1
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
2
|
Eisenberg RM, Sandrelli RM, Gamperl AK. Comparing methods for determining the metabolic capacity of lumpfish (Cyclopterus lumpus Linnaeus 1758). JOURNAL OF FISH BIOLOGY 2024; 104:1813-1823. [PMID: 38486407 DOI: 10.1111/jfb.15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
Lumpfish (Cyclopterus lumpus) mortalities have been reported during the summer at some North Atlantic salmon cage-sites where they serve as "cleaner fish." To better understand this species' physiology and whether limitations in their metabolic capacity and thermal tolerance can explain this phenomenon, we compared the aerobic scope (AS) of 6°C-acclimated lumpfish (~50 g and 8.8 cm in length at the beginning of experiments) when all individuals (N = 12) were given a chase to exhaustion, a critical swim speed (Ucrit) test, and a critical thermal maximum (CTMax) test (rate of warming 2°C h-1). The Ucrit and CTMax of the lumpfish were 2.36 ± 0.08 body lengths per second and 20.6 ± 0.3°C. The AS of lumpfish was higher during the Ucrit test (206.4 ± 8.5 mg O2 kg-1 h-1) versus that measured in either the CTMax test or after the chase to exhaustion (141.0 ± 15.0 and 124.7 ± 15.5 mg O2 kg-1 h-1, respectively). Maximum metabolic rate (MMR), AS, and "realistic" AS (ASR) measured using the three different protocols were not significantly correlated, indicating that measurements of metabolic capacity using one of these methods cannot be used to estimate values that would be obtained using another method. Additional findings include that (1) the lumpfish's metabolic capacity is comparable to that of Atlantic cod, suggesting that they are not as "sluggish" as previously suggested in the literature, and (2) their CTMax (20.6°C when acclimated to 6°C), in combination with their recently determined ITMax (20.6°C when acclimated to 10°C), indicates that high sea-cage temperatures are unlikely to be the primary cause of lumpfish mortalities at salmon sea-cages during the summer.
Collapse
Affiliation(s)
- Rachel M Eisenberg
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Sandrelli RM, Gamperl AK. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized. J Exp Biol 2023; 226:jeb246227. [PMID: 37622446 PMCID: PMC10560559 DOI: 10.1242/jeb.246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.
Collapse
Affiliation(s)
- Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
4
|
Brain dysfunction during warming is linked to oxygen limitation in larval zebrafish. Proc Natl Acad Sci U S A 2022; 119:e2207052119. [PMID: 36122217 PMCID: PMC9522358 DOI: 10.1073/pnas.2207052119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.
Collapse
|
5
|
Muir CA, Garner SR, Damjanovski S, Neff BD. Temperature-dependent plasticity mediates heart morphology and thermal performance of cardiac function in juvenile Atlantic salmon (Salmo salar). J Exp Biol 2022; 225:276049. [PMID: 35860948 DOI: 10.1242/jeb.244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
In many fishes, upper thermal tolerance is thought to be limited in part by the heart's ability to meet increased oxygen demands during periods of high temperature. Temperature-dependent plasticity within the cardiovascular system may help fishes cope with the thermal stress imposed by increasing water temperatures. In this study, we examined plasticity in heart morphology and function in juvenile Atlantic salmon (Salmo salar) reared under control (+0°C) or elevated (+4°C) temperatures. Using noninvasive Doppler echocardiography, we measured the effect of acute warming on maximum heart rate, stroke distance, and derived cardiac output. A 4°C increase in average developmental temperature resulted in a>5°C increase in the Arrhenius breakpoint temperature for maximum heart rate and enabled the hearts of these fish to continue beating rhythmically to temperatures approximately 2°C higher than control fish. However, these differences in thermal performance were not associated with plasticity in maximum cardiovascular capacity, as peak measures of heart rate, stroke distance, and derived cardiac output did not differ between temperature treatments. Histological analysis of the heart revealed that while ventricular roundness and relative ventricle size did not differ between treatments, the proportion of compact myocardium in the ventricular wall was significantly greater in fish raised at elevated temperatures. Our findings contribute to the growing understanding of how the thermal environment can affect phenotypes later in life and identifies a morphological strategy that may help fishes cope with acute thermal stress.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, ON, Canada
| | - Shawn R Garner
- Department of Biology, Western University, London, ON, Canada
| | | | - Bryan D Neff
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
6
|
Porter E, Clow K, Sandrelli R, Gamperl A. Acute and chronic cold exposure differentially affect cardiac control, but not cardiorespiratory function, in resting Atlantic salmon (S almo salar). Curr Res Physiol 2022; 5:158-170. [PMID: 35359619 PMCID: PMC8960890 DOI: 10.1016/j.crphys.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
No studies have examined the effects of cold temperatures (∼0-1 °C) on in vivo cardiac function and control, and metabolism, in salmonids. Thus, we examined: 1) how acclimation to 8 °C vs. acclimation (>3 weeks) or acute exposure (8-1 °C at 1 °C h-1) to 1 °C influenced cardiorespiratory parameters in resting Atlantic salmon; and 2) if/how the control of cardiac function was affected. Oxygen consumption ( M ˙ O 2 ) and cardiac function [i.e., heart rate (f H) and cardiac output (Q ˙ ) ] were 50% lower in the acutely cooled and 1oC-acclimated salmon as compared to 8 °C fish, whereas stroke volume (VS) was unchanged. Intrinsic f H was not affected by whether the fish were acutely exposed or acclimated to 1 °C (values ∼51, 24 and 21 beats min-1 in 8 and 1 °C-acclimated fish, and 8-1 °C fish, respectively), and in all groups f H was primarily under adrenergic control/tone (cholinergic tone 13-18%; adrenergic tone 37-70%). However, β-adrenergic blockade resulted in a 50% increase in VS in the 1oC-acclimated group, and this was surprising as circulating catecholamine levels were ∼1-3 nM in all groups. Overall, the data suggest that this species has a limited capacity to acclimate to temperatures approaching 0 °C. However, we cannot exclude the possibility that cardiac and metabolic responses are evoked when salmon are cooled to ∼ 0-1 °C, and that this prevented further declines in these parameters (i.e., they 'reset' quickly). Our data also provide further evidence that VS is temperature insensitive, and strongly suggest that changes in adrenoreceptor mediated control of venous pressure/capacitance occur when salmon are acclimated to 1 °C.
Collapse
Affiliation(s)
- E.S. Porter
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - K.A. Clow
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - R.M. Sandrelli
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - A.K. Gamperl
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
7
|
Gamperl AK, Thomas AL, Syme DA. Can temperature-dependent changes in myocardial contractility explain why fish only increase heart rate when exposed to acute warming? J Exp Biol 2022; 225:274498. [PMID: 35076075 PMCID: PMC8920037 DOI: 10.1242/jeb.243152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Fish increase heart rate (fH), not stroke volume (VS), when acutely warmed as a way to increase cardiac output (Q). To assess whether aspects of myocardial function may have some basis in determining temperature-dependent cardiac performance, we measured work and power (shortening, lengthening and net) in isolated segments of steelhead trout (Oncorhynchus mykiss) ventricular muscle at the fish's acclimation temperature (14°C), and at 22°C, when subjected to increased rates of contraction (30–105 min−1, emulating increased fH) and strain amplitude (8–14%, mimicking increased VS). At 22°C, shortening power (indicative of Q) increased in proportion to fH, and the work required to re-lengthen (stretch) the myocardium (fill the heart) was largely independent of fH. In contrast, the increase in shortening power was less than proportional when strain was augmented, and lengthening work approximately doubled when strain was increased. Thus, the derived relationships between fH, strain and myocardial shortening power and lengthening work, suggest that increasing fH would be preferable as a mechanism to increase Q at high temperatures, or in fact may be an unavoidable response given constraints on muscle mechanics as temperatures rise. Interestingly, at 14°C, lengthening work increased substantially at higher fH, and the duration of lengthening (i.e. diastole) became severely constrained when fH was increased. These data suggest that myocardial contraction/twitch kinetics greatly constrain maximal fH at cool temperatures, and may underlie observations that fish elevate VS to an equal or greater extent than fH to meet demands for increased Q at lower temperatures. Summary: Myocardial contraction and twitch kinetics provide mechanistic explanations as to why heart rate, but not stroke volume, increases in fish with temperature, and why maximal heart rate is constrained at cool/cold temperatures.
