced weight loss have not been well characterized but may involve indirect beneficial effects on peripheral 5-HT2A receptors and central regulation of mood and sleep. Future research may better elucidate the links between sexual function and weight management and the mechanism(s) by which flibanserin use may result in weight loss. Simon JA, Kingsberg SA, Goldstein I, et al. Weight Loss in Women Taking Flibanserin for Hypoactive Sexual Desire Disorder (HSDD): Insights into Potential Mechanisms. Sex Med Rev 2019;7:575-586.
Collapse
|
11
|
Psycho-emotional status but not cognition is changed under the combined effect of ionizing radiations at doses related to deep space missions. Behav Brain Res 2019; 362:311-318. [DOI: 10.1016/j.bbr.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/14/2022]
|
12
|
Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT 2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. Int J Mol Sci 2019; 20:ijms20040889. [PMID: 30791361 PMCID: PMC6412472 DOI: 10.3390/ijms20040889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Current literature indicates that the orexigenic peptide ghrelin increases appetitive motivation via signaling in the mesolimbic reward system. Another gastric peptide, glucagon-like peptide-1 (GLP-1), and the neurotransmitter 5-hydroxytryptamine (5-HT), are both known to suppress operant responding for food by acting on key mesolimbic nuclei, including the ventral tegmental area (VTA). In order to investigate the interaction effects of ghrelin, GLP-1, and 5-HT within the VTA, we measured operant responding for sucrose pellets after the administration of ghrelin, the GLP-1 receptor agonist exendin-4 (Ex-4), and the 5-HT2c receptor agonist Ro60-0175 in male Sprague-Dawley rats. Following training on a progressive ratio 3 (PR3) schedule, animals were first injected with ghrelin into the VTA at doses of 3 to 300 pmol. In subsequent testing, separate rats were administered intraperitoneal (IP) Ex-4 (0.1–1.0 µg/kg) or VTA Ex-4 (0.01–0.1 µg) paired with 300 pmol ghrelin. In a final group of rats, the 5-HT2c agonist Ro60-0175 was injected IP (0.25–1.0 mg/kg) or into the VTA (1.5–3.0 µg), and under both conditions paired with 300 pmol ghrelin delivered into the VTA. Our results indicated that ghrelin administration increased operant responding for food reward and that this effect was attenuated by IP and VTA Ex-4 pretreatment as well as pre-administration of IP or VTA Ro60-0175. These data provide compelling evidence that mesolimbic GLP-1 and serotonergic circuitry interact with the ghrelinergic system to suppress ghrelin’s effects on the mediation of food reinforcement.
Collapse
|
13
|
Audira G, Sarasamma S, Chen JR, Juniardi S, Sampurna BP, Liang ST, Lai YH, Lin GM, Hsieh MC, Hsiao CD. Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. Int J Mol Sci 2018; 19:ijms19124038. [PMID: 30551684 PMCID: PMC6320766 DOI: 10.3390/ijms19124038] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023] Open
Abstract
Leptin, a hormone secreted by peripheral adipose tissues, regulates the appetite in animals. Recently, evidence has shown that leptin also plays roles in behavioral response in addition to controlling appetite. In this study, we examined the potential function of leptin on non-appetite behaviors in zebrafish model. By using genome editing tool of Transcription activator-like effector nuclease (TALEN), we successfully knocked out leptin a (lepa) gene by deleting 4 bp within coding region to create a premature-translation stop. Morphological and appetite analysis showed the lepa KO fish display a phenotype with obese, good appetite and elevation of Agouti-related peptide (AgRP) and Ghrelin hormones, consistent with the canonical function of leptin in controlling food intake. By multiple behavior endpoint analyses, including novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm, and color preference assay, we found the lepa KO fish display an anxiogenic phenotype showing hyperactivity with rapid swimming, less freezing time, less fear to predator, loose shoaling area forming, and circadian rhythm and color preference dysregulations. Using biochemical assays, melatonin, norepinephrine, acetylcholine and serotonin levels in the brain were found to be significantly reduced in lepa KO fish, while the levels of dopamine, glycine and cortisol in the brain were significantly elevated. In addition, the brain ROS level was elevated, and the anti-oxidative enzyme catalase level was reduced. Taken together, by performing loss-of-function multiple behavior endpoint testing and biochemical analysis, we provide strong evidence for a critical role of lepa gene in modulating anxiety, aggression, fear, and circadian rhythm behaviors in zebrafish for the first time.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | | | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Geng-Ming Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State OceanicAdministration, Xiamen 361005, China.
