1
|
Lee G, Bae J, Jacobs JV, Lee S. Wearable heart rate sensing and critical power-based whole-body fatigue monitoring in the field. APPLIED ERGONOMICS 2024; 121:104358. [PMID: 39098207 DOI: 10.1016/j.apergo.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Whole-body fatigue (WBF) presents a concerning risk to construction workers, which can impact function and ultimately lead to accidents and diminished productivity. This study proposes a new WBF monitoring technique by applying the Critical Power (CP) model, a bioenergetic model, with a wrist-worn heart rate sensor. The authors modified the CP model to calculate WBF from the percentage of heart rate reserve (%HRR) and generated a personalized model via WBF perception surveys. Data were collected for two days from 33 workers at four construction sites. The results showed that the proposed technique can monitor field workers' perceived WBF with a mean absolute error of 12.8% and Spearman correlation coefficient of 0.83. This study, therefore, demonstrates the viability of wearable WBF monitoring on construction sites to support programs aimed at improving workplace safety and productivity.
Collapse
Affiliation(s)
- Gaang Lee
- Hole School of Construction Engineering and Management, Dept. of Civil and Environmental Engineering, Univ. of Alberta, 9211-116 St., Donadeo Innovation Centre for Engineering, Edmonton, AB, T6G2H5, Canada.
| | - JuHyeon Bae
- Tishman Construction Management Program, Dept. of Civil and Environmental Engineering, Univ. of Michigan, 2350 Hayward St., G.G Brown Bldg., Ann Arbor, MI, 48109, USA.
| | - Jesse V Jacobs
- Risk Control Services, Liberty Mutual Insurance, 157 Berkeley St., Boston, MA, 02116, USA.
| | - SangHyun Lee
- Tishman Construction Management Program, Dept. of Civil and Environmental +Engineering, Univ. of Michigan, 2350 Hayward St., G.G Brown Bldg., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Thurston TS, Weavil JC, Wan HY, Supiano MA, Kithas PA, Amann M. Hypertension restricts leg blood flow and aggravates neuromuscular fatigue during human locomotion in males. Am J Physiol Regul Integr Comp Physiol 2024; 327:R517-R524. [PMID: 39133778 DOI: 10.1152/ajpregu.00117.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024]
Abstract
Patients with hypertension (HTN) are characterized by exaggerated vascular resistance and mean arterial pressure (MAP) and a compromised leg blood flow (QL) response to exercise recruiting a small muscle mass. However, the impact of hypertension on peripheral hemodynamics and the development of neuromuscular fatigue during locomotor activities, which critically depends on QL, remain unknown. Eight HTN (143 ± 11 mmHg/95 ± 6 mmHg; 45 ± 13 yr) and eight matched (age and activity) controls (120 ± 6 mmHg/77 ± 7 mmHg; CTRL) performed constant-load cycling exercise at 25, 50, and 75 W (for 4 min each) and at 165 ± 41 W (for 5 min). Exercise-induced locomotor muscle fatigue was quantified as the pre- to postexercise change in quadriceps twitch-torque (ΔQtw, peripheral fatigue) and voluntary activation (ΔVA%, central fatigue). QL (Doppler ultrasound) and leg vascular conductance (LVC) were determined during cycling at 25, 50, and 75 W. Heart rate and ventilatory responses were recorded during all intensities. MAP during exercise was, on average, ∼21 mmHg higher (P = 0.002) and LVC ∼39% lower (P = 0.001) in HTN compared with CTRL. QL was consistently between 20 and 30% lower (P = 0.004), and heart rate was significantly higher in HTN. Exercise-induced peripheral (ΔQtw: -53 ± 19% vs. -25 ± 23%) and central (ΔVA%: -7 ± 5% vs. -3 ± 2%) fatigue was significantly greater in HTN compared with CTRL. In addition to an exaggerated MAP, LVC and QL were lower during exercise in HTN compared with CTRL. Given the critical role of QL in determining the development of neuromuscular fatigue, these hemodynamic impairments likely accounted for the faster development of neuromuscular fatigue characterizing hypertensive individuals during locomotor exercise. NEW & NOTEWORTHY The impact of primary hypertension on the cardiovascular and neuromuscular fatigue response to locomotor exercise is unknown. We compared central and peripheral hemodynamics and the development of central and peripheral fatigue during cycling exercise in patients with stage I/II hypertension and age- and activity-matched healthy individuals. In addition to a significantly elevated blood pressure, hypertensive patients were, compared with their nonhypertensive counterparts, also characterized by considerable leg blood flow limitations and impaired neuromuscular fatigue resistance.
Collapse
Affiliation(s)
- Taylor S Thurston
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Mark A Supiano
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Philip A Kithas
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Wagenblast F, Läubli T, Seibt R, Rieger MA, Steinhilber B. Wrist Extensor Muscle Fatigue During a Dual Task With Two Muscular and Cognitive Load Levels in Younger and Older Adults. HUMAN FACTORS 2024; 66:2433-2450. [PMID: 38058009 PMCID: PMC11453032 DOI: 10.1177/00187208231218196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To examine the effect of concurrent physical and cognitive demands as well as age on indicators of muscle fatigue at the wrist. BACKGROUND There are few studies examining risk indicators for musculoskeletal disorders associated with work-related physical and cognitive demands that often occur simultaneously in the workplace. METHODS Twenty-four gender-balanced older and 24 gender-balanced younger (mean age 60 and 23 years) participants performed four 30 min dual tasks. Tasks differed by the muscular load level during force tracking: 5% and 10% of maximum voluntary contraction force (MVC) and concurrent cognitive demands on the working memory: easy and difficult. Muscle fatigue was assessed by MVC decline and changes in surface electromyography (increased root mean square: RMS, decreased median frequency: MF) at the extensor digitorum (ED) and extensor carpi ulnaris (EU). RESULTS A decline in MVC was found in all participants when tracking was performed at 10% MVC (mean ± SD: 137.9 ± 49.2 - 123.0 ± 45.3 N). Irrespective of age, muscular, or cognitive load, RMS increased (ED 12.3 ± 6.5 - 14.1 ± 7.0% MVE, EU 15.4 ± 7.6 - 16.9 ± 8.6% MVE) and MF decreased (ED 85.4 ± 13.6 - 83.2 ± 12.8 Hz, EU 107.2 ± 17.1 - 104.3 ± 16.7 Hz) in both muscles. However, changes in MF of EU tended to be more pronounced in the older group at higher cognitive and lower muscular load, without reaching statistical significance. CONCLUSION Maximum voluntary contraction indicated no interaction between muscle fatigue, cognitive load, or age. However, the tendencies toward altered muscle activity due to an increase in cognitive load and older age suggest muscular adaptations while maintaining tracking performance during the onset of fatigue signs in the sEMG signal. APPLICATION If the tendencies in muscle activity are confirmed by further studies, ergonomic assessments in industrial workplaces should consider cognitive load and age when describing the risk of musculoskeletal disorders.
Collapse
Affiliation(s)
- Florestan Wagenblast
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital Tübingen, Germany
| | - Thomas Läubli
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital Tübingen, Germany
| | - Robert Seibt
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital Tübingen, Germany
| | - Monika A. Rieger
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital Tübingen, Germany
| | - Benjamin Steinhilber
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital Tübingen, Germany
| |
Collapse
|
4
|
Digranes N, Hognestad BW, Nordgreen J, Haga HA. The effect of fentanyl on immobility after noxious stimulation in isoflurane-anaesthetized pigs: Exploring the role of the serotonergic system. Vet Anaesth Analg 2024; 51:650-657. [PMID: 39396900 DOI: 10.1016/j.vaa.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To investigate if fentanyl induces immobility through activation of the serotonergic 5HT1A receptor, by using the 5HT1A-antagonist robalzotan. STUDY DESIGN A prospective, blinded, randomized, two-group study. ANIMALS A group of 12 mixed-breed pigs aged 71-79 days. METHODS The motor response to clamping a claw was assessed in isoflurane-anaesthetized pigs at baseline, then fentanyl was infused intravenously (IV) for 40 minutes and clamping was repeated. The infusion started at 20 μg kg-1 hour-1 and was increased by 60% until fentanyl produced immobility, defined as no motor response for 60 seconds. Subsequently, either robalzotan (1 mg kg-1) or the same volume of saline was injected IV and clamping was repeated. The change in response was compared with Fisher's exact test. Mean arterial blood pressure (MAP) and heart rate (HR) were extracted for 2 minutes before and after 60 seconds of clamping, and the differences compared with a Wilcoxon signed-rank test. Dynamic respiratory compliance was calculated at baseline and after fentanyl; p < 0.05. RESULTS Baseline clamping produced a motor response within 5 seconds. This was abolished by fentanyl. Robalzotan or saline did not alter this (p = 0.45). As a response to clamping, MAP and HR changed with median (range) -0.5 (-4.4 to 22.2) mmHg and -1 (-7 to 1.5), respectively, where HR changed significantly (p = 0.039). The 95% confidence interval for the effect size of fentanyl upon dynamic compliance was -3.25 to -1.65 mL cmH2O-1. CONCLUSIONS AND CLINICAL RELEVANCE No indication was found for the 5HT1A receptor to be involved in fentanyl-induced reduction of the motor response to claw clamping. The decreased compliance after fentanyl could suggest onset of chest wall rigidity.
Collapse
Affiliation(s)
- Nora Digranes
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Bente W Hognestad
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Rosano C, Chahine LM, Gay EL, Coen PM, Bohnen NI, Studenski SA, LoPresti B, Rosso AL, Huppert T, Newman AB, Royse SK, Kritchevsky SB, Glynn NW. Higher Striatal Dopamine is Related With Lower Physical Performance Fatigability in Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae209. [PMID: 39208421 PMCID: PMC11447735 DOI: 10.1093/gerona/glae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fatigability in community-dwelling older adults is highly prevalent and disabling, but lacks a treatment. Greater nigrostriatal dopaminergic signaling can ameliorate performance fatigability in healthy young adults, but its role in community-dwelling older adults is not known. We hypothesized that higher nigrostriatal dopaminergic integrity would be associated with lower performance fatigability, independent of cardiopulmonary and musculoskeletal energetics and other health conditions. METHODS In 125 older adults participating in the Study of Muscle, Mobility and Aging, performance fatigability was measured as performance deterioration during a fast 400 m walk (% slowing down from the 2nd to the 9th lap). Nigrostriatal DA integrity was measured using (+)-[11C] dihydrotetrabenazine (DTBZ) PET imaging. The binding signal was obtained separately for the subregions regulating sensorimotor (posterior putamen), reward (ventral striatum), and executive control processes (dorsal striatum). Multivariable linear regression models of performance fatigability (dependent variable) estimated the coefficients of dopamine integrity in striatal subregions, adjusted for demographics, comorbidities, and cognition. Models were further adjusted for skeletal muscle energetics (via biopsy) and cardiopulmonary fitness (via cardiopulmonary exercise testing). RESULTS Higher [11C]-DTBZ binding in the posterior putamen was significantly associated with lower performance fatigability (demographic-adjusted standardized β = -1.08, 95% CI: -1.96, -0.20); results remained independent of adjustment for other covariates, including cardiopulmonary and musculoskeletal energetics. Associations with other striatal subregions were not significant. DISCUSSION Dopaminergic integrity in the sensorimotor striatum may influence performance fatigability in older adults without clinically overt diseases, independent of other aging systems.
Collapse
Affiliation(s)
- Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lana M Chahine
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emma L Gay
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul M Coen
- AdventHealth Research Institute, Orlando, Florida, USA
| | - Nico I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Brian LoPresti
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Theodore Huppert
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B Kritchevsky
- Gerontology and Geriatric Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Nancy W Glynn
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Corcelle B, Da Silva F, Monjo F, Gioda J, Giacomo JP, Blain GM, Colson SS, Piponnier E. Immediate but not prolonged effects of submaximal eccentric vs concentric fatiguing protocols on the etiology of hamstrings' motor performance fatigue. Eur J Appl Physiol 2024; 124:3215-3226. [PMID: 38847870 DOI: 10.1007/s00421-024-05466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/12/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Our study aimed to compare the immediate and prolonged effects of submaximal eccentric (ECC) and concentric (CON) fatiguing protocols on the etiology of hamstrings' motor performance fatigue. METHODS On separate days, 16 males performed sets of 5 unilateral ECC or CON hamstrings' contractions at 80% of their 1 Repetition Maximum (1 RM) until a 20% decrement in maximal voluntary isometric contraction (MVC) torque was reached. Electrical stimulations were delivered during and after MVCs at several time points: before, throughout, immediately after (POST) and 24 h (POST 24) after the exercise. Potentiated twitch torques (T100 and T10, respectively) were recorded in response to high and low frequency paired electrical stimulations, and hamstrings' voluntary activation (VA) level was determined using the interpolated twitch technique. For statistical analysis, all indices of hamstrings' motor performance fatigue were expressed as a percentage of their respective baseline value. RESULTS At POST, T100 (ECC: -13.3%; CON: -9.7%; p < 0.001), T10 (ECC: -5.1%; CON: -11.8%; p < 0.05) and hamstrings' VA level (ECC: -3.0%; CON: -2.4%; p < 0.001) were significantly reduced from baseline, without statistical differences between fatigue conditions. At POST24, all indices of hamstrings' motor performance fatigue returned to their baseline values. CONCLUSION These results suggest that the contribution of muscular and neural mechanisms in hamstrings' motor performance fatigue may not depend on contraction type. This may have implications for practitioners, as ECC and CON strengthening could be similarly effective to improve hamstrings' fatigue resistance.
