1
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
2
|
de Souza RF, Amaro TR, Palacio-Cortés AM, da Silva MAN, Dionisio JF, Pezenti LF, Lopes TBF, Mantovani MS, Zequi JAC, da Rosa R. Comparative transcriptional analysis between susceptible and resistant populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) after malathion exposure. Mol Genet Genomics 2024; 299:92. [PMID: 39367967 DOI: 10.1007/s00438-024-02185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Aedes aegypti is an important vector of arboviruses, including dengue, chikungunya and Zika. The application of synthetic insecticides is a frequently used strategy to control this insect. Malathion is an organophosphate insecticide that was widely used in Brazil in the 1980s and 1990s to control the adult form of A. aegypti. In situations where resistance to currently used insecticides is detected, the use of malathion may be resumed as a control measure. Many studies have confirmed resistance to malathion, however, comparative studies of differential gene expression of the entire transcriptome of resistant and susceptible insects are scarce. Therefore, understanding the molecular basis of resistance to this insecticide in this species is extremely important. In this paper, we present the first transcriptomic description of susceptible and resistant strains of A. aegypti challenged with malathion. Guided transcriptome assembly resulted in 39,904 transcripts, where 2133 differentially expressed transcripts were detected, and three were validated by RT-qPCR. Enrichment analysis for these identified transcripts resulted in 13 significant pathways (padj < 0.05), 8 associated with down-regulated and 5 with up-regulated transcripts in treated resistant insects. It was possible to divide the transcripts according to the mechanism of action into three main groups: (i) genes involved in detoxification metabolic pathways; (ii) genes of proteins located in the membrane/extracellular region; and (iii) genes related to DNA integration/function. These results are important in advancing knowledge of genes related to resistance mechanisms in this insect, enabling the development of effective technologies and strategies for managing insecticide resistance.
Collapse
Affiliation(s)
- Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Tafarel Ribeiro Amaro
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Angela Maria Palacio-Cortés
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mário Antônio Navarro da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jaqueline Fernanda Dionisio
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Larissa Forim Pezenti
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Thayná Bisson Ferraz Lopes
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Mário Sérgio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - João Antônio Cyrino Zequi
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Renata da Rosa
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil.
| |
Collapse
|
3
|
Zhu X, Yang Y, Li Q, Li J, Du L, Zhou Y, Jin H, Song L, Chen Q, Ren B. An expanded odorant-binding protein mediates host cue detection in the parasitic wasp Baryscapus dioryctriae basis of the chromosome-level genome assembly analysis. BMC Biol 2024; 22:196. [PMID: 39256805 PMCID: PMC11389331 DOI: 10.1186/s12915-024-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Baryscapus dioryctriae (Chalcidodea: Eulophidae) is a parasitic wasp that parasitizes the pupae of many Pyralidae members and has been used as a biological control agent against Dioryctria pests of pinecones. RESULTS This B. dioryctriae assembly has a genome size of 485.5 Mb with a contig N50 of 2.17 Mb, and scaffolds were assembled onto six chromosomes using Hi-C analysis, significantly increasing the scaffold N50 to 91.17 Mb, with more than 96.13% of the assembled bases located on chromosomes, and an analysis revealed that 94.73% of the BUSCO gene set. A total of 54.82% (279.27 Mb) of the assembly was composed of repetitive sequences and 24,778 protein-coding genes were identified. Comparative genomic analysis demonstrated that the chemosensory perception, genetic material synthesis, and immune response pathways were primarily enriched in the expanded genes. Moreover, the functional characteristics of an odorant-binding protein (BdioOBP45) with ovipositor-biased expression identified from the expanded olfactory gene families were investigated by the fluorescence competitive binding and RNAi assays, revealing that BdioOBP45 primarily binds to the D. abietella-induced volatile compounds, suggesting that this expanded OBP is likely involved in locating female wasp hosts and highlighting a direction for future research. CONCLUSIONS Taken together, this work not only provides new genomic sequences for the Hymenoptera systematics, but also the high-quality chromosome-level genome of B. dioryctriae offers a valuable foundation for studying the molecular, evolutionary, and parasitic processes of parasitic wasps.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Qiuyao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Jing Li
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun, 130033, China
| | - Lin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Yanhan Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Hongbo Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun, 130033, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China.
| |
Collapse
|
4
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024; 384:1453-1460. [PMID: 38870272 DOI: 10.1126/science.adn6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.
Collapse
Affiliation(s)
- Yidong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lulu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Zhao J, Chen AQ, Ryu J, del Mármol J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science 2024; 384:1460-1467. [PMID: 38870275 PMCID: PMC11235583 DOI: 10.1126/science.adn6384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Most insects, including human-targeting mosquitoes, detect odors through odorant-activated ion channel complexes consisting of a divergent odorant-binding subunit (OR) and a conserved co-receptor subunit (Orco). As a basis for understanding how odorants activate these heteromeric receptors, we report here cryo-electron microscopy structures of two different heteromeric odorant receptor complexes containing ORs from disease-vector mosquitos Aedes aegypti or Anopheles gambiae. These structures reveal an unexpected stoichiometry of one OR to three Orco subunits. Comparison of structures in odorant-bound and unbound states indicates that odorant binding to the sole OR subunit is sufficient to open the channel pore, suggesting a mechanism of OR activation and a conceptual framework for understanding evolution of insect odorant receptor sensitivity.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Andy Q. Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Jaewook Ryu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Josefina del Mármol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
- Howard Hughes Medical Institute; Boston, 02115, USA
| |
Collapse
|
7
|
Wang C, Cao S, Shi C, Guo M, Sun D, Liu Z, Xiu P, Wang Y, Wang G, Liu Y. The novel function of an orphan pheromone receptor reveals the sensory specializations of two potential distinct types of sex pheromones in noctuid moth. Cell Mol Life Sci 2024; 81:259. [PMID: 38878072 PMCID: PMC11335300 DOI: 10.1007/s00018-024-05303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 08/22/2024]
Abstract
Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.
