1
|
Kovacs D, Mambule I, Read JM, Kiran A, Chilombe M, Bvumbwe T, Aston S, Menyere M, Masina M, Kamzati M, Ganiza TN, Iuliano D, McMorrow M, Bar-Zeev N, Everett D, French N, Ho A. Epidemiology of Human Seasonal Coronaviruses Among People With Mild and Severe Acute Respiratory Illness in Blantyre, Malawi, 2011-2017. J Infect Dis 2024; 230:e363-e373. [PMID: 38365443 PMCID: PMC11322416 DOI: 10.1093/infdis/jiad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The aim of this study was to characterize the epidemiology of human seasonal coronaviruses (HCoVs) in southern Malawi. METHODS We tested for HCoVs 229E, OC43, NL63, and HKU1 using real-time polymerase chain reaction (PCR) on upper respiratory specimens from asymptomatic controls and individuals of all ages recruited through severe acute respiratory illness (SARI) surveillance at Queen Elizabeth Central Hospital, Blantyre, and a prospective influenza-like illness (ILI) observational study between 2011 and 2017. We modeled the probability of having a positive PCR for each HCoV using negative binomial models, and calculated pathogen-attributable fractions (PAFs). RESULTS Overall, 8.8% (539/6107) of specimens were positive for ≥1 HCoV. OC43 was the most frequently detected HCoV (3.1% [191/6107]). NL63 was more frequently detected in ILI patients (adjusted incidence rate ratio [aIRR], 9.60 [95% confidence interval {CI}, 3.25-28.30]), while 229E (aIRR, 8.99 [95% CI, 1.81-44.70]) was more frequent in SARI patients than asymptomatic controls. In adults, 229E and OC43 were associated with SARI (PAF, 86.5% and 89.4%, respectively), while NL63 was associated with ILI (PAF, 85.1%). The prevalence of HCoVs was similar between children with SARI and controls. All HCoVs had bimodal peaks but distinct seasonality. CONCLUSIONS OC43 was the most prevalent HCoV in acute respiratory illness of all ages. Individual HCoVs had distinct seasonality that differed from temperate settings.
Collapse
Affiliation(s)
- Dory Kovacs
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ivan Mambule
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Research Department, Joint Clinical Research Centre, Kampala, Uganda
| | - Jonathan M. Read
- Centre for Health Information Computation and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Anmol Kiran
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Chilombe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thandiwe Bvumbwe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Blantyre Malaria Project, Blantyre, Malawi
| | - Stephen Aston
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mavis Menyere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mazuba Masina
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Kamzati
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Thokozani Namale Ganiza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Danielle Iuliano
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meredith McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naor Bar-Zeev
- International Vaccine Access Center, Department of international Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Dean Everett
- Department of Pathology and Infectious Diseases, College of Medicine and Health Sciences, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Neil French
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antonia Ho
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Trifonova I, Korsun N, Madzharova I, Velikov P, Alexsiev I, Grigorova L, Voleva S, Yordanova R, Ivanov I, Tcherveniakova T, Christova I. Prevalence and clinical impact of mono- and co-infections with endemic coronaviruses 229E, OC43, NL63, and HKU-1 during the COVID-19 pandemic. Heliyon 2024; 10:e29258. [PMID: 38623185 PMCID: PMC11016702 DOI: 10.1016/j.heliyon.2024.e29258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Endemic human coronaviruses (eHCoVs) are found worldwide and usually result in mild to moderate upper respiratory tract infections. They can lead to more severe illnesses such as croup, bronchiolitis, and pneumonia in vulnerable populations. During the coronavirus disease 2019 (COVID-19) pandemic, information on HCoV prevalence and incidence and clinical impact of co-infections of HCoV with SARS-CoV-2 was lacking. Objectives Thus, this study aimed to determine the prevalence and clinical significance of infections caused by eHCoVs during the COVID-19 pandemic in Bulgaria. Methods From January 2021 to December 2022, nasopharyngeal swabs of patients with acute upper or lower respiratory tract infections were tested for 17 respiratory viruses using multiplex real-time polymerase chain reaction assays. The clinical data and laboratory parameters of patients infected with respiratory viruses were analysed. Results Of the 1375 patients screened, 24 (1.7 %) were positive for HCoVs, and 197 (14.3 %) were positive for eight other seasonal respiratory viruses. Five (0.7 %) of 740 patients positive for SARS-CoV-2 were co-infected with eHCoVs. Co-infected patients had a mean C-reactive protein level of 198.5 ± 2.12 mg/mL and a mean oxygen saturation of 82 ± 2.8 mmHg, while those in patients co-infected with SARS-CoV-2 and other respiratory viruses were 61.8 mg/mL and 92.8 ± 4.6 mmHg, respectively (p < 0.05). Pneumonia was diagnosed in 63.3 % of patients with HCoV infection and 6 % of patients positive for other seasonal respiratory viruses (p < 0.05). Patients with SARS-CoV-2 mono-infection stayed in hospital for an average of 5.8 ± 3.7 days, whereas the average hospital stay of patients with eHCoV and SARS-CoV-2 co-infection was 9 ± 1.4 days (p < 0.05). Conclusion These findings indicate the low prevalence of eHCoVs and low co-infection rate between eHCoVs and SARS-CoV-2 during the COVID-19 pandemic in Bulgaria. Despite their low incidence, such mixed infections can cause severe signs that require oxygen therapy and longer hospital stays, underlining the need for targeted testing of severe COVID-19 cases to identify potential co-infections.
