1
|
Tang Y, Zhou Y, Ren J, Wang Y, Li X, Qi M, Yang Y, Zhu C, Wang C, Ma Y, Tang Z, Yu G. TRPV4-β-catenin axis is a novel therapeutic target for dry skin-induced chronic itch. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167491. [PMID: 39218273 DOI: 10.1016/j.bbadis.2024.167491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Dry skin induced chronic pruritus is an increasingly common and debilitating problem, especially in the elderly. Although keratinocytes play important roles in innate and adaptive immunity and keratinocyte proliferation is a key feature of dry skin induced chronic pruritus, the exact contribution of keratinocytes to the pathogenesis of dry skin induced chronic pruritus is poorly understood. In this study, we generated the acetone-ether-water induced dry skin model in mice and found that epidermal hyperplasia induced by this model is partly dependent on the β-catenin signaling pathway. XAV939, an antagonist of β-catenin signaling pathway, inhibited epidermal hyperplasia in dry skin model mice. Importantly, dry skin induced chronic pruritus also dramatically reduced in XAV939 treated mice. Moreover, acetone-ether-water treatment-induced epidermal hyperplasia and chronic itch were decreased in Trpv4-/- mice. In vitro, XAV939 inhibited hypo-osmotic stress induced proliferation of HaCaT cells, and hypo-osmotic stress induced proliferation of in HaCaT cells and primary cultured keratinocytes were also significantly reduced by blocking TRPV4 function. Finally, thymic stromal lymphopoietin release was examined both in vivo and in vitro, which was significantly inhibited by XAV939 treatment and Trpv4 deficiency, and anti-TSLP antibody treatment significantly decreased AEW-induced scratching behavior. Overall, our study revealed a unique ability of TRPV4 expressing keratinocytes in the skin, which critically mediated dry skin induced epidermal hyperplasia and chronic pruritus, thus provided novel insights into the development of therapies for chronic pruritus in the elderly.
Collapse
Affiliation(s)
- Ye Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Zhou
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jiahui Ren
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yin Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xue Li
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mingxin Qi
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan Yang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chan Zhu
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Changming Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxiang Ma
- School of Life Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Zongxiang Tang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Cha J, Ryu J, Rawal D, Lee WJ, Shim WS. Antipruritic effect of ursolic acid through MRGPRX2/MrgprB2-dependent inhibition of mast cell degranulation and reduced TSLP production. Eur J Pharmacol 2024; 981:176896. [PMID: 39147012 DOI: 10.1016/j.ejphar.2024.176896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Ursolic acid (UA), a pentacyclic triterpene, exhibits diverse pharmacological effects, including potential treatment for allergic diseases. It downregulates thymic stromal lymphopoietin (TSLP) and disrupts mast cell signaling pathways. However, the exact molecular mechanism by which UA interferes with mast cell action remains unclear. Therefore, the current study aimed to uncover molecular entities underlying the effect of UA on mast cells and its potential antipruritic effect, specifically investigating its modulation of key molecules such as TRPV4, PAR2, and MRGPRX2, which are involved in TSLP regulation and sensation. Calcium imaging experiments revealed that UA pretreatment significantly suppressed MRGPRX2 activation (and its mouse orthologue MrgprB2), a G protein-coupled receptor predominantly expressed in mast cells. Molecular docking predictions suggested potential interactions between UA and MRGPRX2/MrgprB2. UA pretreatment also reduced mast cell degranulation through MRGPRX2 and MrgprB2-dependent mechanisms. In a dry skin mouse model, UA administration decreased tryptase and TSLP production in the skin, and diminished TSLP response in the sensory neurons. While PAR2 and TRPV4 activation enhances TSLP production, UA did not inhibit their activity. Notably, UA attenuated compound 48/80-induced scratching behaviors in mice and suppressed spontaneous scratching in a dry skin model. The present study confirms the effective inhibition of UA on MRGPRX2/MrgprB2, leading to reduced mast cell degranulation and suppressed scratching behaviors. These findings highlight the potential of UA as an antipruritic agent for managing various allergy- or itch-related conditions.
Collapse
Affiliation(s)
- Jieun Cha
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Juhee Ryu
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Diwas Rawal
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
3
|
Flayer CH, Kernin IJ, Matatia PR, Zeng X, Yarmolinsky DA, Han C, Naik PR, Buttaci DR, Aderhold PA, Camire RB, Zhu X, Tirard AJ, McGuire JT, Smith NP, McKimmie CS, McAlpine CS, Swirski FK, Woolf CJ, Villani AC, Sokol CL. A γδ T cell-IL-3 axis controls allergic responses through sensory neurons. Nature 2024; 634:440-446. [PMID: 39232162 DOI: 10.1038/s41586-024-07869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
In naive individuals, sensory neurons directly detect and respond to allergens, leading to both the sensation of itch and the activation of local innate immune cells, which initiate the allergic immune response1,2. In the setting of chronic allergic inflammation, immune factors prime sensory neurons, causing pathologic itch3-7. Although these bidirectional neuroimmune circuits drive responses to allergens, whether immune cells regulate the set-point for neuronal activation by allergens in the naive state is unknown. Here we describe a γδ T cell-IL-3 signalling axis that controls the allergen responsiveness of cutaneous sensory neurons. We define a poorly characterized epidermal γδ T cell subset8, termed GD3 cells, that produces its hallmark cytokine IL-3 to promote allergic itch and the initiation of the allergic immune response. Mechanistically, IL-3 acts on Il3ra-expressing sensory neurons in a JAK2-dependent manner to lower their threshold for allergen activation without independently eliciting itch. This γδ T cell-IL-3 signalling axis further acts by means of STAT5 to promote neuropeptide production and the initiation of allergic immunity. These results reveal an endogenous immune rheostat that sits upstream of and governs sensory neuronal responses to allergens on first exposure. This pathway may explain individual differences in allergic susceptibility and opens new therapeutic avenues for treating allergic diseases.
Collapse
Affiliation(s)
- Cameron H Flayer
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabela J Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peri R Matatia
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Xiangsunze Zeng
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Yarmolinsky
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cai Han
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Parth R Naik
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean R Buttaci
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pamela A Aderhold
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan B Camire
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice J Tirard
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John T McGuire
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Skin Research Centre, University of York, York, UK
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford J Woolf
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yassky D, Kim BS. Mouse Models of Itch. J Invest Dermatol 2024:S0022-202X(24)02087-6. [PMID: 39320301 DOI: 10.1016/j.jid.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Murine models are vital preclinical and biological tools for studying itch. In this paper, we explore how these models have enhanced our understanding of the mechanisms underlying itch through both acute and chronic itch models. We provide detailed protocols and recommend experimental setups for specific models to guide researchers in conducting itch research. We distinguish between what constitutes a bona fide pruritogen versus a stimulus that causes pruritogen release, an acute itch model versus a chronic itch model, and how murine models can capture aspects of pruritus in human disease. Finally, we highlight how mouse models of itch have transformed our understanding and development of therapeutics for chronic pruritus in patients.
Collapse
Affiliation(s)
- Daniel Yassky
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
5
|
Malewicz-Oeck NM, Zhang Z, Shimada SG, LaMotte RH. Itch and Pain Behaviors in Irritant Contact Dermatitis Produced by Sodium Lauryl Sulfate in Mice. Int J Mol Sci 2024; 25:7718. [PMID: 39062959 PMCID: PMC11276812 DOI: 10.3390/ijms25147718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Irritant contact dermatitis (ICD) is a nonspecific skin inflammation caused by irritants, leading to itch and pain. We tested whether differential responses to histamine-dependent and -independent pruritogens can be evoked in ICD induced by sodium lauryl sulfate (SLS). An ICD mouse model was established with 5% SLS in acetone versus a vehicle topically applied for 24 h to the cheek. Site-directed itch- and pain-like behaviors, occurring spontaneously and in response to mechanical, thermal, and chemical stimuli (histamine, ß-alanine, BAM8-22, and bradykinin) applied to the cheek, were recorded before (day 0) and after irritant removal (days 1, 2, 3, and 4). Skin inflammation was assessed through visual scoring, ultrasound, and measurements of skin thickness. SLS-treated mice exhibited hyperalgesia-like behavior in response to mechanical and heat stimuli on day 1 compared to the controls. SLS mice exhibited more spontaneous wipes (pain) but not scratching bouts (itch) on day 1. Pruritogen injections caused more scratching but not wiping in SLS-treated mice compared to the controls. Only bradykinin increased wiping behavior compared to saline. SLS-treated mice developed noticeable erythema, scaling, and increased skin thickness on days 1 and 2. SLS induced cutaneous inflammation and behavioral signs of spontaneous pain and itching, hyperalgesia to mechanical and heat stimuli and a chemical algogen, and enhanced itch response to pruritogens. These sensory reactions preceded the inflammation peak and lasted up to two days.