Collapse
Affiliation(s)
- Chenrui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Zhou Z, Luo Y, Wang X, He J, Zhou Q. Identification and sex expression profiles of candidate chemosensory genes from Atherigona orientalis via the antennae and leg transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101222. [PMID: 38430710 DOI: 10.1016/j.cbd.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Atherigona orientalis Schiner (1868) is an acknowledged agricultural pest owing to its feeding habits and breeding locations. This insect is a tropical and subtropical pest in fruits and vegetables, in which >50 varieties of fruits and vegetables in 26 families, such as Capsicum annuum, Lycopersicon esculentum, and Cucumis melo have been attacked. Moreover, A. orientalis may also develop in rotten crops and feces or insect carcasses, which are also considered one kind of sanitary pest and medical insect. At present, the invasion ranges of A. orientalis are still increasing and more preventive and management measures are to be processed. To gain a better understanding of the molecular mechanisms involved in olfactory reception in A. orientalis, the transcriptome of male and female antennae and legs was systematically analyzed. In total, 131 chemosensory-related genes, including 63 odorant receptors (ORs), 20 gustatory receptors (GRs), 18 ionotropic receptors (IRs), 27 odorant binding proteins (OBPs), 1 chemosensory protein (CSP), and 2 sensory neuron membrane proteins (SNMPs), were identified. The analysis focused on obtaining expression information of candidate olfactory genes at the transcriptomic level by examining the differentially expressed genes (DEGs) in all samples. Totally, 41 DEGs were identified between male antennae (MA) and female antennae (FA), including 32 ORs, 5 OBPs, 1 IR, 2 GRs and 1 SNMP. In MA versus male legs (ML), 78 DEGs were identified (45 ORs, 18 OBPs, 6 GRs, 6 IRs, 1 CSP and 2 SNMPs). In FA and female legs (FL), 96 DEGs were identified (51 ORs, 21 OBPs, 9 GRs, 12 IRs, 1 CSP and 2 SNMPs). For ML and FL, 3 DEGs were identified, including 2 ORs and 1 SNMP. Our results supplement valuable insights for future research on the chemoreception mechanisms in A. orientalis.
Collapse
Affiliation(s)
- Zihao Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Yujie Luo
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Xintong Wang
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Jing He
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410006, China.
| |
Collapse
|
10
|
Long T, Mohapatra P, Ballou S, Menuz K. Odorant receptor co-receptors affect expression of tuning receptors in Drosophila. Front Cell Neurosci 2024; 18:1390557. [PMID: 38832356 PMCID: PMC11145718 DOI: 10.3389/fncel.2024.1390557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Insects detect odorants using two large families of heteromeric receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs). Most OR and IR genes encode odorant-binding "tuning" subunits, whereas four (Orco, Ir8a, Ir25a, and Ir76b) encode co-receptor subunits required for receptor function. Olfactory neurons are thought to degenerate in the absence of Orco in ants and bees, and limited data suggest this may happen to some olfactory neurons in Drosophila fruit flies as well. Here, we thoroughly examined the role of co-receptors on olfactory neuron survival in Drosophila. Leveraging knowledge that olfactory neuron classes are defined by the expression of different tuning receptors, we used tuning receptor expression in antennal transcriptomes as a proxy for the survival of distinct olfactory neuron classes. Consistent with olfactory neuron degeneration, expression of many OR-family tuning receptors is decreased in Orco mutants relative to controls, and transcript loss is progressive with age. The effects of Orco are highly receptor-dependent, with expression of some receptor transcripts nearly eliminated and others unaffected. Surprisingly, further studies revealed that olfactory neuron classes with reduced tuning receptor expression generally survive in Orco mutant flies. Furthermore, there is little apoptosis or neuronal loss in the antenna of these flies. We went on to investigate the effects of IR family co-receptor mutants using similar approaches and found that expression of IR tuning receptors is decreased in the absence of Ir8a and Ir25a, but not Ir76b. As in Orco mutants, Ir8a-dependent olfactory neurons mostly endure despite near-absent expression of associated tuning receptors. Finally, we used differential expression analysis to identify other antennal genes whose expression is changed in IR and OR co-receptor mutants. Taken together, our data indicate that odorant co-receptors are necessary for maintaining expression of many tuning receptors at the mRNA level. Further, most Drosophila olfactory neurons persist in OR and IR co-receptor mutants, suggesting that the impact of co-receptors on neuronal survival may vary across insect species.
Collapse
Affiliation(s)
- Teng Long
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Pratyajit Mohapatra
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Sydney Ballou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep 2024; 43:114035. [PMID: 38573859 PMCID: PMC11100771 DOI: 10.1016/j.celrep.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Xu Z, Chen P, Yan R, Chen G, Qian J, Zhu G, Chen M, Guo Y. Antenna-Biased Odorant Receptor PstrOR17 Mediates Attraction of Phyllotreta striolata to (S)-Cis-Verbenol and (-)-Verbenone. Int J Mol Sci 2024; 25:4362. [PMID: 38673947 PMCID: PMC11049977 DOI: 10.3390/ijms25084362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.
Collapse
Affiliation(s)
- Zhanyi Xu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Peitong Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Guoxing Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China;
| | - Jiali Qian
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Guonian Zhu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Mengli Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yirong Guo
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| |
Collapse
|
13
|
Cucini C, Boschi S, Funari R, Cardaioli E, Iannotti N, Marturano G, Paoli F, Bruttini M, Carapelli A, Frati F, Nardi F. De novo assembly and annotation of Popillia japonica's genome with initial clues to its potential as an invasive pest. BMC Genomics 2024; 25:275. [PMID: 38475721 PMCID: PMC10936072 DOI: 10.1186/s12864-024-10180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.
