1
|
Afroz S, Preet R, Vishwakarma V, Evans AE, Magstadt AN, Dixon DA. Regulation of autophagy by Rab27B in colorectal cancer. Int J Biochem Cell Biol 2024:106693. [PMID: 39542128 DOI: 10.1016/j.biocel.2024.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Autophagy is a cellular recycling process that is associated with tumor growth, anti-tumor immune responses, and therapy resistance in colorectal cancer (CRC). In this report, we identify the small GTPase Rab27B to control the autophagy process in CRC. Depletion of Rab27B showed an abnormal accumulation of autophagy vesicles and increased autophagy markers in CRC cells, indicating autophagy dysregulation. Image analysis indicated that autophagy flux is blocked at the autophagosome/lysosome fusion step when Rab27B is lost. While Rab27B deficient cells are proficient at growth under 2D in vitro conditions, cell growth was significantly impacted in both in vitro 3D growth and in vivo tumorigenesis studies. Together, these results demonstrate a new role of Rab27B in the autophagy trafficking process in CRC and identify Rab27B as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Sahida Afroz
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Vikalp Vishwakarma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Andrew E Evans
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Alexa N Magstadt
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA; University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Vafiadaki E, Kranias EG, Eliopoulos AG, Sanoudou D. The phospholamban R14del generates pathogenic aggregates by impairing autophagosome-lysosome fusion. Cell Mol Life Sci 2024; 81:450. [PMID: 39527246 PMCID: PMC11554986 DOI: 10.1007/s00018-024-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Phospholamban (PLN) plays a crucial role in regulating sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Mutations within the PLN gene have been detected in patients with cardiomyopathy, with the heterozygous variant c.40_42delAGA (p.R14del) of PLN being the most prevalent. Investigations into the mechanisms underlying the pathology of PLN-R14del have revealed that cardiac cells from affected patients exhibit pathological aggregates containing PLN. Herein, we performed comprehensive molecular and cellular analyses to delineate the molecular aberrations associated with the formation of these aggregates. We determined that PLN aggregates contain autophagic proteins, indicating inefficient degradation via the autophagy pathway. Our findings demonstrate that the expression of PLN-R14del results in diminished autophagic flux due to impaired fusion between autophagosomes and lysosomes. Mechanistically, this defect is linked to aberrant recruitment of key membrane fusion proteins to autophagosomes, which is mediated in part by changes in Ca2+ homeostasis. Collectively, these results highlight a novel function of PLN-R14del in regulating autophagy, that may contribute to the formation of pathogenic aggregates in patients with cardiomyopathy. Prospective strategies tailored to ameliorate impaired autophagy may hold promise against PLN-R14del disease.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
| | - Evangelia G Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Aristides G Eliopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, 11527, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| |
Collapse
|
3
|
Fernández-Boo S, Machado A, Castro LFC, Azeredo R, Costas B. Unravelling the main immune repertoire of Paracentrotus lividus following Vibrio anguillarum bath challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109431. [PMID: 38346567 DOI: 10.1016/j.fsi.2024.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Paracentrotus lividus is the most abundant echinoid species in the North East Atlantic Ocean and Mediterranean Sea. Although there is abundant genomic information of the species, there is no deep characterisation of the genes involved in the immune response. Here, a reference transcriptome of male and female coelomocytes was produced. The generated P. lividus transcriptome assembly has 203,511 transcripts, N50 transcript length of 1079 bp, and more than 90% estimated gene completeness in Eukaryota and Metazoa BUSCO databases, respectively. Differential gene expression analyses showed 54 and 55 up-regulated genes in P. lividus female and male coelomocyte tissues, respectively. These results suggest a similar immune gene repertoire between sexes. To examine the immune response, P. lividus was challenged with Vibrio anguillarum, one of the candidate pathogens for bald disease. Immune parameters were evaluated at cell and humoral levels, as well as the expression analysis of immune related genes at an early response stage. No differences were found at cellular and humoral levels with the exception of the increase of nitric oxide in perivisceral fluid of challenged animals. At the gene expression level, a total of 2721 genes were upregulated in challenged animals, 13.6 times higher expression than control group. Our analysis revealed that four major KEGG pathways were enriched in challenged animals: Autophagy (KEGG:04140), Endocytosis (KEGG:04144), Phagosome (KEGG:04145) and Protein processing in endoplasmic reticulum (KEGG:04141). Several toll-like receptors (TLR), scavenger receptors cysteine-rich (SRCR) or nucleotide-binding oligomerisation domain like receptors (NLR) were identified as major family genes for pathogen recognition and immune defence. This study provides a valuable transcriptomic resource and unfolds the molecular basis of immune response to V. anguillarum exposure. Overall, our findings contribute to the conservation effort of the P. lividus populations, as well as its sustainable exploitation in an aquaculture context.
Collapse
Affiliation(s)
- Sergio Fernández-Boo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| | - André Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Universidade Do Porto, Rua Do Campo Alegre, S/n, Edifício FC4, 4169-007, Porto, Portugal
| | - Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Yang X, Xiong S, Zhao X, Jin J, Yang X, Du Y, Zhao L, He Z, Gong C, Guo L, Liang T. Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer. Int J Mol Sci 2024; 25:1561. [PMID: 38338839 PMCID: PMC10855840 DOI: 10.3390/ijms25031561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.
Collapse
Affiliation(s)
- Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Chengjun Gong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| |
Collapse
|
5
|
Qi Z, Lu P, Long X, Cao X, Wu M, Xin K, Xue T, Gao X, Huang Y, Wang Q, Jiang C, Xu JR, Liu H. Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. SCIENCE ADVANCES 2024; 10:eadk6130. [PMID: 38181075 PMCID: PMC10776026 DOI: 10.1126/sciadv.adk6130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.
Collapse
Affiliation(s)
- Zhaomei Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Lu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Long
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengchun Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuan Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlong Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Hirschenberger M, Lepelley A, Rupp U, Klute S, Hunszinger V, Koepke L, Merold V, Didry-Barca B, Wondany F, Bergner T, Moreau T, Rodero MP, Rösler R, Wiese S, Volpi S, Gattorno M, Papa R, Lynch SA, Haug MG, Houge G, Wigby KM, Sprague J, Lenberg J, Read C, Walther P, Michaelis J, Kirchhoff F, de Oliveira Mann CC, Crow YJ, Sparrer KMJ. ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling. Nat Commun 2023; 14:6770. [PMID: 37914730 PMCID: PMC10620153 DOI: 10.1038/s41467-023-42150-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Type I interferon (IFN) signalling is tightly controlled. Upon recognition of DNA by cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) translocates along the endoplasmic reticulum (ER)-Golgi axis to induce IFN signalling. Termination is achieved through autophagic degradation or recycling of STING by retrograde Golgi-to-ER transport. Here, we identify the GTPase ADP-ribosylation factor 1 (ARF1) as a crucial negative regulator of cGAS-STING signalling. Heterozygous ARF1 missense mutations cause a previously unrecognized type I interferonopathy associated with enhanced IFN-stimulated gene expression. Disease-associated, GTPase-defective ARF1 increases cGAS-STING dependent type I IFN signalling in cell lines and primary patient cells. Mechanistically, mutated ARF1 perturbs mitochondrial morphology, causing cGAS activation by aberrant mitochondrial DNA release, and leads to accumulation of active STING at the Golgi/ERGIC due to defective retrograde transport. Our data show an unexpected dual role of ARF1 in maintaining cGAS-STING homeostasis, through promotion of mitochondrial integrity and STING recycling.
Collapse
Affiliation(s)
| | - Alice Lepelley
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, F-75015, Paris, France
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Veronika Merold
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany
| | - Blaise Didry-Barca
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, F-75015, Paris, France
| | - Fanny Wondany
- Institute of Biophysics, Ulm University, 89081, Ulm, Germany
| | - Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Tatiana Moreau
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, F-75015, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, F-75015, Paris, France
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081, Ulm, Germany
| | - Stefano Volpi
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Università degli Studi di Genova, Genoa, Italy
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Riccardo Papa
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sally-Ann Lynch
- Children's Health Ireland, Crumlin, Dublin, Eire
- University College Dublin, Dublin, Eire
| | - Marte G Haug
- Department of Medical Genetics, St. Olav's Hospital, Trondheim, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway
| | - Kristen M Wigby
- Division of Genomic Medicine, Department of Pediatrics, University of California, Davis in Sacramento, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Jessica Sprague
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital San Diego, San Diego, CA, USA
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, USA
| | - Jerica Lenberg
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Yanick J Crow
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, F-75015, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
7
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Hosseini-Gerami L, Ficulle E, Humphryes-Kirilov N, Airey DC, Scherschel J, Kananathan S, Eastwood BJ, Bose S, Collier DA, Laing E, Evans D, Broughton H, Bender A. Mechanism of action deconvolution of the small-molecule pathological tau aggregation inhibitor Anle138b. Alzheimers Res Ther 2023; 15:52. [PMID: 36918909 PMCID: PMC10012450 DOI: 10.1186/s13195-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND A key histopathological hallmark of Alzheimer's disease (AD) is the presence of neurofibrillary tangles of aggregated microtubule-associated protein tau in neurons. Anle138b is a small molecule which has previously shown efficacy in mice in reducing tau aggregates and rescuing AD disease phenotypes. METHODS In this work, we employed bioinformatics analysis-including pathway enrichment and causal reasoning-of an in vitro tauopathy model. The model consisted of cultured rat cortical neurons either unseeded or seeded with tau aggregates derived from human AD patients, both of which were treated with Anle138b to generate hypotheses for its mode of action. In parallel, we used a collection of human target prediction models to predict direct targets of Anle138b based on its chemical structure. RESULTS Combining the different approaches, we found evidence supporting the hypothesis that the action of Anle138b involves several processes which are key to AD progression, including cholesterol homeostasis and neuroinflammation. On the pathway level, we found significantly enriched pathways related to these two processes including those entitled "Superpathway of cholesterol biosynthesis" and "Granulocyte adhesion and diapedesis". With causal reasoning, we inferred differential activity of SREBF1/2 (involved in cholesterol regulation) and mediators of the inflammatory response such as NFKB1 and RELA. Notably, our findings were also observed in Anle138b-treated unseeded neurons, meaning that the inferred processes are independent of tau pathology and thus represent the direct action of the compound in the cellular system. Through structure-based ligand-target prediction, we predicted the intracellular cholesterol carrier NPC1 as well as NF-κB subunits as potential targets of Anle138b, with structurally similar compounds in the model training set known to target the same proteins. CONCLUSIONS This study has generated feasible hypotheses for the potential mechanism of action of Anle138b, which will enable the development of future molecular interventions aiming to reduce tau pathology in AD patients.