| | - Ming-Chia Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50094, Taiwan.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center of Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
14
|
Price AE, Brehm VD, Hommel JD, Anastasio NC, Cunningham KA. Pimavanserin and Lorcaserin Attenuate Measures of Binge Eating in Male Sprague-Dawley Rats. Front Pharmacol 2018; 9:1424. [PMID: 30581386 PMCID: PMC6293203 DOI: 10.3389/fphar.2018.01424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023] Open
Abstract
Binge eating disorder (BED) is characterized by dysregulated feeding and reward-related processes, and treatment is often challenged by limited therapeutic options. The serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and 5-HT2CR are implicated in both feeding-related and reward-related behaviors and are thus poised to regulate BED-related behaviors. The purpose of this study was to assess the efficacy of the FDA-approved medications pimavanserin, a 5-HT2AR antagonist/inverse agonist, and lorcaserin, a 5-HT2CR agonist, in a rodent model of binge eating. The effects of pimavanserin (0.3–3.0 mg/kg), lorcaserin (0.25–1.0 mg/kg), and the lowest effective dose of pimavanserin (0.3 mg/kg) plus lorcaserin (1.0 mg/kg) were tested in a high-fat food (HFF) intermittent access binge eating model in adult male Sprague-Dawley rats (n = 64). We assessed three measures related to binge eating – binge episode occurrence, binge intake, and weight gain associated with HFF access. Pimavanserin decreased binge intake and weight gain associated with HFF access, but did not prevent binge episode occurrence. Lorcaserin decreased binge intake, but did not prevent binge episode occurrence or weight gain associated with HFF access. Combined pimavanserin plus lorcaserin prevented binge episode occurrence in addition to decreasing binge intake and weight gain associated with HFF access. These preclinical findings in male rats suggest that pimavanserin and lorcaserin may be effective in treating patients with BED. Our studies further indicate that administration of one or both drugs may be more effective in certain sub-populations of patients with BED because of the unique profile each treatment elicits. These data support future assessment in clinical populations with BED.
Collapse
Affiliation(s)
- Amanda E Price
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
| | - Victoria D Brehm
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
| | - Jonathan D Hommel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Noelle C Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Felsing DE, Anastasio NC, Miszkiel JM, Gilbertson SR, Allen JA, Cunningham KA. Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction. PLoS One 2018; 13:e0203137. [PMID: 30157263 PMCID: PMC6114921 DOI: 10.1371/journal.pone.0203137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 01/02/2023] Open
Abstract
The serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) in the central nervous system are implicated in a range of normal behaviors (e.g., appetite, sleep) and physiological functions (e.g., endocrine secretion) while dysfunctional 5-HT2AR and/or 5-HT2CR are implicated in neuropsychiatric disorders (e.g., addiction, obesity, schizophrenia). Preclinical studies suggest that the 5-HT2AR and 5-HT2CR may act in concert to regulate the neural bases for behavior. Here, we utilize three distinct biophysical and immunocytochemistry-based approaches to identify and study this receptor complex in cultured cells. Employing a split luciferase complementation assay (LCA), we demonstrated that formation of the 5-HT2AR:5-HT2CR complex exists within 50 nm, increases proportionally to the 5-HT2CR:5-HT2AR protein expression ratio, and is specific to the receptor interaction and not due to random complementation of the luciferase fragments. Using a proximity ligation assay (PLA), we found that cells stably expressing both the 5-HT2AR and 5-HT2CR exhibit 5-HT2AR:5-HT2CR heteroreceptor complexes within 40 nm of each other. Lastly, bioluminescence resonance energy transfer (BRET) analyses indicates the formation of a specific and saturable 5-HT2AR:5-HT2CR interaction, suggesting that the 5-HT2AR and 5-HT2CR form a close interaction within 10 nm of each other in intact live cells. The bioengineered receptors generated for the LCA and the BRET exhibit 5-HT-mediated intracellular calcium signaling as seen for the native receptors. Taken together, this study validates a very close 5-HT2AR:5-HT2CR interaction in cultured cells.
Collapse
Affiliation(s)
- Daniel E. Felsing
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Noelle C. Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joanna M. Miszkiel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott R. Gilbertson
- Department of Chemistry, University of Houston, Houston, Texas, United States of America
| | - John A. Allen
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathryn A. Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sharpe RM. Programmed for sex: Nutrition–reproduction relationships from an inter-generational perspective. Reproduction 2018; 155:S1-S16. [DOI: 10.1530/rep-17-0537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023]
Abstract
Reproduction is our biological reason for being. Our physiology has been shaped via countless millennia of evolution with this one purpose in mind, so that at birth we are ‘programmed for sex’, although this will not kick-start functionally until puberty. Our development from an early embryo is focused on making us fit to reproduce and is intimately connected to nutrition and energy stores. Fluctuations in food supply has probably been a key evolutionary shaper of the reproductive process, and this review hypothesizes that we have developed rapid, non-genomic adaptive mechanisms to such fluctuations to better fit offspring to their perceived (nutritional) environment, thus giving them a reproductive advantage. There is abundant evidence for this notion from ‘fetal programming’ studies and from experimental ‘inter-generational’ studies involving manipulation of parental (especially paternal) diet and then examining metabolic changes in resulting offspring. It is argued that the epigenetic reprogramming of germ cells that occurs during fetal life, after fertilisation and during gametogenesis provides opportunities for sensing of the (nutritional) environment so as to affect adaptive epigenetic changes to alter offspring metabolic function. In this regard, there may be adverse effects of a modern Western diet, perhaps because it is deficient in plant-derived factors that are proven to be capable of altering the epigenome, folate being a prime example; we have evolved in tune with such factors. Therefore, parental and even grandparental diets may have consequences for health of future generations, but how important this might be and the precise epigenetic mechanisms involved are unknown.