Collapse
Affiliation(s)
- Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Sara Boschi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Elena Cardaioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Nicola Iannotti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Francesco Paoli
- Council for Agricultural Research and Agricultural Economy Analysis (CREA), Florence, Italy
| | - Mirella Bruttini
- Department of Medical Biotechnologies, Medical Biotech Hub and Competence Centre, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
14
|
Takagi S, Sancer G, Abuin L, Stupski SD, Arguello JR, Prieto-Godino LL, Stern DL, Cruchet S, Alvarez-Ocana R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.556782. [PMID: 37745467 PMCID: PMC10515935 DOI: 10.1101/2023.09.15.556782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia , an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.
Collapse
|
15
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structure of an insect gustatory receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572336. [PMID: 38187590 PMCID: PMC10769236 DOI: 10.1101/2023.12.19.572336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M. Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- Lead contact
| |
Collapse
|
16
|
Brahma A, Frank DD, Pastor PDH, Piekarski PK, Wang W, Luo JD, Carroll TS, Kronauer DJC. Transcriptional and post-transcriptional control of odorant receptor choice in ants. Curr Biol 2023; 33:5456-5466.e5. [PMID: 38070504 PMCID: PMC11025690 DOI: 10.1016/j.cub.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
Insects and mammals have independently evolved odorant receptor genes that are arranged in large genomic tandem arrays. In mammals, each olfactory sensory neuron chooses to express a single receptor in a stochastic process that includes substantial chromatin rearrangements. Here, we show that ants, which have the largest odorant receptor repertoires among insects, employ a different mechanism to regulate gene expression from tandem arrays. Using single-nucleus RNA sequencing, we found that ant olfactory sensory neurons choose different transcription start sites along an array but then produce mRNA from many downstream genes. This can result in transcripts from dozens of receptors being present in a single nucleus. Such rampant receptor co-expression at first seems difficult to reconcile with the narrow tuning of the ant olfactory system. However, RNA fluorescence in situ hybridization showed that only mRNA from the most upstream transcribed odorant receptor seems to reach the cytoplasm where it can be translated into protein, whereas mRNA from downstream receptors gets sequestered in the nucleus. This implies that, despite the extensive co-expression of odorant receptor genes, each olfactory sensory neuron ultimately only produces one or very few functional receptors. Evolution has thus found different molecular solutions in insects and mammals to the convergent challenge of selecting small subsets of receptors from large odorant receptor repertoires.
Collapse
Affiliation(s)
- Anindita Brahma
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - P Daniel H Pastor
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Patrick K Piekarski
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
17
|
Li Q, Zhang YF, Zhang TM, Wan JH, Zhang YD, Yang H, Huang Y, Xu C, Li G, Lu HM. iORbase: A database for the prediction of the structures and functions of insect olfactory receptors. INSECT SCIENCE 2023; 30:1245-1254. [PMID: 36519267 DOI: 10.1111/1744-7917.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Insect olfactory receptors (iORs) with atypical 7-transmembrane domains, unlike Chordata olfactory receptors, are not in the GPCR protein family. iORs selectively bind to volatile ligands in the environment and affect essential insect behaviors. In this study, we constructed a new platform (iORbase, https://www.iorbase.com) for the structural and functional analysis of iORs based on a combined algorithm for gene annotation and protein structure prediction. Moreover, it provides the option to calculate the binding affinities and binding residues between iORs and pheromone molecules by virtual screening of docking. Furthermore, iORbase supports the automatic structural and functional prediction of user-submitted iORs or pheromones. iORbase contains the well-analyzed results of approximately 6 000 iORs and their 3D protein structures identified from 59 insect species and 2 077 insect pheromones from the literature, as well as approximately 12 million pairs of simulated interactions between functional iORs and pheromones. We also built 4 online modules, iORPDB, iInteraction, iModelTM, and iOdorTool to easily retrieve and visualize the 3D structures and interactions. iORbase can help greatly improve the experimental efficiency and success rate, identify new insecticide targets, or develop electronic nose technology. This study will shed light on the olfactory recognition mechanism and evolutionary characteristics from the perspectives of omics and macroevolution.
Collapse
Affiliation(s)
- Qian Li
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yi-Feng Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Tian-Min Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jia-Hui Wan
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yu-Dan Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui-Meng Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
18
|
Mariette J, Noël A, Louis T, Montagné N, Chertemps T, Jacquin-Joly E, Marion-Poll F, Sandoz JC. Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors. Front Mol Neurosci 2023; 16:1182361. [PMID: 37645702 PMCID: PMC10461100 DOI: 10.3389/fnmol.2023.1182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Amélie Noël
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Cao S, Shi C, Wang B, Xiu P, Wang Y, Liu Y, Wang G. Evolutionary shifts in pheromone receptors contribute to speciation in four Helicoverpa species. Cell Mol Life Sci 2023; 80:199. [PMID: 37421463 PMCID: PMC11072504 DOI: 10.1007/s00018-023-04837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Male moths utilize their pheromone communication systems to distinguish potential mates from other sympatric species, which contributes to maintaining reproductive isolation and even drives speciation. The molecular mechanisms underlying the evolution of pheromone communication systems are usually studied between closely-related moth species for their similar but divergent traits associated with pheromone production, detection, and/or processing. In this study, we first identified the functional differentiation in two orthologous pheromone receptors, OR14b, and OR16, in four Helicoverpa species, Helicoverpa armigera, H. assulta, H. zea, and H. gelotopoeon. To understand the substrate response specificity of these two PRs, we performed all-atom molecular dynamics simulations of OR14b and OR16 based on AlphaFold2 structural prediction, and molecular docking, allowing us to predict a few key amino acids involved in substrate binding. These candidate residues were further tested and validated by site-directed mutagenesis and functional analysis. These results together identified two hydrophobic amino acids at positions 164 and 232 are the determinants of the response specificity of HarmOR14b and HzeaOR14b to Z9-14:Ald and Z9-16:Ald by directly interacting with the substrates. Interestingly, in OR16 orthologs, we found that position 66 alone determines the specific binding of Z11-16:OH, likely via allosteric interactions. Overall, we have developed an effective integrated method to identify the critical residues for substrate selectivity of ORs and elucidated the molecular mechanism of the diversification of pheromone recognition systems.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base On Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
20
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Liu WB, Li HM, Wang GR, Cao HQ, Wang B. Conserved Odorant Receptor, EcorOR4, Mediates Attraction of Mated Female Eupeodes corollae to 1-Octen-3-ol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1837-1844. [PMID: 36682010 DOI: 10.1021/acs.jafc.2c06132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odorant receptors (ORs) in insects are crucial for the detection of chemical signals. However, the functions of the conserved OR genes among insect species are rarely studied. In this study, we analyzed a well-conserved OR clade in Diptera insects and cloned a gene from this clade, EcorOR4, in the hoverfly Eupeodes corollae. Real-time quantitative PCR showed that EcorOR4 was highly expressed in the antennae and upregulated in the mated females, and in vitro functional characterization showed that EcorOR4 was narrowly tuned to 1-octen-3-ol. Electroantennogram assays revealed that the antennal response of mated females to 1-octen-3-ol was significantly higher than that of mated males, but no significant differences were observed between male and female virgins. Finally, a Y-tube olfactometer bioassay showed that 1-octen-3-ol is an attractant for only mated female E. corollae adults. These results demonstrate that EcorOR4 is involved in the detection of 1-octen-3-ol and that this compound may affect the host-finding and oviposition behavior in female E. corollae.