Collapse
Affiliation(s)
- A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada
| | - Alexander L Thomas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Mugwanya M, Dawood MA, Kimera F, Sewilam H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Ignatz EH, Zanuzzo FS, Sandrelli RM, Clow KA, Rise ML, Gamperl AK. Phenotypic stress response does not influence the upper thermal tolerance of male Atlantic salmon (Salmo salar). J Therm Biol 2021; 101:103102. [PMID: 34879919 DOI: 10.1016/j.jtherbio.2021.103102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Fish can be identified as either low responders (LR) or high responders (HR) based on post-stress cortisol levels and whether they exhibit a proactive or reactive stress coping style, respectively. In this study, male Atlantic salmon (Salmo salar) from 17 families reared at 9 °C were repeatedly exposed to an acute handling stress over a period of four months, with plasma cortisol levels measured at 1 h post-stress. Fish were identified as either LR or HR if the total Z-score calculated from their cortisol responses fell into the lower or upper quartile ranges, respectively; with intermediate responders (IR) classified as the remainder. Salmon characterized as LR, IR or HR were then subjected to an incremental thermal challenge, where temperature was raised at 0.2 °C day-1 from their acclimation temperature (12 °C) to mimic natural sea-cage farming conditions during the summer in Newfoundland. Interestingly, feed intake remained high up to 22 °C, while previous studies have shown a decrease in salmon appetite after ∼16-18 °C. After the first three mortalities were recorded at elevated temperature, a subset of LR and HR salmon were exposed to another acute handling stress event at 23.6 °C. Basal and post-stress measurements of plasma cortisol, glucose and lactate did not differ between stress response phenotypes at this temperature. In the end, the average incremental thermal maximum (ITMax) of LR and HR fish was not different (25.1 °C). In comparison, the critical thermal maximum (CTMax; temperature increased at 2 °C h-1) of the remaining IR fish that had been held at 12 °C was 28.5 °C. Collectively, these results: 1) show that this population of Atlantic salmon is very thermally tolerant, and further question the relevance of CTMax in assessing responses to real-world temperature changes; and 2) indicate that characterization of stress phenotype at 9 °C is not predictive of their stress response or survival at high temperatures. Therefore, selection of fish based on phenotypic stress response at low temperatures may not be beneficial to incorporate into Atlantic salmon breeding programs, especially if the goal is to improve growth performance and survival at high temperatures in sea-cages.
Collapse
Affiliation(s)
- Eric H Ignatz
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
10
|
Ismailov II, Scharping JB, Andreeva IE, Friedlander MJ. Antarctic teleosts with and without hemoglobin behaviorally mitigate deleterious effects of acute environmental warming. PLoS One 2021; 16:e0252359. [PMID: 34818342 PMCID: PMC8612528 DOI: 10.1371/journal.pone.0252359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies forecast that many ectothermic animals, especially aquatic stenotherms, may not be able to thrive or even survive predicted climate change. These projections, however, generally do not call much attention to the role of behavior, an essential thermoregulatory mechanism of many ectotherms. Here we characterize species-specific locomotor and respiratory responses to acute ambient warming in two highly stenothermic Antarctic Notothenioid fishes, one of which (Chaenocephalus aceratus) lacks hemoglobin and appears to be less tolerant to thermal stress as compared to the other (Notothenia coriiceps), which expresses hemoglobin. At the onset of ambient warming, both species perform distinct locomotor maneuvers that appear to include avoidance reactions. In response to unavoidable progressive hyperthermia, fishes demonstrate a range of species-specific maneuvers, all of which appear to provide some mitigation of the deleterious effects of obligatory thermoconformation and to compensate for increasing metabolic demand by enhancing the efficacy of branchial respiration. As temperature continues to rise, Chaenocephalus aceratus supplements these behaviors with intensive pectoral fin fanning which may facilitate cutaneous respiration through its scaleless integument, and Notothenia coriiceps manifests respiratory-locomotor coupling during repetitive startle-like maneuvers which may further augment gill ventilation. The latter behaviors, found only in Notothenia coriiceps, have highly stereotyped appearance resembling Fixed Action Pattern sequences. Altogether, this behavioral flexibility could contribute to the reduction of the detrimental effects of acute thermal stress within a limited thermal range. In an ecologically relevant setting, this may enable efficient thermoregulation of fishes by habitat selection, thus facilitating their resilience in persistent environmental change.
Collapse
Affiliation(s)
- Iskander I Ismailov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States of America
| | - Jordan B Scharping
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Iraida E Andreeva
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States of America
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States of America
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
11
|
Gamperl AK, Zrini ZA, Sandrelli RM. Atlantic Salmon ( Salmo salar) Cage-Site Distribution, Behavior, and Physiology During a Newfoundland Heat Wave. Front Physiol 2021; 12:719594. [PMID: 34504440 PMCID: PMC8421689 DOI: 10.3389/fphys.2021.719594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Climate change is leading to increased water temperatures and reduced oxygen levels at sea-cage sites, and this is a challenge that the Atlantic salmon aquaculture industry must adapt to it if it needs to grow sustainably. However, to do this, the industry must better understand how sea-cage conditions influence the physiology and behavior of the fish. Method: We fitted ~2.5 kg Atlantic salmon on the south coast of Newfoundland with Star-Oddi milli-HRT ACT and Milli-TD data loggers (data storage tags, DSTs) in the summer of 2019 that allowed us to simultaneously record the fish's 3D acceleration (i.e., activity/behavior), electrocardiograms (and thus, heart rate and heart rate variability), depth, and temperature from early July to mid-October. Results: Over the course of the summer/fall, surface water temperatures went from ~10–12 to 18–19.5°C, and then fell to 8°C. The data provide valuable information on how cage-site conditions affected the salmon and their determining factors. For example, although the fish typically selected a temperature of 14–18°C when available (i.e., this is their preferred temperature in culture), and thus were found deeper in the cage as surface water temperatures peaked, they continued to use the full range of depths available during the warmest part of the summer. The depth occupied by the fish and heart rate were greater during the day, but the latter effect was not temperature-related. Finally, while the fish generally swam at 0.4–1.0 body lengths per second (25–60 cm s−1), their activity and the proportion of time spent using non-steady swimming (i.e., burst-and-coast swimming) increased when feeding was stopped at high temperatures. Conclusion: Data storage tags that record multiple parameters are an effective tool to understand how cage-site conditions and management influence salmon (fish) behavior, physiology, and welfare in culture, and can even be used to provide fine-scale mapping of environmental conditions. The data collected here, and that in recent publications, strongly suggest that pathogen (biotic) challenges in combination with high temperatures, not high temperatures + moderate hypoxia (~70% air saturation) by themselves, are the biggest climate-related challenge facing the salmon aquaculture industry outside of Tasmania.