Collapse
Affiliation(s)
- Baptiste Corcelle
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France.
| | - Flavio Da Silva
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France
| | - Florian Monjo
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France
- Laboratoire Interuniversitaire de Biologie de La Motricité, Université Savoie Mont Blanc, Chambéry, Le Bourget-du-Lac, France
| | - Jennifer Gioda
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France
| | | | - Grégory M Blain
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France
| | - Serge S Colson
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France
| | - Enzo Piponnier
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR6312), Université Côte d'Azur, Boulevard du Mercantour, 06205, 261, Nice, France
| |
Collapse
|
7
|
Hayman O, Ansdell P, Angius L, Thomas K, Horsbrough L, Howatson G, Kidgell DJ, Škarabot J, Goodall S. Changes in motor unit behaviour across repeated bouts of eccentric exercise. Exp Physiol 2024; 109:1896-1908. [PMID: 39226215 PMCID: PMC11522828 DOI: 10.1113/ep092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Unaccustomed eccentric exercise (EE) is protective against muscle damage following a subsequent bout of similar exercise. One hypothesis suggests the existence of an alteration in motor unit (MU) behaviour during the second bout, which might contribute to the adaptive response. Accordingly, the present study investigated MU changes during repeated bouts of EE. During two bouts of exercise where maximal lengthening dorsiflexion (10 repetitions × 10 sets) was performed 3 weeks apart, maximal voluntary isometric torque (MVIC) and MU behaviour (quantified using high-density electromyography; HDsEMG) were measured at baseline, during (after set 5), and post-EE. The HDsEMG signals were decomposed into individual MU discharge timings, and a subset were tracked across each time point. MVIC was reduced similarly in both bouts post-EE (Δ27 vs. 23%, P = 0.144), with a comparable amount of total work performed (∼1,300 J; P = 0.905). In total, 1,754 MUs were identified and the decline in MVIC was accompanied by a stepwise increase in discharge rate (∼13%; P < 0.001). A decrease in relative recruitment was found immediately after EE in Bout 1 versus baseline (∼16%; P < 0.01), along with reductions in derecruitment thresholds immediately after EE in Bout 2. The coefficient of variation of inter-spike intervals was lower in Bout 2 (∼15%; P < 0.001). Our data provide new information regarding a change in MU behaviour during the performance of a repeated bout of EE. Importantly, such changes in MU behaviour might contribute, at least in part, to the repeated bout phenomenon.
Collapse
Affiliation(s)
- Oliver Hayman
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Center, College of Medical, Veterinary, and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paul Ansdell
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Luca Angius
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Kevin Thomas
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Lauren Horsbrough
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Glyn Howatson
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneAustralia
| | - Jakob Škarabot
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Stuart Goodall
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
8
|
Cummings M, Madhavan S. Blood flow modulation to improve motor and neurophysiological outcomes in individuals with stroke: a scoping review. Exp Brain Res 2024:10.1007/s00221-024-06941-5. [PMID: 39368025 DOI: 10.1007/s00221-024-06941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Ischemic Conditioning (IC) is a procedure involving brief periods of occlusion followed by reperfusion in stationary limbs. Blood Flow Restriction with Exercise (BFR-E) is a technique comprising blood flow restriction during aerobic or resistance exercise. Both IC and BFR-E are Blood Flow Modulation (BFM) strategies that have shown promise across various health domains and are clinically relevant for stroke rehabilitation. Despite their potential benefits, our knowledge on the application and efficacy of either intervention in stroke is limited. This scoping review aims to synthesize the existing literature on the impact of IC and BFR-E on motor and neurophysiological outcomes in individuals post-stroke. Evidence from five studies displayed enhancements in paretic leg strength, gait speed, and paretic leg fatiguability after IC. Additionally, BFR-E led to improvements in clinical performance, gait parameters, and serum lactate levels. While trends toward motor function improvement were observed post-intervention, statistically significant differences were limited. Neurophysiological changes showed inconclusive results. Our review suggests that IC and BFR-E are promising clinical approaches in stroke, however high-quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of both in stroke. Recommendations regarding future directions and clinical utility are provided.
Collapse
Affiliation(s)
- Mark Cummings
- Brain Plasticity Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Behrendt T, Bielitzki R, Behrens M, Jahns LM, Boersma M, Schega L. Acute psycho-physiological responses to submaximal constant-load cycling under intermittent hypoxia-hyperoxia vs. hypoxia-normoxia in young males. PeerJ 2024; 12:e18027. [PMID: 39376227 PMCID: PMC11457877 DOI: 10.7717/peerj.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Hypoxia and hyperoxia can affect the acute psycho-physiological response to exercise. Recording various perceptual responses to exercise is of particular importance for investigating behavioral changes to physical activity, given that the perception of exercise-induced pain, discomfort or unpleasure, and a low level of exercise enjoyment are commonly associated with a low adherence to physical activity. Therefore, this study aimed to compare the acute perceptual and physiological responses to aerobic exercise under intermittent hypoxia-hyperoxia (IHHT), hypoxia-normoxia (IHT), and sustained normoxia (NOR) in young, recreational active, healthy males. Methods Using a randomized, single-blinded, crossover design, 15 males (age: 24.5 ± 4.2 yrs) performed 40 min of submaximal constant-load cycling (at 60% peak oxygen uptake, 80 rpm) under IHHT (5 × 4 min hypoxia and hyperoxia), IHT (5 × 4 min hypoxia and normoxia), and NOR. Inspiratory fraction of oxygen during hypoxia and hyperoxia was set to 14% and 30%, respectively. Heart rate (HR), total hemoglobin (tHb) and muscle oxygen saturation (SmO2) of the right vastus lateralis muscle were continuously recorded during cycling. Participants' peripheral oxygen saturation (SpO2) and perceptual responses (i.e., perceived motor fatigue, effort perception, perceived physical strain, affective valence, arousal, motivation to exercise, and conflict to continue exercise) were surveyed prior, during (every 4 min), and after cycling. Prior to and after exercise, peripheral blood lactate concentration (BLC) was determined. Exercise enjoyment was ascertained after cycling. For statistical analysis, repeated measures analyses of variance were conducted. Results No differences in the acute perceptual responses were found between conditions (p ≥ 0.059, ηp 2 ≤ 0.18), while the physiological responses differed. Accordingly, SpO2 was higher during the hyperoxic periods during the IHHT compared to the normoxic periods during the IHT (p < 0.001, ηp 2 = 0.91). Moreover, HR (p = 0.005, ηp 2 = 0.33) and BLC (p = 0.033, ηp 2 = 0.28) were higher during IHT compared to NOR. No differences between conditions were found for changes in tHb (p = 0.684, ηp 2 = 0.03) and SmO2 (p = 0.093, ηp 2 = 0.16). Conclusion IHT was associated with a higher physiological response and metabolic stress, while IHHT did not lead to an increase in HR and BLC compared to NOR. In addition, compared to IHT, IHHT seems to improve reoxygenation indicated by a higher SpO2 during the hyperoxic periods. However, there were no differences in perceptual responses and ratings of exercise enjoyment between conditions. These results suggest that replacing normoxic by hyperoxic reoxygenation-periods during submaximal constant-load cycling under intermittent hypoxia reduced the exercise-related physiological stress but had no effect on perceptual responses and perceived exercise enjoyment in young recreational active healthy males.
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Lina-Marie Jahns
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Malte Boersma
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Pineau A, Martin A, Lepers R, Papaiordanidou M. Influence of stimulation parameters on torque development during the combined application of electrical nerve stimulation and muscle lengthening. J Neurophysiol 2024; 132:1255-1264. [PMID: 39258773 DOI: 10.1152/jn.00136.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
This study investigated the influence of stimulation parameters on torque production when combining a brief muscle lengthening with electrical stimulation. Fifteen volunteers participated in one experimental session where two distinct stimulation modalities were compared: wide-pulse high-frequency (WPHF; pulse duration: 1 ms, frequency: 100 Hz), favoring afferent pathway activation, and narrow-pulse low-frequency (NPLF; pulse duration: 0.05 ms, frequency: 20 Hz), favoring activation of the efferent pathway. Both stimulation modalities were applied to evoke 5-10% of maximal voluntary contraction either in isometric conditions (WPHF and NPLF) or in combination with a muscle lengthening (lengthening condition: WPHF + LEN and NPLF + LEN). The torque-time integral (TTI) during the stimulation trains and the muscle activity after the cessation of the stimulation trains [sustained electromyographic (EMG) activity, normalized to the maximal EMG activity] were assessed and compared between the stimulation modalities and the conditions (2-way ANOVA). An interaction effect was obtained, revealing significant differences in TTI and sustained EMG activity between WPHF + LEN and the other tested conditions (P = 0.048 and P = 0.044, respectively). TTI and sustained EMG activity were higher for WPHF + LEN (228.4 ± 105.3 Nm·s and 0.085 ± 0.070, respectively) compared to WPHF (168.4 ± 72.9 Nm·s; 0.052 ± 0.026), NPLF + LEN (136.4 ± 38.9 Nm·s; 0.031 ± 0.016), and NPLF (125.2 ± 36.1 Nm·s; 0.028 ± 0.015). The increased TTI during the WPHF + LEN condition suggests that the contribution of afferent pathways to the evoked torque can be enhanced with the muscle lengthening superimposition. They highlight the importance of using WPHF stimulation that already solicits Ia afferents, to benefit from the cumulative afferent activation induced by the muscle lengthening to further increase torque production.NEW & NOTEWORTHY The results of the present study highlight the importance of using electrical stimulation modalities that preferentially activate Ia afferents to take advantage of the superimposition of muscle lengthening to further enhance afferent pathways' contribution to evoked torque and, in turn, increase torque production. These results offer the opportunity to improve the efficacy of the wide-pulse high-frequency stimulation modality.
Collapse
Affiliation(s)
- Antoine Pineau
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Romuald Lepers
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| |
Collapse
|
12
|
Kwak M, Succi PJ, Benitez B, Mitchinson CJ, Bergstrom HC. The effects of low vs. high rating of perceived exertion clamp exercise on performance, neuromuscular, and muscle oxygen saturation responses in females. Eur J Appl Physiol 2024:10.1007/s00421-024-05607-y. [PMID: 39254687 DOI: 10.1007/s00421-024-05607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE This study examined the time course of changes in force, relative to critical force (CF), electromyographic amplitude (EMG AMP), neuromuscular efficiency (NE), and muscle oxygen saturation (SmO2), as well as time to task failure (TTF) and performance fatigability (PF) during isometric handgrip holds to failure (HTF) anchored to the rating of perceived exertion (RPE) at 3 and 7. METHODS Ten females completed pre-test maximal voluntary isometric contractions (MVICs), submaximal HTF at four percentages of MVIC, an HTF at RPE = 3 and 7, and post-test MVICs. Analyses included paired samples t-tests, repeated measures ANOVAs and planned comparisons. RESULTS TTF was not different between RPE 3 (540.4 ± 262.1 s) and 7 (592.2 ± 299.6 s), but PF for RPE 7 (42.1 ± 19.1%) was greater than RPE 3 (33.5 ± 15.4%) (p < 0.05). There were RPE-dependent decreases in force, EMG AMP, and NE across three discernable phases during the HTF (p < 0.01), but there were no significant changes in SmO2 across time. CONCLUSION Although there were overall similar patterns across time for force, neuromuscular, and muscle metabolic responses between the RPE holds, the greater PF at RPE 7 than RPE 3 may be explained by the longer sustained time above CF at RPE 7, resulting in greater accumulation of intramuscular metabolites and afferent feedback. Throughout each trial, it is possible that force was adjusted to avoid the sensory tolerance limit, and the task was ended when force could no longer be reduced to maintain the assigned RPE, resulting in a similar TTF for RPE 7 and RPE 3.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA.