Collapse
Affiliation(s)
- Wen-Biao Liu
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui-Min Li
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hai-Qun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
22
|
Johny J, Diallo S, Lukšan O, Shewale M, Kalinová B, Hanus R, Große-Wilde E. Conserved orthology in termite chemosensory gene families. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1065947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Termites are eusocial insects known to use a variety of pheromones in tasks necessary for maintenance of their societies. As such, olfaction and pheromone communication in termites has been an object of intense study; trail-following pheromones (TFPs) and sex-pairing pheromones (SPPs), for example, have been identified in many termite species. In contrast, the molecular basis of olfactory detection is understudied in the group. Here, we present chemosensory genes of three species of termites belonging to three distinct lineages, Neotermes cubanus (Kalotermitidae), Prorhinotermes simplex (Rhinotermitidae), and Inquilinitermes inquilinus (Termitidae). Using antennal transcriptome screening of termite workers, we identified the chemosensory genes, which allowed us to perform phylogenetic analysis. We found a comparatively large repertoires of odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), and sensory neuron membrane proteins (SNMPs). The evolutionary analysis of termite chemosensory genes revealed Isoptera-specific expansions with a 1:1 orthologous pattern, indicating the existence of conserved olfactory functions. Our findings on basal eusocial insects will further enhance our understanding of the molecular underpinnings of eusociality and the evolution of olfactory communication in termites.
Collapse
|
23
|
Sun H, Bu LA, Su SC, Guo D, Gao CF, Wu SF. Knockout of the odorant receptor co-receptor, orco, impairs feeding, mating and egg-laying behavior in the fall armyworm Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103889. [PMID: 36493964 DOI: 10.1016/j.ibmb.2022.103889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The olfactory transduction system of insects is involved in multiple behavioral processes such as foraging, mating, and egg-laying behavior. In the insect olfactory receptor neurons (ORNs), the odorant receptor co-receptor (Orco) is an obligatory component that is required for dimerization with odorant receptors (ORs) to form a ligand-gated ion channel complex. The ORs/Orco heteromeric complex plays a crucial role in insect olfaction. To explore the function of OR-mediated olfaction in the physiological behavior of the fall armyworm, Spodoptera frugiperda, we applied CRISPR/Cas9 genome editing to mutate its Orco gene and constructed a homozygous mutant strain of Orco (Orco-/-) by genetic crosses. Electroantennogram (EAG) analysis showed that the responses of Orco-/- male moths to two universal sex pheromones, Z9-14: Ac and Z7-12: Ac, were abolished. We found that Orco-/- males cannot successfully mate with female moths. An oviposition preference assay confirmed that Orco-/- female moths had a reduced preference for the optimal host plant maize. A larval feeding assay revealed that the time for Orco-/- larvae to locate the food source was significantly longer than in the wild-type. Overall, in the absence of Orco, the OR-dependent olfactory behavior was impaired in both larval and adult stages. Our results confirm that Orco is essential for multiple behavioral processes related to olfaction in the fall armyworm.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Ling-Ao Bu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Shao-Cong Su
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
24
|
Kohlmeier P, Billeter JC. Genetic mechanisms modulating behaviour through plastic chemosensory responses in insects. Mol Ecol 2023; 32:45-60. [PMID: 36239485 PMCID: PMC10092625 DOI: 10.1111/mec.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the genetic mechanisms that regulate neuronal sensitivity, and by that behaviour, typically *omics approaches, such as RNA- and protein-sequencing, are applied to sensory organs of individuals displaying differences in behaviour. In this review, we discuss these genetic mechanisms and how they impact neuronal sensitivity, summarize the correlative and functional evidence for their role in regulating behaviour and discuss future directions. As such, this review can help interpret *omics data by providing a comprehensive list of already identified genes and mechanisms that impact behaviour through changes in neuronal sensitivity.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Zhu X, Yu Q, Gan X, Song L, Zhang K, Zuo T, Zhang J, Hu Y, Chen Q, Ren B. Transcriptome Analysis and Identification of Chemosensory Genes in Baryscapus dioryctriae (Hymenoptera: Eulophidae). INSECTS 2022; 13:1098. [PMID: 36555008 PMCID: PMC9780838 DOI: 10.3390/insects13121098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Baryscapus dioryctriae is a pupal endoparasitoid of many Pyralidae pests and has been used as a biocontrol agent against insect pests that heavily damage the cone and seed of the Korean pine. The olfactory system of wasps plays an essential role in sensing the chemical signals during their foraging, mating, host location, etc., and the chemosensory genes are involved in detecting and transducing these signals. Many chemosensory genes have been identified from the antennae of Hymenoptera; however, there are few reports on the chemosensory genes of Eulophidae wasps. In this study, the transcriptome databases based on ten different tissues of B. dioryctriae were first constructed, and 274 putative chemosensory genes, consisting of 27 OBPs, 9 CSPs, 3 NPC2s, 155 ORs, 49 GRs, 23 IRs and 8 SNMPs genes, were identified based on the transcriptomes and manual annotation. Phylogenetic trees of the chemosensory genes were constructed to investigate the orthologs between B. dioryctriae and other insect species. Additionally, twenty-eight chemosensory genes showed female antennae- and ovipositor-biased expression, which was validated by RT-qPCR. These findings not only built a molecular basis for further research on the processes of chemosensory perception in B. dioryctriae, but also enriched the identification of chemosensory genes from various tissues of Eulophidae wasps.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Qiling Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Xingyu Gan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Kaipeng Zhang