Collapse
Affiliation(s)
- Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Zoe A Zrini
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | | |
Collapse
|
12
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
13
|
Zrini ZA, Sandrelli RM, Gamperl AK. Does hydrostatic pressure influence lumpfish ( Cyclopterus lumpus) heart rate and its response to environmental challenges? CONSERVATION PHYSIOLOGY 2021; 9:coab058. [PMID: 34316368 PMCID: PMC8299717 DOI: 10.1093/conphys/coab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Studies on the effects of environmental changes with increasing depth (e.g. temperature and oxygen level) on fish physiology rarely consider how hydrostatic pressure might influence the observed responses. In this study, lumpfish (Cyclopterus lumpus, 200-400 g), which can exhibit vertical migrations of over 100 m daily and can be found at depths of 500 m or more, were implanted with Star-Oddi micro-HRT loggers. Then, their heart rate (f H) was measured in a pressure chamber when exposed to the following: (i) increasing pressure (up to 80 bar; 800 m in depth) at 10°C or (ii) increasing temperature (12-20°C), decreasing temperature (12 to 4°C) or decreasing oxygen levels (101-55% air saturation at 12°C) in the absence or presence of 80 bar of pressure. Additionally, we determined their f H response to chasing and to increasing temperature (to 22°C) at atmospheric pressure. Pressure-induced increases in f H (e.g. from 48 to 61 bpm at 12°C) were associated with hyperactivity. The magnitude of the rise in f H with temperature was greater in pressure-exposed vs. control fish (i.e. by ~30 bpm vs. 45 bpm between 5°C and 20°C). However, the relative increase (i.e. slope of the relationship) was not different between groups. In contrast, 80 bar of pressure eliminated the small (5 bpm) increase in f H when control fish were exposed to hypoxia. Exhaustive exercise and increasing temperature to 22°C resulted in a maximum f H of 77 and 81 bpm, respectively. Our research shows that pressure influences the f H response to environmental challenges and provides the first evidence that lumpfish have a limited capacity to increase f H.
Collapse
Affiliation(s)
- Zoe A Zrini
- Department of Ocean Sciences, Memorial University, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| |
Collapse
|
14
|
Dichiera AM, Khursigara AJ, Esbaugh AJ. The effects of warming on red blood cell carbonic anhydrase activity and respiratory performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111033. [PMID: 34252533 DOI: 10.1016/j.cbpa.2021.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Measures of fitness are valuable tools to predict species' responses to environmental changes, like increased water temperature. Aerobic scope (AS) is a measure of an individual's capacity for aerobic processes, and frequently used as a proxy for fitness. However, AS is complicated by individual variation found not only within a species, but within similar body sizes as well. Maximum metabolic rate (MMR), one of the factors determining AS, is constrained by an individual's ability to deliver and extract oxygen (O2) at the tissues. Recently, data has shown that red blood cell carbonic anhydrase (RBC CA) is rate-limiting for O2 delivery in red drum (Sciaenops ocellatus). We hypothesized increased temperature impacts MMR and RBC CA activity in a similar manner, and that an individual's RBC CA activity drives individual variation in AS. Red drum were acutely exposed to increased temperature (+6 °C; 22 °C to 28 °C) for 24 h prior to exhaustive exercise and intermittent-flow respirometry at 28 °C. RBC CA activity was measured before temperature exposure and after aerobic performance. Due to enzymatic thermal sensitivity, acute warming increased individual RBC CA activity by 36%, while there was no significant change in the control (22 °C) treatment. Interestingly, average MMR of the acute warming treatment was 36% greater than that of control drum. However, we found no relationships between individual RBC CA activity and their respective MMR and AS at either temperature. While warming similarly affects RBC CA activity and MMR, RBC CA activity is not a predictor of individual MMR.
Collapse
Affiliation(s)
- Angelina M Dichiera
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Alexis J Khursigara
- The University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
15
|
Summer Is Coming! Tackling Ocean Warming in Atlantic Salmon Cage Farming. Animals (Basel) 2021; 11:ani11061800. [PMID: 34208637 PMCID: PMC8234874 DOI: 10.3390/ani11061800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atlantic salmon (Salmo salar) cage farming has traditionally been located at higher latitudes where cold seawater temperatures favor this practice. However, these regions can be impacted by ocean warming and heat waves that push seawater temperature beyond the thermo-tolerance limits of this species. As more mass mortality events are reported every year due to abnormal sea temperatures, the Atlantic salmon cage aquaculture industry acknowledges the need to adapt to a changing ocean. This paper reviews adult Atlantic salmon thermal tolerance limits, as well as the deleterious eco-physiological consequences of heat stress, with emphasis on how it negatively affects sea cage aquaculture production cycles. Biotechnological solutions targeting the phenotypic plasticity of Atlantic salmon and its genetic diversity, particularly that of its southernmost populations at the limit of its natural zoogeographic distribution, are discussed. Some of these solutions include selective breeding programs, which may play a key role in this quest for a more thermo-tolerant strain of Atlantic salmon that may help the cage aquaculture industry to adapt to climate uncertainties more rapidly, without compromising profitability. Omics technologies and precision breeding, along with cryopreservation breakthroughs, are also part of the available toolbox that includes other solutions that can allow cage farmers to continue to produce Atlantic salmon in the warmer waters of the oceans of tomorrow.
Collapse
|
16
|
Diurnal vertical movements in black sea bass (
Centropristis striata
): Endogenous, facultative, or something else? Ecosphere 2021. [DOI: 10.1002/ecs2.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Adrenergic tone benefits cardiac performance and warming tolerance in two teleost fishes that lack a coronary circulation. J Comp Physiol B 2021; 191:701-709. [PMID: 33738526 PMCID: PMC8241749 DOI: 10.1007/s00360-021-01359-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/14/2023]
Abstract
Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CTmax) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.
Collapse
|
18
|
Leeuwis RHJ, Zanuzzo FS, Peroni EFC, Gamperl AK. Research on sablefish ( Anoplopoma fimbria) suggests that limited capacity to increase heart function leaves hypoxic fish susceptible to heat waves. Proc Biol Sci 2021; 288:20202340. [PMID: 33715435 PMCID: PMC7944113 DOI: 10.1098/rspb.2020.2340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/19/2023] Open
Abstract
Studies of heart function and metabolism have been used to predict the impact of global warming on fish survival and distribution, and their susceptibility to acute and chronic temperature increases. Yet, despite the fact that hypoxia and high temperatures often co-occur, only one study has examined the effects of hypoxia on fish thermal tolerance, and the consequences of hypoxia for fish cardiac responses to acute warming have not been investigated. We report that sablefish (Anoplopoma fimbria) did not increase heart rate or cardiac output when warmed while hypoxic, and that this response was associated with reductions in maximum O2 consumption and thermal tolerance (CTmax) of 66% and approximately 3°C, respectively. Further, acclimation to hypoxia for four to six months did not substantially alter the sablefish's temperature-dependent physiological responses or improve its CTmax. These results provide novel, and compelling, evidence that hypoxia can impair the cardiac and metabolic response to increased temperatures in fish, and suggest that some coastal species may be more vulnerable to climate change-related heat waves than previously thought. Further, they support research showing that cross-tolerance and physiological plasticity in fish following hypoxia acclimation are limited.
Collapse
Affiliation(s)
- Robine H. J. Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - Fábio S. Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - Ellen F. C. Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| |
Collapse
|
19
|
Crossley DA, Stieglitz JD, Benetti DD, Grosell M. The effects of acute temperature change and digestive status on in situ cardiac function in mahi-mahi (Coryphaena hippurus). Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110915. [PMID: 33621645 DOI: 10.1016/j.cbpa.2021.110915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
In this study, we investigated the effect of acute increases in temperature on cardiovascular function of mahi-mahi (Coryphaena hippurus). We also describe, for the first time, an artery that supplies the gastrointestinal tract that originates from the fourth branchial artery. We used vascular casting to verify the anatomical location of this unique celiaco-mesenteric artery. We predicted that blood flow in this vessel would be correlated with the digestive state of the animal. Increasing water temperature from 25.0 to 30.5 °C resulted in a linear increase in heart rate (fH) from 165 ± 4 beats∙min-1to 232 ± 7 beats∙min-1. Over this temperature range, fH strongly correlated with water temperature (R2 = 0.79). At 31 °C fH no longer correlated with water temperature, and at 34 °C fH had dropped to 114 ± 19 beats∙min-1. Furthermore, we found that mahi are capable of maintaining constant cardiac output over a temperature range from 25 to 31 °C. Cardiac function appeared to be compromised at temperatures >31 °C. In fed anesthetized fish, blood flow was pulsatile in the celiaco-mesenteric artery and was not in fasted fish. In fed fish, blood flow in the left celiaco-mesenteric artery was 1.99 ± 0.78 ml·min-1·kg-1 compared to the total cardiac output of 168.6 ± 12.7 ml·min-1·kg-1. The data suggest that mahi can differentially regulate gastric blood flow based on feeding state, which may explain the high digestive efficiency and very high growth rates of these pelagic predators.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States.
| | - John D Stieglitz
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, United States
| | - Daniel D Benetti
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, United States
| |
Collapse
|
20
|
Gerber L, Clow KA, Mark FC, Gamperl AK. Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial 'ceiling'. Sci Rep 2020; 10:21636. [PMID: 33303856 PMCID: PMC7729908 DOI: 10.1038/s41598-020-78519-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/22/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species' critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to 'normal' maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no 'tradeoff' in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada.