Collapse
Affiliation(s)
- Nathalie M. Malewicz-Oeck
- Clinics for Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Ruhr University Bergmannsheil Bochum, 44789 Bochum, Germany
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Zhe Zhang
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Steven G. Shimada
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Robert H. LaMotte
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
6
|
Li S, Wu Y, Bu D, Hu L, Liu Y, Liu J, Xiang R, Bu W, Mo R, Song Z, Chen Z, Li D, Zhang X, Gu H, Yang Y. SERPINB7 Deficiency Increases Legumain Activity and Impairs the Epidermal Barrier in Nagashima-Type Palmoplantar Keratoderma. J Invest Dermatol 2024:S0022-202X(24)01861-X. [PMID: 38909841 DOI: 10.1016/j.jid.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Nagashima-type palmoplantar keratoderma is an autosomal recessive genodermatosis caused by loss-of-function variants in SERPINB7 and is the most prevalent form of inherited palmoplantar keratodermas among Asians. However, there is currently no effective therapy for Nagashima-type palmoplantar keratoderma because its pathogenesis remains unclear. In this study, Serpinb7-/- mice were generated and spontaneously developed a disrupted skin barrier, which was further exacerbated by acetone-ether-water treatment. The skin of these Serpinb7-/- mice showed weakened cytoskeletal proteins. In addition, SERPINB7 deficiency consistently led to decreased epidermal differentiation in a 3-dimensional human epidermal model. We also demonstrated that SERPINB7 was an inhibitory serpin that mainly inhibited the protease legumain. SERPINB7 bound directly with legumain and inhibited legumain activity both in vitro and in vivo. Furthermore, we found that SERPINB7 inhibited legumain in a protease-substrate manner and identified the cleavage sites of SERPINB7 as Asn71 and Asn343. Overall, we found that SERPINB7 showed the nature of a cysteine protease inhibitor and identified legumain as a key target protease of SERPINB7. Loss of SERPINB7 function led to overactivation of legumain, which might disrupt cytoskeletal proteins, contributing to the impaired skin barrier in Nagashima-type palmoplantar keratoderma. These findings may lead to the development of therapeutic strategies for Nagashima-type palmoplantar keratoderma.
Collapse
Affiliation(s)
- Siyuan Li
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yingda Wu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Dingfang Bu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Linghan Hu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yihe Liu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruiyu Xiang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Wenbo Bu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Ran Mo
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Zhongya Song
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Zhiming Chen
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Heng Gu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yong Yang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
7
|
Dong ZS, Zhang XR, Xue DZ, Liu JH, Yi F, Zhang YY, Xian FY, Qiao RY, Liu BY, Zhang HL, Wang C. FGF13 enhances the function of TRPV1 by stabilizing microtubules and regulates acute and chronic itch. FASEB J 2024; 38:e23661. [PMID: 38733310 DOI: 10.1096/fj.202400096r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.
Collapse
Affiliation(s)
- Zi-Shan Dong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Xue-Rou Zhang
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Da-Zhong Xue
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Jia-Hui Liu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Fan Yi
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Yi-Yi Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Fu-Yu Xian
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Ruo-Yang Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Hai-Lin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Oh S, Kim H, Kim M, Jin X, Zheng S, Yi TH. The effects of Jawoongo soap on skin improvement. J Cosmet Dermatol 2024; 23:1862-1874. [PMID: 38275088 DOI: 10.1111/jocd.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Jawoongo is used to treat and prevent skin issues such as dry and keratinization disorders, burns, trauma, pigmentation, scarring, and inflammatory skin conditions. In this study, the efficacy and safety of 0.47% Jawoongo extract-containing soap (JAUN-CS) were assessed in terms of skin improvement effects such as cleansing, moisturizing, sebum secretion management, and skin elasticity enhancement. METHODS Twenty healthy adult men and women aged 20-60 years old took part in the study. Before and after using JAUN-CS, the participants were divided into groups, and various skin improvement effects were measured utilizing machines such as the Corneometer, Tewameter TM 300, and Visioscan. A dermatologist analyzed the product's safety in accordance with Frosch & Kligman and the Cosmetic, Toiletry, and Fragrance Association (CTFA) rules. RESULTS Using JAUN reduced the amount of base and point makeup by 25.7% and 76.7%, respectively. Also, JAUN showed a great facial exfoliation effect by removing the old and lifted skin keratins by 84.7% and 20.3%, respectively. Impurities in facial pores decreased by 58%, too. Furthermore, JAUN increased the moisture content of deep skin and skin surface by 3.5% and 74.0%, and skin elasticity by 2.8%. Skin tone, skin texture, skin radiance, and skin barrier all showed improvements of 3.3%, 20.0%, 15.0%, and 115.2%, respectively. Lastly, cleansing with JAUN successfully enhanced the condition of the youth triangle by 7.6%, while TEWL significantly decreased by 52.7%. Neither the JAUN nor the control group soap showed any adverse reactions, such as erythema or allergies, during the testing period. CONCLUSIONS The results of this study demonstrated that JAUN is safe for human use and has various skin-improving properties, making Jawoongo a promising natural material for the development of functional cosmetics in the future.
Collapse
Affiliation(s)
- Sarang Oh
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | - Hongyong Kim
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
| | - Myeongju Kim
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Shengdao Zheng
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | - Tae-Hoo Yi
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
| |
Collapse
|
9
|
Yang YY, Du LX, Zhu JY, Yi T, Yang YC, Qiao Z, Maoying QL, Chu YX, Wang YQ, Mi WL. Antipruritic effects of geraniol on acute and chronic itch via modulating spinal GABA/GRPR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154969. [PMID: 37516088 DOI: 10.1016/j.phymed.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND PURPOSE Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.
Collapse
Affiliation(s)
- Ya-Yue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Xia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ya-Chen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Qin Z, Xiang L, Zheng S, Zhao Y, Qin Y, Zhang L, Zhou L. Vitexin inhibits pain and itch behavior via modulating TRPV4 activity in mice. Biomed Pharmacother 2023; 165:115101. [PMID: 37406508 DOI: 10.1016/j.biopha.2023.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Itching and pain are distinct unpleasant sensations. The transient receptor potential cation channel subfamily V member 4 (TRPV4) pathway is regarded as a shared pathway that mediates pain and itching. Vitexin (Mujingsu, MJS), a C-glycosylflavonoid, is an effective analgesic. This study aimed to explore the antinociceptive and anti-pruritic effects of MJS and whether its effects are mediated via the TRPV4 pathway. Mice were treated with MJS (7.5 mg/kg) 0.5 h prior to the initiation of the pain or itch modeling process. The results showed that MJS suppressed pain-like behavior in hot plate, thermal infiltration, glacial acetic acid twisting, and formalin tests. Administration of MJS decreased the pruritus response induced by histamine, C48/80, chloroquine and BAM8-22 within 30 min. MJS reduced scratching bouts and lessened the wiping reaction of mice under TRPV4 activation by GSK101 (10 µg/5 μl). MJS inhibited scratching behavior in acetone-ether-water (AEW)-treated mice within 60 min. An H1 receptor antagonist-chlorpheniramine (CLP, 400 mg/kg)-and a TRPV4 antagonist-HC067047 (250 ng/kg), exhibited similar effects to those of MJS. Moreover, MJS ameliorated dry skin itch-associated cutaneous barrier disruption in mice. MJS did not inhibit the expression of TRPV4 in the dorsal root ganglion neurons at L2-L3 in AEW mice. These results indicate that the analgesic and anti-pruritic effects of MJS in acute and chronic pain and itching, as well as itching caused by TRPV4 activation, could be attributed to the TRPV4 pathway modulation.
Collapse
Affiliation(s)
- Zhiqiang Qin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lan Xiang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Siyu Zheng
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Yanyan Qin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lei Zhang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
11
|
Huang M, Hua N, Zhuang S, Fang Q, Shang J, Wang Z, Tao X, Niu J, Li X, Yu P, Yang W. Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics. J Pharm Anal 2023; 13:745-759. [PMID: 37577389 PMCID: PMC10422139 DOI: 10.1016/j.jpha.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Pathological dry skin is a disturbing and intractable healthcare burden, characterized by epithelial hyperplasia and severe itch. Atopic dermatitis (AD) and psoriasis models with complications of dry skin have been studied using single-cell RNA sequencing (scRNA-seq). However, scRNA-seq analysis of the dry skin mouse model (acetone/ether/water (AEW)-treated model) is still lacking. Here, we used scRNA-seq and in situ hybridization to identify a novel proliferative basal cell (PBC) state that exclusively expresses transcription factor CUT-like homeobox 1 (Cux1). Further in vitro study demonstrated that Cux1 is vital for keratinocyte proliferation by regulating a series of cyclin-dependent kinases (CDKs) and cyclins. Clinically, Cux1+ PBCs were increased in patients with psoriasis, suggesting that Cux1+ PBCs play an important part in epidermal hyperplasia. This study presents a systematic knowledge of the transcriptomic changes in a chronic dry skin mouse model, as well as a potential therapeutic target against dry skin-related dermatoses.