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- AbsoluteAi Ltd, London, UK
| | - Elena Ficulle
- Eli Lilly and Company, Windlesham, UK
- Zifo RnD Solutions, London, UK
| | | | - David C Airey
- Eli Lilly and Company, Corporate Centre, Indianapolis, IN, USA
| | | | | | - Brian J Eastwood
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Eli Lilly and Company (Retired), Bracknell, UK
| | - Suchira Bose
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
| | - David A Collier
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Social, Genetic and Developmental Psychiatry Centre, IoPPN, Kings's College London and Genetic and Genomic Consulting Ltd, Farnham, UK
| | - Emma Laing
- Eli Lilly and Company, Windlesham, UK
- GSK, Stevenage, UK
| | - David Evans
- Eli Lilly and Company, Windlesham, UK
- DeepMind, London, UK
| | | | - Andreas Bender
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Feng H, Liu X, Zhou C, Gu Q, Li Y, Chen J, Teng J, Zheng P. CCDC115 inhibits autophagy-mediated degradation of YAP to promote cell proliferation. FEBS Lett 2023; 597:618-630. [PMID: 36650560 DOI: 10.1002/1873-3468.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Autophagy and Hippo signalling pathways both play important roles in cell homeostasis and are often involved in tumourigenesis. However, the crosstalk between these two signal pathways in response to stress conditions, such as nutrient deficiency, is incompletely understood. Here, we show that vesicular localised coiled-coil domain containing 115 (CCDC115) inhibits autophagy as well as Hippo signalling pathway under starvation. Moreover, we show that CCDC115 interacts with the HOPS complex. This interaction competes with STX17, thus inhibiting the fusion of autophagosomes with lysosomes. Hence, CCDC115 inhibits the autophagic degradation of yes-associated protein (YAP), thereby promoting cell proliferation in nutrient-restricted situation.
Collapse
Affiliation(s)
- Hui Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Department of Biotechnology, Beijing Polytechnic, China
| | - Xiao Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chenqian Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qiuchen Gu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Beijing Normal University, China
| | - Ye Li
- Department of Biotechnology, Beijing Polytechnic, China
| | - Jianguo Chen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
10
|
Ben-Zvi H, Rabinski T, Ofir R, Cohen S, Vatine GD. PLEKHM2 Loss of Function Impairs the Activity of iPSC-Derived Neurons via Regulation of Autophagic Flux. Int J Mol Sci 2022; 23:ijms232416092. [PMID: 36555735 PMCID: PMC9782635 DOI: 10.3390/ijms232416092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Pleckstrin Homology And RUN Domain Containing M2 (PLEKHM2) [delAG] mutation causes dilated cardiomyopathy with left ventricular non-compaction (DCM-LVNC), resulting in a premature death of PLEKHM2[delAG] individuals due to heart failure. PLEKHM2 is a factor involved in autophagy, a master regulator of cellular homeostasis, decomposing pathogens, proteins and other cellular components. Autophagy is mainly carried out by the lysosome, containing degradation enzymes, and by the autophagosome, which engulfs substances marked for decomposition. PLEKHM2 promotes lysosomal movement toward the cell periphery. Autophagic dysregulation is associated with neurodegenerative diseases' pathogenesis. Thus, modulation of autophagy holds considerable potential as a therapeutic target for such disorders. We hypothesized that PLEKHM2 is involved in neuronal development and function, and that mutated PLEKHM2 (PLEKHM2[delAG]) neurons will present impaired functions. Here, we studied PLEKHM2-related abnormalities in induced pluripotent stem cell (iPSC)-derived motor neurons (iMNs) as a neuronal model. PLEKHM2[delAG] iMN cultures had healthy control-like differentiation potential but exhibited reduced autophagic activity. Electrophysiological measurements revealed that PLEKHM2[delAG] iMN cultures displayed delayed functional maturation and more frequent and unsynchronized activity. This was associated with increased size and a more perinuclear lysosome cellular distribution. Thus, our results suggest that PLEKHM2 is involved in the functional development of neurons through the regulation of autophagic flux.
Collapse
Affiliation(s)
- Hadas Ben-Zvi
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tatiana Rabinski
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rivka Ofir
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Dead Sea & Arava Science Center, Masada 8691000, Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Correspondence: (S.C.); (G.D.V.)
| | - Gad D. Vatine
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zelman School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Correspondence: (S.C.); (G.D.V.)
| |
Collapse
|
11
|
Filippone A, Esposito E, Mannino D, Lyssenko N, Praticò D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol Ther 2022; 238:108178. [PMID: 35351465 PMCID: PMC9510148 DOI: 10.1016/j.pharmthera.2022.108178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022]
Abstract
Defects in cellular functions related to altered protein homeostasis and associated progressive accumulation of pathological intracellular material is a critical process involved in the pathogenesis of many neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Autophagy is an essential mechanism that ensures neuronal health by removing long-lived proteins or defective organelles and by doing so prevents cell toxicity and death within the central nervous system. Abundant evidence has shown that neuronal autophagy pathways are altered in Alzheimer's disease, Parkinson's disease and traumas of the central nervous system including Spinal Cord Injury and Traumatic Brain Injury. In this review, we aimed to summarize the latest studies on the role that altered neuronal autophagy plays in brain health and these pathological conditions, and how this knowledge can be leveraged for the development of novel therapeutics against them.
Collapse
Affiliation(s)
- Alessia Filippone
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Nicholas Lyssenko
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
12
|
Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front Med 2022; 16:339-357. [PMID: 35759087 DOI: 10.1007/s11684-022-0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Collapse
|
13
|
Yang YP, Lai WY, Lin TW, Lin YY, Chien Y, Tsai YC, Tai HY, Wang CL, Liu YY, Huang PI, Chen YW, Lo WL, Wang CY. Autophagy reprogramming stem cell pluripotency and multiple-lineage differentiation. J Chin Med Assoc 2022; 85:667-671. [PMID: 35385421 DOI: 10.1097/jcma.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cellular process responsible for the degradation of cytosolic proteins and subcellular organelles in lysosomes was termed "autophagy." This process occurs at a basal level in most tissues as part of tissue homeostasis that redounds to the regular turnover of components inside cytoplasm. The breakthrough in the autophagy field is the identification of key players in the autophagy pathway, compounded under the name "autophagy-related genes" (ATG) encoding for autophagy effector proteins. Generally, the function of autophagy can be classified into two divisions: intracellular clearance of defective macromolecules and organelles and generation of degradation products. Therapeutic strategies using stem cell-based approach come as a promising therapy and develop rapidly recently as stem cells have high self-renewability and differentiation capability as known as mesenchymal stem cells (MSCs). They are defined as adherent fibroblast-like population with the abilities to self-renew and multi-lineage differentiate into osteogenic, adipogenic, and chondrogenic lineage cells. To date, they are the most extensively applied adult stem cells in clinical trials. The properties of MSCs, such as immunomodulation, neuroprotection, and tissue repair pertaining to cell differentiation, processes to replace lost, or damaged cells, for aiding cell repair and revival. Autophagy has been viewed as a remarkable mechanism for maintaining homeostasis, ensuring the adequate function and survival of long-lived stem cells. In addition, authophagy also plays a remarkable role in protecting stem cells against cellular stress when the stem cell regenerative capacity is harmed in aging and cellular degeneration. Understanding the under-explored mechanisms of MSC actions and expanding the spectrum of their clinical applications may improve the utility of the MSC-based therapeutic approach in the future.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ching Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Yun Tai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Yang Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pin-I Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Wei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Liang Lo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Physical Education and Health, University of Taipei, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Involvement of Sec71 and Ubp2 in tunicamycin-induced ER stress response in the fission yeast. Mol Biol Rep 2022; 49:4719-4726. [PMID: 35474054 DOI: 10.1007/s11033-022-07321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Accumulation of unfolded or misfolded proteins in the cellular environment result in ER stress and activates the unfolded protein response (UPR). The UPR alleviates ER stress and restores homeostasis, but it triggers cell death under prolonged stress. Here, we aimed to investigate the involvement of Sec71, an Arf-GEF involved in vesicular transport, in the tunicamycin-induced ER stress response. Since deubiquitinases and ER stress are known to be closely linked, we investigated this response by evaluating the potential role of Ubp2, a deubiquitinase, in the ER stress response in fission yeast. METHODS AND RESULTS Tunicamycin-induced ER stress responses were assessed by analyzing cell viability, apoptosis, intracellular oxidation levels, and proteasomal activities in sec71 and ubp2-deficient cells. The cell viability of Δsec71 and Δubp2 decreased after exposure to 0.5 µg/mL tunicamycin. Deleting either ubp2 or sec71 genes significantly decreased proteasomal activity and sensitized cells to ER stress, resulting in increased apoptosis compared with wild-type cells after tunicamycin treatment. DCFDA (2,7-dichlorodihydrofluorescein diacetate) reduction increased in correlation with apoptosis observed in the mutant cells, indicating higher levels of reactive oxygen species. CONCLUSIONS The results highlight the involvement of S. pombe Ubp2 in the known role of the ubiquitin-proteasome system in the ER stress response. We hypothesise that Sec71 is associated with ER homeostasis, and our findings on Sec71 provide new insight into the regulation of cell death mechanisms arising from the ER stress.