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Felix C Mark
- Section Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
21
|
Mottola G, Kristensen T, Anttila K. Compromised thermal tolerance of cardiovascular capacity in upstream migrating Arctic char and brown trout-are hot summers threatening migrating salmonids? CONSERVATION PHYSIOLOGY 2020; 8:coaa101. [PMID: 34868596 PMCID: PMC7720086 DOI: 10.1093/conphys/coaa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 06/13/2023]
Abstract
Heat waves are threatening fish around the world, leading sometimes to mass mortality events. One crucial function of fish failing in high temperatures is oxygen delivery capacity, i.e. cardiovascular function. For anadromous salmonids, increased temperature could be especially detrimental during upstream migration since they need efficiently working oxygen delivery system in order to cross the river rapids to reach upstream areas. The migration also occurs during summer and early autumn exposing salmonids to peak water temperatures, and in shallow rivers there is little availability for thermal refuges as compared to thermally stratified coastal and lake habitats. In order to shed light on the mechanisms underpinning the capacity of migrating fish to face high environmental temperatures, we applied a physiological and molecular approach measuring cardiovascular capacities of migrating and resident Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in Northern Norway. The maximum cardiovascular capacity of migrating fish was significantly lower compared to the resident conspecifics. The onset of cardiac impairment started only 2°C higher than river temperature, meaning that even a small increase in water temperature may already compromise cardiac function. The migrating fish were also under significant cellular stress, expressing increased level of cardiac heat shock proteins. We consider these findings highly valuable when addressing climate change effect on migrating fish and encourage taking action in riverine habitat conservation policies. The significant differences in upper thermal tolerance of resident and migrating fish could also lead changes in population dynamics, which should be taken into account in future conservation plans.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| | - Torstein Kristensen
- Faculty of Bioscience and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bødo, Norway
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| |
Collapse
|
22
|
Wiernicki CJ, O’Brien MHP, Zhang F, Lyubchich V, Li M, Secor DH. The recurring impact of storm disturbance on black sea bass (Centropristis striata) movement behaviors in the Mid-Atlantic Bight. PLoS One 2020; 15:e0239919. [PMID: 33264326 PMCID: PMC7710083 DOI: 10.1371/journal.pone.0239919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
Storm events are a significant source of disturbance in the Middle Atlantic Bight, in the Northwest Atlantic, that cause rapid destratification of the water column during the late summer and early fall. Storm-driven mixing can be considered as a seasonal disturbance regime to demersal communities, characterized by the recurrence of large changes in bottom water temperatures. Black sea bass are a model ubiquitous demersal species in the Middle Atlantic Bight, as their predominantly sedentary behavior makes them ideal for tagging studies while also regularly exposing them to summer storm disturbances and the physiological stresses associated with thermal destratification. To better understand the responsiveness of black sea bass to storm impacts, we coupled biotelemetry with a high-resolution Finite Volume Community Ocean Model (FVCOM). During the summers of 2016–2018, 8–15 black sea bass were released each year with acoustic transponders at three reef sites, which were surrounded by data-logging receivers. Data were analyzed for activity levels and reef departures of black sea bass, and fluctuations in temperature, current velocity, and turbulent kinetic energy. Movement rates were depressed with each consecutive passing storm, and late-season storms were associated with permanent evacuations by a subset of tagged fish. Serial increases in bottom temperature associated with repeated storm events were identified as the primary depressor of local movement. Storm-driven increases in turbulent kinetic energy and current velocity had comparatively smaller, albeit significant, effects. Black sea bass represents both an important fishery resource and an indicator species for the impact of offshore wind development in the United States. Their availability to fisheries surveys and sensitivity to wind turbine impacts will be biased during periods of high storm activity, which is likely to increase with regional climate change.
Collapse
Affiliation(s)
- Caroline J. Wiernicki
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America
- * E-mail:
| | - Michael H. P. O’Brien
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America
| | - Fan Zhang
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, United States of America
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Vyacheslav Lyubchich
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America
| | - Ming Li
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, United States of America
| | - David H. Secor
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America
| |
Collapse
|
23
|
Onukwufor JO, Wood CM. Osmorespiratory Compromise in Zebrafish (Danio rerio): Effects of Hypoxia and Acute Thermal Stress on Oxygen Consumption, Diffusive Water Flux, and Sodium Net Loss Rates. Zebrafish 2020; 17:400-411. [DOI: 10.1089/zeb.2020.1947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- John O. Onukwufor
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Haverinen J, Vornanen M. Reduced ventricular excitability causes atrioventricular block and depression of heart rate in fish at critically high temperatures. J Exp Biol 2020; 223:jeb225227. [PMID: 32434803 DOI: 10.1242/jeb.225227] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
At critically high temperature, cardiac output in fish collapses as a result of depression of heart rate (bradycardia). However, the cause of bradycardia remains unresolved. To investigate this, rainbow trout (Oncorhynchus mykiss; acclimated at 12°C) were exposed to acute warming while electrocardiograms were recorded. From 12°C to 25.3°C, electrical excitation between different parts of the heart was coordinated, but above 25.3°C, atrial and ventricular beating rates became partly dissociated because of 2:1 atrioventricular (AV) block. With further warming, atrial rate increased to a peak value of 188±22 beats min-1 at 27°C, whereas the ventricle rate peaked at 124±10 beats min-1 at 25.3°C and thereafter dropped to 111±15 beats min-1 at 27°C. In single ventricular myocytes, warming from 12°C to 25°C attenuated electrical excitability as evidenced by increases in rheobase current and the size of critical depolarization required to trigger action potential. Depression of excitability was caused by temperature-induced decrease in input resistance (sarcolemmal K+ leak via the outward IK1 current) of resting myocytes and decrease in inward charge transfer by the Na+ current (INa) of active myocytes. Collectively, these findings show that at critically high temperatures AV block causes ventricular bradycardia owing to the increased excitation threshold of the ventricle, which is due to changes in the passive (resting ion leak) and active (inward charge movement) electrical properties of ventricular myocytes. The sequence of events from the level of ion channels to cardiac function in vivo provides a mechanistic explanation for the depression of cardiac output in fish at critically high temperature.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, 80101 Joensuu, Finland
| |
Collapse
|
25
|
Onukwufor JO, Wood CM. Reverse translation: effects of acclimation temperature and acute temperature challenges on oxygen consumption, diffusive water flux, net sodium loss rates, Q 10 values and mass scaling coefficients in the rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2020; 190:205-217. [PMID: 31965230 DOI: 10.1007/s00360-020-01259-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023]
Abstract