Collapse
Affiliation(s)
- I. Trifonova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - N. Korsun
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - I. Madzharova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - P. Velikov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - I. Alexsiev
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - L. Grigorova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - S. Voleva
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - R. Yordanova
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - I. Ivanov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - T. Tcherveniakova
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - I. Christova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| |
Collapse
|
3
|
Hamaluba M, Sang S, Orindi B, Njau I, Karanja H, Kamau N, Gitonga JN, Mugo D, Wright D, Nyagwange J, Kutima B, Omuoyo D, Mwatasa M, Ngetsa C, Agoti C, Cheruiyot S, Nyaguara A, Munene M, Mturi N, Oloo E, Ochola-Oyier L, Mumba N, Mauncho C, Namayi R, Davies A, Tsofa B, Nduati EW, Aliyan N, Kasera K, Etyang A, Boyd A, Hill A, Gilbert S, Douglas A, Pollard A, Bejon P, Lambe T, Warimwe G. Safety and immunogenicity of ChAdOx1 nCoV-19 (AZD1222) vaccine in adults in Kenya: a phase 1/2 single-blind, randomised controlled trial. Wellcome Open Res 2023; 8:182. [PMID: 38707489 PMCID: PMC11066537 DOI: 10.12688/wellcomeopenres.19150.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/07/2024] Open
Abstract
Background There are limited data on the immunogenicity of coronavirus disease 2019 (COVID-19) vaccines in African populations. Here we report the immunogenicity and safety of the ChAdOx1 nCoV-19 (AZD1222) vaccine from a phase 1/2 single-blind, randomised, controlled trial among adults in Kenya conducted as part of the early studies assessing vaccine performance in different geographical settings to inform Emergency Use Authorisation. Methods We recruited and randomly assigned (1:1) 400 healthy adults aged ≥18 years in Kenya to receive ChAdOx1 nCoV-19 or control rabies vaccine, each as a two-dose schedule with a 3-month interval. The co-primary outcomes were safety, and immunogenicity assessed using total IgG enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 spike protein 28 days after the second vaccination. Results Between 28 th October 2020 and 19 th August 2021, 400 participants were enrolled and assigned to receive ChAdOx1 nCoV-19 (n=200) or rabies vaccine (n=200). Local and systemic adverse events were self-limiting and mild or moderate in nature. Three serious adverse events were reported but these were deemed unrelated to vaccination. The geometric mean anti-spike IgG titres 28 days after second dose vaccination were higher in the ChAdOx1 group (2773 ELISA units [EU], 95% CI 2447, 3142) than in the rabies vaccine group (61 EU, 95% CI 45, 81) and persisted over the 12 months follow-up. We did not identify any symptomatic infections or hospital admissions with respiratory illness and so vaccine efficacy against clinically apparent infection could not be measured. Vaccine efficacy against asymptomatic SARS-CoV-2 infection was 38.4% (95% CI -26.8%, 70.1%; p=0.188). Conclusions The safety, immunogenicity and efficacy against asymptomatic infection of ChAdOx1 nCoV-19 among Kenyan adults was similar to that observed elsewhere in the world, but efficacy against symptomatic infection or severe disease could not be measured in this cohort. Pan-African Clinical Trials Registration PACTR202005681895696 (11/05/2020).