Collapse
|
15
|
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E, Muntané J. The Role of Non-Coding RNAs in Autophagy During Carcinogenesis. Front Cell Dev Biol 2022; 10:799392. [PMID: 35309939 PMCID: PMC8926078 DOI: 10.3389/fcell.2022.799392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway involved in self-renewal and quality control processes to maintain cellular homeostasis. The alteration of autophagy has been implicated in numerous diseases such as cancer where it plays a dual role. Autophagy serves as a tumor suppressor in the early phases of cancer formation with the restoration of homeostasis and eliminating cellular altered constituents, yet in later phases, autophagy may support and/or facilitate tumor growth, metastasis and may contribute to treatment resistance. Key components of autophagy interact with either pro- and anti-apoptotic factors regulating the proximity of tumor cells to apoptotic cliff promoting cell survival. Autophagy is regulated by key cell signaling pathways such as Akt (protein kinase B, PKB), mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) involved in cell survival and metabolism. The expression of critical members of upstream cell signaling, as well as those directly involved in the autophagic and apoptotic machineries are regulated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Consequently, non-coding RNAs play a relevant role in carcinogenesis and treatment response in cancer. The review is an update of the current knowledge in the regulation by miRNA and lncRNA of the autophagic components and their functional impact to provide an integrated and comprehensive regulatory network of autophagy in cancer.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Jung Y, Artan M, Kim N, Yeom J, Hwang AB, Jeong DE, Altintas Ö, Seo K, Seo M, Lee D, Hwang W, Lee Y, Sohn J, Kim EJE, Ju S, Han SK, Nam HJ, Adams L, Ryu Y, Moon DJ, Kang C, Yoo JY, Park SK, Ha CM, Hansen M, Kim S, Lee C, Park SY, Lee SJV. MON-2, a Golgi protein, mediates autophagy-dependent longevity in Caenorhabditis elegans. SCIENCE ADVANCES 2021; 7:eabj8156. [PMID: 34860542 PMCID: PMC8641931 DOI: 10.1126/sciadv.abj8156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 06/02/2023]
Abstract
The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.
Collapse
Affiliation(s)
- Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Ara B. Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Özlem Altintas
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun Ji E. Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyun-Jun Nam
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Linnea Adams
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Youngjae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Dong Jin Moon
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chanhee Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Malene Hansen
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
17
|
Pagliazzo L, Caby S, Lancelot J, Salomé-Desnoulez S, Saliou JM, Heimburg T, Chassat T, Cailliau K, Sippl W, Vicogne J, Pierce RJ. Histone deacetylase 8 interacts with the GTPase SmRho1 in Schistosoma mansoni. PLoS Negl Trop Dis 2021; 15:e0009503. [PMID: 34843489 PMCID: PMC8670706 DOI: 10.1371/journal.pntd.0009503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. Methodology/principal findings We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. Conclusions/significance Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton. Schistosoma mansoni is the major parasitic platyhelminth species causing intestinal schistosomiasis. Currently one drug, praziquantel, is the treatment of choice but its use in mass treatment programs means that the development of resistance is likely and renders imperative the development of new therapeutic agents. As new potential targets we have focused on lysine deacetylases, and in particular S. mansoni histone deacetylase 8 (SmHDAC8). Previous studies showed that reduction in the level of transcripts of SmHDAC8 by RNAi led to the impaired survival of the worms after the infection of mice. The analysis of the 3D structure of SmHDAC8 by X-ray crystallography showed that the catalytic domain structure diverges significantly from that of human HDAC8 and this was exploited to develop novel potential anti-schistosomal drugs. The biological roles of SmHDAC8 are unknown. For this reason, we previously characterized its protein binding partners and identified the schistosome orthologue of the human RhoA GTPase, suggesting the involvement of SmHDAC8 in the modulation of cytoskeleton organization. Here we investigated the interaction between SmHDAC8 and SmRho1 and identified two SmRho1 isoforms (SmRho1.1 and SmRho1.2). Our study showed that SmHDAC8 is involved in schistosome cytoskeleton organization.
Collapse
Affiliation(s)
- Lucile Pagliazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Stéphanie Caby
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | | | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Tino Heimburg
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Thierry Chassat
- Institut Pasteur de Lille - PLEHTA (Plateforme d’expérimentation et de Haute Technologie Animale), Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| | - Raymond J. Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| |
Collapse
|
18
|
Tintos-Hernández JA, Santana A, Keller KN, Ortiz-González XR. Lysosomal dysfunction impairs mitochondrial quality control and is associated with neurodegeneration in TBCK encephaloneuronopathy. Brain Commun 2021; 3:fcab215. [PMID: 34816123 PMCID: PMC8603245 DOI: 10.1093/braincomms/fcab215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Biallelic variants in the TBCK gene cause intellectual disability with remarkable clinical variability, ranging from static encephalopathy to progressive neurodegeneration (TBCK-Encephaloneuronopathy). The biological factors underlying variable disease penetrance remain unknown. Since previous studies had suggested aberrant autophagy, we tested whether mitophagy and mitochondrial function are altered in TBCK−/− fibroblasts derived from patients exhibiting variable clinical severity. Our data show significant accumulation of mitophagosomes, reduced mitochondrial respiratory capacity and mitochondrial DNA content, suggesting impaired mitochondrial quality control. Furthermore, the degree of mitochondrial dysfunction correlates with a neurodegenerative clinical course. Since mitophagy ultimately depends on lysosomal degradation, we also examined lysosomal function. Our data show that lysosomal proteolytic function is significantly reduced in TBCK−/− fibroblasts. Moreover, acidifying lysosomal nanoparticles rescue the mitochondrial respiratory defects in fibroblasts, suggesting impaired mitochondrial quality control secondary to lysosomal dysfunction. Our data provide insight into the disease mechanisms of TBCK Encephaloneuronopathy and the potential relevance of mitochondrial function as a biomarker beyond primary mitochondrial disorders. It also supports the benefit of lysosomal acidification strategies for disorders of impaired lysosomal degradation affecting mitochondrial quality control.
Collapse
Affiliation(s)
- Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adrian Santana
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kierstin N Keller
- Department of Genetics, Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Epilepsy Neurogenetics Initiative and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. ACTA ACUST UNITED AC 2021; 45:235-252. [PMID: 34377049 PMCID: PMC8313936 DOI: 10.3906/biy-2103-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.