Our understanding is limited on how fish adjust the effective permeability of their branchial epithelium to ions and water while altering O2 uptake rate (MO2) with acute and chronic changes in temperature. We investigated the effects of acclimation temperature (8 °C, 13 °C and 18 °C) and acute temperature challenges [acute rise (acclimated at 8 °C, measured at 13 °C and 18 °C), acute drop (acclimated at 18 °C, measured at 8 °C and 13 °C) and intermediate (acclimated at 13 °C, measured at 8 °C and 18 °C)] on routine MO2, diffusive water flux, and net sodium loss rates in 24-h fasted rainbow trout (Oncorhynchus mykiss). In the temperature challenge tests, measurements were made during the first hour. In acclimated trout at all temperatures, allometric mass scaling coefficients were much higher for diffusive water flux than for MO2. Furthermore, the diffusive water flux rate was more responsive (overall Q10 = 2.75) compared to MO2 (Q10 = 1.80) over the 8-18 °C range, and for both, Q10 values were greater at 8-13 °C than at 13-18 °C. The net Na+ flux rates were highly sensitive to acclimation temperature with an overall Q10 of 3.01 for 8-18 °C. In contrast, very different patterns occurred in trout subjected to acute temperature challenges. The net Na+ flux rate was temperature-insensitive with a Q10 around 1.0. Both MO2 and diffusive water flux rates exhibited lower Q10 values than for the acclimated rates in response to either acute increases or decreases in temperature. These results fit Pattern 5 of Precht (undercompensation, reverse effect) and more precisely Pattern IIB of Prosser (reverse translation). These inverse compensatory patterns suggest that trout do not alter their rates very much when undergoing acute thermal challenges (diurnal fluctuations, migration through the thermocline). The greater changes seen with acclimation may be adaptive to long-term seasonal changes in temperature. We discuss the roles of aquaporins, spontaneous activity, and recent feeding in these responses.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
26
|
Schwieterman GD, Bouyoucos IA, Potgieter K, Simpfendorfer CA, Brill RW, Rummer JL. Analysing tropical elasmobranch blood samples in the field: blood stability during storage and validation of the HemoCue® haemoglobin analyser. CONSERVATION PHYSIOLOGY 2019; 7:coz081. [PMID: 31803471 PMCID: PMC6883209 DOI: 10.1093/conphys/coz081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Blood samples collected from wild-caught fishes can provide important information regarding the effects of capture (and thus post-release survival) as well as other stressors. Unfortunately, blood samples often cannot be analysed immediately upon sampling, and blood parameters (e.g. blood oxygen levels and acid-base parameters) are known to change with storage duration due to the metabolic activity of the red blood cells. We obtained blood samples from both untreated and stressed individuals of both blacktip reef shark (Carcharhinus melanopterus) and sicklefin lemon shark (Negaprion acutidens) to determine the effects of storage duration on blood pH, haematocrit and haemoglobin concentration ([Hb]). We found no significant effects after storage on ice for up to 180 minutes. Moreover, to validate the usability of a HemoCue haemoglobin analyser (a point-of-care device), we compared data from this device to [Hb] determined using the cyanomethaemoglobin method with blood samples from 10 individuals from each of the aforementioned species as well as epaulette shark (Hemiscyllium ocellatum). Values from the HemoCue consistently overestimated [Hb], and we therefore developed the necessary correction equations. The correction equations were not statistically different among the three elasmobranch species within the biologically relevant range but did differ from published corrections developed using blood from temperate teleost fishes. Although the HemoCue is useful in field situations, development of species-specific calibration equations may be necessary to ensure the reliability of inter-species comparisons of blood [Hb]. Together, these data should increase confidence in haematological stress indicators in elasmobranch fishes, measurements of which are critical for understanding the impact of anthropogenic stressors on these ecologically important species.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex 66860, France
| | - Kristy Potgieter
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Richard W Brill
- Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
27
|
Baloyi CM, Khathi A, Sibiya NH, Ngubane PS. The Haematological Effects of Oleanolic Acid in Streptozotocin-Induced Diabetic Rats: Effects on Selected Markers. J Diabetes Res 2019; 2019:6753541. [PMID: 31828165 PMCID: PMC6885830 DOI: 10.1155/2019/6753541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sustained hyperglycaemia leads to the development of haematological alterations which, if left untreated, is associated with cardiovascular complications. Insulin is the mainstay drug in type 1 diabetes mellitus (T1D); however, the use of insulin is associated with haematological alterations that could further worsen cardiovascular complications. Therefore, the aim of the study was to investigate the haematological effects of oleanolic acid (OA) in streptozotocin- (STZ-) induced diabetic rats. METHODS The animals were separated into five groups; the nondiabetic group (ND), the diabetic control group (DC), and the treatment groups of insulin (170 μg/kg, s.c), metformin (500 mg/kg, p.o), and OA (80 mg/kg, p.o). OA was administered orally twice a day. Thereafter, the animals were sacrificed, and blood and tissues were collected for haematological, hormonal, and oxidative status analysis. RESULTS Untreated diabetic rats exhibited hyperglycaemia, elevated glycated haemoglobin (HbA1c), oxidative stress, and a reduced erythropoietin (EPO) concentration when compared to ND rats. However, administration of OA attenuated hyperglycaemia, HbA1c, and EPO concentrations compared to DC rats. The reduction of blood glucose concentration, HbA1c, and improved EPO concentrations was further associated with a notable increase in red blood cell (RBC) count and other RBC indices. We also observed an increase in the antioxidant status of the RBCs with a concomitant decrease in oxidative stress. CONCLUSION These findings suggest that OA improves diabetes-induced haematological changes caused by hyperglycaemia and attenuates the progression of cardiovascular complications in DM individuals.
Collapse
Affiliation(s)
- Charity M. Baloyi
- Department of Health Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| | - A. Khathi
- Department of Health Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| | - Ntethelelo H. Sibiya
- Department of Pharmacy, Discipline of Pharmacy, University of Rhodes, 6140, South Africa
| | - Phikelelani S. Ngubane
- Department of Health Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
28
|
Marchant JL, Farrell AP. Membrane and calcium clock mechanisms contribute variably as a function of temperature to setting cardiac pacemaker rate in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 95:1265-1274. [PMID: 31429079 DOI: 10.1111/jfb.14126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax ) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.
Collapse
Affiliation(s)
- James L Marchant
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Norin T, Canada P, Bailey JA, Gamperl AK. Thermal biology and swimming performance of Atlantic cod ( Gadus morhua) and haddock ( Melanogrammus aeglefinus). PeerJ 2019; 7:e7784. [PMID: 31592351 PMCID: PMC6777481 DOI: 10.7717/peerj.7784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/29/2019] [Indexed: 11/28/2022] Open
Abstract
Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) are two commercially important marine fishes impacted by both overfishing and climate change. Increasing ocean temperatures are affecting the physiology of these species and causing changes in distribution, growth, and maturity. While the physiology of cod has been well investigated, that of haddock has received very little attention. Here, we measured the metabolic response to increasing temperatures, as well as the critical thermal maximum (CTmax), of cod acclimated to 8 and 12 °C and haddock acclimated to 12 °C. We also compared the swimming performance (critical swimming speed, Ucrit) of cod and haddock at 12 °C, as well as the Ucrit of 12 °C-acclimated cod acutely exposed to a higher-than-optimal temperature (16 °C). The CTmax for cod was 21.4 and 23.0 °C for 8- and 12 °C-acclimated fish, respectively, whereas that for the 12 °C-acclimated haddock was 23.9 °C. These values were all significantly different and show that haddock are more tolerant of high temperatures. The aerobic maximum metabolic rate (MMR) of swimming cod remained high at 16 °C, suggesting that maximum oxygen transport capacity was not limited at a temperature above optimal in this species. However, signs of impaired swimming (struggling) were becoming evident at 16 °C. Haddock were found to reach a higher Ucrit than cod at 12 °C (3.02 vs. 2.62 body lengths s−1, respectively), and at a lower MMR. Taken together, these results suggest that haddock perform better than cod in warmer conditions, and that haddock are the superior swimmer amongst the two species.