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| |
Collapse
|
13
|
Zhang N, Chen C, Han P, Wang B, Yang J, Guo Q, Cao P. Short-physical performance battery: complete mediator of cognitive depressive symptoms and diabetes mellitus in hemodialysis patients. BMC Public Health 2024; 24:2318. [PMID: 39187805 PMCID: PMC11348770 DOI: 10.1186/s12889-024-19857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVE This study aimed to examine the relationship between different dimensions of depressive symptoms and the presence of diabetes mellitus in hemodialysis patients. Additionally, the study sought to elucidate the mediating effect of physical performance on this association. METHODS This was a cross-sectional multicenter study conducted between July 2020 and March 2023, involving 1024 patients from eight hemodialysis centers in Shanghai. Diabetes mellitus was based on a documented physician diagnosis and blood glucose tests. Physical performance and depressive symptoms were assessed using short-physical performance battery (SPPB) and the patient health questionnaire-9, respectively. Regression and mediation analysis were applied to statistical analysis. RESULTS Among the 1024 participants, 39.26% (n = 402) were found to have coexisting diabetes mellitus. Diminished SPPB scores (OR = 0.843, 95% CI = 0.792-0.897) and cognitive depressive symptoms (OR = 1.068, 95% CI = 1.011-1.129) exhibited significant associations with diabetes mellitus, while somatic depressive symptoms did not show a significant correlation. Notably, SPPB emerged as a complete mediator in the relationship between cognitive depressive symptoms and diabetes mellitus. The observed indirect effect of SPPB on this relationship was estimated at 0.038 (95% CI: 0.021-0.057). CONCLUSION This study showed an association between diabetes mellitus and cognitive depressive symptoms in patients undergoing hemodialysis, with physical performance appearing to mediate the relationship between diabetes mellitus and depressive symptoms.
Collapse
Affiliation(s)
- Ningning Zhang
- The Cardiovascular Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Cheng Chen
- The School of Health , Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - PeiPei Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Bojian Wang
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130021, Jilin, China
| | - Jinting Yang
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130021, Jilin, China
| | - Qi Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
| | - Pengyu Cao
- The Cardiovascular Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, Jiangsu, China.
| |
Collapse
|
14
|
Kang Z, Chen Z, Liu G. Can heat conditions affect the heart rate responses, perception of effort, and technical performance of young male football players during small-sided games? a comparative study. BMC Sports Sci Med Rehabil 2024; 16:174. [PMID: 39160597 PMCID: PMC11331650 DOI: 10.1186/s13102-024-00970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Soccer coaches often employ small-sided games (SSGs) to elicit both physiological and technical responses from players. However, numerous contextual factors can influence the outcomes of these games. This comparative study aimed to investigate how environmental temperature (< 21ºC and > 29ºC) impacts heart rate responses, perception of effort, and technical performance in young male football players during SSGs. METHODS This study compares temperatures below 21ºC (∼ 20.4 ± 0.4ºC) with temperatures above 29ºC (∼ 29.7 ± 0.6ºC). This repeated measures study design involved 60 male football players at a trained/developmental level, selected from under-16 and under-19 teams. It aimed to assess the effects of the 3v3 format, conducted repeatedly under conditions of 21ºC and above 29ºC. Throughout the games, mean heart rate responses (HRmean), measured via heart rate sensors; rate of perceived exertion (RPE), assessed using the CR-10 Borg scale; and successful passes and lost balls, tracked through an ad hoc observational analysis tool, were monitored. RESULTS No significant interactions were observed (time*age group) in meanHR (F = 0.159; p = 0.691; [Formula: see text]=0.003), RPE (F=0.646; p=0.425; [Formula: see text]=0.011), number of passes completed (F=0.204; p=0.654; [Formula: see text]=0.003), and number of lost balls (F = 0.157; p = 0.694; [Formula: see text]=0.003). Overall, significantly higher heart rate responses in mean HR (p<0.001) and RPE (p<0.001) were observed at temperatures above 29ºC, while significantly more passes were completed at temperatures below 21ºC (p<0.001). CONCLUSIONS Heat conditions significantly intensified the psychophysiological responses in players, concurrently leading to a significant impairment in the number of passes. Coaches should contemplate implementing mitigation strategies to avert performance declines during heat conditions when utilizing SSGs.
Collapse
Affiliation(s)
- ZhiHui Kang
- Public Sports Department, Ningbo University of Finance and Economics, Ningbo, 315175, Zhejiang, China
| | - Zhongju Chen
- School of Physical Education, Chizhou University, Chizhou, 247000, Anhui, China.
| | - GuiYang Liu
- Physical Education and Health Education, Udon Thani Rajabhat University, 64 Thaharn Road, Muang, Udon Thani, 41000, Thailand
| |
Collapse
|
15
|
Tremblay M, Anderson Sirois S, Verville W, Auger M, Abboud J, Descarreaux M. Acute Upper-Body and Lower-Body Neuromuscular Fatigue Effect on Baseball Pitchers' Velocity: A Pilot Study. J Strength Cond Res 2024; 38:1447-1452. [PMID: 38838214 PMCID: PMC11286153 DOI: 10.1519/jsc.0000000000004822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Tremblay, M, Anderson Sirois, S, Verville, W, Auger, M, Abboud, J, and Descarreaux, M. Acute upper-body and lower-body neuromuscular fatigue effect on baseball pitchers' velocity: A pilot study. J Strength Cond Res 38(8): 1447-1452, 2024-The purpose of this pilot study was to explore the acute effect of upper-body and lower-body neuromuscular fatigue protocols on baseball pitchers' velocity. Sixteen baseball pitchers were recruited, and a crossover design was used to meet the study purpose. Pitchers were tested twice, 7 days apart, with their upper-body and lower-body explosiveness, pitching velocity, and muscle soreness perception of their throwing arm (forearm flexors, biceps, anterior deltoid, and upper trapezius muscles) assessed before and after an upper-body and lower-body neuromuscular fatigue protocol. Two-way analysis of variances and paired t tests ( p < 0.05) were used to identify and compare prescores and postscores. Following both fatigue protocols, results revealed a significant decrease in time for pitching velocity ( p = 0.005, ηp 2 = 0.462), and increases in muscle soreness perception of the forearm flexors ( p = 0.005, ηp 2 = 0.470), anterior deltoid ( p = 0.045, ηp 2 = 0.274), and upper trapezius ( p = 0.023, ηp 2 = 0.339) muscles. Paired t test results showed a significant decrease in preneuromuscular and postneuromuscular fatigue protocol in the upper-body ( p < 0.01) and lower-body ( p < 0.01) explosiveness scores. These pilot study results show the impact of different exercise protocols on pitchers' explosiveness, velocity, and muscle soreness perception emphasizing the need for further investigation into the acute effect of exercise targeting the upper or lower-body on pitching performance, specifically at the pitcher's position.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; and
- Department of Human Kinetics, Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| | - Samuel Anderson Sirois
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; and
- Department of Human Kinetics, Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| | - William Verville
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; and
- Department of Human Kinetics, Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| | - Mathis Auger
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; and
- Department of Human Kinetics, Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| | - Jacques Abboud
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; and
- Department of Human Kinetics, Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| | - Martin Descarreaux
- Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; and
- Department of Human Kinetics, Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| |
Collapse
|
16
|
Gupta A, Nicholas R, McGing JJ, Nixon AV, Mallinson JE, McKeever TM, Bradley CR, Piasecki M, Cox EF, Bonnington J, Lord JM, Brightling CE, Evans RA, Hall IP, Francis ST, Greenhaff PL, Bolton CE. DYNamic Assessment of Multi-Organ level dysfunction in patients recovering from COVID-19: DYNAMO COVID-19. Exp Physiol 2024; 109:1274-1291. [PMID: 38923603 PMCID: PMC11291868 DOI: 10.1113/ep091590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
We evaluated the impacts of COVID-19 on multi-organ and metabolic function in patients following severe hospitalised infection compared to controls. Patients (n = 21) without previous diabetes, cardiovascular or cerebrovascular disease were recruited 5-7 months post-discharge alongside controls (n = 10) with similar age, sex and body mass. Perceived fatigue was estimated (Fatigue Severity Scale) and the following were conducted: oral glucose tolerance (OGTT) alongside whole-body fuel oxidation, validated magnetic resonance imaging and spectroscopy during resting and supine controlled exercise, dual-energy X-ray absorptiometry, short physical performance battery (SPPB), intra-muscular electromyography, quadriceps strength and fatigability, and daily step-count. There was a greater insulin response (incremental area under the curve, median (inter-quartile range)) during the OGTT in patients [18,289 (12,497-27,448) mIU/min/L] versus controls [8655 (7948-11,040) mIU/min/L], P < 0.001. Blood glucose response and fasting and post-prandial fuel oxidation rates were not different. This greater insulin resistance was not explained by differences in systemic inflammation or whole-body/regional adiposity, but step-count (P = 0.07) and SPPB scores (P = 0.004) were lower in patients. Liver volume was 28% greater in patients than controls, and fat fraction adjusted liver T1, a measure of inflammation, was raised in patients. Patients displayed greater perceived fatigue scores, though leg muscle volume, strength, force-loss, motor unit properties and post-exercise muscle phosphocreatine resynthesis were comparable. Further, cardiac and cerebral architecture and function (at rest and on exercise) were not different. In this cross-sectional study, individuals without known previous morbidity who survived severe COVID-19 exhibited greater insulin resistance, pointing to a need for physical function intervention in recovery.
Collapse
Affiliation(s)
- Ayushman Gupta
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
- Nottingham University Hospitals NHS TrustNottinghamUK
| | - Rosemary Nicholas
- Sir Peter Mansfield Imaging Centre, School of Physics & AstronomyUniversity of NottinghamNottinghamUK
| | - Jordan J. McGing
- David Greenfield Human Physiology Unit, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Aline V. Nixon
- David Greenfield Human Physiology Unit, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Joanne E. Mallinson
- David Greenfield Human Physiology Unit, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Tricia M. McKeever
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
| | - Christopher R. Bradley
- Sir Peter Mansfield Imaging Centre, School of Physics & AstronomyUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of NottinghamNottinghamUK
| | - Eleanor F. Cox
- Sir Peter Mansfield Imaging Centre, School of Physics & AstronomyUniversity of NottinghamNottinghamUK
| | | | - Janet M. Lord
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research CentreUniversity of BirminghamBirminghamUK
| | | | - Rachael A. Evans
- NIHR Leicester Biomedical Research CentreUniversity of LeicesterLeicesterUK
| | - Ian P. Hall
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
- Nottingham University Hospitals NHS TrustNottinghamUK
| | - Susan T. Francis
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Sir Peter Mansfield Imaging Centre, School of Physics & AstronomyUniversity of NottinghamNottinghamUK
| | - Paul L. Greenhaff
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- David Greenfield Human Physiology Unit, School of Life SciencesUniversity of NottinghamNottinghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of NottinghamNottinghamUK
| | - Charlotte E. Bolton
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
- Nottingham University Hospitals NHS TrustNottinghamUK
| |
Collapse
|
17
|
Boda MR, Otieno LA, Smith AE, Goldsworthy MR, Sidhu SK. Metaplastic neuromodulation via transcranial direct current stimulation has no effect on corticospinal excitability and neuromuscular fatigue. Exp Brain Res 2024; 242:1999-2012. [PMID: 38940961 PMCID: PMC11252223 DOI: 10.1007/s00221-024-06874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool with potential for managing neuromuscular fatigue, possibly due to alterations in corticospinal excitability. However, inconsistencies in intra- and inter- individual variability responsiveness to tDCS limit its clinical use. Emerging evidence suggests harnessing homeostatic metaplasticity induced via tDCS may reduce variability and boost its outcomes, yet little is known regarding its influence on neuromuscular fatigue in healthy adults. We explored whether cathodal tDCS (ctDCS) prior to exercise combined with anodal tDCS (atDCS) could augment corticospinal excitability and attenuate neuromuscular fatigue. 15 young healthy adults (6 males, 22 ± 4 years) participated in four pseudo-randomised neuromodulation sessions: sham stimulation prior and during exercise, sham stimulation prior and atDCS during exercise, ctDCS prior and atDCS during exercise, ctDCS prior and sham stimulation during exercise. The exercise constituted an intermittent maximal voluntary contraction (MVC) of the right first dorsal interosseous (FDI) for 10 min. Neuromuscular fatigue was quantified as an attenuation in MVC force, while motor evoked potential (MEP) amplitude provided an assessment of corticospinal excitability. MEP amplitude increased during the fatiguing exercise, whilst across time, force decreased. There were no differences in MEP amplitudes or force between neuromodulation sessions. These outcomes highlight the ambiguity of harnessing metaplasticity to ameliorate neuromuscular fatigue in young healthy individuals.
Collapse
Affiliation(s)
- Madison R Boda
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lavender A Otieno
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell R Goldsworthy
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Simranjit K Sidhu
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
18
|
Lyu H, Cao X, Wang J. Comparative Effects of Fatiguing Exercise on Anticipatory and Compensatory Postural Adjustments between Trained and Untrained Individuals. Life (Basel) 2024; 14:943. [PMID: 39202685 PMCID: PMC11355520 DOI: 10.3390/life14080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
This study evaluates the effects of general fatiguing exercises on anticipatory postural adjustments (APAs), compensatory postural adjustments (CPAs), and standing stability between 18 individuals with comprehensive training experience (TR) and 18 untrained individuals (UT). Assessments were conducted before and after a 20-min fatiguing exercise using surface electromyography and a force platform during self-initiated perturbation and postural stability tests. Key findings include that, irrespective of fatigue, the APAs onsets in the TrA/IO (p = 0.004), LMF (PRE p = 0.003, POST p < 0.001), and ST (PRE p = 0.001, POST p = 0.006) muscles activated earlier in the TR group than in the UT group. Additionally, the APA co-contraction indices of the TrA/IO-LMF (PRE p = 0.011, POST p = 0.029), TrA/IO-ST (p = 0.014), and LMF-ST (PRE p = 0.002, POST p = 0.005) muscle pairs were higher in the TR group. After fatigue, the UT group significantly increased CPA co-contraction indices for the TrA/IO-LMF (p = 0.035) and LMF-ST (p = 0.005) muscle pairs. This research highlights the importance of comprehensive training in facilitating feedforward control strategies, particularly for individuals facing challenging postural conditions, such as fatigue or disturbances.