Collapse
Affiliation(s)
| | - Hatice Çakir
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey
| | - Devrim Gözüaçik
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey.,Koç University School of Medicine, İstanbul Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| |
Collapse
|
20
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
21
|
Tao H, Yancey PG, Blakemore JL, Zhang Y, Ding L, Jerome WG, Brown JD, Vickers KC, Linton MF. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of Tfeb in atherosclerosis. J Clin Invest 2021; 131:94229. [PMID: 33661763 PMCID: PMC8011903 DOI: 10.1172/jci94229] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy modulates lipid turnover, cell survival, inflammation, and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis. SR-BI deletion attenuated lipid-induced expression of autophagy mediators in macrophages and atherosclerotic aortas. Consequently, SR-BI deletion resulted in 1.8- and 2.5-fold increases in foam cell formation and apoptosis, respectively, and increased oxidized LDL-induced inflammatory cytokine expression. Pharmacological activation of autophagy failed to reduce lipid content or apoptosis in Sr-b1-/- macrophages. SR-BI deletion reduced both basal and inducible levels of transcription factor EB (TFEB), a master regulator of autophagy, causing decreased expression of autophagy genes encoding VPS34 and Beclin-1. Notably, SR-BI regulated Tfeb expression by enhancing PPARα activation. Moreover, intracellular macrophage SR-BI localized to autophagosomes, where it formed cholesterol domains resulting in enhanced association of Barkor and recruitment of the VPS34-Beclin-1 complex. Thus, SR-BI deficiency led to lower VPS34 activity in macrophages and in atherosclerotic aortic tissues. Overexpression of Tfeb or Vps34 rescued the defective autophagy in Sr-b1-/- macrophages. Taken together, our results show that macrophage SR-BI regulates autophagy via Tfeb expression and recruitment of the VPS34-Beclin-1 complex, thus identifying previously unrecognized roles for SR-BI and potentially novel targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Huan Tao
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Patricia G. Yancey
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - John L. Blakemore
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Youmin Zhang
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Lei Ding
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - W. Gray Jerome
- Department of Pathology, Microbiology and Immunology, and
| | - Jonathan D. Brown
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - Kasey C. Vickers
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
| | - MacRae F. Linton
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Ma CIJ, Brill JA. Endosomal Rab GTPases regulate secretory granule maturation in Drosophila larval salivary glands. Commun Integr Biol 2021; 14:15-20. [PMID: 33628358 PMCID: PMC7889263 DOI: 10.1080/19420889.2021.1874663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Secretory granules (SGs) are organelles responsible for regulated exocytosis of biologically active molecules in professional secretory cells. Maturation of SGs is a crucial process in which cargoes of SGs are processed and activated, allowing them to exert their function upon secretion. Nonetheless, the intracellular trafficking pathways required for SG maturation are not well defined. We recently performed an RNA interference (RNAi) screen in Drosophila larval salivary glands to identify trafficking components needed for SG maturation. From the screen, we identified several Rab GTPases (Rabs) that affect SG maturation. Expression of constitutively active (CA) and dominant-negative (DN) forms narrowed down the Rabs important for this process to Rab5, Rab9 and Rab11. However, none of these Rabs localizes to the limiting membrane of SGs. In contrast, examination of endogenously YFP-tagged Rabs (YRabs) in larval salivary glands revealed that YRab1 and YRab6 localize to the limiting membrane of immature SGs (iSGs) and SGs. These findings provide new insights into how Rab GTPases contribute to the process of SG maturation.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Medical Sciences Building, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| |
Collapse
|
23
|
Khan MAAK, Islam ABMMK. SARS-CoV-2 Proteins Exploit Host's Genetic and Epigenetic Mediators for the Annexation of Key Host Signaling Pathways. Front Mol Biosci 2021; 7:598583. [PMID: 33585554 PMCID: PMC7872968 DOI: 10.3389/fmolb.2020.598583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The constant rise of the death toll and cases of COVID-19 has made this pandemic a serious threat to human civilization. Understanding of host-SARS-CoV-2 interaction in viral pathogenesis is still in its infancy. In this study, we utilized a blend of computational and knowledgebase approaches to model the putative virus-host interplay in host signaling pathways by integrating the experimentally validated host interactome proteins and differentially expressed host genes in SARS-CoV-2 infection. While searching for the pathways in which viral proteins interact with host proteins, we discovered various antiviral immune response pathways such as hypoxia-inducible factor 1 (HIF-1) signaling, autophagy, retinoic acid-inducible gene I (RIG-I) signaling, Toll-like receptor signaling, fatty acid oxidation/degradation, and IL-17 signaling. All these pathways can be either hijacked or suppressed by the viral proteins, leading to improved viral survival and life cycle. Aberration in pathways such as HIF-1 signaling and relaxin signaling in the lungs suggests the pathogenic lung pathophysiology in COVID-19. From enrichment analysis, it was evident that the deregulated genes in SARS-CoV-2 infection might also be involved in heart development, kidney development, and AGE-RAGE signaling pathway in diabetic complications. Anomalies in these pathways might suggest the increased vulnerability of COVID-19 patients with comorbidities. Moreover, we noticed several presumed infection-induced differentially expressed transcription factors and epigenetic factors, such as miRNAs and several histone modifiers, which can modulate different immune signaling pathways, helping both host and virus. Our modeling suggests that SARS-CoV-2 integrates its proteins in different immune signaling pathways and other cellular signaling pathways for developing efficient immune evasion mechanisms while leading the host to a more complicated disease condition. Our findings would help in designing more targeted therapeutic interventions against SARS-CoV-2.
Collapse
|
24
|
Suchkova IO, Borisova EV, Patkin EL. Length Polymorphism and Methylation Status of UPS29 Minisatellite of the ACAP3 Gene as Molecular Biomarker of Epilepsy. Sex Differences in Seizure Types and Symptoms. Int J Mol Sci 2020; 21:E9206. [PMID: 33276684 PMCID: PMC7730309 DOI: 10.3390/ijms21239206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.
Collapse
Affiliation(s)
- Irina O. Suchkova
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| | - Elena V. Borisova
- Department of Neurology, Clinic of Institute of Experimental Medicine, St. Petersburg 197376, Russia;
| | - Eugene L. Patkin
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| |
Collapse
|
25
|
Marttinen M, Ferreira CB, Paldanius KMA, Takalo M, Natunen T, Mäkinen P, Leppänen L, Leinonen V, Tanigaki K, Kang G, Hiroi N, Soininen H, Rilla K, Haapasalo A, Hiltunen M. Presynaptic Vesicle Protein SEPTIN5 Regulates the Degradation of APP C-Terminal Fragments and the Levels of Aβ. Cells 2020; 9:cells9112482. [PMID: 33203136 PMCID: PMC7696542 DOI: 10.3390/cells9112482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-β (Aβ) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of β-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aβ. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aβ in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aβ in neuronal cells.
Collapse
Affiliation(s)
- Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Catarina B. Ferreira
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Kaisa M. A. Paldanius
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Luukas Leppänen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Ville Leinonen
- Institute of Clinical Medicine–Neurosurgery, University of Eastern Finland, 70210 Kuopio, Finland;
- Neurology of Neuro Center Kuopio University Hospital, 70210 Kuopio, Finland
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, Shiga 524-8524, Japan;
| | - Gina Kang
- Department of Pharmacology, Department of Integrative and Systems Physiology, Department of Cell Systems and Anatomy, Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 77030, USA; (G.K.); (N.H.)
| | - Noboru Hiroi
- Department of Pharmacology, Department of Integrative and Systems Physiology, Department of Cell Systems and Anatomy, Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 77030, USA; (G.K.); (N.H.)
| | - Hilkka Soininen
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Annakaisa Haapasalo
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
- Correspondence: (A.H.); (M.H.); Tel.: +358-40-355-2768 (A.H.); +358-40-355-2014 (M.H.)
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
- Correspondence: (A.H.); (M.H.); Tel.: +358-40-355-2768 (A.H.); +358-40-355-2014 (M.H.)
| |
Collapse
|
26
|
Safwat AM, Elnaggar AS, Elghalid OA, El-Tahawy WS. Effects of different sources and levels of dietary chromium supplementation on performance of broiler chicks. Anim Sci J 2020; 91:e13448. [PMID: 32815239 DOI: 10.1111/asj.13448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/17/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
The current experiment was carried out to evaluate the effect of different dietary chromium supplementation sources, chromium oxide (Cr2 O3 ), chromium methionine (Cr-Met), or chromium yeast (Cr-yeast), at different levels each (500 or 1,000 ppb) on growth performance, physiological traits, and carcass characteristics of broiler chicks. A total of 490 seven-day-old Arbor Acres chicks were randomly distributed into 7 experimental groups each in 10 replicates of 7 birds each. The groups were control, 500 ppb Cr2 O3 , 1,000 ppb Cr2 O3 , 500 ppb Cr-Met, 1,000 ppb Cr-Met, 500 ppb Cr-yeast, and 1,000 ppb Cr-yeast. The results showed significant superiority of the organic chromium sources (Cr-Met or Cr-yeast) concerning body weight and weight gain, the group supplemented with 1,000 ppb Cr-yeast consumed the lowest feed (3,185 g) and had the best feed conversion ratio (1.60) compared to the control (1.73). The chromium treatments recorded significantly better protein and lipid profile, antioxidant status, and immunological parameters than the control group. Similarly, dietary chromium supplementation increased carcass yield and decreased intestinal pathogenic bacteria. In conclusion, supplementing broiler diets with organic chromium sources at 1,000 ppb promotes growth performance, physiological traits, and carcass characteristics; such chromium treatments enhanced the antioxidant status and immunity levels of broilers.