Collapse
Affiliation(s)
| | - Samuel Sang
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Irene Njau
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Henry Karanja
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Naomi Kamau
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Daniel Wright
- Oxford Vaccine Group, University of Oxford, Oxford, England, UK
| | | | | | | | | | | | - Charles Agoti
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Amek Nyaguara
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Neema Mturi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Noni Mumba
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Alun Davies
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, England, UK
| | | | | | | | | | | | - Amy Boyd
- The Jenner Institute, University of Oxford, Oxford, England, UK
| | - Adrian Hill
- The Jenner Institute, University of Oxford, Oxford, England, UK
| | - Sarah Gilbert
- Pandemic Sciences Institute, University of Oxford, Oxford, England, UK
| | | | - Andrew Pollard
- Oxford Vaccine Group, University of Oxford, Oxford, England, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, England, UK
| | - Teresa Lambe
- Oxford Vaccine Group, University of Oxford, Oxford, England, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, England, UK
| | - George Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, England, UK
| | - COV004 Vaccine Trial Group
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Oxford Vaccine Group, University of Oxford, Oxford, England, UK
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, England, UK
- Ministry of Health, Nairobi, Kenya
- The Jenner Institute, University of Oxford, Oxford, England, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, England, UK
| |
Collapse
|
4
|
Frutos AM, Balmaseda A, Vydiswaran N, Patel M, Ojeda S, Brouwer A, Tutino R, Cai S, Bakker K, Sanchez N, Lopez R, Kuan G, Gordon A. Burden and seasonality of primary and secondary symptomatic common cold coronavirus infections in Nicaraguan children. Influenza Other Respir Viruses 2023; 17:e13078. [PMID: 36494188 PMCID: PMC9835451 DOI: 10.1111/irv.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current SARS-CoV-2 pandemic highlights the need for an increased understanding of coronavirus epidemiology. In a pediatric cohort in Nicaragua, we evaluate the seasonality and burden of common cold coronavirus (ccCoV) infection and evaluate likelihood of symptoms in reinfections. METHODS Children presenting with symptoms of respiratory illness were tested for each of the four ccCoVs (NL63, 229E, OC43, and HKU1). Annual blood samples collected before ccCoV infection were tested for antibodies against each ccCoV. Seasonality was evaluated using wavelet and generalized additive model (GAM) analyses, and age-period effects were investigated using a Poisson model. We also evaluate the risk of symptom presentation between primary and secondary infections. RESULTS In our cohort of 2576 children from 2011 to 2016, we observed 595 ccCoV infections and 107 cases of ccCoV-associated lower respiratory infection (LRI). The overall incidence rate was 61.1 per 1000 person years (95% confidence interval (CI): 56.3, 66.2). Children under two had the highest incidence of ccCoV infections and associated LRI. ccCoV incidence rapidly decreases until about age 6. Each ccCoV circulated throughout the year and demonstrated annual periodicity. Peaks of NL63 typically occurred 3 months before 229E peaks and 6 months after OC43 peaks. Approximately 69% of symptomatic ccCoV infections were secondary infections. There was slightly lower risk (rate ratio (RR): 0.90, 95% CI: 0.83, 0.97) of LRI between secondary and primary ccCoV infections among participants under the age of 5. CONCLUSIONS ccCoV spreads annually among children with the greatest burden among ages 0-1. Reinfection is common; prior infection is associated with slight protection against LRI among the youngest children.