Collapse
Affiliation(s)
- Hui Lyu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
| | - Xueying Cao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Paneroni M, Cavicchia A, Beatrice S, Bertacchini L, Venturelli M, Vitacca M. The Influence of Lung Function and Respiratory Muscle Strength on Quadriceps Muscle Fatigability in COPD Patients Under Long-term Oxygen Therapy. Arch Bronconeumol 2024; 60:410-416. [PMID: 38719676 DOI: 10.1016/j.arbres.2024.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND This research investigates quadriceps muscle fatigability (MF) in chronic obstructive pulmonary disease (COPD) patients with chronic respiratory failure (CRF) at different levels of lung obstruction [severe obstruction (SO)=FEV1 <50% and >30% versus very severe obstruction (VSO)=FEV1 ≤30%]. It explores the relationships between quadriceps MF and lung function, respiratory muscles, and oxygenation status. METHODS A post hoc cross-over analysis in 45 COPD patients (20 SO and 25 VSO) undergoing long-term oxygen therapy was performed. Delta change in quadriceps maximum voluntary contraction (MVC) (absolute value and percentage) before and after a constant workload was calculated. Associations between quadriceps MF and lung function, respiratory muscles, and gas exchange were examined using Pearson's correlation and multivariate linear regression analysis. RESULTS SO patients experience a more substantial reduction in MVC compared to VSO (-15.15±9.13% vs -9.29±8.90%, p=0.0357), despite comparable resting MVC. Dyspnea is more pronounced in VSO at the beginning and end of the exercise. Correlations were found between MF and maximal inspiratory pressure (MIP) (r=-0.4412, p=0.0056), maximal expiratory pressure (MEP) (r=-0.3561, p=0.0282), and a tendency for FEV1% (r=-0.2931, p=0.0507). The regression model (R2=0.4719) indicates that lower MIP and FEV1 and high total lung capacity are significant factors in reducing quadriceps muscle fatigability after a fatiguing task. CONCLUSION COPD patients with more severe pulmonary obstruction and hyperinflation and lower respiratory muscle strength have lower quadriceps MF but higher dyspnea both at rest and during exercise.
Collapse
Affiliation(s)
- Mara Paneroni
- Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Lumezzane, Brescia, Italy.
| | - Alessandro Cavicchia
- Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Lumezzane, Brescia, Italy
| | - Salvi Beatrice
- Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Lumezzane, Brescia, Italy
| | - Laura Bertacchini
- Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Lumezzane, Brescia, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Vitacca
- Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Lumezzane, Brescia, Italy
| |
Collapse
|
20
|
Uehara L, Coelho DB, Baptista AF, Santana L, Moreira RJD, Zana Y, Malosá L, Lima T, Valentim G, Cardenas-Rojas A, Fregni F, Corrêa JCF, Corrêa FI. Does Transcranial Direct Current Stimulation reduce central and peripheral muscle fatigue in recreational runners? A triple-blind, sham-controlled, randomized, crossover clinical study. Braz J Phys Ther 2024; 28:101088. [PMID: 38936315 PMCID: PMC11260918 DOI: 10.1016/j.bjpt.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Runners seek health benefits and performance improvement. However, fatigue might be considered a limiting factor. Transcranial Direct Current Stimulation (tDCS) has been investigated to improve performance and reduce fatigue in athletes. While some studies showing that tDCS may improve a variety of physical measures, other studies failed to show any benefit. OBJECTIVE To evaluate the acute effects of tDCS on central and peripheral fatigue compared to a sham intervention in recreational runners. METHODS This is a triple-blind, controlled, crossover study of 30 recreational runners who were randomized to receive one of the two interventions, anodal or sham tDCS, after the fatigue protocol. The interventions were applied to the quadriceps muscle hotspot for 20 min. Peak torque, motor-evoked potential, and perceived exertion rate were assessed before and after the interventions, and blood lactate level was assessed before, during, and after the interventions. A generalized estimated equation was used to analyze the peak torque, motor-evoked potential, and blood lactate data, and the Wilcoxon test was used for perceived exertion rate data. RESULTS Our findings showed no difference between anodal tDCS and sham tDCS on peak torque, motor-evoked potential, blood lactate, and perceived exertion rate. CONCLUSION The tDCS protocol was not effective in improving performance and reducing fatigue compared to a sham control intervention. BRAZILIAN CLINICAL TRIALS REGISTRY RBR-8zpnxz.
Collapse
Affiliation(s)
- Laura Uehara
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Lucas Santana
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | | | - Yossi Zana
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Malosá
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Taiane Lima
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Gabriela Valentim
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - João Carlos Ferrari Corrêa
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Fernanda Ishida Corrêa
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Mousa MH, Wages NP, Elbasiouny SM. Onion skin is not a universal firing pattern for spinal motoneurons: simulation study. J Neurophysiol 2024; 132:240-258. [PMID: 38865217 PMCID: PMC11383614 DOI: 10.1152/jn.00479.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
Muscle force is modulated by sequential recruitment and firing rates of motor units (MUs). However, discrepancies exist in the literature regarding the relationship between MU firing rates and their recruitment, presenting two contrasting firing-recruitment schemes. The first firing scheme, known as "onion skin," exhibits low-threshold MUs firing faster than high-threshold MUs, forming separate layers akin to an onion. This contradicts the other firing scheme, known as "reverse onion skin" or "afterhyperpolarization (AHP)," with low-threshold MUs firing slower than high-threshold MUs. To study this apparent dichotomy, we used a high-fidelity computational model that prioritizes physiological fidelity and heterogeneity, allowing versatility in the recruitment of different motoneuron types. Our simulations indicate that these two schemes are not mutually exclusive but rather coexist. The likelihood of observing each scheme depends on factors such as the motoneuron pool activation level, synaptic input activation rates, and MU type. The onion skin scheme does not universally govern the encoding rates of MUs but tends to emerge in unsaturated motoneurons (cells firing < their fusion frequency that generates peak force), whereas the AHP scheme prevails in saturated MUs (cells firing at their fusion frequency), which is highly probable for slow (S)-type MUs. When unsaturated, fast fatigable (FF)-type MUs always show the onion skin scheme, whereas S-type MUs do not show either one. Fast fatigue-resistant (FR)-type MUs are generally similar but show weaker onion skin behaviors than FF-type MUs. Our results offer an explanation for the longstanding dichotomy regarding MU firing patterns, shedding light on the factors influencing the firing-recruitment schemes.NEW & NOTEWORTHY The literature reports two contrasting schemes, namely the onion skin and the afterhyperpolarization (AHP) regarding the relationship between motor units (MUs) firing rates and recruitment order. Previous studies have examined these schemes phenomenologically, imposing one scheme on the firing-recruitment relationship. Here, we used a high-fidelity computational model that prioritizes biological fidelity and heterogeneity to investigate motoneuron firing schemes without bias toward either scheme. Our objective findings offer an explanation for the longstanding dichotomy on MU firing patterns.
Collapse
Affiliation(s)
- Mohamed H Mousa
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Nathan P Wages
- Department of Rehabilitation and Movement Sciences, Rutgers University, Newark, New Jersey, United States
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio, United States
| |
Collapse
|
22
|
Zhang J, McClean ZJ, Khaledi N, Morgan SJ, Millet GY, Aboodarda SJ. Reliability of transcranial magnetic stimulation-evoked responses on knee extensor muscles during cycling. Exp Brain Res 2024; 242:1681-1695. [PMID: 38806709 DOI: 10.1007/s00221-024-06859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Transcranial magnetic stimulation (TMS) measures the excitability and inhibition of corticomotor networks. Despite its task-specificity, few studies have used TMS during dynamic movements and the reliability of TMS paired pulses has not been assessed during cycling. This study aimed to evaluate the reliability of motor evoked potentials (MEP) and short- and long-interval intracortical inhibition (SICI and LICI) on vastus lateralis and rectus femoris muscle activity during a fatiguing single-leg cycling task. Nine healthy adults (2 female) performed two identical sessions of counterweighted single-leg cycling at 60% peak power output until failure. Five single pulses and ten paired pulses were delivered to the motor cortex, and two maximal femoral nerve stimulations (Mmax) were administered during two baseline cycling bouts (unfatigued) and every 5 min throughout cycling (fatigued). When comparing both baseline bouts within the same session, MEP·Mmax-1 and LICI (both ICC: >0.9) were rated excellent while SICI was rated good (ICC: 0.7-0.9). At baseline, between sessions, in the vastus lateralis, Mmax (ICC: >0.9) and MEP·Mmax-1 (ICC: 0.7) demonstrated good reliability; LICI was moderate (ICC: 0.5), and SICI was poor (ICC: 0.3). Across the fatiguing task, Mmax demonstrated excellent reliability (ICC > 0.8), MEP·Mmax-1 ranged good to excellent (ICC: 0.7-0.9), LICI was moderate to excellent (ICC: 0.5-0.9), and SICI remained poorly reliable (ICC: 0.3-0.6). These results corroborate the cruciality of retaining mode-specific testing measurements and suggest that during cycling, Mmax, MEP·Mmax-1, and LICI measures are reliable whereas SICI, although less reliable across days, can be reliable within the same session.
Collapse
Affiliation(s)
- Jenny Zhang
- Faculty of Kinesiology, University of Calgary, KNB 420, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Zachary J McClean
- Faculty of Kinesiology, University of Calgary, KNB 420, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Neda Khaledi
- Faculty of Kinesiology, University of Calgary, KNB 420, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Sophie-Jayne Morgan
- Faculty of Kinesiology, University of Calgary, KNB 420, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Guillaume Y Millet
- Inter-university Laboratory of Human Movement Biology, Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Lyon 1, Saint-Etienne, F-42023, France
| | - Saied Jalal Aboodarda
- Faculty of Kinesiology, University of Calgary, KNB 420, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
23
|
Emanuel A, Haklay I, Har-Nir I, Halperin I, Liberman N. The impact of task (un)certainty on repeated grip force production. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 73:102618. [PMID: 38490595 DOI: 10.1016/j.psychsport.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Many studies found that in physical tasks, reducing certainty regarding their endpoints hinders performance. However, the impact of reducing certainty regarding other aspects of physical tasks is unknown. Here we manipulated the certainty of the required effort on an unrelated, parallel task (i.e., off-task uncertainty) and examined how it impacts force production in two within-subject experiments (N = 79). In two sessions, subjects completed 20 repetitions composed of maximal forces using a gripper with their dominant hand. Between repetitions, participants applied either submaximal constant or varied grip forces, with their non-dominant arm, matched for total forces across repetitions. While we observed trivial differences in total forces between conditions, under the varied condition, participants produced a steeper decrease in forces, suggesting that off-task uncertainty impacted their effort allocation strategy. We speculate that this pattern can be attributed to cognitive overload and/or changes in motivation stemming from the imposed uncertainty.
Collapse
Affiliation(s)
- Aviv Emanuel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel; Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel.
| | - Idan Haklay
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itai Har-Nir
- Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Israel Halperin
- Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Nira Liberman
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel; International Faculty, Key Profile Area II: Behavioral Economic Engineering and Social Cognition, University of Cologne, Germany
| |
Collapse
|
24
|
Gallardo P, Giakas G, Sakkas GK, Tsaklis PV. Are Surface Electromyography Parameters Indicative of Post-Activation Potentiation/Post-Activation Performance Enhancement, in Terms of Twitch Potentiation and Voluntary Performance? A Systematic Review. J Funct Morphol Kinesiol 2024; 9:106. [PMID: 38921642 PMCID: PMC11205249 DOI: 10.3390/jfmk9020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The aim was to identify if surface electromyography (sEMG) parameters are indicative of post-activation potentiation (PAP)/post-activation performance enhancement (PAPE), in terms of twitch potentiation and voluntary performance. Three databases were used in April 2024, with the following inclusion criteria: (a) original research, assessed in healthy human adults, and (b) sEMG parameters were measured. The exclusion criteria were (a) studies with no PAP/PAPE protocol and (b) non-randomized control trials. The following data were extracted: study characteristics/demographics, PAP/PAPE protocols, sEMG parameters, twitch/performance outcomes, and study findings. A modified physiotherapy evidence database (PEDro) scale was used for quality assessment. Fifteen randomized controlled trials (RCTs), with a total of 199 subjects, were included. The M-wave amplitude (combined with a twitch torque outcome) was shown to generally be indicative of PAP. The sEMG amplitudes (in some muscles) were found to be indicative of PAPE during ballistic movements, while a small decrease in the MdF (in certain muscles) was shown to reflect PAPE. Changes in the Hmax/Mmax ratio were found to contribute (temporally) to PAP, while the H-reflex amplitude was shown to be neither indicative of PAP nor PAPE. This review provides preliminary findings suggesting that certain sEMG parameters could be indicative of PAP/PAPE. However, due to limited studies, future research is warranted.