Collapse
Affiliation(s)
- Minhua Huang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ning Hua
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Siyi Zhuang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qiuyuan Fang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jiangming Shang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
| | - Jianguo Niu
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750000, China
| | - Xiangyao Li
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
12
|
Chen R, Xu X, Wang XY, Jia WB, Zhao DS, Liu N, Pang Z, Liu XQ, Zhang Y. The lateral habenula nucleus regulates pruritic sensation and emotion. Mol Brain 2023; 16:54. [PMID: 37370111 DOI: 10.1186/s13041-023-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Itch is a complex aversive sensory and emotional experience. As a most upsetting symptom in many dermatological and systemic diseases, it lacks efficient treatments. The lateral habenula nucleus (LHb) encodes negative emotions in the epithalamus and has been implicated in pain and analgesia. Nevertheless, the role of the lateral habenula nucleus in the pruritic sensation and emotion remains elusive. Here we defined the crucial role of glutamatergic neurons within the lateral habenula nucleus (GluLHb) in itch modulation in mice. We established histamine-dependent and histamine-independent models of acute pruritus, as well as the acetone-ether-water (AEW) model of chronic pruritus. We first assessed the effects of pruritogen injection on neural activation in both medial and lateral divisions of LHb in vitro. We then demonstrated that the population activity of GluLHb neurons was increased during the acute itch and chronic itch-induced scratching behaviors in vivo. In addition, electrophysiological data showed that the excitability of GluLHb neurons was enhanced by chronic itch. Chemogenetic suppression of GluLHb neurons disrupted both acute and chronic itch-evoked scratching behaviors. Furthermore, itch-induced conditioned place aversion (CPA) was abolished by GluLHb neuronal inhibition. Finally, we dissected the LHb upstream brain regions. Together, these findings reveal the involvement of LHb in processing both the sensational and emotional components of pruritus and may shed new insights into itch therapy.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiang Xu
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xin-Yue Wang
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wen-Bin Jia
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - De-Shan Zhao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Na Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhen Pang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiao-Qing Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yan Zhang
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
13
|
Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, Dymecki SM, Han S, Goulding M, Acton D. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron 2023; 111:1812-1829.e6. [PMID: 37023756 PMCID: PMC10446756 DOI: 10.1016/j.neuron.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Amandine Virlogeux
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jeremy Brusch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yuanyuan Liu
- NIDCR, National Institute of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Jin J, Li L, Wang Y, Li K, Qian A, Li W, Liu Q, Wen C, Liu Q, Yan G, Xue F. Estrogen alleviates acute and chronic itch in mice. Exp Ther Med 2023; 25:255. [PMID: 37153887 PMCID: PMC10155243 DOI: 10.3892/etm.2023.11954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/23/2023] [Indexed: 05/10/2023] Open
Abstract
Itching is associated with various skin diseases, including atopic dermatitis and allergic dermatitis, and leads to repeated scratching behavior and unpleasant sensation. Although clinical and laboratory research data have shown that estrogen is involved in regulating itch, the molecular and cellular basis of estrogen in itch sensation remains elusive. In the present study, it was found that estrogen-treated mice exhibited reduced scratching bouts when challenged with histamine, chloroquine, the proteinase-activated receptor-2 activating peptide SLIGRL-NH2 (SLIGRL), compound 48/80, and 5-hydroxytryptamine when compared with mice in the placebo group. Moreover, estrogen also suppressed scratching bouts in the mouse model of chronic itch induced by acetone-ether-water treatment. Notably, consistent with the behavioral tests, the present RNA-seq analysis showed that estrogen treatment caused significantly reduced expression levels of itch-related molecules such as Mas-related G-protein coupled receptor member A3, neuromedin B and natriuretic polypeptide b. In addition, estradiol attenuated histamine-induced and chloroquine-induced calcium influx in dorsal root ganglion neurons. Collectively, the data of the present study suggested that estrogen modulates the expression of itch-related molecules and suppresses both acute and chronic itch in mice.
Collapse
Affiliation(s)
- Jinhua Jin
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Li Li
- Department of Anatomy, Yanbian University of Medicine, Yanji, Jilin 133002, P.R. China
| | - Yuhui Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Keyan Li
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Aihua Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiou Li
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Qing Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Chao Wen
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Quanle Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Guanghai Yan
- Department of Anatomy, Yanbian University of Medicine, Yanji, Jilin 133002, P.R. China
- Correspondence to: Dr Fushan Xue, Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Xi-Cheng, Beijing 100050, P.R. China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
- Correspondence to: Dr Fushan Xue, Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Xi-Cheng, Beijing 100050, P.R. China
| |
Collapse
|
15
|
Luo CH, Lai ACY, Chang YJ. Butyrate inhibits Staphylococcus aureus-aggravated dermal IL-33 expression and skin inflammation through histone deacetylase inhibition. Front Immunol 2023; 14:1114699. [PMID: 37261337 PMCID: PMC10228744 DOI: 10.3389/fimmu.2023.1114699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease caused by the disruption of skin barrier, and is dominated by the type 2 immune responses. Patients with AD have a high risk of developing Staphylococcus aureus infection. Interleukin-33 (IL-33), an alarmin, has been implicated in the pathophysiology of AD development. Butyrate, a short chain fatty acid known to be produced from the fermentation of glycerol by the commensal skin bacterium, Staphylococcus epidermidis, has been reported to possess antimicrobial and anti-inflammatory properties that suppress inflammatory dermatoses. However, little is known about the effects of butyrate on dermal IL-33 expression and associated immune response in S. aureus-aggravated skin inflammation in the context of AD. To decipher the underlying mechanism, we established an AD-like mouse model with epidermal barrier disruption by delipidizing the dorsal skin to induce AD-like pathophysiology, followed by the epicutaneous application of S. aureus and butyrate. We discovered that S. aureus infection exacerbated IL-33 release from keratinocytes and aggravated dermal leukocyte infiltration and IL-13 expression. Moreover, we showed that butyrate could attenuate S. aureus-aggravated skin inflammation with decreased IL-33, IL-13, and leukocyte infiltration in the skin. Mechanistically, we demonstrated that butyrate suppressed IL-33 expression and ameliorated skin inflammation through histone deacetylase 3 (HDAC3) inhibition. Overall, our findings revealed the potential positive effect of butyrate in controlling inflammatory skin conditions in AD aggravated by S. aureus infection.
Collapse
Affiliation(s)
- Chia-Hui Luo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Rg3-enriched Korean red ginseng alleviates chloroquine-induced itch and dry skin pruritus in an MrgprA3-dependent manner in mice. Integr Med Res 2023; 12:100916. [PMID: 36632132 PMCID: PMC9826840 DOI: 10.1016/j.imr.2022.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have found that Korean red ginseng extract (KRG) has antipruritic effects, which can be attributed to the presence of Rg3, one of the most potent ginsenosides. Therefore, Rg3-enriched KRG extract (Rg3EKRG) is anticipated to have enhanced antipruritic effects. The present study was conducted to examine the effects of Rg3EKRG in acute chloroquine (CQ)-induced and chronic dry skin pruritus. Methods Calcium imaging technique was used in HE293T cells expressing MrgprA3 and TRPA1 ("MrgprA3/TRPA1") and in primary cultures of mouse dorsal root ganglia (DRG) neurons. Mouse scratching behavior tests were performed on dry skin models. To verify the altered expression of itch-related genes, real-time RNA sequencing analysis and PCR were performed on DRG sections obtained from dry skin models. Results Rg3EKRG suppressed CQ-induced intracellular calcium changes to a greater degree than KRG. Rg3EKRG dose-dependently inhibited CQ-induced responses in MrgprA3/TRPA1 cells. Rg3EKRG likely targeted MrgprA3 rather than TRPA1 to exert its inhibitory effect. Further, Rg3EKRG strongly inhibited the scratching behavior in mice induced by acute CQ injection. Importantly, DRG neurons obtained from dry skin mice models showed increased mRNA levels of MrgprA3, and treatment with Rg3EKRG alleviated chronic dry skin conditions and suppressed spontaneous scratching behaviors. Conclusion The results of the present study imply that Rg3EKRG has a stronger antipruritic effect than KRG, inhibiting both acute CQ-induced and chronic dry skin pruritus in an MrgprA3-dependent manner. Therefore, Rg3EKRG is a potential antipruritic agent that can suppress acute and chronic itching at the peripheral sensory neuronal level.