Collapse
Affiliation(s)
- Aaron M. Frutos
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Angel Balmaseda
- Health Center Sócrates Flores VivasMinistry of HealthManaguaNicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnósticoy ReferenciaMinistry of HealthManaguaNicaragua
| | - Nivea Vydiswaran
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Mayuri Patel
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | | | - Andrew Brouwer
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Rebecca Tutino
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Shuwei Cai
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin Bakker
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | | | - Roger Lopez
- Laboratorio Nacional de Virología, Centro Nacional de Diagnósticoy ReferenciaMinistry of HealthManaguaNicaragua
- Sustainable Sciences InstituteManaguaNicaragua
| | - Guillermina Kuan
- Health Center Sócrates Flores VivasMinistry of HealthManaguaNicaragua
- Sustainable Sciences InstituteManaguaNicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
5
|
Liu S, Zhu A, Pan J, Ying L, Sun W, Wu H, Zhu H, Lou H, Wang L, Qin S, Yu Z, Cai J, Chen Y, Chen E. The clinical and virological features of two children's coinfections with human adenovirus type 7 and human coronavirus-229E virus. Front Public Health 2022; 10:1048108. [PMID: 36457331 PMCID: PMC9706225 DOI: 10.3389/fpubh.2022.1048108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Human adenovirus (HAdV) coinfection with other respiratory viruses is common, but adenovirus infection combined with human coronavirus-229E (HCoV-229E) is very rare. Study design and setting Clinical manifestations, laboratory examinations, and disease severity were compared between three groups: one coinfected with HAdV-Ad7 and HCoV-229E, one infected only with adenovirus (mono-adenovirus), and one infected only with HCoV-229E (mono-HCoV-229E). Results From July to August 2019, there were 24 hospitalized children: two were coinfected with HAdV-Ad7 and HCoV-229E, and 21 were infected with a single adenovirus infection. Finally, one 14-year-old boy presented with a high fever, but tested negative for HAdV-Ad7 and HCoV-229E. Additionally, three adult asymptotic cases with HCoV-229E were screened. No significant difference in age was found in the coinfection and mono-adenovirus groups (11 vs. 8 years, p = 0.332). Both groups had the same incubation period (2.5 vs. 3 days, p = 0.8302), fever duration (2.5 vs. 2.9 days, p = 0.5062), and length of hospital stay (7 vs. 6.76 days, p = 0.640). No obvious differences were found in viral loads between the coinfection and mono-adenovirus groups (25.4 vs. 23.7, p = 0.570), or in the coinfection and mono-HCoV-229E groups (32.9 vs. 30.06, p = 0.067). All cases recovered and were discharged from the hospital. Conclusion HAdV-Ad7 and HCoV-229E coinfection in healthy children may not increase the clinical severity or prolong the clinical course. The specific interaction mechanism between the viruses requires further study.
Collapse
Affiliation(s)
- Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - An Zhu
- Department of Pediatrics, Second People's Hospital of Jinyun County, Lishui, China
| | - Jinren Pan
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lihong Ying
- Department of Infectious Diseases, Jinyun District Center for Disease Control and Prevention, Lishui, China
| | - Wanwan Sun
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hanting Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiying Zhu
- Department of Pediatrics, Second People's Hospital of Jinyun County, Lishui, China
| | - Haiyan Lou
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Wang
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuwen Qin
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhao Yu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jian Cai
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Jian Cai
| | - Yin Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,Yin Chen
| | - Enfu Chen
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,Enfu Chen
| |
Collapse
|
6
|
Otieno JR, Cherry JL, Spiro DJ, Nelson MI, Trovão NS. Origins and Evolution of Seasonal Human Coronaviruses. Viruses 2022; 14:1551. [PMID: 35891531 PMCID: PMC9320361 DOI: 10.3390/v14071551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Four seasonal human coronaviruses (sHCoVs) are endemic globally (229E, NL63, OC43, and HKU1), accounting for 5-30% of human respiratory infections. However, the epidemiology and evolution of these CoVs remain understudied due to their association with mild symptomatology. Using a multigene and complete genome analysis approach, we find the evolutionary histories of sHCoVs to be highly complex, owing to frequent recombination of CoVs including within and between sHCoVs, and uncertain, due to the under sampling of non-human viruses. The recombination rate was highest for 229E and OC43 whereas substitutions per recombination event were highest in NL63 and HKU1. Depending on the gene studied, OC43 may have ungulate, canine, or rabbit CoV ancestors. 229E may have origins in a bat, camel, or an unsampled intermediate host. HKU1 had the earliest common ancestor (1809-1899) but fell into two distinct clades (genotypes A and B), possibly representing two independent transmission events from murine-origin CoVs that appear to be a single introduction due to large gaps in the sampling of CoVs in animals. In fact, genotype B was genetically more diverse than all the other sHCoVs. Finally, we found shared amino acid substitutions in multiple proteins along the non-human to sHCoV host-jump branches. The complex evolution of CoVs and their frequent host switches could benefit from continued surveillance of CoVs across non-human hosts.