Collapse
Affiliation(s)
- Tommy Norin
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paula Canada
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal.,CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Jason A Bailey
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Vattenbrukscentrum Ost, East Region Aquaculture Centre, Vreta Kloster, Sweden
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
30
|
Morgenroth D, Ekström A, Hjelmstedt P, Gräns A, Axelsson M, Sandblom E. Hemodynamic responses to warming in euryhaline rainbow trout: implications of the osmo-respiratory compromise. ACTA ACUST UNITED AC 2019; 222:jeb.207522. [PMID: 31395678 DOI: 10.1242/jeb.207522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
In seawater, rainbow trout (Oncorhynchus mykiss) drink and absorb water through the gastrointestinal tract to compensate for water passively lost to the hyperosmotic environment. Concomitantly, they exhibit elevated cardiac output and a doubling of gastrointestinal blood flow to provide additional O2 to the gut and increase convective flux of absorbed ions and water. Yet, it is unknown how warming waters, which elevate tissue O2 demand and the rate of diffusion of ions and water across the gills (i.e. the osmo-respiratory compromise), affects these processes. We measured cardiovascular and blood variables of rainbow trout acclimated to freshwater and seawater during acute warming from 11 to 17°C. Relative to freshwater-acclimated trout, cardiac output was 34% and 55% higher in seawater-acclimated trout at 11 and 17°C, respectively, which allowed them to increase gastrointestinal blood flow significantly more during warming (increases of 75% in seawater vs. 31% in freshwater). These adjustments likely served to mitigate the impact of warming on osmotic balance, as changes in ionic and osmotic blood composition were minor. Furthermore, seawater-acclimated trout seemingly had a lower tissue O2 extraction, explaining why trout acclimated to freshwater and seawater often exhibit similar metabolic rates, despite a higher cardiac output in seawater. Our results highlight a novel role of gastrointestinal blood perfusion in the osmo-respiratory compromise in fish, and improve our understanding of the physiological changes euryhaline fishes must undergo when faced with interacting environmental challenges such as transient warming events.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Per Hjelmstedt
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
31
|
Nelson C, Barlow SL, Berenbrink M. ATP-induced reversed thermal sensitivity of O 2 binding in both major haemoglobin polymorphs of the non-endothermic Atlantic cod, Gadus morhua. ACTA ACUST UNITED AC 2019; 222:jeb.200279. [PMID: 31160424 DOI: 10.1242/jeb.200279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022]
Abstract
Atlantic cod is a species that is affected by climate change, with some populations being exposed to higher temperatures than others. The two polymorphs of its major haemoglobin type (HbI) show an inverse change in frequency along a latitudinal temperature cline in the North East Atlantic, which has been associated with differences in population performance and behavioural traits. An earlier study at the northern distribution limit of the species reported differential temperature sensitivities of red blood cell oxygen (O2) affinity between the northern cold-water HbI-2 polymorph and its southern, warm-water HbI-1 counter-part, which has since widely been held as adaptive for the species across its distributional range. The present study critically re-examined this hypothesis by comparing the thermal sensitivity of O2 binding in both purified HbI polymorphs from the southern, high-temperature distribution limit of the species under controlled conditions of allosteric modifiers of Hb function. Contrary to the prevailing view, the O2 affinity of the major HbI polymorphs did not differ from each other under any of the tested conditions. Depending on pH and ATP concentration, the temperature-sensitive and temperature-insensitive Hb-O2 affinity phenotypes - previously exclusively ascribed to HbI-1 and HbI-2, respectively - could be induced in both HbI polymorphs. These results are the first to establish a molecular mechanism behind a reversed temperature dependence of red blood cell O2 affinity in a non-endotherm fish and lay the basis for future studies on alternative mechanisms behind the differences in distribution, performance and behavioural traits associated with the different HbI polymorphs of Atlantic cod.
Collapse
Affiliation(s)
- Charlotte Nelson
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK .,Department of Zoology, The University of British Columbia, Biological Sciences Building, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Samantha L Barlow
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Michael Berenbrink
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
32
|
Burgos-Aceves MA, Lionetti L, Faggio C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1170-1183. [PMID: 31018433 DOI: 10.1016/j.scitotenv.2019.03.275] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The variations of haematological parameters hematocrit, hemoglobin concentration, leukocyte and erythrocyte count have been used as pollution and physiological indicators of organic dysfunction in both environmental and aquaculture studies. These parameters are commonly applied as prognostic and diagnostic tools in fish health status. However, there are both extrinsic and intrinsic factors to consider when performing a blood test, because a major limitation for field researchers is that the "rules" for animal or human haematology do not always apply to wildlife. The main objective of this review is to show how some environmental and xenobiotic factors are capable to modulating the haematic cells. Visualizing the strengths and limitations of a haematological analysis in the health assessment of wild and culture fish. Finally, we point out the importance of the use of mitochondrial activities as part of haematological evaluations associated to environment or aquaculture stress.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Departament of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Lillà Lionetti
- Departament of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
33
|
Gomez Isaza DF, Cramp RL, Smullen R, Glencross BD, Franklin CE. Coping with climatic extremes: Dietary fat content decreased the thermal resilience of barramundi (Lates calcarifer). Comp Biochem Physiol A Mol Integr Physiol 2019; 230:64-70. [DOI: 10.1016/j.cbpa.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
|
34
|
Zanuzzo FS, Bailey JA, Garber AF, Gamperl AK. The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:30-38. [PMID: 30930205 DOI: 10.1016/j.cbpa.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Given climate change projections, the limited ability of fish reared in sea-cages to behaviourally thermoregulate, and that thermal tolerance may be heritable, studies that examine family-related differences in upper thermal tolerance are quite relevant to the aquaculture industry. Thus, we investigated the upper thermal tolerance of 15 Atlantic cod (Gadus morhua L.) families by challenging them with acute (2 °C h-1) and incremental (1 °C every 4 days) temperature increases (CTmax and ITmax tests, respectively) under normoxia (~ 100% air saturation) and mild hypoxia (~ 75% air sat.). The cod's CTmax was 22.5 ± 0.1 °C (mean ± S.E.) during normoxia and 21.8 ± 0.1 °C during hypoxia (P < 0.001); and these two CTmax values were significantly correlated across families. In both the normoxic and hypoxic ITmax tests, feed intake fell by ~50% between 17 and 18 °C, and stopped entirely by 21 °C. No mortalities were observed under 20 °C in the normoxic and hypoxic ITmax tests, and the ITmax value was ~21.7 °C in both groups. Differences in the upper thermal tolerance between families were only observed in the CTmax experiment. No correlation was found between the specific growth rate and the CTmax of the families. Further, no correlation existed between CTmax and ITmax. This study is the first to compare the thermal tolerance of fish families to both CTmax and ITmax challenges, and the data: 1) suggest that the Atlantic cod is quite tolerant of acute (i.e., hours) or short-term (i.e., weeks) exposure to high water temperatures (i.e., up to 20 °C); 2) indicate that it might be difficult to select fish with higher ITmax values; and 3) question the relevance of CTmax for selecting fish that are destined for sea-cages where temperatures slowly warm over the summer.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada..
| | - Jason A Bailey
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Amber F Garber
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, NB E5B 2L7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
35
|
Leeuwis RHJ, Nash GW, Sandrelli RM, Zanuzzo FS, Gamperl AK. The environmental tolerances and metabolic physiology of sablefish (Anoplopoma fimbria). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:140-148. [PMID: 30743060 DOI: 10.1016/j.cbpa.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
Given the potential impacts of global warming, such as increases in temperature and the frequency/severity of hypoxia in marine ecosystems, it is important to study the impacts of these environmental challenges on sea-cage reared aquaculture species. This study focuses on the sablefish (Anoplopoma fimbria), an emerging aquaculture species that has a unique ecology in the wild. For instance, adults inhabit oxygen minimum zones and cool waters at depths up to 1500 m. Using Atlantic salmon (Salmo salar) (~1132 g adults) as a comparative species, we used intermittent-flow respirometry to characterize the tolerance and metabolic response of sablefish (~10 g juveniles and ~675 g adults) to acute increases in temperature (2 °C h-1) and decreases in oxygen level (~10% air saturation h-1). Adult sablefish were much more hypoxia tolerant than adult salmon [O2 level at loss of equilibrium ~5.4% vs. ~24.2% air saturation, respectively]. In addition, sablefish could withstand upper temperatures only slightly lower than salmon [critical thermal maximum (CTmax) ~24.9 °C vs. ~26.2 °C, respectively]. Sablefish juveniles were both less hypoxia and thermally tolerant than adults [critical O2 tension ~18.9% vs. ~15.8% air saturation; CTmax ~22.7 vs. ~24.9 °C, respectively]. Interestingly, many of these differences in environmental tolerance could not be explained by differences in metabolic parameters (aerobic scope or routine metabolic rate). Our findings show that sablefish are tolerant of high temperatures, and very tolerant of hypoxia, traits that are advantageous for an aquaculture species in the era of climate change.