Collapse
|
17
|
Chen O, He Q, Han Q, Furutani K, Gu Y, Olexa M, Ji RR. Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma. J Clin Invest 2023; 133:160807. [PMID: 36520531 PMCID: PMC9927942 DOI: 10.1172/jci160807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of neuropathic itch is limited due to a lack of relevant animal models. Patients with cutaneous T cell lymphoma (CTCL) experience severe itching. Here, we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produced time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early phase (20 days), CTCL caused hyperinnervations in the epidermis. However, chronic itch was associated with loss of epidermal nerve fibers in the late phases (40 and 60 days). CTCL was also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early and late phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal (i.t.) gabapentin injection reduced late-phase, but not early-phase, pruritus. IL-31 was upregulated in mouse lymphoma, whereas its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in mice with CTCL. Intratumoral anti-IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, i.t. administration of a TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Qingjian Han
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Madelynne Olexa
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
18
|
Upregulation of DRG protein TMEM100 facilitates dry-skin-induced pruritus by enhancing TRPA1 channel function. Acta Biochim Biophys Sin (Shanghai) 2022; 55:404-416. [PMID: 36514220 PMCID: PMC10160222 DOI: 10.3724/abbs.2022180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The dry skin tortures numerous patients with severe itch. The transient receptor potential cation channel V member 1 (TRPV1) and A member 1 (TRPA1) are two essential receptors for peripheral neural coding of itch sensory, mediating histaminergic and nonhistaminergic itch separately. In the dorsal root ganglion, transmembrane protein 100 (TMEM100) is structurally related to both TRPV1 and TRPA1 receptors, but the exact role of TMEM100 in itch sensory coding is still unknown. Here, in this study, we find that TMEM100 + DRG neurons account for the majority of activated neurons in an acetone-ether-water (AEW)-induced dry skin itch model, and some TMEM100 + DRG neurons are colocalized with both TRPA1 and the chloroquine-related Mrgpr itch receptor family. Both the expression and function of TRPA1 channels, but not TRPV1 channels, are upregulated in the AEW model, and specific DRG Tmem100 gene knockdown alleviates AEW-induced itch and rescues the expression and functional changes of TRPA1. Our results strongly suggest that TMEM100 protein in DRG is the main facilitating factor for dry-skin-related chronic itch, and specific suppression of TMEM100 in DRG could be a novel effective treatment strategy for patients who suffer from dry skin-induced itch.
Collapse
|
19
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
20
|
Gazerani P. How Does Botulinum Toxin Inhibit Itch? Toxins (Basel) 2022; 14:701. [PMID: 36287970 PMCID: PMC9610088 DOI: 10.3390/toxins14100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Two decades after reports of the anti-pruritic effects of botulinum neurotoxins (BoNTs), there is still no approved product for the anti-itch indication of BoNTs, and most clinical case reports still focus on the off-label use of BoNTs for various itchy conditions. Few randomized clinical trials have been conducted with controversial results, and the beneficial effects of BoNTs against itch are mainly based on case studies and case series. These studies are valuable in presenting the potential application of BoNTs in chronic pruritic conditions, but due to the nature of these studies, they are categorized as providing lower levels of evidence or lower grades of recommendation. To obtain approval for the anti-pruritic indication of BoNTs, higher levels of evidence are required, which can be achieved through conducting large-scale and well-designed studies with proper control groups and established careful and reliable primary and secondary outcomes. In addition to clinical evidence, presenting the mechanism-based antipruritic action of BoNTs can potentially strengthen, accelerate, and facilitate the current efforts towards further investments in accelerating the field towards the potential approval of BoNTs for itchy conditions. This review, therefore, aimed to provide the state-of-the-art mechanisms underlying the anti-itch effect of BoNTs from basic studies that resemble various clinical conditions with itch as a hallmark. Evidence of the neuronal, glial, and immune modulatory actions of BoNTs in reducing the transmission of itch are presented, and future potential directions are outlined.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
21
|
Asanuma Y, Ishimaru H, Sato T, Yamamoto T, Aoyama Y. Herpes simplex virus-induced murine dry skin model through sweating disturbance. J Dermatol Sci 2022; 107:151-159. [PMID: 36150981 DOI: 10.1016/j.jdermsci.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Given that ocular glands become infected secondarily to herpes simplex virus 1 (HSV-1) keratitis, resulting in the loss of tear production, sweat glands may also be susceptible to HSV-1 infection, resulting in sweating disturbance, which is observed frequently in atopic dermatitis. However, due to the lack of sweat glands on the hairy skin of mice, the role of sweating in the maintenance of skin hydration has not been elucidated. OBJECTIVE To determine the relationship between HSV-1 infection of sweat glands and sweating disturbance-induced dry skin. METHODS By using the impression mold technique, we examined the sweating response together with the detection of HSV-1 DNA in the sweat glands of footpads, the only area with sweat glands in mice, after local cutaneous HSV-1 inoculation of immunocompetent mice. RESULTS The sweating response and skin surface hydration were significantly decreased at 7-14 days post-infection. Sweating disturbance and dry skin was markedly enhanced when HSV-1 inoculation was followed by hyperthermic stress. Both resolved spontaneously and became resistant to a second HSV-1 inoculation, associated with increased anti-HSV-IgG antibodies. HSV-1 DNA was detected in sweat glands and dorsal root ganglia. The sweating response remained decreased after subcutaneous injection with pilocarpine, correlating histologically with marked dilatation of sweat gland lumens. These findings indicate that sweating disturbance is unlikely to be the outcome of nerve damage by HSV-1 infection. CONCLUSION Sweating disturbance could be due to HSV-induced dysfunction of sweat glands. We developed a sweating disturbance-induced dry skin mouse model by infection with HSV-1.
Collapse
Affiliation(s)
- Yumiko Asanuma
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hironobu Ishimaru
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tetsuko Sato
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takenobu Yamamoto
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yumi Aoyama
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
22
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
23
|
Feng J, Zhao Y, Xie Z, Zang K, Sviben S, Hu X, Fitzpatrick JAJ, Wen L, Liu Y, Wang T, Lawson K, Liu Q, Yan Y, Dong X, Han L, Wu GF, Kim BS, Hu H. Miswiring of Merkel cell and pruriceptive C fiber drives the itch-scratch cycle. Sci Transl Med 2022; 14:eabn4819. [PMID: 35857641 PMCID: PMC9888006 DOI: 10.1126/scitranslmed.abn4819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Itch sensation provokes the scratch reflex to protect us from harmful stimuli in the skin. Although scratching transiently relieves acute itch through activation of mechanoreceptors, it propagates the vicious itch-scratch cycle in chronic itch by further aggravating itch over time. Although well recognized clinically, the peripheral mechanisms underlying the itch-scratch cycle remain poorly understood. Here, we show that mechanical stimulation of the skin results in activation of the Piezo2 channels on Merkel cells that pathologically promotes spontaneous itch in experimental dry skin. Three-dimensional reconstruction and immunoelectron microscopy revealed structural alteration of MRGPRA3+ pruriceptor nerve endings directed toward Merkel cells in the setting of dry skin. Our results uncover a functional miswiring mechanism under pathologic conditions, resulting in touch receptors triggering the firing of pruriceptors in the skin to drive the itch-scratch cycle.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.,Corresponding author: and
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Xueming Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Lu Wen
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Yifei Liu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Ting Wang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Katy Lawson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qin Liu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Yan Yan
- Department of Surgery, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Brian S Kim
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Corresponding author: and
| |
Collapse
|
24
|
Zhang Q, Dias F, Fang Q, Henry G, Wang Z, Suttle A, Chen Y. Involvement of Sensory Neurone-TRPV4 in Acute and Chronic Itch Behaviours. Acta Derm Venereol 2022; 102:adv00651. [PMID: 35146528 PMCID: PMC9121103 DOI: 10.2340/actadv.v102.1621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Yong Chen
- Dedpartment of Neurology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Meng QT, Liu XY, Liu XT, Liu J, Munanairi A, Barry DM, Liu B, Jin H, Sun Y, Yang Q, Gao F, Wan L, Peng J, Jin JH, Shen KF, Kim R, Yin J, Tao A, Chen ZF. BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk. eLife 2021; 10:71689. [PMID: 34919054 PMCID: PMC8789279 DOI: 10.7554/elife.71689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here, we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCβ-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice. An itch is a common sensation that makes us want to scratch. Most short-term itches are caused by histamine, a chemical that is released by immune cells following an infection or in response to an allergic reaction. Chronic itching, on the other hand, is not usually triggered by histamine, and is typically the result of neurological or skin disorders, such as atopic dermatitis. The sensation of itching is generated by signals that travel from the skin to nerve cells in the spinal cord. Studies in mice have shown that the neuropeptides responsible for delivering these signals differ depending on whether or not the itch involves histamine: GRPs (short for gastrin-releasing proteins) convey histamine-independent itches, while NMBs (short for neuromedin B) convey histamine-dependent itches. It has been proposed that another neuropeptide called BNP (short for B-type natriuretic peptide) is able to transmit both types of itch signals to the spinal cord. But it remains unclear how this signaling molecule is able to do this. To investigate, Meng, Liu, Liu, Liu et al. carried out a combination of behavioral, molecular and pharmacological experiments in mice and nerve cells cultured in a laboratory. The experiments showed that BNP alone cannot transmit the sensation of itching, but it can boost itching signals that are triggered by histamine. It is widely believed that BNP activates a receptor protein called NPRA. However, Meng et al. found that the BNP actually binds to another protein which alters the function of the receptor activated by NMBs. These findings suggest that BNP modulates rather than initiates histamine-dependent itching by enhancing the interaction between NMBs and their receptor. Understanding how itch signals travel from the skin to neurons in the spinal cord is crucial for designing new treatments for chronic itching. The work by Meng et al. suggests that treatments targeting NPRA, which was thought to be a key itch receptor, may not be effective against chronic itching, and that other drug targets need to be explored.