Collapse
Affiliation(s)
- James R. Otieno
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David J. Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| |
Collapse
|
7
|
Lucinde RK, Mugo D, Bottomley C, Karani A, Gardiner E, Aziza R, Gitonga JN, Karanja H, Nyagwange J, Tuju J, Wanjiku P, Nzomo E, Kamuri E, Thuranira K, Agunda S, Nyutu G, Etyang AO, Adetifa IMO, Kagucia E, Uyoga S, Otiende M, Otieno E, Ndwiga L, Agoti CN, Aman RA, Mwangangi M, Amoth P, Kasera K, Nyaguara A, Ng’ang’a W, Ochola LB, Namdala E, Gaunya O, Okuku R, Barasa E, Bejon P, Tsofa B, Ochola-Oyier LI, Warimwe GM, Agweyu A, Scott JAG, Gallagher KE. Sero-surveillance for IgG to SARS-CoV-2 at antenatal care clinics in three Kenyan referral hospitals: Repeated cross-sectional surveys 2020-21. PLoS One 2022; 17:e0265478. [PMID: 36240176 PMCID: PMC9565697 DOI: 10.1371/journal.pone.0265478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The high proportion of SARS-CoV-2 infections that have remained undetected presents a challenge to tracking the progress of the pandemic and estimating the extent of population immunity. METHODS We used residual blood samples from women attending antenatal care services at three hospitals in Kenya between August 2020 and October 2021and a validated IgG ELISA for SARS-Cov-2 spike protein and adjusted the results for assay sensitivity and specificity. We fitted a two-component mixture model as an alternative to the threshold analysis to estimate of the proportion of individuals with past SARS-CoV-2 infection. RESULTS We estimated seroprevalence in 2,981 women; 706 in Nairobi, 567 in Busia and 1,708 in Kilifi. By October 2021, 13% of participants were vaccinated (at least one dose) in Nairobi, 2% in Busia. Adjusted seroprevalence rose in all sites; from 50% (95%CI 42-58) in August 2020, to 85% (95%CI 78-92) in October 2021 in Nairobi; from 31% (95%CI 25-37) in May 2021 to 71% (95%CI 64-77) in October 2021 in Busia; and from 1% (95% CI 0-3) in September 2020 to 63% (95% CI 56-69) in October 2021 in Kilifi. Mixture modelling, suggests adjusted cross-sectional prevalence estimates are underestimates; seroprevalence in October 2021 could be 74% in Busia and 72% in Kilifi. CONCLUSIONS There has been substantial, unobserved transmission of SARS-CoV-2 in Nairobi, Busia and Kilifi Counties. Due to the length of time since the beginning of the pandemic, repeated cross-sectional surveys are now difficult to interpret without the use of models to account for antibody waning.
Collapse
Affiliation(s)
- Ruth K. Lucinde
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- * E-mail:
| | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Christian Bottomley
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Angela Karani
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Rabia Aziza
- School of Life Sciences and the Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | | | - Henry Karanja
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Edward Nzomo
- Kilifi County Hospital, Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Evans Kamuri
- Kenyatta National Hospital, Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Kaugiria Thuranira
- Kenyatta National Hospital, Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Sarah Agunda
- Kenyatta National Hospital, Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Gideon Nyutu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Ifedayo M. O. Adetifa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mark Otiende
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | | | - Amek Nyaguara
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Wangari Ng’ang’a
- Presidential Policy and Strategy Unit, The Presidency, Government of Kenya, Nairobi, Kenya
| | | | | | - Oscar Gaunya
- Busia Country Teaching & Referral Hospital, Busia, Kenya
| | - Rosemary Okuku
- Busia Country Teaching & Referral Hospital, Busia, Kenya
| | - Edwine Barasa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | | | - J. Anthony G. Scott
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Katherine E. Gallagher
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
8
|
Mwita Morobe J, Kamau E, Murunga N, Gatua W, Luka MM, Lewa C, Cheruiyot R, Mutunga M, Odundo C, James Nokes D, Agoti CN. Trends and Intensity of Rhinovirus Invasions in Kilifi, Coastal Kenya, Over a 12-Year Period, 2007-2018. Open Forum Infect Dis 2021; 8:ofab571. [PMID: 34988244 PMCID: PMC8694214 DOI: 10.1093/ofid/ofab571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Background Rhinoviruses (RVs) are ubiquitous pathogens and the principal etiological agents of common cold. Despite the high frequency of RV infections, data describing their long-term epidemiological patterns in a defined population remain limited. Methods Here, we analyzed 1070 VP4/VP2 genomic region sequences sampled at Kilifi County Hospital on the Kenya coast. The samples were collected between 2007 and 2018 from hospitalized pediatric patients (<60 months of age) with acute respiratory illness. Results Of 7231 children enrolled, RV was detected in 1497 (20.7%) and VP4/VP2 sequences were recovered from 1070 samples (71.5%). A total of 144 different RV types were identified (67 Rhinovirus A, 18 Rhinovirus B, and 59 Rhinovirus C) and at any month, several types co-circulated with alternating predominance. Within types, multiple genetically divergent variants were observed. Ongoing RV infections through time appeared to be a combination of (1) persistent types (observed up to 7 consecutive months), (2) reintroduced genetically distinct variants, and (3) new invasions (average of 8 new types annually). Conclusions Sustained RV presence in the Kilifi community is mainly due to frequent invasion by new types and variants rather than continuous transmission of locally established types/variants.