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Tongtong Zuo
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Ying Hu
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| |
Collapse
|
27
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
28
|
Comparisons of chemosensory gene repertoires in human and non-human feeding Anopheles mosquitoes link olfactory genes to anthropophily. iScience 2022; 25:104521. [PMID: 35754720 PMCID: PMC9213756 DOI: 10.1016/j.isci.2022.104521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
We investigate the genetic basis of anthropophily (human host use) in a non-model mosquito species group, the Anopheles farauti complex from the southwest Pacific. This complex has experienced multiple transitions from anthropophily to zoophily, contrasting with well-studied systems (the global species Aedes aegypti and the African Anopheles gambiae complex) that have evolved to be specialist anthropophiles. By performing tests of selection and assessing evolutionary patterns for >200 olfactory genes from nine genomes, we identify several candidate genes associated with differences in anthropophily in this complex. Based on evolutionary patterns (phylogenetic relationships, fixed amino acid differences, and structural differences) as well as results from selection analyses, we identify numerous genes that are likely to play an important role in mosquitoes’ ability to detect humans as hosts. Our findings contribute to the understanding of the evolution of insect olfactory gene families and mosquito host preference as well as having potential applied outcomes. Genomes of Anopheles mosquitoes with differing host preferences were sequenced Evolutionary comparisons were performed on >200 insect chemosensory genes These comparisons revealed candidate genes involved in human feeding Two of the main candidates identified were co-receptor Ir8a and Or75
Collapse
|
29
|
Fleischer J, Rausch A, Dietze K, Erler S, Cassau S, Krieger J. A small number of male-biased candidate pheromone receptors are expressed in large subsets of the olfactory sensory neurons in the antennae of drones from the European honey bee Apis mellifera. INSECT SCIENCE 2022; 29:749-766. [PMID: 34346151 DOI: 10.1111/1744-7917.12960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In the European honey bee (Apis mellifera), the olfactory system is essential for foraging and intraspecific communication via pheromones. Honey bees are equipped with a large repertoire of olfactory receptors belonging to the insect odorant receptor (OR) family. Previous studies have indicated that the transcription level of a few OR types including OR11, a receptor activated by the queen-released pheromone compound (2E)-9-oxodecenoic acid (9-ODA), is significantly higher in the antenna of males (drones) than in female workers. However, the number and distribution of antennal cells expressing male-biased ORs is elusive. Here, we analyzed antennal sections from bees by in situ hybridization for the expression of the male-biased receptors OR11, OR18, and OR170. Our results demonstrate that these receptors are expressed in only moderate numbers of cells in the antennae of females (workers and queens), whereas substantially higher cell numbers express these ORs in drones. Thus, the reported male-biased transcript levels are due to sex-specific differences in the number of antennal cells expressing these receptors. Detailed analyses for OR11 and OR18 in drone antennae revealed expression in two distinct subsets of olfactory sensory neurons (OSNs) that in total account for approximately 69% of the OR-positive cells. Such high percentages of OSNs expressing given receptors are reminiscent of male-biased ORs in moths that mediate the detection of female-released sex pheromone components. Collectively, our findings indicate remarkable similarities between male antennae of bees and moths and support the concept that male-biased ORs in bee drones serve the detection of female-emitted sex pheromones.
Collapse
Affiliation(s)
- Joerg Fleischer
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Alexander Rausch
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Kathrin Dietze
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| |
Collapse
|
30
|
Rihani K, Sachse S. Shedding Light on Inter-Individual Variability of Olfactory Circuits in Drosophila. Front Behav Neurosci 2022; 16:835680. [PMID: 35548690 PMCID: PMC9084309 DOI: 10.3389/fnbeh.2022.835680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/25/2022] Open
Abstract
Inter-individual differences in behavioral responses, anatomy or functional properties of neuronal populations of animals having the same genotype were for a long time disregarded. The majority of behavioral studies were conducted at a group level, and usually the mean behavior of all individuals was considered. Similarly, in neurophysiological studies, data were pooled and normalized from several individuals. This approach is mostly suited to map and characterize stereotyped neuronal properties between individuals, but lacks the ability to depict inter-individual variability regarding neuronal wiring or physiological characteristics. Recent studies have shown that behavioral biases and preferences to olfactory stimuli can vary significantly among individuals of the same genotype. The origin and the benefit of these diverse "personalities" is still unclear and needs to be further investigated. A perspective taken into account the inter-individual differences is needed to explore the cellular mechanisms underlying this phenomenon. This review focuses on olfaction in the vinegar fly Drosophila melanogaster and summarizes previous and recent studies on odor-guided behavior and the underlying olfactory circuits in the light of inter-individual variability. We address the morphological and physiological variabilities present at each layer of the olfactory circuitry and attempt to link them to individual olfactory behavior. Additionally, we discuss the factors that might influence individuality with regard to olfactory perception.