Collapse
Affiliation(s)
- Philip Gallardo
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Giannis Giakas
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Giorgos K. Sakkas
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Panagiotis V. Tsaklis
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
- Department Molecular Medicine and Surgery, Growth and Metabolism, Karolinska Institute, 171 77 Solna, Sweden
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.)/(C.I.R.I.), Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
25
|
Contreras-Regatero S, Vila-Rovira J. Measuring Vocal Fatigability in Teachers: The Vocal Fatigability Scale for Teachers (VFS-T). J Voice 2024:S0892-1997(24)00131-0. [PMID: 38849233 DOI: 10.1016/j.jvoice.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVES This study focuses on the distinction between vocal fatigability and vocal fatigue (VF), highlighting the importance of vocal fatigability when assessing teachers' quality of life. Vocal fatigability is more critical for quality of life than performance or perceived VF because it considers the accumulation and chronicity of fatigue over isolated tasks. The objectives are to develop and validate the Vocal Fatigability Scale for Teachers (VFS-T), to assess teachers' levels of vocal fatigability, and to analyze variations based on personal and occupational traits. The VFS-T construct encompasses items related to vocal sensations and performance, their connection to accumulated demanding vocal activity, descriptions of recovery strategies, necessary rest periods, and the impact of VF on daily activities. STUDY DESIGN A single cross-sectional study with an ex post facto design was conducted. METHODS The sample consisted of 184 active teachers with various vocal conditions. They completed the VFS-T questionnaire, provided personal and occupational data, and completed the VHI-10 questionnaire. The data collected were analyzed for item refinement, internal structure, reliability, validity, diagnostic capacity, cutoff values, and group differences. RESULTS The item refinement and internal structure analysis revealed a scale comprising 17 items grouped into two factors. The VFS-T shows good reliability and validity, with cutoffs at <15 for no fatigability, 15-27 for moderate fatigability, and >28 for high fatigability. Most teachers fall into the moderate fatigability range, with 72% experiencing vocal fatigability. CONCLUSIONS The VFS-T is a reliable tool for detecting vocal fatigability in teachers. This scale focuses on the construct of vocal fatigability, which is related to chronicity of VF and limitations in daily activities in teachers.
Collapse
Affiliation(s)
- Silvia Contreras-Regatero
- Universitat Ramon Llull, Blanquerna, Facultat de Psicologia, Ciències de l'Educació i de l'Esport, Barcelona, Spain.
| | - Josep Vila-Rovira
- Universitat Ramon Llull, Blanquerna, Facultat de Psicologia, Ciències de l'Educació i de l'Esport, Barcelona, Spain
| |
Collapse
|
26
|
Nuzzo JL. Muscle Strength Preservation During Repeated Sets of Fatiguing Resistance Exercise: A Secondary Analysis. J Strength Cond Res 2024; 38:1149-1156. [PMID: 38781472 DOI: 10.1519/jsc.0000000000004794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Nuzzo, JL. Muscle strength preservation during repeated sets of fatiguing resistance exercise: A secondary analysis. J Strength Cond Res 38(6): 1149-1156, 2024-During sustained or repeated maximal voluntary efforts, muscle fatigue (acute strength loss) is not linear. After a large initial decrease, muscle strength plateaus at approximately 40% of baseline. This plateau, which likely reflects muscle strength preservation, has been observed in sustained maximal isometric and repeated maximal isokinetic contractions. Whether this pattern of fatigue occurs with traditional resistance exercise repetitions with free weights and weight stack machines has not been overviewed. Here, the aim was to determine whether the number of repetitions completed across 4 or more consecutive repetitions-to-failure tests exhibits the same nonlinear pattern of muscle fatigue. A secondary analysis was applied to data extracted as part of a recent meta-analysis on repetitions-to-failure tests. Studies were eligible if they reported mean number of repetitions completed in 4-6 consecutive repetitions-to-failure tests at a given relative load. Twenty-nine studies were included. Overall, the results show that the number of repetitions completed in consecutive repetitions-to-failure tests at a given load generally decreases curvilinearly. The numbers of repetitions completed in sets 2, 3, 4, 5, and 6 were equal to approximately 70, 55, 50, 45, and 45% of the number of repetitions completed in set 1, respectively. Longer interset rest intervals typically attenuated repetition loss, but the curvilinear pattern remained. From the results, a chart was created to predict the number of repetitions across 6 sets of resistance exercise taken to failure based on the number of repetitions completed in set 1. The chart is a general guide and educational tool. It should be used cautiously. More data from a variety of exercises, relative loads, and interset rest intervals are needed for more precise estimates of number of repetitions completed during repeated sets of fatiguing resistance exercise.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
27
|
Angius L, Del Vecchio A, Goodall S, Thomas K, Ansdell P, Atkinson E, Farina D, Howatson G. Supraspinal, spinal, and motor unit adjustments to fatiguing isometric contractions of the knee extensors at low and high submaximal intensities in males. J Appl Physiol (1985) 2024; 136:1546-1558. [PMID: 38695356 PMCID: PMC11368526 DOI: 10.1152/japplphysiol.00675.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024] Open
Abstract
Contraction intensity is a key factor determining the development of muscle fatigue, and it has been shown to induce distinct changes along the motor pathway. The role of cortical and spinal inputs that regulate motor unit (MU) behavior during fatiguing contractions is poorly understood. We studied the cortical, spinal, and neuromuscular response to sustained fatiguing isometric tasks performed at 20% and 70% of the maximum isometric voluntary contraction (MVC), together with MU behavior of knee extensors in healthy active males. Neuromuscular function was assessed before and after performance of both tasks. Cortical and spinal responses during exercise were measured via stimulation of the motor cortex and spinal cord. High-density electromyography was used to record individual MUs from the vastus lateralis (VL). Exercise at 70%MVC induced greater decline in MVC (P = 0.023) and potentiated twitch force compared with 20%MVC (P < 0.001), with no difference in voluntary activation (P = 0.514). Throughout exercise, corticospinal responses were greater during the 20%MVC task (P < 0.001), and spinal responses increased over time in both tasks (P ≤ 0.042). MU discharge rate increased similarly after both tasks (P ≤ 0.043), whereas recruitment and derecruitment thresholds were unaffected (P ≥ 0.295). These results suggest that increased excitability of cortical and spinal inputs might be responsible for the increase in MU discharge rate. The increase in evoked responses together with the higher MU discharge rate might be required to compensate for peripheral adjustments to sustain fatiguing contractions at different intensities.NEW & NOTEWORTHY Changes in central nervous system and muscle function occur in response to fatiguing exercise and are specific to exercise intensity. This study measured corticospinal, neuromuscular, and motor unit behavior to fatiguing isometric tasks performed at different intensities. Both tasks increased corticospinal excitability and motor unit discharge rate. Our findings suggest that these acute adjustments are required to compensate for the exercise-induced decrements in neuromuscular function caused by fatiguing tasks.
Collapse
Affiliation(s)
- Luca Angius
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Elliot Atkinson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, North-West University, Potchefstroom, South Africa
| |
Collapse
|
28
|
Blazevich AJ, Mesquita RNO, Pinto RS, Pulverenti T, Ratel S. Reduction and recovery of self-sustained muscle activity after fatiguing plantar flexor contractions. Eur J Appl Physiol 2024; 124:1781-1794. [PMID: 38340155 PMCID: PMC11130039 DOI: 10.1007/s00421-023-05403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Persistent inward calcium and sodium currents (PICs) are crucial for initiation and maintenance of motoneuron firing, and thus muscular force. However, there is a lack of data describing the effects of fatiguing exercise on PIC activity in humans. We simultaneously applied tendon vibration and neuromuscular electrical stimulation (VibStim) before and after fatiguing exercise. VibStim induces self-sustained muscle activity that is proposed to result from PIC activation. METHODS Twelve men performed 5-s maximal isometric plantar flexor contractions (MVC) with 5-s rests until joint torque was reduced to 70%MVC. VibStim trials consisted of five 2-s trains of neuromuscular electrical stimulation (20 Hz, evoking 10% MVC) of triceps surae with simultaneous Achilles tendon vibration (115 Hz) without voluntary muscle activation. VibStim was applied before (PRE), immediately (POST), 5-min (POST-5), and 10-min (POST-10) after exercise completion. RESULTS Sustained torque (Tsust) and soleus electromyogram amplitudes (EMG) measured 3 s after VibStim were reduced (Tsust: -59.0%, p < 0.001; soleus EMG: -38.4%, p < 0.001) but largely recovered by POST-5, and changes in MVC and Tsust were correlated across the four time points (r = 0.69; p < 0.001). After normalisation to values obtained at the end of the vibration phase to control for changes in fibre-specific force and EMG signal characteristics, decreases in Tsust (-42.9%) and soleus EMG (-22.6%) remained significant and were each correlated with loss and recovery of MVC (r = 0.41 and 0.46, respectively). CONCLUSION The parallel changes observed in evoked self-sustained muscle activity and force generation capacity provide motivation for future examinations on the potential influence of fatigue-induced PIC changes on motoneuron output.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.
| | - Ricardo N O Mesquita
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Neuroscience Research Australia, Sydney, Australia
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Timothy Pulverenti
- Department of Physical Therapy, College of Staten Island, Staten Island, NY, USA
| | - Sébastien Ratel
- UFR STAPS - Laboratoire AME2P, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 Rue de la Chebarde, 63170, Clermont-Ferrand, France
| |
Collapse
|
29
|
Nardon M, Ferri U, Caffi G, Bartesaghi M, Perin C, Zaza A, Alessandro C. Kinematics but not kinetics alterations to single-leg drop jump movements following a subject-tailored fatiguing protocol suggest an increased risk of ACL injury. Front Sports Act Living 2024; 6:1418598. [PMID: 38832309 PMCID: PMC11144872 DOI: 10.3389/fspor.2024.1418598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Neuromuscular fatigue causes a transient reduction of muscle force, and alters the mechanisms of motor control. Whether these alterations increase the risk of anterior cruciate ligament (ACL) injury is still debated. Here we compare the biomechanics of single-leg drop jumps before and after the execution of a fatiguing exercise, evaluating whether this exercise causes biomechanical alterations typically associated with an increased risk of ACL lesion. The intensity of the fatiguing protocol was tailored to the aerobic capacity of each participant, minimizing potential differential effects due to inter-individual variability in fitness. Methods Twenty-four healthy male volunteers performed single leg drop jumps, before and after a single-set fatiguing session on a cycle ergometer until exhaustion (cadence: 65-70 revolutions per minute). For each participant, the intensity of the fatiguing exercise was set to 110% of the power achieved at their anaerobic threshold, previously identified by means of a cardiopulmonary exercise test. Joint angles and moments, as well as ground reaction forces (GRF) before and after the fatiguing exercise were compared for both the dominant and the non-dominant leg. Results Following the fatiguing exercise, the hip joint was more extended (landing: Δ=-2.17°, p = 0.005; propulsion: Δ=-1.83°, p = 0.032) and more abducted (landing: Δ=-0.72°, p = 0.01; propulsion: Δ=-1.12°, p = 0.009). Similarly, the knee joint was more extended at landing (non-dominant leg: Δ=-2.67°, p < 0.001; dominant: Δ=-1.4°, p = 0.023), and more abducted at propulsion (both legs: Δ=-0.99°, p < 0.001) and stabilization (both legs: Δ=-1.71°, p < 0.001) hence increasing knee valgus. Fatigue also caused a significant reduction of vertical GRF upon landing (Δ=-0.21 N/kg, p = 0.003), but not during propulsion. Fatigue did not affect joint moments significantly. Conclusion The increased hip and knee extension, as well as the increased knee abduction we observed after the execution of the fatiguing exercise have been previously identified as risk factors for ACL injury. These results therefore suggest an increased risk of ACL injury after the execution of the participant-tailored fatiguing protocol proposed here. However, the reduced vertical GRF upon landing and the preservation of joint moments are intriguing, as they may suggest the adoption of protective strategies in the fatigued condition to be evaluated in future studied.
Collapse
Affiliation(s)
- Mauro Nardon
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Umberto Ferri
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Giovanni Caffi
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Manuela Bartesaghi
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Cecilia Perin
- School of Medicine and Surgery/Physical and Rehabilitative Medicine, University of Milano-Bicocca, Milan, Italy
- Istituti Clinici Zucchi - GDS, Carate Brianza, Monza e Brianza, Italy
| | - Antonio Zaza
- Department of Biotechnology and Biosciences/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Cristiano Alessandro
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
30
|
Murphy MC, Rio EK, Whife C, Latella C. Maximising neuromuscular performance in people with pain and injury: moving beyond reps and sets to understand the challenges and embrace the complexity. BMJ Open Sport Exerc Med 2024; 10:e001935. [PMID: 38736640 PMCID: PMC11086544 DOI: 10.1136/bmjsem-2024-001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Rehabilitative practice is often criticised for being non-individualised, monotonous and not well aligned with foundational principles that drive continued physiological adaptation(s). However, our understanding of neuromuscular physiology is rapidly increasing and the way we programme rehabilitation is improving. This viewpoint highlights some of the potential considerations around why the adaptations achieved during rehabilitation programmes may be suboptimal. We provide basic, clinician-focused discussion about potential confounding physiological factors, and put forward several exercise-based programming recommendations and novel approaches to consider in contemporary rehabilitative practice. Specifically, we outline several potential mechanisms contributing to poor muscle activation and function that might be present following musculoskeletal injury. However, clinicians require strategies capable of attenuating these impairments to restore proper function. Therefore, we also provide an overview of recommended strength and conditioning guidelines, and novel strategies (such as external pacing and electrical stimulation techniques) that clinicians can consider to potentially improve the efficacy of musculoskeletal rehabilitation.