Collapse
Affiliation(s)
- Qing-Tao Meng
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Admire Munanairi
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Hua Jin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Yu Sun
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Li Wan
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jiahang Peng
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jin-Hua Jin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Kai-Feng Shen
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Ray Kim
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou-Feng Chen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| |
Collapse
|
26
|
Lee WJ, Shim WS. Cutaneous Neuroimmune Interactions of TSLP and TRPV4 Play Pivotal Roles in Dry Skin-Induced Pruritus. Front Immunol 2021; 12:772941. [PMID: 34925342 PMCID: PMC8674573 DOI: 10.3389/fimmu.2021.772941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Dry skin is a symptom of skin barrier dysfunction that evokes pruritus; however, the cutaneous neuroimmune interactions underlying dry skin-induced pruritus remain unclear. Therefore, we aimed to elucidate the mechanisms underlying dry skin-induced pruritus. To this end, an acetone/ethanol/water (AEW)-induced mouse model of dry skin was used in this study. We observed that the production of thymic stromal lymphopoietin (TSLP) significantly increased in the keratinocytes of AEW mice. Importantly, treatment with an antagonist of transient receptor potential cation channel subfamily V member 4 (TRPV4), HC067047, ameliorated dry skin conditions in AEW mice. The symptoms of dry skin were significantly reduced in Trpv4 knockout (KO) mice following treatment with AEW. The increase in the intracellular calcium levels by TSLP in the dorsal root ganglia (DRG) of Trpv4 KO mice was also significantly attenuated. The spontaneous scratching bouts were significantly decreased in both the HC067047-treated and Trpv4 KO AEW mice. Importantly, the TSLP-dependent release of tryptase from the mast cells was significantly reduced in both the HC067047-treated mice and Trpv4 KO AEW mice. Notably, inhibition of the TSLP-induced signaling pathway in DRG selectively reduced the spontaneous scratching bouts in AEW mice. Overall, the results demonstrated that the cutaneous neuroimmune interactions of TSLP and TRPV4 play pivotal roles in dry skin-induced pruritus.
Collapse
Affiliation(s)
- Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| |
Collapse
|
27
|
Guo CJ, Grabinski NS, Liu Q. Peripheral Mechanisms of Itch. J Invest Dermatol 2021; 142:31-41. [PMID: 34838258 DOI: 10.1016/j.jid.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Itch is a universally experienced sensation, and chronic itch can be as diabolically debilitating as pain. Recent advances have not only identified the neuronal itch sensing circuitry, but also have uncovered the intricate interactions between skin and immune cells that work together with neurons to identify itch-inducing irritants. In this review, we will summarize the fundamental mechanisms of acute itch detection in the skin, as well as highlight the recent discoveries relating to this topic.
Collapse
Affiliation(s)
- Changxiong J Guo
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel S Grabinski
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qin Liu
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
28
|
Abstract
Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.
Collapse
|
29
|
Trier AM, Mack MR, Fredman A, Tamari M, Ver Heul AM, Zhao Y, Guo CJ, Avraham O, Ford ZK, Oetjen LK, Feng J, Dehner C, Coble D, Badic A, Joshita S, Kubo M, Gereau RW, Alexander-Brett J, Cavalli V, Davidson S, Hu H, Liu Q, Kim BS. IL-33 signaling in sensory neurons promotes dry skin itch. J Allergy Clin Immunol 2021; 149:1473-1480.e6. [PMID: 34560104 DOI: 10.1016/j.jaci.2021.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic pruritus, or itch, is common and debilitating, but the neuroimmune mechanisms that drive chronic itch are only starting to be elucidated. Recent studies demonstrate that the IL-33 receptor (IL-33R) is expressed by sensory neurons. However, whether sensory neuron-restricted activity of IL-33 is necessary for chronic itch remains poorly understood. OBJECTIVES We sought to determine if IL-33 signaling in sensory neurons is critical for the development of chronic itch in 2 divergent pruritic disease models. METHODS Plasma levels of IL-33 were assessed in patients with atopic dermatitis (AD) and chronic pruritus of unknown origin (CPUO). Mice were generated to conditionally delete IL-33R from sensory neurons. The contribution of neuronal IL-33R signaling to chronic itch development was tested in mouse models that recapitulate key pathologic features of AD and CPUO, respectively. RESULTS IL-33 was elevated in both AD and CPUO as well as their respective mouse models. While neuron-restricted IL-33R signaling was dispensable for itch in AD-like disease, it was required for the development of dry skin itch in a mouse model that mirrors key aspects of CPUO pathology. CONCLUSIONS These data highlight how IL-33 may be a predominant mediator of itch in certain contexts, depending on the tissue microenvironment. Further, this study provides insight into future therapeutic strategies targeting the IL-33 pathway for chronic itch.
Collapse
Affiliation(s)
- Anna M Trier
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Madison R Mack
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Avery Fredman
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Masato Tamari
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Aaron M Ver Heul
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Yonghui Zhao
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Changxiong J Guo
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, Mo
| | - Zachary K Ford
- Department of Anesthesiology and Neuroscience Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Landon K Oetjen
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Jing Feng
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Carina Dehner
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Dean Coble
- Division of Biostatistics, Washington University School of Medicine, St Louis, Mo
| | - Asima Badic
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Satoru Joshita
- Division of Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Masato Kubo
- Laboratory of Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan; Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Tokyo, Japan
| | - Robert W Gereau
- Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo; Department of Neuroscience, Washington University School of Medicine, St Louis, Mo; Washington University Pain Center, Washington University School of Medicine, St Louis, Mo
| | - Jennifer Alexander-Brett
- Division of Pulmonary and Critical Care, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, Mo
| | - Steve Davidson
- Department of Anesthesiology and Neuroscience Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hongzhen Hu
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Qin Liu
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Brian S Kim
- Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, St Louis, Mo; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
30
|
Gucy2d selectively marks inhibitory dynorphin neurons in the spinal dorsal horn but is dispensable for pain and itch sensitivity. Pain Rep 2021; 6:e947. [PMID: 34296052 PMCID: PMC8291471 DOI: 10.1097/pr9.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Inhibitory neurons in the spinal dorsal horn can be classified based on expression of neurochemical marker genes. However, these marker genes are often expressed throughout the central nervous system, which poses challenges for manipulating genetically identified spinal neurons without undesired off-target effects. Objectives We investigated whether Gucy2d, previously identified as a highly selective marker of dynorphin-lineage neurons in the dorsal horn, is expressed in other locations within the adult mouse spinal cord, dorsal root ganglia (DRG), or brain. In addition, we sought to molecularly characterize Gucy2d-expressing dorsal horn neurons and investigate whether the disruption of Gucy2d gene expression affects sensitivity to itch or pain. Methods In situ hybridization experiments assessed Gucy2d mRNA expression in the adult mouse spinal cord, DRG, and brain, and its colocalization with Pax2, Bhlhb5, and Pde2a in dorsal horn neurons. Knockout mice lacking Gucy2d expression were compared with littermate controls to assess sensitivity to chloroquine-induced itch and dry skin-mediated chronic itch, as well as heat, cold, or mechanical stimuli. Results Gucy2d is selectively expressed in dynorphin-lineage neurons in lamina I-III of the adult mouse spinal cord but not in the brain or DRG. Spinal Gucy2d-expressing neurons are inhibitory neurons that also express the transcription factor Bhlhb5 and the cGMP-dependent phosphodiesterase Pde2a. Gucy2d knockout mice did not exhibit altered responses to itch or pain. Conclusions The selective expression of Gucy2d within a subpopulation of inhibitory dorsal horn neurons may yield a means to selectively manipulate inhibitory signaling at the level of the spinal cord without effects on the brain.