Collapse
Affiliation(s)
- Karen Rihani
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| |
Collapse
|
31
|
Task D, Lin CC, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis GSXE, Li H, Menuz K, Potter CJ. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 2022; 11:e72599. [PMID: 35442190 PMCID: PMC9020824 DOI: 10.7554/elife.72599] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.
Collapse
Affiliation(s)
- Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mortimer B. Zuckermann Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Alina Vulpe
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sydney Ballou
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Karen Menuz
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
32
|
Gao SS, Li RM, Xue S, Zhang YC, Zhang YL, Wang JS, Zhang KP. Odorant Binding Protein C17 Contributes to the Response to Artemisia vulgaris Oil in Tribolium castaneum. FRONTIERS IN TOXICOLOGY 2022; 3:627470. [PMID: 35387178 PMCID: PMC8979489 DOI: 10.3389/ftox.2021.627470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
The red flour beetle, Tribolium castaneum (T. castaneum), generates great financial losses to the grain storage and food processing industries. Previous studies have shown that essential oil (EO) from Artemisia vulgaris (A. vulgaris) has strong contact toxicity to larvae of the beetle, and odorant-binding proteins (OBPs) contribute to the defense of larvae against A. vulgaris. However, the functions of OBPs in insects defending against plant oil is still not clear. Here, expression of one OBP gene, TcOBPC17, was significantly induced 12–72 h after EO exposure. Furthermore, compared to the control group, RNA interference (RNAi) against TcOBPC17 resulted in a higher mortality rate after EO treatment, which suggests that TcOBPC17 involves in the defense against EO and induces a declining sensitivity to EO. In addition, the tissue expression profile analysis revealed that the expression of TcOBPC17 was more abundant in the metabolic detoxification organs of the head, fat body, epidermis, and hemolymph than in other larval tissue. The expression profile of developmental stages showed that TcOBPC17 had a higher level in early and late adult stages than in other developmental stages. Taken together, these results suggest that TcOBPC17 could participate in the sequestration process of exogenous toxicants in T. castaneum larvae.
Collapse
Affiliation(s)
- Shan-Shan Gao
- Department of Food and Bioengineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Rui-Min Li
- Department of Food and Bioengineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuang Xue
- Department of Food and Bioengineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Yuan-Chen Zhang
- Department of Food and Bioengineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Yong-Lei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing-Shun Wang
- Department of Food and Bioengineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Kun-Peng Zhang
- Department of Food and Bioengineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
33
|
Stoldt M, Macit MN, Collin E, Foitzik S. Molecular (co)evolution of hymenopteran social parasites and their hosts. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100889. [PMID: 35181562 DOI: 10.1016/j.cois.2022.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Social parasitism describes a fascinating way of life in which species exploit the altruistic behaviour of closely related, social species. Social parasites have repeatedly evolved in the social Hymenoptera, including ants, bees, and wasps. The common ancestry and shared (social) environment with their hosts facilitates the study of molecular adaptations to the parasitic lifestyle. Moreover, when social parasites are widespread and virulent, they exert strong selection pressure on their hosts, leading to the evolution of defense mechanisms and triggering a coevolutionary arms race. Recent advances in sequencing technology now make it possible to study the molecular basis of this coevolutionary process. In addition to describing the latest developments, we highlight open research questions that could be tackled with genomic, transcriptomic, or epigenetic data.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Maide Nesibe Macit
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erwann Collin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Oi CA. Honeybee queen mandibular pheromone fails to regulate ovary activation in the common wasp. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:297-302. [PMID: 35028724 DOI: 10.1007/s00359-021-01531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
The queen mandibular pheromone (QMP) identified from the honeybee is responsible for maintaining reproductive division of labour in the colony, and affects multiple behaviours. Interestingly, QMP inhibits reproduction not only in honeybee workers, but also in distantly related insect species such as fruit flies and bumblebees. This study examines whether QMP also affects worker reproduction in the common wasp Vespula vulgaris. Wasp workers were exposed to one of the following treatments: QMP, wasp queen pheromone (the hydrocarbon heptacosane n-C27), or acetone (solvent-only control). After dissecting the workers, no evidence that QMP inhibits development in V. vulgaris could be found. However, this study could confirm the inhibitory effect of the hydrocarbon heptacosane on ovary activation. The reason why non-social species such as the fruit fly and social species such as bumblebees and ants respond to the QMP, while the social wasp V. vulgaris does not, is unclear. The investigation of whether olfaction is key to sensing QMP in other insect species, and the detailed study of odorant receptors in other social insects, may provide insights into the mechanisms of response to this pheromone.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Zeng H, Millar JG, Chen L, Keller L, Ross KG. Characterization of Queen Supergene Pheromone in the Red Imported Fire Ant Using Worker Discrimination Assays. J Chem Ecol 2021; 48:109-120. [PMID: 34850312 DOI: 10.1007/s10886-021-01336-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
Ants use chemical signals to communicate for various purposes related to colony function. Social organization in the red imported fire ant, Solenopsis invicta, is determined by the Sb supergene, with colonies of the monogyne (single-queen) form lacking the element and colonies of the polygyne (multiple-queen) form possessing it. Polygyne workers accept new reproductive queens in their nest, but only those carrying Sb; young winged queens lacking this genetic element are executed as they mature sexually in their natal nest or as they attempt to enter a foreign nest to initiate reproduction after mating and shedding their wings. It has been suggested that queen supergene genotype status is signaled to workers by unsaturated cuticular hydrocarbons, while queen reproductive status is signaled by piperidines (venom alkaloids). We used high-throughput behavioral assays to study worker acceptance of paper dummies dosed with fractions of extracts of polygyne queens, or blends of synthetic counterparts of queen cuticular compounds. We show that the queen supergene pheromone comprises a blend of monoene and diene unsaturated hydrocarbons. Our assays also reveal that unsaturated hydrocarbons elicit discrimination by polygyne workers only when associated with additional compounds that signal queen fertility. This synergistic effect was obtained with a polar fraction of queen extracts, but not by the piperidine alkaloids, suggesting that the chemical(s) indicating queen reproductive status are compounds more polar than cuticular hydrocarbons but are not the piperidine alkaloids. Our results advance understanding of the role of chemical signaling that is central to the regulation of social organization in an important invasive pest and model ant species.