Collapse
Affiliation(s)
- Myles Calder Murphy
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Health Sciences, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Ebonie Kendra Rio
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
- Australian Ballet, Southbank, Victoria, Australia
| | - Casey Whife
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical Department, West Coast Eagles Football Club, Lathlain, Western Australia, Australia
| | - Christopher Latella
- Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
31
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
32
|
Ortega DG, Housh TJ, Smith RW, Arnett JE, Neltner TJ, Schmidt RJ, Johnson GO. The Effects of Anchoring a Fatiguing Forearm Flexion Task to a High vs. Low Rating of Perceived Exertion on Torque and Neuromuscular Responses. J Strength Cond Res 2024; 38:e219-e225. [PMID: 38662889 DOI: 10.1519/jsc.0000000000004730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
ABSTRACT Ortega, DG, Housh, TJ, Smith, RW, Arnett, JE, Neltner, TJ, Schmidt, RJ, and Johnson, GO. The effects of anchoring a fatiguing forearm flexion task to a high versus low rating of perceived exertion on torque and neuromuscular responses. J Strength Cond Res 38(5): e219-e225, 2024-This study examined the torque and neuromuscular responses following sustained, isometric, forearm flexion tasks anchored to 2 ratings of perceived exertion (RPE). Nine men (mean ± SD: age = 21.0 ± 2.4 years; height = 179.5 ± 5.1 cm; body mass = 79.6 ± 11.4 kg) completed maximal voluntary isometric contractions (MVIC) before and after sustained, isometric, forearm flexion tasks to failure anchored to RPE = 2 and RPE = 8. The amplitude (AMP) and mean power frequency (MPF) of the electromyographic (EMG) signal were recorded from the biceps brachii. Normalized torque was divided by normalized EMG AMP to calculate neuromuscular efficiency (NME). A dependent t-test was used to assess the mean difference for time to task failure (TTF). Repeated-measures analysis of variances was used to compare mean differences for MVIC and normalized neuromuscular parameters. There was no significant difference in TTF between RPE = 2 and RPE = 8 (p = 0.713). The MVIC decreased from pretest to posttest at RPE = 2 (p = 0.009) and RPE = 8 (p = 0.003), and posttest MVIC at RPE = 8 was less than that at RPE = 2 (p < 0.001). In addition, NME decreased from pretest to posttest (p = 0.008). There was no change in normalized EMG AMP or EMG MPF (p > 0.05). The current findings indicated that torque responses were intensity specific, but TTF and neuromuscular responses were not. Furthermore, normalized EMG AMP and EMG MPF remained unchanged but NME decreased, likely due to peripheral fatigue and excitation-contraction coupling failure. Thus, this study provides information regarding the neuromuscular responses and mechanisms of fatigue associated with tasks anchored to RPE, which adds to the foundational understanding of the relationship between resistance exercise and the perception of fatigue.
Collapse
Affiliation(s)
- Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Tyler J Neltner
- Department of Health and Human Performance, University of Wisconsin-Platteville, Platteville, Wisconsin
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| |
Collapse
|
33
|
Valenčič T, Ansdell P, Brownstein CG, Spillane PM, Holobar A, Škarabot J. Motor unit discharge rate modulation during isometric contractions to failure is intensity- and modality-dependent. J Physiol 2024; 602:2287-2314. [PMID: 38619366 DOI: 10.1113/jp286143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The physiological mechanisms determining the progressive decline in the maximal muscle torque production capacity during isometric contractions to task failure are known to depend on task demands. Task-specificity of the associated adjustments in motor unit discharge rate (MUDR), however, remains unclear. This study examined MUDR adjustments during different submaximal isometric knee extension tasks to failure. Participants performed a sustained and an intermittent task at 20% and 50% of maximal voluntary torque (MVT), respectively (Experiment 1). High-density surface EMG signals were recorded from vastus lateralis (VL) and medialis (VM) and decomposed into individual MU discharge timings, with the identified MUs tracked from recruitment to task failure. MUDR was quantified and normalised to intervals of 10% of contraction time (CT). MUDR of both muscles exhibited distinct modulation patterns in each task. During the 20% MVT sustained task, MUDR decreased until ∼50% CT, after which it gradually returned to baseline. Conversely, during the 50% MVT intermittent task, MUDR remained stable until ∼40-50% CT, after which it started to continually increase until task failure. To explore the effect of contraction intensity on the observed patterns, VL and VM MUDR was quantified during sustained contractions at 30% and 50% MVT (Experiment 2). During the 30% MVT sustained task, MUDR remained stable until ∼80-90% CT in both muscles, after which it continually increased until task failure. During the 50% MVT sustained task the increase in MUDR occurred earlier, after ∼70-80% CT. Our results suggest that adjustments in MUDR during submaximal isometric contractions to failure are contraction modality- and intensity-dependent. KEY POINTS: During prolonged muscle contractions a constant motor output can be maintained by recruitment of additional motor units and adjustments in their discharge rate. Whilst contraction-induced decrements in neuromuscular function are known to depend on task demands, task-specificity of motor unit discharge behaviour adjustments is still unclear. In this study, we tracked and compared discharge activity of several concurrently active motor units in the vastii muscles during different submaximal isometric knee extension tasks to failure, including intermittent vs. sustained contraction modalities performed in the same intensity domain (Experiment 1), and two sustained contractions performed at different intensities (Experiment 2). During each task, motor units modulated their discharge rate in a distinct, biphasic manner, with the modulation pattern depending on contraction intensity and modality. These results provide insight into motoneuronal adjustments during contraction tasks posing different demands on the neuromuscular system.
Collapse
Affiliation(s)
- Tamara Valenčič
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Callum G Brownstein
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Padraig M Spillane
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
34
|
Matta PM, Glories D, Alamia A, Baurès R, Duclay J. Mind over muscle? Time manipulation improves physical performance by slowing down the neuromuscular fatigue accumulation. Psychophysiology 2024; 61:e14487. [PMID: 38015102 DOI: 10.1111/psyp.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
While physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.e., holding time) when the clock shown to the subjects was deceptively slowed down. However, the underlying neurophysiological changes supporting this performance improvement due to deceptive time manipulation remain unknown. Here, we addressed this issue by investigating from a neuromuscular perspective the effect of a deceptive clock manipulation on a single-joint isometric task conducted to failure in 24 healthy participants (11 females). Neuromuscular fatigue was assessed by pre- to post-exercise changes in quadriceps maximal voluntary torque (Tmax ), voluntary activation level (VAL), and potentiated twitch (TTW ). Our main results indicated a significant performance improvement when the clock was slowed down (Biased: 356 ± 118 s vs. Normal: 332 ± 112 s, p = .036) but, surprisingly, without any difference in the associated neuromuscular fatigue (p > .05 and BF < 0.3 for Tmax , VAL, and TTW between both sessions). Computational modeling showed that, when observed, the holding time improvement was explained by a neuromuscular fatigue accumulation based on subjective rather than actual time. These results support a psychological influence on neuromuscular processes and contribute significantly to the literature on the mind-body influence, by challenging our understanding of fatigue.
Collapse
Affiliation(s)
- Pierre-Marie Matta
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dorian Glories
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Andrea Alamia
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin Baurès
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Duclay
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| |
Collapse
|
35
|
Wilcox M, Brown H, Johnson K, Sinisi M, Quick TJ. An assessment of co-contraction in reinnervated muscle. Regen Med 2024; 19:161-170. [PMID: 37955237 DOI: 10.2217/rme-2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Aim: To investigate co-contraction in reinnervated elbow flexor muscles following a nerve transfer. Materials & methods: 12 brachial plexus injury patients who received a nerve transfer to reanimate elbow flexion were included in this study. Surface electromyography (EMG) recordings were used to quantify co-contraction during sustained and repeated isometric contractions of reinnervated and contralateral uninjured elbow flexor muscles. Reuslts: For the first time, this study reveals reinnervated muscles demonstrated a trend toward higher co-contraction ratios when compared with uninjured muscle and this is correlated with an earlier onset of muscle fatigability. Conclusion: Measurements of co-contraction should be considered within muscular function assessments to help drive improvements in motor recovery therapies.
Collapse
Affiliation(s)
- Matthew Wilcox
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, HA7 4LP, UK
- University College London Centre for Nerve Engineering, London, WC1E 6BT, UK
- Department of Pharmacology, University College London, School of Pharmacy, London, WC1N 1AX, UK
| | - Hazel Brown
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, HA7 4LP, UK
- University College London Centre for Nerve Engineering, London, WC1E 6BT, UK
| | - Kathryn Johnson
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, HA7 4LP, UK
| | - Marco Sinisi
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, HA7 4LP, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, HA7 4LP, UK
- University College London Centre for Nerve Engineering, London, WC1E 6BT, UK
| |
Collapse
|
36
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
37
|
Brotherton EJ, Sabapathy S, Dempsey LM, Kavanagh JJ. Short-latency afferent inhibition is reduced in people with multiple sclerosis during fatiguing muscle contractions. Eur J Neurosci 2024; 59:2087-2101. [PMID: 38234172 DOI: 10.1111/ejn.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Understanding how inhibitory pathways influence motor cortical activity during fatiguing contractions may provide valuable insight into mechanisms associated with multiple sclerosis (MS) muscle activation. Short-latency afferent inhibition (SAI) reflects inhibitory interactions between the somatosensory cortex and the motor cortex, and although SAI is typically reduced with MS, it is unknown how SAI is regulated during exercise-induced fatigue. The current study examined how SAI modulates motor evoked potentials (MEPs) during fatiguing contractions. Fourteen people with relapsing-remitting MS (39 ± 6 years, nine female) and 10 healthy individuals (36 ± 6 years, six female) participated. SAI was induced by stimulation of the median nerve that was paired with TMS over the motor representation of the abductor pollicis brevis. A contraction protocol was employed that depressed force generating capacity using a sustained 3-min 15% MVC, immediately followed by a low-intensity (15% MVC) intermittent contraction protocol so that MEP and SAI could be measured during the rest phases of each duty cycle. Similar force, electromyography and MEP responses were observed between groups. However, the MS group had significantly reduced SAI during the contraction protocol compared to the healthy control group (p < .001). Despite the MS group reporting greater scores on the Fatigue Severity Scale and Modified Fatigue Impact Scale, these scales did not correlate with inhibitory measures. As there were no between-group differences in SSEPs, MS-related SAI differences during the fatiguing contractions were most likely associated with disease-related changes in central integration.
Collapse
Affiliation(s)
- Emily J Brotherton
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Surendran Sabapathy
- Exercise Physiology Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Lisa M Dempsey
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
38
|
Clark K, Trickett J, Donovan L, Dawson J, Goetschius J. Effects of Blood Flow Restriction on Balance Performance During Dynamic Balance Exercises in Individuals With Chronic Ankle Instability. J Sport Rehabil 2024; 33:181-188. [PMID: 38350443 DOI: 10.1123/jsr.2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
CONTEXT Blood flow restriction (BFR) is a rehabilitation tool which may introduce a constraint, similar to muscle fatigue, that challenge patients' sensorimotor system during balance exercises. The purpose of our study was to examine whether adding BFR to dynamic balance exercises produced a decrease in balance performance and an increase in ratings of perceived exertion and instability in individuals with chronic ankle instability (CAI) compared with dynamic balance exercises without BFR. DESIGNS Crossover design. METHODS Our sample included N = 25 young adults with a history of CAI. Participants completed 2 laboratory visits. At each visit, participants completed 4 sets (30×-15×-15×-15×) of dynamic balance exercises, performed similar to the modified star excursion balance test (SEBT), once with BFR and once with control (no BFR) conditions. We measured composite SEBT scores at baseline and during the final repetitions of each set of balance exercise (sets 1-4). We also measured ratings of perceived exertion and instability following each balance exercise set. RESULTS We observed no difference in composite SEBT scores between conditions at baseline; however, composite SEBT scores were significantly lower during all balance exercises sets 1 to 4 with the BFR condition compared with control. During the BFR condition, composite SEBT scores were significantly lower during all balance exercise sets compared with baseline. During the control condition, composite SEBT scores did not significantly change between baseline and each balance exercise set. Ratings of perceived exertion and instability scores were significantly greater in the BFR group compared with the control group during all balance exercise sets. CONCLUSIONS Individuals with CAI demonstrated lower composite SEBT scores and greater perceived instability and exertion during dynamic balance exercise with BFR compared to without BFR. BFR introduced a novel muscle fatigue constraint during dynamic balance exercises in individuals with CAI. Additional research is needed to determine if adding BFR to balance training could improve clinical outcomes in CAI patients.