Collapse
|
31
|
Ichimasu N, Chen Y, Kobayashi K, Suzuki S, Chikazawa S, Shimura S, Katagiri K. Possible involvement of type 2 cytokines in alloknesis in mouse models of menopause and dry skin. Exp Dermatol 2021; 30:1745-1753. [PMID: 34181782 DOI: 10.1111/exd.14422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
Alloknesis, an abnormal itch sensation induced by innocuous stimuli, is a key phenomenon in the vicious itch-scratch cycle in patients with atopic dermatitis. Dry skin and pruritus, including alloknesis, are major health problems in peri- and post-menopausal women. We recently reported permeability barrier dysfunction in ovariectomized (OVX) mice-a model of menopause-and found that the dysfunction was related to dry skin. However, the mechanism of the itch remains unknown. Therefore, we examined touch- and pruritogen-evoked alloknesis and epidermal innervation in OVX mice and acetone, diethyl ether and water (AEW)-treated mice, for the experimental dry skin model. Both alloknesis and epidermal innervation were comparable in OVX and AEW mice. Neutralizing antibodies against IL-4 and IL-13 inhibited alloknesis in both OVX and AEW mice as early as 30 min after intradermal administration. Comparable values close to the measurement limit of IL-4 were found in the skin of HRT and Sham mice as well as AEW and the control mice, but the levels of IL-4 were within the measurement limit in OVX mice. We could not detect mRNAs of IL-4 or IL-13 in any groups of mice. On the other hand, the number of eosinophils and basophils was increased in OVX and AEW mice. These results suggest that impaired barrier function in cooperation with type 2 cytokines derived from eosinophils and basophils in the skin or with endogenous type 2 cytokine may trigger the development of alloknesis, and thus, these cytokines could be a therapeutic target for sensitive skin.
Collapse
Affiliation(s)
- Nao Ichimasu
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yue Chen
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Keisuke Kobayashi
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - So Suzuki
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Sakiko Chikazawa
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Sakiko Shimura
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kazumoto Katagiri
- Department of Dermatology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| |
Collapse
|
32
|
Voisin T, Perner C, Messou MA, Shiers S, Ualiyeva S, Kanaoka Y, Price TJ, Sokol CL, Bankova LG, Austen KF, Chiu IM. The CysLT 2R receptor mediates leukotriene C 4-driven acute and chronic itch. Proc Natl Acad Sci U S A 2021; 118:e2022087118. [PMID: 33753496 PMCID: PMC8020753 DOI: 10.1073/pnas.2022087118] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute and chronic itch are burdensome manifestations of skin pathologies including allergic skin diseases and atopic dermatitis, but the underlying molecular mechanisms are not well understood. Cysteinyl leukotrienes (CysLTs), comprising LTC4, LTD4, and LTE4, are produced by immune cells during type 2 inflammation. Here, we uncover a role for LTC4 and its signaling through the CysLT receptor 2 (CysLT2R) in itch. Cysltr2 transcript is highly expressed in dorsal root ganglia (DRG) neurons linked to itch in mice. We also detected CYSLTR2 in a broad population of human DRG neurons. Injection of leukotriene C4 (LTC4) or its nonhydrolyzable form NMLTC4, but neither LTD4 nor LTE4, induced dose-dependent itch but not pain behaviors in mice. LTC4-mediated itch differed in bout duration and kinetics from pruritogens histamine, compound 48/80, and chloroquine. NMLTC4-induced itch was abrogated in mice deficient for Cysltr2 or when deficiency was restricted to radioresistant cells. Itch was unaffected in mice deficient for Cysltr1, Trpv1, or mast cells (WSh mice). CysLT2R played a role in itch in the MC903 mouse model of chronic itch and dermatitis, but not in models of dry skin or compound 48/80- or Alternaria-induced itch. In MC903-treated mice, CysLT levels increased in skin over time, and Cysltr2-/- mice showed decreased itch in the chronic phase of inflammation. Collectively, our study reveals that LTC4 acts through CysLT2R as its physiological receptor to induce itch, and CysLT2R contributes to itch in a model of dermatitis. Therefore, targeting CysLT signaling may be a promising approach to treat inflammatory itch.
Collapse
MESH Headings
- Animals
- Chronic Disease
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/complications
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Disease Models, Animal
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Humans
- Leukotriene C4/metabolism
- Mice
- Mice, Knockout
- Pruritus/immunology
- Pruritus/pathology
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/metabolism
- Sensory Receptor Cells/metabolism
- Signal Transduction/immunology
- Skin/innervation
- Skin/pathology
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Caroline Perner
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Marie-Angele Messou
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75080
| | - Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Yoshihide Kanaoka
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75080
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - K Frank Austen
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital, Boston, MA 02115;
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
33
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
34
|
Li HP, Wang XY, Chen C, Li JJ, Yu C, Lin LX, Yu ZE, Jin ZY, Zhu H, Xiang HC, Hu XF, Cao J, Jing XH, Li M. 100 Hz Electroacupuncture Alleviated Chronic Itch and GRPR Expression Through Activation of Kappa Opioid Receptors in Spinal Dorsal Horn. Front Neurosci 2021; 15:625471. [PMID: 33664646 PMCID: PMC7921323 DOI: 10.3389/fnins.2021.625471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
Background Clinical studies have shown that electroacupuncture (EA) alleviates chronic itch. Gastrin-releasing peptide receptor (GRPR) and dynorphin (DYN) in the spinal dorsal horn positively or negatively regulate itch, respectively. However, which frequency of EA is effective on relieving chronic itch and reducing the expression of GRPR, whether DYN-A in the spinal cord is involved in the underlying mechanism of the antipruritus effect of EA remains unknown. Methods The mixture of acetone and diethyl ether (1:1) [designated as AEW (acetone/diethyl ether and water) treatment] was used to induce the dry skin model of chronic itch. EA was applied to Quchi (LI11) and Hegu (LI4). Western blot was used to detect the expression of GRPR and DYN-A. Immunofluorescence was used to detect the expression of DYN-A. Results The AEW administration induced remarkable spontaneous scratching, enhanced the expression of GRPR, and reduced the expression of DYN-A. Compared with the sham EA, 2 Hz EA, or 15 Hz EA group, 100 Hz EA was the most effective frequency for relieving chronic itch, reducing the expression of GRPR, and increasing the expression of DYN-A in the cervical dorsal horn. Furthermore, intraperitoneal injection of kappa opioid receptors (KORs) antagonist nor-Binaltorphimine dihydrochloride (nor-BNI) significantly reversed the effect of 100 Hz EA on the inhibition of both itching behavior and GRPR expression. Conclusion EA at 100 Hz is the most effective frequency that inhibits chronic itch and GRPR expression through activation of KORs in the spinal dorsal horn, which can effectively guide the clinical treatment and improve the antipruritic effect of acupuncture.
Collapse
Affiliation(s)
- Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-E Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Yuan Jin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Wang B, Tai M, Zhang K, Chen H, Gan X, Che B, Abudukelimu N, Wang G, Xin X, Lin L, Han P, Peng Y, Du Z, Aker Aisa H. Elaeagnus L gum polysaccharides alleviate the impairment of barrier function in the dry skin model mice. J Cosmet Dermatol 2020; 20:647-656. [PMID: 33098181 DOI: 10.1111/jocd.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dry skin is a common skin condition caused by reduction of water-holding capacity, which is regulated by skin barrier function. Dry skin can also be a symptom that indicates a more serious diagnosis. There are a number of moisturizers on the market, which play an important role in dermatologic and cosmetic therapies. However, the demand for these products with good and therapeutic efficiency is still growing. AIMS It remains necessary to investigate the effects of Elaeagnus L gum polysaccharides (EAP), which are prepared from gum of Elaeagnus angustifolia L. on the epidermal permeability barrier function and their possible underlying mechanisms. PATIENTS/METHODS EAP were purified, analyzed, and tested on human keratinocyte cell line (HaCaT) and then on the skin in vivo to evaluate their antiinflammatory activities and their impacts on impaired skin barrier function. RESULTS Histological analyses revealed that topical administration with EAP effectively attenuated dryness-like skin condition, including less percutaneous water loss rate, less infiltrate inflammation cells, and less epidermal thickening. Moreover, EAP inhibited the production of various inflammatory mediators and increased AQP-3, FLG, and LOR expression. CONCLUSION Our results indicated that EAP enhances epidermal permeability barrier function, and they can be used as a promising adjuvant agent in skin care cosmetics and in treating some skin disorders characterized by cutaneous inflammation and abnormal barrier function.