Collapse
Affiliation(s)
- Haolin Zeng
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA, USA
| | - Li Chen
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Mika K, Benton R. Olfactory Receptor Gene Regulation in Insects: Multiple Mechanisms for Singular Expression. Front Neurosci 2021; 15:738088. [PMID: 34602974 PMCID: PMC8481607 DOI: 10.3389/fnins.2021.738088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
The singular expression of insect olfactory receptors in specific populations of olfactory sensory neurons is fundamental to the encoding of odors in patterns of neuronal activity in the brain. How a receptor gene is selected, from among a large repertoire in the genome, to be expressed in a particular neuron is an outstanding question. Focusing on Drosophila melanogaster, where most investigations have been performed, but incorporating recent insights from other insect species, we review the multilevel regulatory mechanisms of olfactory receptor expression. We discuss how cis-regulatory elements, trans-acting factors, chromatin modifications, and feedback pathways collaborate to activate and maintain expression of the chosen receptor (and to suppress others), highlighting similarities and differences with the mechanisms underlying singular receptor expression in mammals. We also consider the plasticity of receptor regulation in response to environmental cues and internal state during the lifetime of an individual, as well as the evolution of novel expression patterns over longer timescales. Finally, we describe the mechanisms and potential significance of examples of receptor co-expression.
Collapse
Affiliation(s)
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
|
39
|
Shaw KH, Dent CI, Johnson TK, Anderson A, de Bruyne M, Warr CG. Natural variation at the Drosophila melanogaster Or22 odorant receptor locus is associated with changes in olfactory behaviour. Open Biol 2021; 11:210158. [PMID: 34582710 PMCID: PMC8478520 DOI: 10.1098/rsob.210158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In insects, many critical olfactory behaviours are mediated by the large odorant receptor (Or) gene family, which determines the response properties of different classes of olfactory receptor neurons (ORNs). While ORN responses are generally conserved within and between Drosophila species, variant alleles of the D. melanogaster Or22 locus have previously been shown to alter the response profile of an ORN class called ab3A. These alleles show potential clinal variation, suggesting that selection is acting at this locus. Here, we investigated if the changes seen in ab3A responses lead to changes in olfactory-related behaviours. We show that variation at the Or22 locus and in the ab3A neurons are not fully compensated for by other ORNs and lead to overall changes in antennal odorant detection. We further show that this correlates with differences in odorant preference behaviour and with differences in oviposition site preference, with flies that have the chimaeric short allele strongly preferring to oviposit on banana. These findings indicate that variation at the Or22 locus leads to changes in olfactory-driven behaviours, and add support to the idea that the ab3A neurons are of especial importance to the ecology of Drosophila flies.
Collapse
Affiliation(s)
- Katherine H. Shaw
- Tasmanian School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Craig I. Dent
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Travis K. Johnson
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Alisha Anderson
- Ecosystems Sciences, CSIRO, Black Mountain, Australian Capital Territory 2601, Australia
| | - Marien de Bruyne
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Coral G. Warr
- Tasmanian School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia,School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia,School of Molecular Sciences, La Trobe University, Bundoora 3083, Victoria, Australia
| |
Collapse
|
40
|
Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps. Mol Biol Evol 2021; 38:3832-3846. [PMID: 34151983 PMCID: PMC8383895 DOI: 10.1093/molbev/msab023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.
Collapse
Affiliation(s)
- Andrew W Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Sara E Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Matthieu F Fuchs
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Ugajin A, Ozaki K. Coexpression of Three Odorant-Binding Protein Genes in the Foreleg Gustatory Sensilla of Swallowtail Butterfly Visualized by Multicolor FISH Analysis. FRONTIERS IN INSECT SCIENCE 2021; 1:696179. [PMID: 38468877 PMCID: PMC10926539 DOI: 10.3389/finsc.2021.696179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 03/13/2024]
Abstract
Lepidopteran insects are mostly monophagous or oligophagous. Female butterflies distinguish their host plants by detecting a combination of specific phytochemicals through the gustatory sensilla densely distributed on their foreleg tarsi, thereby ensuring oviposition on appropriate host plants. In this study, to gain insight into the molecular mechanism underlying host plant recognition by the gustatory sensilla, using Asian swallowtail, Papilio xuthus, we focused on a family of small soluble ligand-binding molecules, odorant-binding proteins (OBPs), and found that three OBP genes showed enriched expression in the foreleg tarsus. Multicolor fluorescence in situ hybridization analyses demonstrated the coexpression of these three OBP genes at the bases of the foreleg gustatory sensilla. Further analyses on other appendages revealed that PxutOBP3 was exclusively expressed in the tissues which could have direct contact with the leaf surface, suggesting that this OBP gene specifically plays an important role in phytochemicals perception.