Collapse
Affiliation(s)
- Krista Clark
- Department of Health Professions, James Madison University, Harrisonburg, VA, USA
| | - Justin Trickett
- Department of Health Professions, James Madison University, Harrisonburg, VA, USA
| | - Luke Donovan
- Department of Applied Physiology, Health, & Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jordan Dawson
- Department of Health Professions, James Madison University, Harrisonburg, VA, USA
| | - John Goetschius
- Department of Health Professions, James Madison University, Harrisonburg, VA, USA
| |
Collapse
|
39
|
Zambolin F, Duro Ocana P, Goulding R, Sanderson A, Venturelli M, Wood G, McPhee J, Parr JVV. The corticomuscular response to experimental pain via blood flow occlusion when applied to the ipsilateral and contralateral leg during an isometric force task. Psychophysiology 2024; 61:e14466. [PMID: 37872004 DOI: 10.1111/psyp.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023]
Abstract
Blood flow occlusion (BFO) has been previously used to investigate physiological responses to muscle ischemia, showing increased perceptual effort (RPE) and pain along with impaired neuromuscular performance. However, at present, it is unclear how BFO alters corticomuscular activities when either applied to the exercising or nonexercising musculature. The present study therefore set out to assess the corticomuscular response to these distinct BFO paradigms during an isometric contraction precision task. In a repeated measures design, fifteen participants (age = 27.00 ± 5.77) completed 15 isometric contractions across three experimental conditions; no occlusion (CNTRL), occlusion of the contralateral (i.e., nonexercising) limb (CON-OCC), and occlusion of the ipsilateral (i.e., exercising) limb (IPS-OCC). Measures of force, electroencephalographic (EEG), and electromyographic (EMG) were recorded during contractions. We observed that IPS-OCC broadly impaired force steadiness, elevated EMG of the vastus lateralis, and heightened RPE and pain. IPSI-OCC also significantly decreased corticomuscular coherence during the early phase of contraction and decreased EEG alpha activity across the sensorimotor and temporoparietal regions during the middle and late phases of contraction compared with CNTRL. By contrast, CON-OCC increased perceived levels of pain (but not RPE) and decreased EEG alpha activity across the prefrontal cortex during the middle and late phases of contraction, with no changes observed for EMG and force steadiness. Together, these findings highlight distinctive psychophysiological responses to experimental pain via BFO showing altered cortical activities (CON-OCC) and altered cortical, corticomuscular, and neuromuscular activities (IPS-OCC) when applied to the lower limbs during an isometric force precision task.
Collapse
Affiliation(s)
- F Zambolin
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - P Duro Ocana
- Department of Life Science, Manchester Metropolitan University, Manchester, UK
| | - R Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - A Sanderson
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - M Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - G Wood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - J McPhee
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - J V V Parr
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
40
|
Sharma P, Scheffer K, Louis M, Aitken CR, Adams L, Morris NR. Effect of experimental modulation of mood on exertional dyspnoea in chronic obstructive pulmonary disease. Respirology 2024; 29:201-208. [PMID: 38044806 DOI: 10.1111/resp.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Dyspnoea is a debilitating symptom in individuals with chronic obstructive pulmonary disease (COPD) and a range of other chronic cardiopulmonary diseases and is often associated with anxiety and depression. The present study examined the effect of visually-induced mood shifts on exertional dyspnoea in individuals with COPD. METHODS Following familiarization, 20 participants with mild to severe COPD (age 57-79 years) attended three experimental sessions on separate days, performing two 5-min treadmill exercise tests separated by a 30-min interval on each day. During each exercise test, participants viewed either a positive, negative or neutral set of images sourced from the International Affective Picture System (IAPS) and rated dyspnoea or leg fatigue (0-10). Heart rate (HR) and peripheral oxygen saturation (SpO2 ) were measured at 1-min intervals during each test. Mood valence ratings were obtained using Self-Assessment Manikin (SAM) scale (1-9). RESULTS Mood valence ratings were significantly higher when viewing positive (end-exercise mean ± SEM = 7.6 ± 0.3) compared to negative IAPS images (2.4 ± 0.3, p < 0.001). Dyspnoea intensity (mean ± SEM = 5.8 ± 0.4) and dyspnoea unpleasantness (5.6 ± 0.3) when viewing negative images were significantly higher compared to positive images (4.2 ± 0.4, p = 0.004 and 3.4 ± 0.5, p = 0.003). Eighty-five percent of participants (n = 17) met the minimal clinically important difference (MCID) criteria for both dyspnoea intensity and unpleasantness. HR, SpO2 and leg fatigue did not differ significantly between conditions. CONCLUSION These findings indicate that the negative affective state worsens dyspnoea in COPD, thereby suggesting strategies aimed at reducing the likelihood of negative mood or improving the mood may be effective in managing morbidity associated with dyspnoea in COPD.
Collapse
Affiliation(s)
- Pramod Sharma
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- The Prince Charles Hospital, Allied Health Research Collaborative, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Karlijn Scheffer
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Menaka Louis
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Craig R Aitken
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- The Prince Charles Hospital, Allied Health Research Collaborative, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Lewis Adams
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Norman R Morris
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- The Prince Charles Hospital, Allied Health Research Collaborative, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Tsoukos A, Krzysztofik M, Wilk M, Zajac A, Panagiotopoulos MG, Psarras II, Petraki DP, Terzis G, Bogdanis GC. Fatigue and Metabolic Responses during Repeated Sets of Bench Press Exercise to Exhaustion at Different Ranges of Motion. J Hum Kinet 2024; 91:61-76. [PMID: 38689577 PMCID: PMC11057609 DOI: 10.5114/jhk/185524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
This study compared the acute effects of different ranges of motion (ROM) on fatigue and metabolic responses during repeated sets of bench press exercise. Ten resistance trained men performed three sets to momentary failure with two-min rest intervals at three different ROM: full ROM (FULL), and partial ROM in which the barbell was moved either at the bottom half (BOTTOM) or the top half (TOP) of the full barbell vertical displacement. In TOP, a higher load was lifted, and a higher total number of repetitions was performed compared to FULL and BOTTOM (130 ± 17.6 vs. 102.5 ± 15.9 vs. 98.8 ± 17.5 kg; 55.2 ± 9.8, 32.2 ± 6.5 vs. 49.1 ± 16.5 kg, respectively p < 0.01). Work per repetition was higher in FULL than TOP and BOTTOM (283 ± 43 vs. 205 ± 32 vs. 164 ± 31 J/repetition, p < 0.01). Mean barbell velocity at the start of set 1 was 21.7% and 12.8% higher in FULL compared to TOP and BOTTOM, respectively. The rate of decline in mean barbell velocity was doubled from set 1 to set 3 (p < 0.01) and was higher in FULL than both TOP and BOTTOM (p < 0.001). Also, the rate of mean barbell velocity decline was higher in BOTTOM compared to TOP (p = 0.045). Blood lactate concentration was similarly increased in all ROM (p < 0.001). Training at TOP ROM allowed not only to lift a higher load, but also to perform more repetitions with a lower rate of decline in mean barbell velocity. Despite the lower absolute load and work per repetition, fatigue was higher in BOTTOM than TOP and this may be attributed to differences in muscle length.
Collapse
Affiliation(s)
- Athanasios Tsoukos
- School of Physical Education and Sports Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Michał Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michail G. Panagiotopoulos
- School of Physical Education and Sports Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Ilias-Iason Psarras
- School of Physical Education and Sports Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Despina P. Petraki
- School of Physical Education and Sports Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Terzis
- School of Physical Education and Sports Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Gregory C. Bogdanis
- School of Physical Education and Sports Science, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
42
|
Sayyadi P, Minoonejad H, Seidi F, Shikhhoseini R, Arghadeh R. The effectiveness of fatigue on repositioning sense of lower extremities: systematic review and meta-analysis. BMC Sports Sci Med Rehabil 2024; 16:35. [PMID: 38311746 PMCID: PMC10840207 DOI: 10.1186/s13102-024-00820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION An injury can significantly harm both individual and team performance. One of the most important risk factors for sports-related injuries, especially non-collision injuries, is fatigue. It seems that poor proprioception may play an essential role to impose athletes to further injuries. This systematic review and meta-analysis aimed to examine the effectiveness of fatigue on the repositioning sense of the lower extremity joints. METHOD The electronic databases, including PubMed, Web of Science, Scopus, and Google Scholar were systematically searched from inception to 11January 2024. The obtained records were exported to the EndNote Software version 8. Then, two investigators examined the records independently to find eligible studies based on the inclusion/exclusion criteria. In the case of disagreements, a consequence method was utilized. The quality of the eligible studies was evaluated using the Downs and Black checklist. Comprehensive Meta-Analysis (CMA) software ver. 3 software was used for statistical analysis. Q-test and I2 were employed to examine the data homogeneity. In addition, considering the risk of bias, the Funnel Plot and trim-and-fill method were used. RESULTS After reviewing the titles and abstracts of 3883 studies found in the selected databases, 43 articles were found to be eligible to include in meta-analyses. The results showed that fatigue led to a significant increase in the active absolute error of the knee (SDM = 0.524, 95% CI = 0.406-0.841), ankle in the horizontal plane (SDM = 0.541, 95% CI = 0.367-0.715), ankle in the sagittal plane (SDM = 0.443, 95% CI = 0.088-0.798), and hip (SDM = 0.988, 95% CI = 0.135-1.841). However, fatigue had no significant effects on the passive absolute error of the knee and ankle in horizontal plane and relative angular error of the knee. CONCLUSION Fatigue can diminish the active joint position sense of the lower extremities and thus may increase the risk of injury by reducing proprioception. Therefore, future research could be conducted to investigate the potential impact of integrated fatigue-mitigating exercises into athletes' training programs, with the aim of reducing the incidence of sports-related injuries.
Collapse
Affiliation(s)
- Parisa Sayyadi
- Department of Sports injury and biomechanics, Faculty of Sport Sciences and health, University of Tehran, Tehran, Iran
| | - Hooman Minoonejad
- Department of Sports injury and biomechanics, Faculty of Sport Sciences and health, University of Tehran, Iran, Tehran, Iran.
| | - Foad Seidi
- Department of Sports injury and biomechanics, Faculty of Sport Sciences and health, University of Tehran, Iran, Tehran, Iran
| | - Rahman Shikhhoseini
- Department of Corrective Exercise and Sports Injury, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ramin Arghadeh
- Department of Sports injury and biomechanics, Faculty of Sport Sciences and health, University of Tehran, Tehran, Iran
| |
Collapse
|
43
|
Valli G, Ritsche P, Casolo A, Negro F, De Vito G. Tutorial: Analysis of central and peripheral motor unit properties from decomposed High-Density surface EMG signals with openhdemg. J Electromyogr Kinesiol 2024; 74:102850. [PMID: 38065045 DOI: 10.1016/j.jelekin.2023.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/29/2024] Open
Abstract
High-Density surface Electromyography (HD-sEMG) is the most established technique for the non-invasive analysis of single motor unit (MU) activity in humans. It provides the possibility to study the central properties (e.g., discharge rate) of large populations of MUs by analysis of their firing pattern. Additionally, by spike-triggered averaging, peripheral properties such as MUs conduction velocity can be estimated over adjacent regions of the muscles and single MUs can be tracked across different recording sessions. In this tutorial, we guide the reader through the investigation of MUs properties from decomposed HD-sEMG recordings by providing both the theoretical knowledge and practical tools necessary to perform the analyses. The practical application of this tutorial is based on openhdemg, a free and open-source community-based framework for the automated analysis of MUs properties built on Python 3 and composed of different modules for HD-sEMG data handling, visualisation, editing, and analysis. openhdemg is interfaceable with most of the available recording software, equipment or decomposition techniques, and all the built-in functions are easily adaptable to different experimental needs. The framework also includes a graphical user interface which enables users with limited coding skills to perform a robust and reliable analysis of MUs properties without coding.
Collapse
Affiliation(s)
- Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Paul Ritsche
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
44
|
Marina M, Torrado P, Duchateau J, Baudry S. Neural Adjustments during Repeated Braking and Throttle Actions on a Motorcycle Setup. Int J Sports Med 2024; 45:125-133. [PMID: 38096909 DOI: 10.1055/a-2197-0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The aim of the study was to assess neuromuscular changes during an intermittent fatiguing task designed to replicate fundamental actions and ergonomics of road race motorcycling. Twenty-eight participants repeated a sequence of submaximal brake-pulling and gas throttle actions, interspaced by one maximal brake-pulling, until failure. During the submaximal brake-pulling actions performed at 30% MVC, force fluctuations, surface EMG, maximal M-wave (Mmax) and H-reflex were measured in the flexor digitorum superficialis. At the end of the task, the MVC force and associated EMG activity decreased (P<0.001) by 46% and 26%, respectively. During the task, force fluctuation and EMG activity increased gradually (106% and 61%, respectively) with respect to the pre-fatigue state (P≤0.029). The Mmax first phase did not change (P≥0.524), whereas the H-reflex amplitude, normalized to Mmax, increased (149%; P≤0.039). Noteworthy, the relative increase in H-reflex amplitude was correlated with the increase in EMG activity during the task (r=0.63; P<0.001). During the 10-min recovery, MVC force and EMG activity remained depressed (P≤0.05) whereas H-reflex amplitude and force fluctuation returned to pre-fatigue values. In conclusion, contrarily to other studies, our results bring forward that when mimicking motorcycling brake-pulling and gas throttle actions, supraspinal neural mechanisms primarily limit the duration of the performance.