Collapse
Affiliation(s)
- Bingying Wang
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | | | - Kun Zhang
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Huixiong Chen
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, Paris Cedex 06, France
| | | | - Biao Che
- Infinitus(China) Co. Ltd., Guangzhou, China
| | - N Abudukelimu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Guoping Wang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Xuelei Xin
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Li Lin
- Foshan Conney Allan Biotechnology Co. Ltd, Foshan, China
| | - Ping Han
- Foshan Conney Allan Biotechnology Co. Ltd, Foshan, China
| | - Yi Peng
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Du
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Haji Aker Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
36
|
Fan JJ, Gao B, Song AQ, Zhu YJ, Zhou J, Li WZ, Yin YY, Wu WN. Spinal cord NLRP1 inflammasome contributes to dry skin induced chronic itch in mice. J Neuroinflammation 2020; 17:122. [PMID: 32312281 PMCID: PMC7168883 DOI: 10.1186/s12974-020-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dry skin itch is one of the most common skin diseases and elderly people are believed to be particularly prone to it. The inflammasome has been suggested to play an important role in chronic inflammatory disorders including inflammatory skin diseases such as psoriasis. However, little is known about the role of NLRP1 inflammasome in dry skin-induced chronic itch. METHODS Dry skin-induced chronic itch model was established by acetone-ether-water (AEW) treatment. Spontaneous scratching behavior was recorded by video monitoring. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes, transient receptor potential vanilloid type 1 (TRPV1), and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay (ELISA) kits. Nlrp1a knockdown was performed by an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. H.E. staining was used to evaluate skin lesion. RESULTS AEW treatment triggers spontaneous scratching and significantly increases the expression of NLRP1, ASC, and caspase-1 and the levels of IL-1β, IL-18, IL-6, and TNF-α in the spinal cord and the skin of mice. Spinal cord Nlrp1a knockdown prevents AEW-induced NLRP1 inflammasome assembly, TRPV1 channel activation, and spontaneous scratching behavior. Capsazepine, a specific antagonist of TRPV1, can also inhibit AEW-induced inflammatory response and scratching behavior. Furthermore, elderly mice and female mice exhibited more significant AEW-induced scratching behavior than young mice and male mice, respectively. Interestingly, AEW-induced increases in the expression of NLRP1 inflammasome complex and the levels of inflammatory cytokines were more remarkable in elderly mice and female mice than in young mice and male mice, respectively. CONCLUSIONS Spinal cord NLRP1 inflammasome-mediated inflammatory response contributes to dry skin-induced chronic itch by TRPV1 channel, and it is also involved in age and sex differences of chronic itch. Inhibition of NLRP1 inflammasome may offer a new therapy for dry skin itch.
Collapse
Affiliation(s)
- Jun-Juan Fan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bo Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ao-Qi Song
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ya-Jing Zhu
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710100, People's Republic of China
| | - Jun Zhou
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710100, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China. .,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
37
|
Tillmaand EG, Anapindi KDB, De La Toba EA, Guo CJ, Krebs J, Lenhart AE, Liu Q, Sweedler JV. Quantitative Characterization of the Neuropeptide Level Changes in Dorsal Horn and Dorsal Root Ganglia Regions of the Murine Itch Models. J Proteome Res 2020; 19:1248-1257. [PMID: 31957451 PMCID: PMC7060821 DOI: 10.1021/acs.jproteome.9b00758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic itch can be extremely devastating and, in many cases, difficult to treat. One challenge in treating itch disorders is the limited understanding of the multitude of chemical players involved in the communication of itch sensation from the peripheral to the central nervous system. Neuropeptides are intercellular signaling molecules that are known to be involved in the transmission of itch signals from primary afferent neurons, which detect itch in the skin, to higher-order circuits in the spinal cord and brain. To investigate the role of neuropeptides in transmitting itch signals, we generated two mouse models of chronic itch-Acetone-Ether-Water (AEW, dry skin) and calcipotriol (MC903, atopic dermatitis). For peptide identification and quantitation, we analyzed the peptide content of dorsal root ganglia (DRG) and dorsal horn (DH) tissues from chronically itchy mice using liquid chromatography coupled to tandem mass spectrometry. De novo-assisted database searching facilitated the identification and quantitation of 335 peptides for DH MC903, 318 for DH AEW, 266 for DRG MC903, and 271 for DRG AEW. Of these quantifiable peptides, we detected 30 that were differentially regulated in the tested models, after accounting for multiple testing correction (q ≤ 0.1). These include several peptide candidates derived from neuropeptide precursors, such as proSAAS, protachykinin-1, proenkephalin, and calcitonin gene-related peptide, some of them previously linked to itch. The peptides identified in this study may help elucidate our understanding about these debilitating disorders. Data are available via ProteomeXchange with identifier PXD015949.
Collapse
Affiliation(s)
- Emily G. Tillmaand
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Krishna D. B. Anapindi
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Eduardo A. De La Toba
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Changxiong J. Guo
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jessica Krebs
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Ashley E. Lenhart
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jonathan V. Sweedler
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Antipruritic Effects of Kappa Opioid Receptor Agonists: Evidence from Rodents to Humans. Handb Exp Pharmacol 2020; 271:275-292. [PMID: 33296031 DOI: 10.1007/164_2020_420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centrally administered bombesin induces scratching and grooming in rats. These behaviors were blocked by early benzomorphan kappa opioid receptor (KOR) agonists as reported by Gmerek and Cowan in 1984. This was the first evidence that KORs may be involved in the sensation of itch-like behaviors. Subsequent development of additional animal models for acute and chronic itch has led to important discoveries since then. For example, it was found that (a) gastrin-releasing peptide (GRP), natriuretic polypeptide b and their cognate receptors are keys for the transmission of itch sensation at the spinal cord level, (b) dynorphins (Dyns), the endogenous KOR agonists, work as inhibitory neuromodulators of itch at the spinal cord level, (c) in a mouse model for acute itch, certain KOR antagonists elicit scratching, (d) in mouse models of acute or chronic itch, KOR agonists (e.g., U50,488, nalfurafine, CR 845, nalbuphine) suppress scratching induced by different pruritogens, and (e) nalfurafine, CR 845, and nalbuphine are in the clinic or in clinical trials for pruritus associated with chronic kidney disease and chronic liver disease, as well as pruritus in chronic skin diseases.
Collapse
|
39
|
Samineni VK, Grajales-Reyes JG, Sundaram SS, Yoo JJ, Gereau RW. Cell type-specific modulation of sensory and affective components of itch in the periaqueductal gray. Nat Commun 2019; 10:4356. [PMID: 31554789 PMCID: PMC6761157 DOI: 10.1038/s41467-019-12316-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/28/2019] [Indexed: 01/07/2023] Open
Abstract
Itch is a distinct aversive sensation that elicits a strong urge to scratch. Despite recent advances in our understanding of the peripheral basis of itch, we know very little regarding how central neural circuits modulate acute and chronic itch processing. Here we establish the causal contributions of defined periaqueductal gray (PAG) neuronal populations in itch modulation in mice. Chemogenetic manipulations demonstrate bidirectional modulation of scratching by neurons in the PAG. Fiber photometry studies show that activity of GABAergic and glutamatergic neurons in the PAG is modulated in an opposing manner during chloroquine-evoked scratching. Furthermore, activation of PAG GABAergic neurons or inhibition of glutamatergic neurons resulted in attenuation of scratching in both acute and chronic pruritis. Surprisingly, PAG GABAergic neurons, but not glutamatergic neurons, may encode the aversive component of itch. Thus, the PAG represents a neuromodulatory hub that regulates both the sensory and affective aspects of acute and chronic itch.
Collapse
Affiliation(s)
- Vijay K Samineni
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
| | - Jose G Grajales-Reyes
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
- Neuroscience Program, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
| | - Saranya S Sundaram
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
| | - Judy J Yoo
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA.
- Washington University Pain Center, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Department of Biomedical Engineering, Washington University School of Medicine, 660 S. Euclid Ave, Box 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
40
|
Basso L, Serhan N, Tauber M, Gaudenzio N. Peripheral neurons: Master regulators of skin and mucosal immune response. Eur J Immunol 2019; 49:1984-1997. [DOI: 10.1002/eji.201848027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Lilian Basso
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| | - Nadine Serhan
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| | - Marie Tauber
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM Université de Toulouse Toulouse France
| |
Collapse
|
41
|
Abstract
Itching can result from activity of specialized primary afferent neurons (“pruriceptors”) that have been shown to express certain molecular markers such as B-type natriuretic peptide and several members of the Mrgpr-family in rodents. On the other hand, neurons involved in pain processing (“nociceptors”) can also provoke itching when the activation site is restricted to an isolated tiny spot within the epidermis. Individuals classified as having sensitive skin report increased itching and pain sensations upon weak external stimuli that are not painful or itchy in the control group. Numerous possible factors could contribute to sensitive skin along the pathway of transduction of the external stimuli into peripheral neuronal signals, followed by neuronal processing, finally resulting in the perception: (a) reduced local protective factors leading to impaired skin barrier function, (b) increased production of excitatory skin mediators, (c) sensitized peripheral neurons, (d) facilitated spinal and central processing, and (e) reduced descending inhibition from the central nervous system. For all of those pathophysiological mechanisms there are clinical examples such as atopic dermatitis (a,b,c), neuropathic itching (c,e), and restless leg syndrome (d,e). However, none of these factors have been directly linked to the occurrence of sensitive skin. Moreover, individuals reporting sensitive skin are heterogeneous and a subpopulation with defined pathophysiology has not yet been identified. Given that the condition is reported in about 50% of women, and thereby includes many healthy individuals, it appears problematic to assign a definitive pathophysiological mechanism to it.