Collapse
Affiliation(s)
- Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
36
|
Abramochkin DV, Haverinen J, Mitenkov YA, Vornanen M. Temperature- and external K+-dependence of electrical excitation in ventricular myocytes of cod-like fishes. J Exp Biol 2019; 222:jeb.193607. [DOI: 10.1242/jeb.193607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
Electrical excitability (EE) is vital for cardiac function and strongly modulated by temperature and external K+ concentration ([K+]o) as formulated in the hypothesis of temperature-dependent deterioration of electrical excitability (TDEE). Since little is known about EE of arctic stenothermic fishes, we tested the TDEE hypothesis on ventricular myocytes of polar cod (Boreogadus saida) and navaga cod (Eleginus navaga) of the Arctic Ocean and those of temperate freshwater burbot (Lota lota). Ventricular action potentials (APs) were elicited in current-clamp experiments at 3, 9 and 15°C, and AP characteristics and the current needed to elicit AP were examined. At 3°C, ventricular APs of polar and navaga cod were similar but differed from that of burbot in having lower rate of AP upstroke and higher rate of repolarization. EE of ventricular myocytes - defined as the ease with which all-or-none APs are triggered - was little affected by acute temperature changes between 3 and 15°C in any species. However, AP duration (APD50) was drastically reduced at higher temperatures. Elevation of [K+]o from 3 to 5.4 and further to 8 mM at 3, 9 and 15°C strongly affected EE and AP characteristics in polar and navaga cod, but less in burbot. In all species, ventricular excitation was resistant to acute temperature elevations, while small increases in [K+]o severely compromised EE, in particular in the marine stenotherms. This suggests that EE of the heart in these Gadiformes species is well equipped against acute warming, but less so against the simultaneous temperature and exercise stresses.
Collapse
Affiliation(s)
- Denis V. Abramochkin
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Yuri A. Mitenkov
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
37
|
Muñoz NJ, Farrell AP, Heath JW, Neff BD. Hematocrit Is Associated with Thermal Tolerance and Modulated by Developmental Temperature in Juvenile Chinook Salmon. Physiol Biochem Zool 2018; 91:757-762. [DOI: 10.1086/695556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
38
|
Badr A, Korajoki H, Abu-Amra ES, El-Sayed MF, Vornanen M. Effects of seasonal acclimatization on thermal tolerance of inward currents in roach (Rutilus rutilus) cardiac myocytes. J Comp Physiol B 2017; 188:255-269. [DOI: 10.1007/s00360-017-1126-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/23/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
|
39
|
Eissa N, Wang HP, Yao H, Shen ZG, Shaheen AA, Abou-ElGheit EN. Expression of Hsp70, Igf1, and Three Oxidative Stress Biomarkers in Response to Handling and Salt Treatment at Different Water Temperatures in Yellow Perch, Perca flavescens. Front Physiol 2017; 8:683. [PMID: 28955246 PMCID: PMC5601044 DOI: 10.3389/fphys.2017.00683] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
Stress is a major factor that causes diseases and mortality in the aquaculture industry. The goal was to analyze the expression of stress-related biomarkers in response to different stressors in yellow perch, which is an important aquaculture candidate in North America and highly sensitive to handling in captivity. Three fish groups were established, each having four replicates, and subjected to water temperatures of 14, 20, and 26°C and acute handling stress was performed followed by a salt treatment for 144h at a salinity of 5 ppt. Serum and hepatic mRNA levels of heat shock protein (hsp70), insulin-like growth factor 1 (Igf1), glutathione peroxidase (Gpx), superoxide dismutase 1 (Sod1), and glutathione reductase (Gsr) were quantified at seven times interval over 144 h using ELISA and RT-qPCR. Handling stress caused a significant down-regulation in Hsp70, Gpx, Sod1, and Gsr at a water temperature of 20°C compared to 14 and 26°C. Igf1 was significantly upregulated at 20°C and down-regulated at 14 and 26°C. Salt treatment had a transient reverse effect on the targeted biomarkers in all groups at 72 h, then caused an upregulation after 144 h, compared to the control groups. The data showed a negative strong regulatory linear relationship between igf1 with hsp70 and anti-oxidative gene expressions. These findings could provide valuable new insights into the stress responses that affect fish health and could be used to monitor the stress.
Collapse
Affiliation(s)
- Nour Eissa
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States.,Department of Immunology, College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States
| | - Hong Yao
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States
| | - Zhi-Gang Shen
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States
| | - Adel A Shaheen
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha UniversityToukh, Egypt
| | - Elsayed N Abou-ElGheit
- Aquatic Diseases Laboratory, Aquaculture Division, National Institute of Oceanography and FisheriesCairo, Egypt
| |
Collapse
|
40
|
Hassinen M, Haverinen J, Vornanen M. Small functional If current in sinoatrial pacemaker cells of the brown trout ( Salmo trutta fario) heart despite strong expression of HCN channel transcripts. Am J Physiol Regul Integr Comp Physiol 2017; 313:R711-R722. [PMID: 28855177 DOI: 10.1152/ajpregu.00227.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 01/26/2023]
Abstract
Funny current (If), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout (Salmo trutta fario) sinoatrial (SA) pacemaker cells and their putative role in heart rate (fH) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small If with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for If activity. If was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large If currents. In contrast, HCN3 (+MiRP1) failed to produce If in the same expression system. Cs+ (2 mM), which blocked 84 ± 12% of the native If, reversibly reduced fH 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min (P < 0.05). However, this effect was probably due to the reduction of IKr, which was also inhibited (63.5 ± 4.6%) by Cs+ These results strongly suggest that fH regulation in the brown trout heart is largely independent on If.
Collapse
Affiliation(s)
- Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
41
|
Barlow SL, Metcalfe J, Righton DA, Berenbrink M. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype. ACTA ACUST UNITED AC 2017; 220:414-424. [PMID: 28148818 PMCID: PMC5312735 DOI: 10.1242/jeb.141044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023]
Abstract
Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. Highlighted Article: Red blood cell oxygen binding affinity in Atlantic cod near their southern, warmer limit of distribution is largely temperature independent and not affected by functional differences between their major haemoglobin genotypes.