Collapse
Affiliation(s)
- Michel Marina
- Research Group in Physical Activity and Health (GRAFAiS), Institut Nacional d'Educació Física de Catalunya (INEFC) - Universitat de Barcelona (UB), Barcelona, Spain
| | - Priscila Torrado
- Research Group in Physical Activity and Health (GRAFAiS), Institut Nacional d'Educació Física de Catalunya (INEFC) - Universitat de Barcelona (UB), Barcelona, Spain
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), ULB Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stephane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), ULB Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
45
|
Boukhris O, Zghal F, Trabelsi K, Suppiah H, Ammar A, Jahrami H, Hsouna H, Abdessalem R, Glenn JM, Chtourou H, Driller M. The impact of a 40-min nap on neuromuscular fatigue profile and recovery following the 5-m shuttle run test. J Sleep Res 2024; 33:e14052. [PMID: 37803885 DOI: 10.1111/jsr.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
This study aims to investigate the impact of a 40-min nap opportunity on perceived recovery, exertion, and maximal voluntary isometric contraction (MVIC) following the 5-m shuttle run test (5SRT), after 1 night of normal sleep. In a randomised, counterbalanced, cross-over design, 17 trained men (mean [SD] age 20 [3] years, height 173 [6] cm, body mass 68 [6] kg) performed a 5SRT under two conditions: a 40-min nap opportunity and no-nap condition. After both conditions, electromyography signals during a 5-s isometric knee extension were recorded before and immediately after the 5SRT. Two electrical nerve stimulations at the femoral nerve were measured during and after the MVIC. Force, voluntary activation level, M-wave amplitudes, potentiated twitch, and electromyography signals (root mean square) were measured during each MVIC. Perceived exertion was recorded after each repetition of the test and perceived recovery was determined after the end of the MVIC. Compared to the no-nap condition, the 40-min nap resulted in significant enhancements in both the highest distance (p < 0.01, Δ = +7.6%) and total distance (p < 0.01, Δ = +7.5%). Before and after exercise, values for MVIC, root mean square, M-wave amplitudes, and voluntary activation level were improved after the 40-min nap opportunity compared to no-nap condition (all p ≤ 0.01). Values for perceived exertion and recovery were improved after the 40-min nap opportunity in comparison with no-nap condition (p ≤ 0.01). A 40-min nap opportunity improved repeated high-intensity short-term maximal performance, perceived recovery, associated neuromuscular responses, and reduced perceived fatigue. Therefore, our findings suggest that central and peripheral processes are involved in the improvements of 5SRT performance after napping.
Collapse
Affiliation(s)
- Omar Boukhris
- SIESTA Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Firas Zghal
- Côte d'Azur University, LAMHESS, Nice, France
- University of Reunion, IRISSE, Le Tampon, Ile de la Réunion, France
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research laboratory, Education, Motricity, Sport and Health (EM2S), LR15JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haresh Suppiah
- SIESTA Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Haitham Jahrami
- Department of Psychiatry, Ministry of Health, Manama, Bahrain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hsen Hsouna
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Raouf Abdessalem
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Jordan M Glenn
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Neurotrack Technologies, Redwood City, California, USA
| | - Hamdi Chtourou
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Matthew Driller
- SIESTA Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Janicijevic D, Miras-Moreno S, Morenas-Aguilar MD, Jiménez-Martínez P, Alix-Fages C, García-Ramos A. Relationship between perceptual and mechanical markers of fatigue during bench press and bench pull exercises: impact of inter-set rest period length. PeerJ 2024; 12:e16754. [PMID: 38250725 PMCID: PMC10799610 DOI: 10.7717/peerj.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore whether the relationship between perceptual (rating of perceived exertion; RPE) and mechanical (maximal number of repetitions completed [MNR], fastest set velocity, and mean velocity decline) variables is affected by the length of inter-set rest periods during resistance training sets not leading to failure. Twenty-three physically active individuals (15 men and eight women) randomly completed 12 testing sessions resulting from the combination of two exercises (bench press and bench pull), three inter-set rest protocols (1, 3, and 5 min), and two minimal velocity thresholds (farther from muscular failure [MVT0.45 for bench press and MVT0.65 for bench pull] and closer to muscular failure [MVT0.35 for bench press and MVT0.55 for bench pull]). The duration of inter-set rest periods did not have a significant impact on RPE values (p ranged from 0.061 to 0.951). Higher proximities to failure, indicated by lower MVTs, were associated with increased RPE values (p < 0.05 in 19 out of 24 comparisons). Moreover, as the number of sets increased, an upward trend in RPE values was observed (p < 0.05 in seven out of 12 comparisons). Finally, while acknowledging some inconsistencies, it was generally observed that higher magnitudes of the mechanical variables, especially MNR (rs < -0.55 in three out of four comparisons), were associated with lower RPE values. These results, which were comparable for the bench press and bench pull exercises, suggest that post-set RPE values are affected by the fatigue experienced at both the beginning and end of the set.
Collapse
Affiliation(s)
- Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Human Biomechanics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Universidad de Granada, Granada, España
| | | | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Universidad de Granada, Granada, España
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Catolica de la Santísima Concepcion, Concepcion, Chile
| |
Collapse
|
47
|
Chalitsios C, Nikodelis T, Mavrommatis G, Kollias I. Subject-specific sensitivity of several biomechanical features to fatigue during an exhaustive treadmill run. Sci Rep 2024; 14:1004. [PMID: 38200137 PMCID: PMC10781943 DOI: 10.1038/s41598-024-51296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
The aim of the present study was to examine the sensitivity of several movement features during running to exhaustion in a subject-specific setup adopting a cross-sectional design and a machine learning approach. Thirteen recreational runners, that systematically trained and competed, performed an exhaustive running protocol on an instrumented treadmill. Respiratory data were collected to establish the second ventilatory threshold (VT2) in order to obtain a reference point regarding the gradual accumulation of fatigue. A machine learning approach was adopted to analyze kinetic and kinematic data recorded for each participant, using a random forest classifier for the region pre and post the second ventilatory threshold. SHapley Additive exPlanations (SHAP) analysis was used to explain the models' predictions and to provide insight about the most important variables. The classification accuracy value of the models adopted ranged from 0.853 to 0.962. The most important feature in six out of thirteen participants was the angular range in AP axis of upper trunk C7 (RTAPu) followed by maximum loading rate (RFDmaxD) and the angular range in the LT axis of the C7. SHAP dependence plots also showed an increased dispersion of predictions in stages around the second ventilatory threshold which is consistent with feature interactions. These results showed that each runner used the examined features differently to cope with the increase in fatigue and mitigate its effects in order to maintain a proper motor pattern.
Collapse
Affiliation(s)
- Christos Chalitsios
- Biomechanics Laboratory, Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Thomas Nikodelis
- Biomechanics Laboratory, Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Mavrommatis
- Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iraklis Kollias
- Biomechanics Laboratory, Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
48
|
Qin W, Kojima S, Morishita S, Qu D, Huang L, Tsubaki A. Relationship of Cognitive Function with Oxygenated Haemoglobin Concentration Difference Between the Left and Right Prefrontal Cortex During 40-Min Moderate-Intensity Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:119-125. [PMID: 39400811 DOI: 10.1007/978-3-031-67458-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The high concentration of oxygenated haemoglobin (O2Hb) in the prefrontal cortex (PFC) during exercise improves cognitive performance. In this study, we aimed to elucidate the relationship of cognitive function with the O2Hb concentration difference between the left and right PFC (L-PFC and R-PFC, respectively) during sustained exercise. We enrolled 12 healthy adult males who, after a 4-min rest and warm-up, performed a 40-min exercise regime at a workload corresponding to 50% maximal oxygen consumption. A 2-back task was performed, and the reaction times (RTs) were recorded before exercise, immediately after exercise, and 20 min after exercise. Near-infrared spectroscopy was used to monitor L-PFC and R-PFC. RT was shortened immediately and 20 min after exercise, and O2Hb concentration difference between L-PFC and R-PFC positively correlated with RT 20 min after exercise. These findings suggest that 40-min exercise induced a phenomenon of neural compensation.
Collapse
Affiliation(s)
- W Qin
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - S Kojima
- Department of Rehabilitation, Kisen Hospital, Tokyo, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - S Morishita
- Department of Physical Therapy, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - D Qu
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - L Huang
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - A Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
49
|
Bielitzki R, Behrendt T, Weinreich A, Mittlmeier T, Schega L, Behrens M. Acute effects of static balance exercise combined with different levels of blood flow restriction on motor performance fatigue as well as physiological and perceptual responses in young healthy males and females. Eur J Appl Physiol 2024; 124:227-243. [PMID: 37429967 PMCID: PMC10787004 DOI: 10.1007/s00421-023-05258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE This study investigated the acute effects of a static balance exercise combined with different blood flow restriction (BFR) pressures on motor performance fatigue development and recovery as well as physiological and perceptual responses during exercise in males and females. METHODS Twenty-four recreational active males (n = 13) and females (n = 11) performed static balance exercise on a BOSU ball (3 sets of 60 s with 30 s rest in-between) on three separate (> 3 days) laboratory visits with three different BFR pressures (80% arterial occlusion pressure [AOP], 40%AOP, 30 mmHg [SHAM]) in random order. During exercise, activity of various leg muscles, vastus lateralis muscle oxygenation, and ratings of effort and pain perception were recorded. Maximal squat jump height was measured before, immediately after, 1, 2, 4, and 8 min after exercise to quantify motor performance fatigue development and recovery. RESULTS Quadriceps muscle activity as well as ratings of effort and pain were highest, while muscle oxygenation was lowest in the 80%AOP compared to the 40%AOP and SHAM condition, with no differences in postural sway between conditions. Squat jump height declined after exercise with the highest reduction in the 80%AOP (- 16.4 ± 5.2%) followed by the 40%AOP (- 9.1 ± 3.2%), and SHAM condition (- 5.4 ± 3.3%). Motor performance fatigue was not different after 1 min and 2 min of recovery in 40% AOP and 80% AOP compared to SHAM, respectively. CONCLUSION Static balance exercise combined with a high BFR pressure induced the largest changes in physiological and perceptual responses, without affecting balance performance. Although motor performance fatigue was increased by BFR, it may not lead to long-term impairments in maximal performance.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany.
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Andy Weinreich
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand-and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| |
Collapse
|
50
|
Silva Vilela Terra AM, Santos PDG, Gomes M, Santos ATS, Pezarat-Correia P. Effects of auriculotherapy on muscle fatigue: A randomized crossover trial. J Bodyw Mov Ther 2024; 37:209-219. [PMID: 38432808 DOI: 10.1016/j.jbmt.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This study aimed investigate the effect of auriculotherapy on exercise-induced muscle fatigue, isometric torque production, and surface electromyographic activity (EMG). METHODS Design: Randomized Crossover Trial. The sample consisted of 18 males' volunteers who exercised at least twice a week. THE SAMPLE WAS RANDOMLY ASSIGNED TO TWO GROUPS Placebo Group (n = 9) and Treated Group (n = 9), and after seven days, the groups were crossed. The data analysis included 18 participants in each group. MAIN OUTCOME MEASURE The muscle fatigue index, force production rate, and EMG of the quadriceps were used for evaluation. The evaluation moments included baseline pre-fatigue, baseline post-fatigue, 48 h post-intervention pre-fatigue, and 48 h post-intervention post-fatigue. Mixed two-way test ANOVA was used to compare times and groups. RESULTS The fatigue index for peak torque and work showed no significant effect on time, groups, or interaction (p > 0.05). However, for isometric torque, force production rate, and EMG median frequency and average, the results indicate a positive change in values over time (p < 0.05) (with little practical relevance), with no differences observed between the groups or interaction (p > 0.05). CONCLUSIONS In conclusion, auriculotherapy had no effect on exercise-induced muscle fatigue, isometric torque production, and surface electromyographic activity.
Collapse
Affiliation(s)
- Andréia Maria Silva Vilela Terra
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002, Cruz Quebrada-Dafundo, Portugal; Human Performance Research Laboratory, Alfenas Federal University, 37133-840, Santa Clara, Alfenas, MG, Brazil.
| | - Paulo Duarte Guia Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002, Cruz Quebrada-Dafundo, Portugal
| | - Miguel Gomes
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002, Cruz Quebrada-Dafundo, Portugal
| | - Adriana Teresa Silva Santos
- Human Performance Research Laboratory, Alfenas Federal University, 37133-840, Santa Clara, Alfenas, MG, Brazil
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002, Cruz Quebrada-Dafundo, Portugal; CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz Quebrada, Dafundo, Portugal
| |
Collapse
|