Collapse
Affiliation(s)
- Assem Mohamed Safwat
- Poultry Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Asmaa Shawkey Elnaggar
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Osama Ahmed Elghalid
- Poultry Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Waleed Salah El-Tahawy
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
27
|
Sun X, Shu Y, Xu M, Jiang J, Wang L, Wang J, Huang D, Zhang J. ANXA6 suppresses the tumorigenesis of cervical cancer through autophagy induction. Clin Transl Med 2020; 10:e208. [PMID: 33135350 PMCID: PMC7571625 DOI: 10.1002/ctm2.208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background Autophagy is an intracellular degradation pathway conserved in eukaryotes. ANXA6 (annexin A6) belongs to a family of calcium‐dependent membrane and phospholipid‐binding proteins. Here, we identify ANXA6 as a newly synthesized protein in starvation‐induced autophagy and validate it as a novel autophagy modulator that regulates autophagosome formation. Results ANXA6 knockdown attenuates starvation‐induced autophagy, while restoration of its expression enhances autophagy. GO (gene ontology) analysis of ANXA6 targets showed that ANXA6 interacts with many RAB GTPases and targets endocytosis and phagocytosis pathways, indicating that ANXA6 exerts its function through protein trafficking. ATG9A (autophagy‐related 9A) is the sole multispanning transmembrane protein and its trafficking through recycling endosomes is an essential step for autophagosome formation. Our results showed that ANXA6 enables appropriate ATG9A+ vesicle trafficking from endosomes to autophagosomes through RAB proteins or F‐actin. In addition, restoration of ANXA6 expression suppresses mTOR (mammalian target of rapamycin) activity through the inhibition of the PI3K (phosphoinositide 3‐kinase)‐AKT and ERK (extracellular signal‐regulated kinase) signaling pathways, which is a negative regulator of autophagy. Functionally, ANXA6 expression is correlated with LC3 (microtubule‐associated protein 1 light chain 3) expression in cervical cancer, and ANXA6 inhibits tumorigenesis through autophagy induction. Conclusions Our results reveal an important mechanism for ANXA6 in tumor suppression and autophagy regulation.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Mengting Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiukun Jiang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Wang
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Clinical Research Institute, Hangzhou, China
| | - Jianbin Zhang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Clinical Research Institute, Hangzhou, China
| |
Collapse
|
28
|
Adnan G, Rubikaite A, Khan M, Reber M, Suetterlin P, Hindges R, Drescher U. The GTPase Arl8B Plays a Principle Role in the Positioning of Interstitial Axon Branches by Spatially Controlling Autophagosome and Lysosome Location. J Neurosci 2020; 40:8103-8118. [PMID: 32917789 PMCID: PMC7574663 DOI: 10.1523/jneurosci.1759-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Interstitial axon branching is an essential step during the establishment of neuronal connectivity. However, the exact mechanisms on how the number and position of branches are determined are still not fully understood. Here, we investigated the role of Arl8B, an adaptor molecule between lysosomes and kinesins. In chick retinal ganglion cells (RGCs), downregulation of Arl8B reduces axon branch density and shifts their location more proximally, while Arl8B overexpression leads to increased density and more distal positions of branches. These alterations correlate with changes in the location and density of lysosomes and autophagosomes along the axon shaft. Diminishing autophagy directly by knock-down of atg7, a key autophagy gene, reduces branch density, while induction of autophagy by rapamycin increases axon branching, indicating that autophagy plays a prominent role in axon branch formation. In vivo, local inactivation of autophagy in the retina using a mouse conditional knock-out approach disturbs retino-collicular map formation which is dependent on the formation of interstitial axon branches. These data suggest that Arl8B plays a principal role in the positioning of axon branches by spatially controlling autophagy, thus directly controlling formation of neural connectivity in the brain.SIGNIFICANCE STATEMENT The formation of interstitial axonal branches plays a prominent role in numerous places of the developing brain during neural circuit establishment. We show here that the GTPase Arl8B controls density and location of interstitial axon branches, and at the same time controls also density and location of the autophagy machinery. Upregulation or downregulation of autophagy in vitro promotes or inhibits axon branching. Local disruption of autophagy in vivo disturbs retino-collicular mapping. Our data suggest that Arl8B controls axon branching by controlling locally autophagy. This work is one of the first reports showing a role of autophagy during early neural circuit development and suggests that autophagy in general plays a much more prominent role during brain development than previously anticipated.
Collapse
Affiliation(s)
- Gee Adnan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Aine Rubikaite
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Moqadisa Khan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Michael Reber
- Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada
| | - Philip Suetterlin
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
- Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Uwe Drescher
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
29
|
Delfino L, Mason RP, Kyriacou CP, Giorgini F, Rosato E. Rab8 Promotes Mutant HTT Aggregation, Reduces Neurodegeneration, and Ameliorates Behavioural Alterations in a Drosophila Model of Huntington's Disease. J Huntingtons Dis 2020; 9:253-263. [PMID: 33044189 DOI: 10.3233/jhd-200411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Altered cellular vesicle trafficking has been linked to the pathogenesis of Huntington's disease (HD), a fatal, inherited neurodegenerative disorder caused by mutation of the huntingtin (HTT) protein. The Rab GTPase family of proteins plays a key role in regulation of vesicle trafficking, with distinct Rabs helping specify membrane identity and mediating cellular processes including budding, motility and tethering of vesicles to their targets. In recent years several Rab GTPases-notably, Rab5 and Rab11-have been linked to the pathogenesis of neurodegenerative disorders, including HD. OBJECTIVE We investigated whether Rab8, which regulates post-Golgi vesicle trafficking, is able to improve HD-relevant phenotypes in a well-characterised model. METHODS We overexpressed Rab8 in a Drosophila model of HD testing cellular, behavioural, and molecular phenotypes. RESULTS We found that Rab8 overexpression ameliorated several disease-related phenotypes in fruit flies expressing a mutant HTT fragment throughout the nervous system, including neurodegeneration of photoreceptor neurons, reduced eclosion of the adult fly from the pupal case and shortened lifespan. Rab8 overexpression also normalised aberrant circadian locomotor behaviour in flies expressing mutant HTT in a specific population of neurons that regulate the circadian clock. Intriguingly, expression of Rab8 increased the accumulation of SDS-insoluble aggregated species of mutant HTT. CONCLUSION Collectively, our findings demonstrate that increased Rab8 levels protect against mutant HTT toxicity and potentiate its aggregation, likely reducing the accumulation of downstream toxic soluble species.
Collapse
Affiliation(s)
- Laura Delfino
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Robert P Mason
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
30
|
Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. J Cell Biol 2020; 219:jcb.201909033. [PMID: 31753861 PMCID: PMC7039213 DOI: 10.1083/jcb.201909033] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell-intrinsic effects of autophagy can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor microenvironment via non-cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to autophagy inhibition. Here we review recent literature addressing these issues.
Collapse
Affiliation(s)
- Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Darya Wodetzki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
31
|
Park H, Kang JH, Lee S. Autophagy in Neurodegenerative Diseases: A Hunter for Aggregates. Int J Mol Sci 2020; 21:ijms21093369. [PMID: 32397599 PMCID: PMC7247013 DOI: 10.3390/ijms21093369] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cells have developed elaborate quality-control mechanisms for proteins and organelles to maintain cellular homeostasis. Such quality-control mechanisms are maintained by conformational folding via molecular chaperones and by degradation through the ubiquitin-proteasome or autophagy-lysosome system. Accumulating evidence suggests that impaired autophagy contributes to the accumulation of intracellular inclusion bodies consisting of misfolded proteins, which is a hallmark of most neurodegenerative diseases. In addition, genetic mutations in core autophagy-related genes have been reported to be linked to neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely, the pathogenic proteins, such as amyloid β and α-synuclein, are detrimental to the autophagy pathway. Here, we review the recent advances in understanding the relationship between autophagic defects and the pathogenesis of neurodegenerative diseases and suggest autophagy induction as a promising strategy for the treatment of these conditions.
Collapse
Affiliation(s)
- Hyungsun Park
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea;
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Ju-Hee Kang
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seongju Lee
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea;
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
- Correspondence: ; Tel.: +82-32-860-9891
| |
Collapse
|
32
|
Jongsma ML, Bakker J, Cabukusta B, Liv N, van Elsland D, Fermie J, Akkermans JL, Kuijl C, van der Zanden SY, Janssen L, Hoogzaad D, van der Kant R, Wijdeven RH, Klumperman J, Berlin I, Neefjes J. SKIP-HOPS recruits TBC1D15 for a Rab7-to-Arl8b identity switch to control late endosome transport. EMBO J 2020; 39:e102301. [PMID: 32080880 PMCID: PMC7073467 DOI: 10.15252/embj.2019102301] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The endolysosomal system fulfils a myriad of cellular functions predicated on regulated membrane identity progressions, collectively termed maturation. Mature or “late” endosomes are designated by small membrane‐bound GTPases Rab7 and Arl8b, which can either operate independently or collaborate to form a joint compartment. Whether, and how, Rab7 and Arl8b resolve this hybrid identity compartment to regain functional autonomy is unknown. Here, we report that Arl8b employs its effector SKIP to instigate inactivation and removal of Rab7 from select membranes. We find that SKIP interacts with Rab7 and functions as its negative effector, delivering the cognate GAP, TBC1D15. Recruitment of TBC1D15 to SKIP occurs via the HOPS complex, whose assembly is facilitated by contacts between Rab7 and the KMI motif of SKIP. Consequently, SKIP mediates reinstatement of single identity Arl8b sub‐compartment through an ordered Rab7‐to‐Arl8b handover, and, together with Rab7's positive effector RILP, enforces spatial, temporal and morphological compartmentalization of endolysosomal organelles.
Collapse
Affiliation(s)
- Marlieke Lm Jongsma
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Bakker
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daphne van Elsland
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Job Fermie
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jimmy Ll Akkermans
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Coenraad Kuijl
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Denise Hoogzaad
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rik van der Kant
- Center for Neurogenomics and Cognitive Research, Faculty of Sciences, VU Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Wijdeven
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Dong D, Huang X, Li L, Mao H, Mo Y, Zhang G, Zhang Z, Shen J, Liu W, Wu Z, Liu G, Liu Y, Yang H, Gong Q, Shi K, Chen L. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. LIGHT, SCIENCE & APPLICATIONS 2020; 9:11. [PMID: 32025294 PMCID: PMC6987131 DOI: 10.1038/s41377-020-0249-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 05/10/2023]
Abstract
The emergence of super-resolution (SR) fluorescence microscopy has rejuvenated the search for new cellular sub-structures. However, SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment. Thus, we developed SR fluorescence-assisted diffraction computational tomography (SR-FACT), which combines label-free three-dimensional optical diffraction tomography (ODT) with two-dimensional fluorescence Hessian structured illumination microscopy. The ODT module is capable of resolving the mitochondria, lipid droplets, the nuclear membrane, chromosomes, the tubular endoplasmic reticulum, and lysosomes. Using dual-mode correlated live-cell imaging for a prolonged period of time, we observed novel subcellular structures named dark-vacuole bodies, the majority of which originate from densely populated perinuclear regions, and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane. This work demonstrates the unique capabilities of SR-FACT, which suggests its wide applicability in cell biology in general.