Collapse
Affiliation(s)
- Samantha L Barlow
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Julian Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - David A Righton
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - Michael Berenbrink
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
42
|
Cadiz L, Servili A, Quazuguel P, Madec L, Zambonino-Infante JL, Mazurais D. Early exposure to chronic hypoxia induces short- and long-term regulation of hemoglobin gene expression in European sea bass ( Dicentrarchus labrax). ACTA ACUST UNITED AC 2017. [PMID: 28646037 DOI: 10.1242/jeb.160713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
European sea bass (Dicentrarchus labrax) inhabits coastal waters and may be exposed to hypoxia at different life stages, requiring physiological and behavioral adaptation. In the present study, we attempted to determine whether regulation of hemoglobin (Hb) gene expression plays a role in the physiological response to chronic moderate hypoxia in whole larvae and hematopoietic tissues (head kidney and spleen) of juveniles. We also tested the hypothesis that hypoxia exposure at the larval stage could induce a long-term effect on the regulation of Hb gene expression. For this purpose, D. labrax were exposed to a non-lethal hypoxic condition (40% air saturation) at the larval stage from 28 to 50 days post-hatching (dph) and/or at the juvenile stage from 196 to 296 dph. Data obtained from larvae indicate that hypoxia induced a subtype-specific regulation of Hb gene expression, with a significant decrease of MN-Hbα3, MN-Hbβ4 and MN-Hbβ5 and increase of MN-Hbα2, LA-Hbα1 and LA-Hbβ1 transcript levels. Hypoxia did not induce regulation of Hb gene expression in juveniles, except in the head kidney for those that experienced hypoxia at the larval stage. The latter exhibited a significant hypoxia-induced stimulation of MN-Hbα2, LA-Hbα1 and LA-Hbβ1 gene expression, associated with stimulation of the PHD-3 gene involved in the hypoxia-inducible factor oxygen-sensing pathway. We conclude that subtype- and stage-specific regulation of Hb gene expression plays a role in the physiological response of D. labrax to cope with hypoxia and that early exposure to low oxygen concentration has a long-term effect on this response.
Collapse
Affiliation(s)
- Laura Cadiz
- Unité de Physiologie Fonctionnelle des Organismes Marins, IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Arianna Servili
- Unité de Physiologie Fonctionnelle des Organismes Marins, IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Patrick Quazuguel
- Unité de Physiologie Fonctionnelle des Organismes Marins, IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Lauriane Madec
- Unité de Physiologie Fonctionnelle des Organismes Marins, IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - José-Luis Zambonino-Infante
- Unité de Physiologie Fonctionnelle des Organismes Marins, IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - David Mazurais
- Unité de Physiologie Fonctionnelle des Organismes Marins, IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| |
Collapse
|
43
|
Stevens CM, Rayani K, Genge CE, Singh G, Liang B, Roller JM, Li C, Li AY, Tieleman DP, van Petegem F, Tibbits GF. Characterization of Zebrafish Cardiac and Slow Skeletal Troponin C Paralogs by MD Simulation and ITC. Biophys J 2017; 111:38-49. [PMID: 27410732 DOI: 10.1016/j.bpj.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity that we have measured by ITC.
Collapse
Affiliation(s)
- Charles M Stevens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gurpreet Singh
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Bo Liang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Janine M Roller
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cindy Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alison Yueh Li
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Peter Tieleman
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
44
|
Jensen DL, Overgaard J, Wang T, Gesser H, Malte H. Temperature effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis). J Therm Biol 2017; 68:162-169. [PMID: 28797476 DOI: 10.1016/j.jtherbio.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Several recent studies have highlighted how impaired cardiac performance at high temperatures and in hypoxia may compromise the capacity for oxygen transport. Thus, at high temperatures impaired cardiac capacity is proposed to reduce oxygen transport to a degree that lowers aerobic scope and compromises thermal tolerance (the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis). To investigate this hypothesis, we measured aerobic and cardiac performance of a eurythermal freshwater teleost, the European perch (Perca fluviatilis). Rates of oxygen consumption were measured during rest and activity at temperatures between 5°C and 27°C, and we evaluated cardiac function by in vivo measurements of heart rate and in vitro studies to determine contractility of myocardial strips. Aerobic scope increased progressively from 5°C to 21°C, after which it levelled off. Heart rate showed a similar response. We found little difference between resting and active heart rate at high temperature suggesting that increased cardiac scope during activity is primarily related to changes in stroke volume. To examine the effects of temperature on cardiac capacity, we measured isometric force development in electrically paced myocardial preparations during different combinations of temperature, pacing frequency, oxygenation and adrenergic stimulation. The force-frequency product increased markedly upon adrenergic stimulation at 21 and 27°C (with higher effects at 21°C) and the cardiac preparations were highly sensitive to hypoxia. These findings suggest that at (critically) high temperatures, cardiac output may diminish due to a decreased effect of adrenergic stimulation and that this effect may be further exacerbated if the heart becomes hypoxic. Hence cardiac limitations may contribute to the inability to increase aerobic scope at high temperatures in the European perch (Perca fluviatilis).
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Hans Gesser
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Ekström A, Axelsson M, Gräns A, Brijs J, Sandblom E. Influence of the coronary circulation on thermal tolerance and cardiac performance during warming in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2017; 312:R549-R558. [DOI: 10.1152/ajpregu.00536.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
Thermal tolerance in fish may be related to an oxygen limitation of cardiac function. While the hearts of some fish species receive oxygenated blood via a coronary circulation, the influence of this oxygen supply on thermal tolerance and cardiac performance during warming remain unexplored. Here, we analyzed the effect in vivo of acute warming on coronary blood flow in adult sexually mature rainbow trout ( Onchorhynchus mykiss) and the consequences of chronic coronary ligation on cardiac function and thermal tolerance in juvenile trout. Coronary blood flow at 10°C was higher in females than males (0.56 ± 0.08 vs. 0.30 ± 0.08 ml·min−1·g ventricle−1), and averaged 0.47 ± 0.07 ml·min−1·g ventricle−1 across sexes. Warming increased coronary flow in both sexes until 14°C, at which it peaked and plateaued at 0.78 ± 0.1 and 0.61 ± 0.1 ml·min−1·g ventricle−1 in females and males, respectively. Thus, the scope for increasing coronary flow was 101% in males, but only 39% in females. Coronary-ligated juvenile trout exhibited elevated heart rate across temperatures, reduced Arrhenius breakpoint temperature for heart rate (23.0 vs. 24.6°C), and reduced upper critical thermal maximum (25.3 vs. 26.3°C). To further analyze the effects of coronary flow restriction on cardiac rhythmicity, electrocardiogram characteristics were determined before and after coronary occlusion in anesthetized trout. Occlusion resulted in reduced R-wave amplitude and an elevated S-T segment, indicating myocardial ischemia, while heart rate was unaffected. This suggests that the tachycardia in ligated trout across temperatures in vivo was mainly to compensate for reduced cardiac contractility to maintain cardiac output. Moreover, our findings show that coronary flow increases with warming in a sex-specific manner. This may improve whole animal thermal tolerance, presumably by sustaining cardiac oxygenation and contractility at high temperatures.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| |
Collapse
|
46
|
Badr A, Hassinen M, El-Sayed MF, Vornanen M. Effects of seasonal acclimatization on action potentials and sarcolemmal K+ currents in roach (Rutilus rutilus) cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:15-27. [DOI: 10.1016/j.cbpa.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
|
47
|
Haverinen J, Abramochkin DV, Kamkin A, Vornanen M. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells. Am J Physiol Regul Integr Comp Physiol 2017; 312:R165-R171. [DOI: 10.1152/ajpregu.00403.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 01/17/2023]
Abstract
Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate ( fH), and at high temperatures Q̇ collapses due to heat-dependent depression of fH. This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of fH in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, fPM), spontaneous beating rate of isolated sinoatrial preparations ( fSA), and in vivo fH of the cold-acclimated (4°C) brown trout ( Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, fPM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (TBP) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum fPM at TBP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak fSA (94.3 ± 6.0 bpm at 24.1°C) or peak fH (76.7 ± 2.4 at 15.7 ± 0.82°C) ( P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit fH at high temperatures in the brown trout in vivo.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Denis V. Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia; and
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova, Moscow, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
48
|
|
49
|
Vornanen M. Electrical Excitability of the Fish Heart and Its Autonomic Regulation. FISH PHYSIOLOGY 2017. [DOI: 10.1016/bs.fp.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
|