Collapse
|
17
|
The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res 2018; 43:821-837. [PMID: 29397535 DOI: 10.1007/s11064-018-2485-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HT2CR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (D1R, D2R), 5-HT1BR and 5-HT2CR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A y /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of D1R and D2R in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of D1R and D2R did not change, while the number of LepR and 5-HT2CR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, D2R, 5-HT1BR and 5-HT2CR was increased, and the D1R number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.
Collapse
|
18
|
Nonogaki K, Kaji T. Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice. J Diabetes Res 2018; 2018:6482958. [PMID: 29484303 PMCID: PMC5816835 DOI: 10.1155/2018/6482958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 01/18/2023] Open
Abstract
A recent report suggested that brain-derived serotonin (5-HT) is critical for maintaining weight loss induced by glucagon-like peptide-1 (GLP-1) receptor activation in rats and that 5-HT2A receptors mediate the feeding suppression and weight loss induced by GLP-1 receptor activation. Here, we show that changes in daily food intake and body weight induced by intraperitoneal administration of liraglutide, a GLP-1 receptor agonist, over 4 days did not differ between mice treated with the tryptophan hydroxylase (Tph) inhibitor p-chlorophenylalanine (PCPA) for 3 days and mice without PCPA treatment. Treatment with PCPA did not affect hypothalamic 5-HT2A receptor expression. Despite the anorexic effect of liraglutide disappearing after the first day of treatment, the body weight loss induced by liraglutide persisted for 4 days in mice treated with or without PCPA. Intraperitoneal administration of liraglutide significantly decreased the gene expression of hypothalamic 5-HT2A receptors 1 h after injection. Moreover, the acute anorexic effects of liraglutide were blunted in mice treated with the high-affinity 5-HT2A agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl) methylamine hydrobromide 14 h or 24 h before liraglutide injection. These findings suggest that liraglutide reduces appetite and body weight independently of 5-HT synthesis in mice, whereas GLP-1 receptor activation downregulates the gene expression of hypothalamic 5-HT2A receptors.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Department of Diabetes Technology, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takao Kaji
- Department of Diabetes Technology, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
19
|
Anderberg RH, Richard JE, Eerola K, López-Ferreras L, Banke E, Hansson C, Nissbrandt H, Berqquist F, Gribble FM, Reimann F, Wernstedt Asterholm I, Lamy CM, Skibicka KP. Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight. Diabetes 2017; 66:1062-1073. [PMID: 28057699 PMCID: PMC6237271 DOI: 10.2337/db16-0755] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT2A) and 5-HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT2A, but surprisingly not the 5-HT2C, receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jennifer E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kim Eerola
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorena López-Ferreras
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elin Banke
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Caroline Hansson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Filip Berqquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit and Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Frank Reimann
- MRC Metabolic Diseases Unit and Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christophe M Lamy
- Laboratory of Neurometabolic Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Abstract
Future prospects continue to be strong for research using the rat as a model organism. New technology has enabled the proliferation of many new transgenic and knockout rat strains, the genomes of more than 40 rat strains have been sequenced, publications using the rat as a model continue to be produced at a steady rate, and discoveries of disease-associated genes and mechanisms from rat experiments abound, frequently with conservation of function between rats and humans. However, advances in genome technology have led to increasing insights into human disease directly from human genetic studies, pulling more and more researchers into the human genetics arena and placing funding for model organisms and their databases under threat. This, therefore, is a pivotal time for rat-based biomedical research - a timely moment to review progress and prospects - providing the inspiration for a new Special Collection focused on the impact of the model on translational science, launched in this issue of Disease Models & Mechanisms. What disease areas are most appropriate for research using rats? Why should the rat be favoured over other model organisms, and should the present levels of funding be continued? Which approaches should we expect to yield biologically and medically useful insights in the coming years? These are key issues that are addressed in the original Research Articles and reviews published in this Special Collection, and in this introductory Editorial. These exemplar articles serve as a landmark for the present status quo after a decade of major advances using the rat model and could help to guide the direction of rat research in the coming decade.
Collapse
Affiliation(s)
- Tim Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Paraminder Dhillon
- Disease Models & Mechanisms, The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Aron M Geurts
- Department of Physiology and Genome Editing Rat Resource Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
21
|
Martin-Gronert MS, Stocker CJ, Wargent ET, Cripps RL, Garfield AS, Jovanovic Z, D'Agostino G, Yeo GSH, Cawthorne MA, Arch JRS, Heisler LK, Ozanne SE. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats. Development 2016. [DOI: 10.1242/dev.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|