Collapse
|
42
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
43
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
44
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
45
|
Gonzalez F, Johny J, Walker WB, Guan Q, Mfarrej S, Jakše J, Montagné N, Jacquin-Joly E, Alqarni AS, Al-Saleh MA, Pain A, Antony B. Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum. Sci Rep 2021; 11:8334. [PMID: 33859212 PMCID: PMC8050089 DOI: 10.1038/s41598-021-87348-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the red palm weevil (RPW), which is the biggest threat to palms in Asia and Europe. For both species, semiochemicals have been used for management. However, their control is far from complete. We generated an adult antennal transcriptome from APW and annotated chemosensory related gene families to obtain a better understanding of these species' olfaction mechanism. We identified unigenes encoding 37 odorant-binding proteins (OBPs), ten chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), seven gustatory receptors (GRs), 63 odorant receptors (ORs), and 28 ionotropic receptors (IRs). Noticeably, we find out the R. ferrugineus pheromone-binding protein and pheromone receptor orthologs from R. palmarum. Candidate genes identified and annotated in this study allow us to compare these palm weevils' chemosensory gene sets. Most importantly, this study provides the foundation for functional studies that could materialize as novel pest management strategies.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Research and Development, ChemTica Internacional S.A., Santo Domingo, Heredia, Costa Rica
| | - Jibin Johny
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - William B Walker
- Department To Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Qingtian Guan
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Sara Mfarrej
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Abdulaziz S Alqarni
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Ali Al-Saleh
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Binu Antony
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
46
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
47
|
Antony B, Johny J, Montagné N, Jacquin-Joly E, Capoduro R, Cali K, Persaud K, Al-Saleh MA, Pain A. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol Ecol 2021; 30:2025-2039. [PMID: 33687767 DOI: 10.1111/mec.15874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Palm trees are of immense economic, sociocultural, touristic, and patrimonial significance all over the world, and date palm-related knowledge, traditions, and practices are now included in UNESCOs list of the Intangible Cultural Heritage of Humanity. Of all the pests that infest these trees, the red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is its primary enemy. The RPW is a category-1 quarantine insect pest that causes enormous economic losses in palm tree cultivation worldwide. The RPW synchronizes mass gathering on the palm tree for feeding and mating, regulated by a male-produced pheromone composed of two methyl-branched compounds, (4RS, 5RS)-4-methylnonan-5-ol (ferrugineol) and 4(RS)-methylnonan-5-one (ferrugineone). Despite the importance of odorant detection in long-range orientation towards palm trees, palm colonization, and mating, the pheromone receptor has not been identified in this species. In this study, we report the identification and characterization of the first RPW pheromone receptor, RferOR1. Using gene silencing and functional expression in Drosophila olfactory receptor neurons, we demonstrate that RferOR1 is tuned to ferrugineol and ferrugineone and binds five other structurally related molecules. We reveal the lifetime expression of RferOR1, which correlates with adult mating success irrespective of age, a factor that could explain the wide distribution and spread of this pest. As palm weevils are challenging to control based on conventional methods, elucidation of the mechanisms of pheromone detection opens new routes for mating disruption and the early detection of this pest via the development of pheromone receptor-based biosensors.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Jibin Johny
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Khasim Cali
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Mohammed Ali Al-Saleh
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Chen Z, Traniello IM, Rana S, Cash-Ahmed AC, Sankey AL, Yang C, Robinson GE. Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic orco mutation in honey bees. J Neurogenet 2021; 35:320-332. [PMID: 33666542 DOI: 10.1080/01677063.2021.1887173] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In insects, odorant receptors facilitate olfactory communication and require the functionality of the highly conserved co-receptor gene orco. Genome editing studies in a few species of ants and moths have revealed that orco can also have a neurodevelopmental function, in addition to its canonical role in adult olfaction, discovered first in Drosophila melanogaster. To extend this analysis, we determined whether orco mutations also affect the development of the adult brain of the honey bee Apis mellifera, an important model system for social behavior and chemical communication. We used CRISPR/Cas9 to knock out orco and examined anatomical and molecular consequences. To increase efficiency, we coupled embryo microinjection with a laboratory egg collection and in vitro rearing system. This new workflow advances genomic engineering technologies in honey bees by overcoming restrictions associated with field studies. We used Sanger sequencing to quickly select individuals with complete orco knockout for neuroanatomical analyses and later validated and described the mutations with amplicon sequencing. Mutant bees had significantly fewer glomeruli, smaller total volume of all the glomeruli, and higher mean individual glomerulus volume in the antennal lobe compared to wild-type controls. RNA-Sequencing revealed that orco knockout also caused differential expression of hundreds of genes in the antenna, including genes related to neural development and genes encoding odorant receptors. The expression of other types of chemoreceptor genes was generally unaffected, reflecting specificity of CRISPR activity in this study. These results suggest that neurodevelopmental effects of orco are related to specific insect life histories.
Collapse
Affiliation(s)
- Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seema Rana
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alison L Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biochemistry Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
49
|
Arguello JR, Abuin L, Armida J, Mika K, Chai PC, Benton R. Targeted molecular profiling of rare olfactory sensory neurons identifies fate, wiring, and functional determinants. eLife 2021; 10:63036. [PMID: 33666172 PMCID: PMC7993999 DOI: 10.7554/elife.63036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Determining the molecular properties of neurons is essential to understand their development, function and evolution. Using Targeted DamID (TaDa), we characterize RNA polymerase II occupancy and chromatin accessibility in selected Ionotropic receptor (Ir)-expressing olfactory sensory neurons in Drosophila. Although individual populations represent a minute fraction of cells, TaDa is sufficiently sensitive and specific to identify the expected receptor genes. Unique Ir expression is not consistently associated with differences in chromatin accessibility, but rather to distinct transcription factor profiles. Genes that are heterogeneously expressed across populations are enriched for neurodevelopmental factors, and we identify functions for the POU-domain protein Pdm3 as a genetic switch of Ir neuron fate, and the atypical cadherin Flamingo in segregation of neurons into discrete glomeruli. Together this study reveals the effectiveness of TaDa in profiling rare neural populations, identifies new roles for a transcription factor and a neuronal guidance molecule, and provides valuable datasets for future exploration.
Collapse
Affiliation(s)
- J Roman Arguello
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Department of Ecology and Evolution Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Jan Armida
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Kaan Mika
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Phing Chian Chai
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Rossi AM, Jafari S, Desplan C. Integrated Patterning Programs During Drosophila Development Generate the Diversity of Neurons and Control Their Mature Properties. Annu Rev Neurosci 2021; 44:153-172. [PMID: 33556251 DOI: 10.1146/annurev-neuro-102120-014813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA; .,Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA;
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|