Collapse
Affiliation(s)
- Martin Schmelz
- Department Experimental Pain Research, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
42
|
Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron 2019; 103:1135-1149.e6. [PMID: 31324538 DOI: 10.1016/j.neuron.2019.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Lightly stroking the lips or gently poking some skin regions can evoke mechanical itch in healthy human subjects. Sensitization of mechanical itch and persistent spontaneous itch are intractable symptoms in chronic itch patients. However, the underlying neural circuits are not well defined. We identified a subpopulation of excitatory interneurons expressing Urocortin 3::Cre (Ucn3+) in the dorsal spinal cord as a central node in the pathway that transmits acute mechanical itch and mechanical itch sensitization as well as persistent spontaneous itch under chronic itch conditions. This population receives peripheral inputs from Toll-like receptor 5-positive (TLR5+) Aβ low-threshold mechanoreceptors and is directly innervated by inhibitory interneurons expressing neuropeptide Y::Cre (NPY+) in the dorsal spinal cord. Reduced synaptic inhibition and increased intrinsic excitability of Ucn3+ neurons lead to chronic itch sensitization. Our study sheds new light on the neural basis of chronic itch and unveils novel avenues for developing mechanism-specific therapeutic advancements.
Collapse
|
43
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal care enhances the skin barrier resistance of offspring in mice. PLoS One 2019; 14:e0219674. [PMID: 31295326 PMCID: PMC6624014 DOI: 10.1371/journal.pone.0219674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/30/2019] [Indexed: 01/25/2023] Open
Abstract
Deprivation of maternal care via lack of somatosensory input causes offspring to experience adverse consequences, especially in the central nervous system. However, little is known about the developmental effect of maternal care on peripheral tissues such as the skin, which includes cutaneous sensory neurons. In the present study, we examined the involvement of maternal care in the development of the skin. We investigated offspring reared by early-weaned mother mice who spontaneously showed lower frequency of licking/grooming on nursing. Offspring of early-weaned mothers showed higher resistance against skin barrier disruption than did offspring of normally-weaned mothers, and had normal skin barrier function in the intact trunk skin. In the dorsal root ganglion of early-weaned mother offspring, we also found up-regulation of mRNA levels of the Mas-related G-protein coupled receptor B4 (MrgprB4), which is a marker of sensory neurons that detect gentle stroking. We further found that levels of MrgprB4 mRNA were correlated with the enhancement of skin resistance. The present findings suggest that maternal somatosensory inputs have a developmental impact on the cutaneous sensory neurons of the skin in offspring. Interestingly, the present results suggest that lower maternal care has a benefit on the skin resistance. This provides important information for understanding the development of peripheral tissues in offspring reared under severe conditions such as lower maternal care in the wild.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
- * E-mail:
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
44
|
Liu BW, Li ZX, He ZG, Wang Q, Liu C, Zhang XW, Yang H, Xiang HB. Altered expression of itch‑related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch. Int J Mol Med 2019; 44:835-846. [PMID: 31257468 PMCID: PMC6657970 DOI: 10.3892/ijmm.2019.4253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
In this study, we focused on several itch-related molecules and receptors in the spinal cord with the goal of clarifying the specific mediators that regulate itch sensation. We investigated the involvement of serotonin receptors, opioid receptors, glia cell markers and chemokines (ligands and receptors) in models of acetone/ether/water (AEW)- and diphenylcyclopropenone (DCP)-induced chronic itch. Using reverse transcription-quantitative polymerase chain reaction, we examined the expression profiles of these mediators in the lower cervical spinal cord (C5-8) of two models of chronic itch. We found that the gene expression levels of opioid receptor mu 1 (Oprm1), 5-hydroxytryptamine receptor 1A (Htr1a) and 5-hydroxytryptamine receptor 6 (Htr6) were upregulated. Among the chemokines, the expression levels of C-C motif chemokine ligand (Ccl)21, Cxcl3 and Cxcl16 and their receptors, Ccr7, Cxcr2 and Cxcr6, were simultaneously upregulated in the spinal cords of the mice in both models of chronic itch. By contrast, the expression levels of Ccl2, Ccl3, Ccl4 and Ccl22 were downregulated. These findings indicate that multiple mediators, such as chemokines in the spinal cord, are altered and may be central candidates in further research into the mechanisms involved in the development of chronic itch.
Collapse
Affiliation(s)
- Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xian-Wei Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
45
|
Takahashi S, Ishida A, Kubo A, Kawasaki H, Ochiai S, Nakayama M, Koseki H, Amagai M, Okada T. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. Sci Rep 2019; 9:8625. [PMID: 31197234 PMCID: PMC6565750 DOI: 10.1038/s41598-019-44866-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
The epidermal barrier is thought to protect sensory nerves from overexposure to environmental stimuli, and barrier impairment leads to pathological conditions associated with itch, such as atopic dermatitis (AD). However, it is not known how the epidermal barrier continuously protects nerves for the sensory homeostasis during turnover of the epidermis. Here we show that epidermal nerves are contained underneath keratinocyte tight junctions (TJs) in normal human and mouse skin, but not in human AD samples or mouse models of chronic itch caused by epidermal barrier impairment. By intravital imaging of the mouse skin, we found that epidermal nerve endings were frequently extended and retracted, and occasionally underwent local pruning. Importantly, the epidermal nerve pruning took place rapidly at intersections with newly forming TJs in the normal skin, whereas this process was disturbed during chronic itch development. Furthermore, aberrant Ca2+ increases in epidermal nerves were induced in association with the disturbed pruning. Finally, TRPA1 inhibition suppressed aberrant Ca2+ increases in epidermal nerves and itch. These results suggest that epidermal nerve endings are pruned through interactions with keratinocytes to stay below the TJ barrier, and that disruption of this mechanism may lead to aberrant activation of epidermal nerves and pathological itch.
Collapse
Affiliation(s)
- Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan
| | - Sotaro Ochiai
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Haruhiko Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan. .,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
46
|
Trier AM, Mack MR, Kim BS. The Neuroimmune Axis in Skin Sensation, Inflammation, and Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2829-2835. [PMID: 31061146 PMCID: PMC6563610 DOI: 10.4049/jimmunol.1801473] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Although connections between the immune and nervous systems have long been recognized, the precise mechanisms that underlie this relationship are just starting to be elucidated. Advances in sensory biology have unveiled novel mechanisms by which inflammatory cytokines promote itch and pain sensations to coordinate host-protective behavioral responses. Conversely, new evidence has emphasized the importance of immune cell regulation by sensory neurons. By focusing on itch biology and how it has been informed by the more established field of pain research, we highlight recent interdisciplinary studies that demonstrate how novel neuroimmune interactions underlie a diversity of sensory, inflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Anna M Trier
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Madison R Mack
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110;
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110; and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
47
|
Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X. Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled Receptors Drives Non-histaminergic Itch. Immunity 2019; 50:1163-1171.e5. [PMID: 31027996 DOI: 10.1016/j.immuni.2019.03.013] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 11/28/2022]
Abstract
Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.
Collapse
Affiliation(s)
- James Meixiong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Anderson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathachit Limjunyawong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark F Sabbagh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Hu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Madison R Mack
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Landon K Oetjen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fang Wang
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute.
| |
Collapse
|
48
|
Rinaldi G. The Itch-Scratch Cycle: A Review of the Mechanisms. Dermatol Pract Concept 2019; 9:90-97. [PMID: 31106010 PMCID: PMC6502296 DOI: 10.5826/dpc.0902a03] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite being one of the most common presenting dermatological symptoms, itching continues to perplex health care professionals because it is notoriously difficult to control. OBJECTIVE This review gathers evidence to answer the 2-part question, "Why do we itch and scratch?" by exploring the history of itchy disease, the neurobiology of itch, and the 4 different clinical origins of itch: pruritogenic, neurological, neuropathic, and psychological. RESULTS The automated scratching reflex and its biological and psychological reasons for existence are complicated and poorly understood. Currently, there are a myriad of treatments available for individuals suffering from this condition; however, many remain symptomatic. CONCLUSIONS The itch-scratch cycle is a complex pain-like sensation with a reflex-like response. In the future, continued exploration into the mechanisms behind itch and scratch may open the doors for new therapeutic interventions.
Collapse
|
49
|
Murakami Y, Sekijima H, Fujisawa Y, Ooi K. Adjustment of Conditions for Combining Oxybutynin Transdermal Patch with Heparinoid Cream in Mice by Analyzing Blood Concentrations of Oxybutynin Hydrochloride. Biol Pharm Bull 2019; 42:586-593. [DOI: 10.1248/bpb.b18-00690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshihito Murakami
- Sunai Pharmacy Co., Ltd
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hidehisa Sekijima
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Yutaka Fujisawa
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuya Ooi
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
50
|
Li S, Andoh T, Zhang Q, Uta D, Kuraishi Y. β2-Microglobulin, interleukin-31, and arachidonic acid metabolites (leukotriene B4 and thromboxane A2) are involved in chronic renal failure-associated itch-associated responses in mice. Eur J Pharmacol 2019; 847:19-25. [DOI: 10.1016/j.ejphar.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
|