Collapse
Affiliation(s)
- Dashan Dong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
| | - Xiaoshuai Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Heng Mao
- School of Mathematical Sciences, Peking University, Beijing, 100871 China
| | - Yanquan Mo
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Guangyi Zhang
- School of Mathematical Sciences, Peking University, Beijing, 100871 China
| | - Zhe Zhang
- School of Mathematical Sciences, Peking University, Beijing, 100871 China
| | - Jiayu Shen
- School of Software and Microelectronics, Peking University, Beijing, 100871 China
| | - Wei Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guanghui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101 China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Kebin Shi
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871 China
| |
Collapse
|
34
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
35
|
Fedeli C, Filadi R, Rossi A, Mammucari C, Pizzo P. PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca 2+ homeostasis. Autophagy 2019; 15:2044-2062. [PMID: 30892128 PMCID: PMC6844518 DOI: 10.1080/15548627.2019.1596489] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
PSEN2 (presenilin 2) is one of the 3 proteins that, when mutated, causes early onset familial Alzheimer disease (FAD) cases. In addition to its well-known role within the γ-secretase complex (the enzyme ultimately responsible for Aβ peptides formation), PSEN2 is endowed with some γ-secretase-independent functions in distinct cell signaling pathways, such as the modulation of intracellular Ca2+ homeostasis. Here, by using different FAD-PSEN2 cell models, we demonstrate that mutated PSEN2 impairs autophagy by causing a block in the degradative flux at the level of the autophagosome-lysosome fusion step. The defect does not depend on an altered lysosomal functionality but rather on a decreased recruitment of the small GTPase RAB7 to autophagosomes, a key event for normal autophagy progression. Importantly, FAD-PSEN2 action on autophagy is unrelated to its γ-secretase activity but depends on its previously reported ability to partially deplete ER Ca2+ content, thus reducing cytosolic Ca2+ response upon IP3-linked cell stimulations. Our data sustain the pivotal role for Ca2+ signaling in autophagy and reveal a novel mechanism by which FAD-linked presenilins alter the degradative process, reinforcing the view of a causative role for a dysfunctional quality control pathway in AD neurodegeneration.Abbreviations: Aβ: amyloid β; AD: Alzheimer disease; ACTB: actin beta; AMPK: AMP-activated protein kinase; APP: amyloid-beta precursor protein; BafA: bafilomycin A1; BAPTA-AM: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; CFP: cyan fluorescent protein; EGTA-AM: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester; ER: endoplasmic reticulum; EGFP-HDQ74: enhanced GFP-huntingtin exon 1 containing 74 polyglutamine repeats; FAD: familial Alzheimer disease; FCS: fetal calf serum; FRET: fluorescence/Förster resonance energy transfer; GFP: green fluorescent protein; IP3: inositol trisphosphate; KD: knockdown; LAMP1: lysosomal associated membrane protein 1; MAP1LC3-II/LC3-II: lipidated microtubule-associated protein 1 light chain 3; MCU: mitochondrial calcium uniporter; MICU1: mitochondrial calcium uptake 1; MEFs: mouse embryonic fibroblasts; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; SQSTM1/p62: sequestosome 1; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB7: RAB7A: member RAS oncogene family; RFP: red fluorescent protein; ATP2A/SERCA: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting; siRNA: small interference RNA; V-ATPase: vacuolar-type H+-ATPase; WT: wild type.
Collapse
Affiliation(s)
- Chiara Fedeli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alice Rossi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute – Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
36
|
Morgan NE, Cutrona MB, Simpson JC. Multitasking Rab Proteins in Autophagy and Membrane Trafficking: A Focus on Rab33b. Int J Mol Sci 2019; 20:ijms20163916. [PMID: 31408960 PMCID: PMC6719199 DOI: 10.3390/ijms20163916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy (particularly macroautophagy) is a bulk degradation process used by eukaryotic cells in order to maintain adequate energy levels and cellular homeostasis through the delivery of long-lived proteins and organelles to the lysosome, resulting in their degradation. It is becoming increasingly clear that many of the molecular requirements to fulfil autophagy intersect with those of conventional and unconventional membrane trafficking pathways. Of particular interest is the dependence of these processes on multiple members of the Rab family of small GTP binding proteins. Rab33b is a protein that localises to the Golgi apparatus and has suggested functions in both membrane trafficking and autophagic processes. Interestingly, mutations in the RAB33B gene have been reported to cause the severe skeletal disorder, Smith–McCort Dysplasia; however, the molecular basis for Rab33b in this disorder remains to be determined. In this review, we focus on the current knowledge of the participation of Rab33b and its interacting partners in membrane trafficking and macroautophagy, and speculate on how its function, and dysfunction, may contribute to human disease.
Collapse
Affiliation(s)
- Niamh E Morgan
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland.
| |
Collapse
|
37
|
Kerins MJ, Liu P, Tian W, Mannheim W, Zhang DD, Ooi A. Genome-Wide CRISPR Screen Reveals Autophagy Disruption as the Convergence Mechanism That Regulates the NRF2 Transcription Factor. Mol Cell Biol 2019; 39:e00037-19. [PMID: 31010806 PMCID: PMC6580702 DOI: 10.1128/mcb.00037-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor (erythroid 2)-like 2 (NRF2 or NFE2L2) transcription factor regulates the expression of many genes that are critical in maintaining cellular homeostasis. Its deregulation has been implicated in many diseases, including cancer and metabolic and neurodegenerative diseases. While several mechanisms by which NRF2 can be activated have gradually been identified over time, a more complete regulatory network of NRF2 is still lacking. Here we show through a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen that a total of 273 genes, when knocked out, will lead to sustained NRF2 activation. Pathway analysis revealed a significant overrepresentation of genes (18 of the 273 genes) involved in autophagy. Molecular validation of a subset of the enriched genes identified 8 high-confidence genes that negatively regulate NRF2 activity irrespective of cell type: ATG12, ATG7, GOSR1, IFT172, NRXN2, RAB6A, VPS37A, and the well-known negative regulator of NRF2, KEAP1 Of these, ATG12, ATG7, KEAP1, and VPS37A are known to be involved in autophagic processes. Our results present a comprehensive list of NRF2 negative regulators and reveal an intimate link between autophagy and NRF2 regulation.
Collapse
Affiliation(s)
- Michael J Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Wang Tian
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - William Mannheim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
38
|
Pająk B, Kania E, Gołaszewska A, Orzechowski A. Preliminary Study on Clusterin Protein (sCLU) Expression in PC-12 Cells Overexpressing Wild-Type and Mutated (Swedish) AβPP genes Affected by Non-Steroid Isoprenoids and Water-Soluble Cholesterol. Int J Mol Sci 2019; 20:E1481. [PMID: 30909654 PMCID: PMC6470582 DOI: 10.3390/ijms20061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
In this study we attempted to verify the hypothesis that the mevalonate pathway affects amyloid beta precursor protein (AβPP) processing and regulates clusterin protein levels. AβPP expression was monitored by green fluorescence (FL) and Western blot (WB). WB showed soluble amyloid protein precursor alpha (sAβPPα) presence in AβPP-wt cells and Aβ expression in AβPP-sw cells. Nerve growth factor (NGF)-differentiated rat neuronal pheochromocytoma PC-12 cells were untreated/treated with statins alone or together with non-sterol isoprenoids. Co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol demonstrated statin-dependent neurotoxicity resulted from the attenuated activity of mevalonate pathway rather than lower cholesterol level. Atorvastatin (50 μM) or simvastatin (50 μM) as well as cholesterol chelator methyl-β-cyclodextrin (0.2 mM) diminished cell viability (p < 0.05) and clusterin levels. Interestingly, co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol stimulated (p < 0.05) clusterin expression. Effects of non-sterol isoprenoids, but not water soluble cholesterol (Chol-PEG), were the most significant in mock-transfected cells. Geranylgeraniol (GGOH) overcame atorvastatin (ATR)-dependent cytotoxicity. This effect does not seem to be dependent on clusterin, as its level became lower after GGOH. The novelty of these findings is that they show that the mevalonate (MEV) pathway rather than cholesterol itself plays an important role in clusterin expression levels. In mock-transfected, rather than in AβPP-overexpressing cells, GGOH/farnesol (FOH) exerted a protective effect. Thus, protein prenylation with GGOH/FOH might play substantial role in neuronal cell survival.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Elżbieta Kania
- Tumor Cell Death Laboratory, Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Anita Gołaszewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
39
|
Rab7a and Mitophagosome Formation. Cells 2019; 8:cells8030224. [PMID: 30857122 PMCID: PMC6468461 DOI: 10.3390/cells8030224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
The small GTPase, Rab7a, and the regulators of its GDP/GTP-binding status were shown to have roles in both endocytic membrane traffic and autophagy. Classically known to regulate endosomal retrograde transport and late endosome-lysosome fusion, earlier work has indicated a role for Rab7a in autophagosome-lysosome fusion as well as autolysosome maturation. However, as suggested by recent findings on PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, Rab7a and its regulators are critical for the correct targeting of Atg9a-bearing vesicles to effect autophagosome formation around damaged mitochondria. This mitophagosome formation role for Rab7a is dependent on an intact Rab cycling process mediated by the Rab7a-specific guanine nucleotide exchange factor (GEF) and GTPase activating proteins (GAPs). Rab7a activity in this regard is also dependent on the retromer complex, as well as phosphorylation by the TRAF family-associated NF-κB activator binding kinase 1 (TBK1). Here, we discuss these recent findings and broadened perspectives on the role of the Rab7a network in PINK1-Parkin mediated mitophagy.
Collapse
|
40
|
Gratton R, Agrelli A, Tricarico PM, Brandão L, Crovella S. Autophagy in Zika Virus Infection: A Possible Therapeutic Target to Counteract Viral Replication. Int J Mol Sci 2019; 20:ijms20051048. [PMID: 30823365 PMCID: PMC6429311 DOI: 10.3390/ijms20051048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) still constitutes a public health concern, however, no vaccines or therapies are currently approved for treatment. A fundamental process involved in ZIKV infection is autophagy, a cellular catabolic pathway delivering cytoplasmic cargo to the lysosome for degradation—considered as a primordial form of innate immunity against invading microorganisms. ZIKV is thought to inhibit the Akt-mTOR signaling pathway, which causes aberrant activation of autophagy promoting viral replication and propagation. It is therefore appealing to study the role of autophagic molecular effectors during viral infection to identify potential targets for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Rossella Gratton
- Department of Advanced Diagnostics, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Almerinda Agrelli
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, 50670-901 Recife, Brazil.
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, 50670-901 Recife, Brazil.
| | - Sergio Crovella
- Department of Advanced Diagnostics, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137 Trieste, Italy.
- Department of Medical Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
| |
Collapse
|
41
|
Saridaki T, Nippold M, Dinter E, Roos A, Diederichs L, Fensky L, Schulz JB, Falkenburger BH. FYCO1 mediates clearance of α-synuclein aggregates through a Rab7-dependent mechanism. J Neurochem 2018; 146:474-492. [PMID: 29747217 DOI: 10.1111/jnc.14461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022]
Abstract
Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. We have previously shown that over-expression of the small GTPase Rab7 can induce clearance of α-synuclein aggregates. In this study, we investigate which Rab7 effectors mediate this effect. To model Parkinson's disease, we expressed the pathogenic A53T mutant of α-synuclein in HEK293T cells and Drosophila melanogaster. We tested the Rab7 effectors FYVE and coiled-coil domain-containing protein 1 (FYCO1) and Rab-interacting lysosomal protein (RILP). FYCO1-EGFP-decorated vesicles containing α-synuclein. RILP-EGFP also decorated vesicular structures, but they did not contain α-synuclein. FYCO1 over-expression reduced the number of cells with α-synuclein aggregates, defined as visible particles of EGFP-tagged α-synuclein, whereas RILP did not. FYCO1 but not RILP reduced the amount of α-synuclein protein as assayed by western blot, increased the disappearance of α-synuclein aggregates in time-lapse microscopy and decreased α-synuclein-induced toxicity assayed by the Trypan blue assay. siRNA-mediated knockdown of FYCO1 but not RILP reduced Rab7-induced aggregate clearance. Collectively, these findings indicate that FYCO1 and not RILP mediates Rab7-induced aggregate clearance. The effect of FYCO1 on aggregate clearance was blocked by dominant negative Rab7 indicating that FYCO1 requires active Rab7 to function. Electron microscopic analysis and insertion of lysosomal membranes into the plasma membrane indicate that FYCO1 could lead to secretion of α-synuclein aggregates. Extracellular α-synuclein as assayed by ELISA was, however, not increased with FYCO1. Coexpression of FYCO1 in the fly model decreased α-synuclein aggregates as shown by the filter trap assay and rescued the locomotor deficit resulting from neuronal A53T-α-synuclein expression. This latter finding confirms that a pathway involving Rab7 and FYCO1 stimulates degradation of α-synuclein and could be beneficial in patients with Parkinson's disease. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.
Collapse
Affiliation(s)
| | - Markus Nippold
- Department of Neurology, RWTH University Aachen, Aachen, Germany
| | - Elisabeth Dinter
- Department of Neurology, RWTH University Aachen, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, RWTH University Aachen, Aachen and Leibniz- Institut für Analytische Wissenschaften ISAS e.V., Dortmund, Germany
| | | | - Luisa Fensky
- Department of Neurology, RWTH University Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH University Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH University Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Huang CY, Kuo WW, Ho TJ, Chiang SF, Pai PY, Lin JY, Lin DY, Kuo CH, Huang CY. Rab9-dependent autophagy is required for the IGF-IIR triggering mitophagy to eliminate damaged mitochondria. J Cell Physiol 2018; 233:7080-7091. [PMID: 29574782 DOI: 10.1002/jcp.26346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ding-Yu Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taichung
| |
Collapse
|
43
|
Tan L, Zhang Y, Zhan Y, Yuan Y, Sun Y, Qiu X, Meng C, Song C, Liao Y, Ding C. Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells. Oncotarget 2018; 7:86117-86133. [PMID: 27861142 PMCID: PMC5349901 DOI: 10.18632/oncotarget.13345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/01/2022] Open
Abstract
Oncolytic Newcastle disease virus (NDV) reportedly employs direct fusion of the viral envelope with the plasma membrane and caveolae-dependent endocytosis to enter cells. Here, we show that macropinocytosis and clathrin-mediated endocytosis are involved in NDV entry into a galline embryonic fibroblast cell line. Upon specific inhibition of clathrin assembly, GTPase dynamin, Na+/H+ exchangers, Ras-related C3 botulinum toxin substrate 1, p21 activated kinase 1 or protein kinase C, entry of NDV and its propagation were suppressed. NDV entry into cells triggers Rac1-Pak1 signaling and elicits actin rearrangement and plasma membrane ruffling. Moreover, NDV internalization within macropinosomes and trafficking involve Rab5a-positive vesicles. This is the first report demonstrating that NDV utilizes clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter cells. These findings shed new light on the molecular mechanisms underlying NDV entry into cells, and provide potential targets for NDV-mediated therapy in cancer.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yuqiang Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yuan Zhan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, P.R. China
| |
Collapse
|
44
|
Minakaki G, Menges S, Kittel A, Emmanouilidou E, Schaeffner I, Barkovits K, Bergmann A, Rockenstein E, Adame A, Marxreiter F, Mollenhauer B, Galasko D, Buzás EI, Schlötzer-Schrehardt U, Marcus K, Xiang W, Lie DC, Vekrellis K, Masliah E, Winkler J, Klucken J. Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 2018; 14:98-119. [PMID: 29198173 DOI: 10.1080/15548627.2017.1395992] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The autophagy-lysosome pathway (ALP) regulates intracellular homeostasis of the cytosolic protein SNCA/alpha-synuclein and is impaired in synucleinopathies, including Parkinson disease and dementia with Lewy bodies (DLB). Emerging evidence suggests that ALP influences SNCA release, but the underlying cellular mechanisms are not well understood. Several studies identified SNCA in exosome/extracellular vesicle (EV) fractions. EVs are generated in the multivesicular body compartment and either released upon its fusion with the plasma membrane, or cleared via the ALP. We therefore hypothesized that inhibiting ALP clearance 1) enhances SNCA release via EVs by increasing extracellular shuttling of multivesicular body contents, 2) alters EV biochemical profile, and 3) promotes SNCA cell-to-cell transfer. Indeed, ALP inhibition increased the ratio of extra- to intracellular SNCA and upregulated SNCA association with EVs in neuronal cells. Ultrastructural analysis revealed a widespread, fused multivesicular body-autophagosome compartment. Biochemical characterization revealed the presence of autophagosome-related proteins, such as LC3-II and SQSTM1. This distinct "autophagosome-exosome-like" profile was also identified in human cerebrospinal fluid (CSF) EVs. After a single intracortical injection of SNCA-containing EVs derived from CSF into mice, human SNCA colocalized with endosome and neuronal markers. Prominent SNCA immunoreactivity and a higher number of neuronal SNCA inclusions were observed after DLB patient CSF EV injections. In summary, this study provides compelling evidence that a) ALP inhibition increases SNCA in neuronal EVs, b) distinct ALP components are present in EVs, and c) CSF EVs transfer SNCA from cell to cell in vivo. Thus, macroautophagy/autophagy may regulate EV protein composition and consequently progression in synucleinopathies.
Collapse
Affiliation(s)
- Georgia Minakaki
- a Department of Molecular Neurology , University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Stefanie Menges
- a Department of Molecular Neurology , University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Agnes Kittel
- b Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences , Semmelweis University , Budapest , Hungary
| | - Evangelia Emmanouilidou
- c Department of Neuroscience, Center for Basic Research , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | | | - Katalin Barkovits
- e Medizinisches Proteom-Center, Medical Faculty , Ruhr University Bochum , Bochum , Germany
| | - Anna Bergmann
- a Department of Molecular Neurology , University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Edward Rockenstein
- f Department of Neurosciences , University of California , San Diego , CA USA
| | - Anthony Adame
- f Department of Neurosciences , University of California , San Diego , CA USA
| | - Franz Marxreiter
- a Department of Molecular Neurology , University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Brit Mollenhauer
- g Paracelsus-Elena-Klinik, Kassel and Departments of Neuropathology & Neurosurgery , & University Medical Center , Göttingen
| | - Douglas Galasko
- f Department of Neurosciences , University of California , San Diego , CA USA
| | - Edit Irén Buzás
- h Department of Genetics, Cell and Immunobiology , Semmelweis University , Budapest , Hungary
| | | | - Katrin Marcus
- e Medizinisches Proteom-Center, Medical Faculty , Ruhr University Bochum , Bochum , Germany
| | - Wei Xiang
- d Institute of Biochemistry , FAU , Erlangen , Germany
| | | | - Kostas Vekrellis
- c Department of Neuroscience, Center for Basic Research , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Eliezer Masliah
- f Department of Neurosciences , University of California , San Diego , CA USA.,j Department of Pathology , University of California , San Diego , CA USA
| | - Jürgen Winkler
- a Department of Molecular Neurology , University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Jochen Klucken
- a Department of Molecular Neurology , University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
45
|
RAB37 interacts directly with ATG5 and promotes autophagosome formation via regulating ATG5-12-16 complex assembly. Cell Death Differ 2017; 25:918-934. [PMID: 29229996 PMCID: PMC5943352 DOI: 10.1038/s41418-017-0023-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular membrane trafficking is essential for eukaryotic cell existence. Here, we show that RAB37 activation through GTP binding recruits ATG5-12 to isolation membrane and promotes autophagosome formation through the ATG5-ATG12-ATG16L1 complex. RAB37 is localized on the isolation membrane. It can bind directly with ATG5 and promotes formation of the ATG5-12-16 complex. Mutation analysis reveals that GTP-bound RAB37 exhibits an enhanced interaction with ATG5-12 and GDP-stabilised mutation impairs the interaction. RAB37 promotes ATG5-12 interaction with ATG16L1, thus facilitates lipidation of LC3B in a GTP-dependent manner to enhance autophagy. Notably, ablation of RAB37 expression affects the complex formation and decreases autophagy, whereas forced RAB37 expression promotes autophagy and also suppresses cell proliferation. Our results demonstrate a role of RAB37 in autophagosome formation through a molecular connection of RAB37, ATG5-12, ATG16L1 up to LC3B, suggesting an organiser role of RAB37 during autophagosomal membrane biogenesis. These findings have broad implications for understanding the role of RAB vesicle transport in autophagy and cancer.
Collapse
|
46
|
Nozawa T, Aikawa C, Minowa-Nozawa A, Nakagawa I. The intracellular microbial sensor NLRP4 directs Rho-actin signaling to facilitate Group A Streptococcus-containing autophagosome-like vacuole formation. Autophagy 2017; 13:1841-1854. [PMID: 29099277 PMCID: PMC5788493 DOI: 10.1080/15548627.2017.1358343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
Xenophagy, also known as antibacterial autophagy, functions as a crucial defense system that can utilize intracellular pattern recognition sensors, such as NLRP4, to recognize and selectively eliminate bacterial pathogens. However, little is known about how NLRP4 regulates xenophagy. Here, we report that NLRP4 binds ARHGDIA (Rho GDP dissociation inhibitor α) to regulate Rho GTPase signaling and facilitate actin-mediated xenophagy. Specifically, NLRP4 is recruited to Group A Streptococcus (GAS) and colocalizes with GAS-containing autophagosome-like vacuoles (GcAVs), where it regulates ARHGDIA-Rho GTPase recruitment to promote autophagosome formation. The interaction between NLRP4, ARHGDIA, and Rho GTPases is regulated by ARHGDIA Tyr156 phosphorylation, which acts as a gate to induce Rho-mediated xenophagy. Moreover, ARHGDIA and Rho GTPase are involved in actin-mediated ATG9A recruitment to phagophores, facilitating elongation to form autophagosomes. Collectively, these findings demonstrate that NLRP4 functions as a Rho receptor complex to direct actin dynamics regulating xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, Miao X, Baggi F, Ostrom RS, Zhang Y, Chen X, Xu C. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy 2017; 13:1981-1994. [PMID: 28933591 PMCID: PMC5788490 DOI: 10.1080/15548627.2017.1375633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Ailian Du
- a Department of Neurology, Tongren Hospital , Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai , China
| | - Shiqian Huang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaonan Zhao
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kuan Feng
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Shuangyan Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jiefang Huang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiang Miao
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Fulvio Baggi
- d Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Rennolds S Ostrom
- e Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , CA , USA
| | - Yanyun Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiangjun Chen
- f Department of Neurology , Fudan University Huashan Hospital, and Institute of Neurology, Fudan University , Shanghai , China
| | - Congfeng Xu
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| |
Collapse
|
48
|
The ER retention protein RER1 promotes alpha-synuclein degradation via the proteasome. PLoS One 2017; 12:e0184262. [PMID: 28877262 PMCID: PMC5587320 DOI: 10.1371/journal.pone.0184262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Abnormal accumulation of α-synuclein (αSyn) has been linked to endoplasmic-reticulum (ER) stress, defective intracellular protein/vesicle trafficking, and cytotoxicity. Targeting factors involved in ER-related protein processing and trafficking may, therefore, be a key to modulating αSyn levels and associated toxicity. Recently retention in endoplasmic reticulum 1 (RER1) has been identified as an important ER retrieval/retention factor for Alzheimer's disease proteins and negatively regulates amyloid-β peptide levels. Here, we hypothesized that RER1 might also play an important role in retention/retrieval of αSyn and mediate levels. We expressed RER1 and a C-terminal mutant RER1Δ25, which lacks the ER retention/retrieval function, in HEK293 and H4 neuroglioma cells. RER1 overexpression significantly decreased levels of both wild type and A30P, A53T, and E46K disease causal mutants of αSyn, whereas the RER1Δ25 mutant had a significantly attenuated effect on αSyn. RER1 effects were specific to αSyn and had little to no effect on either βSyn or the Δ71-82 αSyn mutant, which both lack the NAC domain sequence critical for synuclein fibrillization. Tests with proteasomal and macroautophagy inhibitors further demonstrate that RER1 effects on αSyn are primarily mediated through the ubiquitin-proteasome system. RER1 also appears to interact with the ubiquitin ligase NEDD4. RER1 in human diseased brain tissues co-localizes with αSyn-positive Lewy bodies. Together, these findings provide evidence that RER1 is a novel and potential important mediator of elevated αSyn levels. Further investigation of the mechanism of RER1 and downstream effectors on αSyn may yield novel therapeutic targets for modulation in Parkinson disease and related synucleinopathies.
Collapse
|
49
|
Tang BL. Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy? J Cell Physiol 2017; 232:3234-3243. [PMID: 28160489 DOI: 10.1002/jcp.25842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
Sec16 is classically perceived to be a scaffolding protein localized to the transitional endoplasmic reticulum (tER) or the ER exit sites (ERES), and has a conserved function in facilitating coat protein II (COPII) complex-mediated ER exit. Recent findings have, however, pointed toward a role for Sec16 in unconventional exocytosis of certain membrane proteins, such as the Cystic fibrosis transmembrane conductance regulator (CFTR) in mammalian cells, and possibly also α-integrin in certain contexts of Drosophila development. In this regard, Sec16 interacts with components of a recently deciphered pathway of stress-induced unconventional exocytosis, which is dependent on the tether protein Golgi reassembly stacking proteins (GRASPs) and the autophagy pathway. Intriguingly, Sec16 also appears to be post-translationally modified by autophagy-related signaling processes. Sec16 is known to be phosphorylated by the atypical extracellular signal regulated kinase 7 (Erk7) upon serum and amino acid starvation, both represent conditions that trigger autophagy. Recent work has also shown that Sec16 is phosphorylated, and thus regulated by the prominent autophagy-initiating Unc-51-like autophagy activating kinase 1 (Ulk1), as well as another autophagy modulator Leucine-rich repeat kinase 2 (Lrrk2). The picture emerging from Sec16's network of physical and functional interactors allows the speculation that Sec16 is situated (and may in yet undefined ways function) at the interface between COPII-mediated exocytosis of conventional vesicular traffic and the GRASP/autophagy-dependent mode of unconventional exocytosis.
Collapse
Affiliation(s)
- Bor Luen Tang
- Departmentof Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
50
|
Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol 2016; 241:123-139. [PMID: 27682255 DOI: 10.1002/path.4812] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023]
Abstract
Immune-mediated autoinflammatory diseases are occupying an increasingly prominent position among the pantheon of debilitating conditions that afflict humankind. This review focuses on some of the key developments that have occurred since the original description of autoinflammatory disease in 1999, and focuses on underlying mechanisms that trigger autoinflammation. The monogenic autoinflammatory disease range has expanded considerably during that time, and now includes a broad spectrum of disorders, including relatively common conditions such as cystic fibrosis and subsets of systemic lupus erythematosus. The innate immune system also plays a key role in the pathogenesis of complex inflammatory disorders. We have proposed a new nomenclature to accommodate the rapidly increasing number of monogenic disorders, which predispose to either autoinflammation or autoimmunity or, indeed, combinations of both. This new terminology also encompasses a wide spectrum of genetically determined autoinflammatory diseases, with variable clinical manifestations of immunodeficiency and immune dysregulation/autoimmunity. We also explore some of the ramifications of the breakthrough discovery of the physiological role of pyrin and the search for identifiable factors that may serve to trigger attacks of autoinflammation. The evidence that pyrin, as part of the pyrin inflammasome, acts as a sensor of different inactivating bacterial modification Rho GTPases, rather than interacting directly with these microbial products, sets the stage for a better understanding of the role of microorganisms and infections in the autoinflammatory disorders. Finally, we discuss some of the triggers of autoinflammation as well as potential therapeutic interventions aimed at enhancing autophagy and proteasome degradation pathways. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Peckham
- Leeds Centre for Cystic Fibrosis, St James's University Hospital, Leeds, UK
| | - Thomas Scambler
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sinisa Savic
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Michael F McDermott
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| |
Collapse
|