Collapse
Affiliation(s)
- John Mwita Morobe
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nickson Murunga
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Winfred Gatua
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Martha M Luka
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Clement Lewa
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Robinson Cheruiyot
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Martin Mutunga
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Calleb Odundo
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - D James Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Charles N Agoti
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research, Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Public Health, Pwani University, Kilifi, Kenya
| |
Collapse
|
9
|
Borrega R, Nelson DKS, Koval AP, Bond NG, Heinrich ML, Rowland MM, Lathigra R, Bush DJ, Aimukanova I, Phinney WN, Koval SA, Hoffmann AR, Smither AR, Bell-Kareem AR, Melnik LI, Genemaras KJ, Chao K, Snarski P, Melton AB, Harrell JE, Smira AA, Elliott DH, Rouelle JA, Sabino-Santos G, Drouin AC, Momoh M, Sandi JD, Goba A, Samuels RJ, Kanneh L, Gbakie M, Branco ZL, Shaffer JG, Schieffelin JS, Robinson JE, Fusco DN, Sabeti PC, Andersen KG, Grant DS, Boisen ML, Branco LM, Garry RF. Cross-Reactive Antibodies to SARS-CoV-2 and MERS-CoV in Pre-COVID-19 Blood Samples from Sierra Leoneans. Viruses 2021; 13:2325. [PMID: 34835131 PMCID: PMC8625389 DOI: 10.3390/v13112325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.
Collapse
Affiliation(s)
- Rodrigo Borrega
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Diana K. S. Nelson
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Anatoliy P. Koval
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Nell G. Bond
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Megan L. Heinrich
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Megan M. Rowland
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Raju Lathigra
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Duane J. Bush
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Irina Aimukanova
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Whitney N. Phinney
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Sophia A. Koval
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Andrew R. Hoffmann
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Allison R. Smither
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Antoinette R. Bell-Kareem
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Lilia I. Melnik
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Kaylynn J. Genemaras
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Karissa Chao
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Patricia Snarski
- Heart and Vascular Institute, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Alexandra B. Melton
- Department of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Jaikin E. Harrell
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Ashley A. Smira
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Debra H. Elliott
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Julie A. Rouelle
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Gilberto Sabino-Santos
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Centre for Virology Research, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Arnaud C. Drouin
- Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.C.D.); (D.N.F.)
| | - Mambu Momoh
- Eastern Polytechnic Institute, Kenema, Sierra Leone;
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Robert J. Samuels
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Michael Gbakie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Zoe L. Branco
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - John S. Schieffelin
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
- Department of Internal Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - James E. Robinson
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Dahlene N. Fusco
- Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.C.D.); (D.N.F.)
| | - Pardis C. Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA 92037, USA;
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Donald S. Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Matthew L. Boisen
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Luis M. Branco
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Robert F. Garry
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| |
Collapse
|
10
|
Li Z, Meng S, Zheng Q, Wu T. Complicated pulmonary human coronavirus-NL63 infection after a second allogeneic hematopoietic stem cell transplantation for acute B-lymphocytic leukemia: A case report. Medicine (Baltimore) 2021; 100:e26446. [PMID: 34160438 PMCID: PMC8238287 DOI: 10.1097/md.0000000000026446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Viruses are the most common pathogens that can cause infection-related non-recurrent death after transplantation, occurring mostly from the early stages of hematopoietic stem cell transplantation (HSCT) to within 1 year after transplantation. Human coronavirus (HCoV)-NL63 is a coronavirus that could cause mortality among patients with underlying disease complications. Serological tests are of limited diagnostic value in immunocompromised hosts and cases of latent infection reactivation. In contrast, macro-genomic high-throughput (DNA and RNA) sequencing allows for rapid and accurate diagnosis of infecting pathogens for targeted treatment. PATIENT CONCERNS In this report, we describe a patient who exhibited acute B-lymphocytic leukemia and developed complicated pulmonary HCoV-NL63 infection after a second allogeneic HSCT (allo-HSCT). Six months after the second allo-HSCT, he developed sudden-onset hyperthermia and cough with decreased oxygen saturation. Chest computed tomography (CT) suggested bilateral multiple rounded ground-glass opacities with the pulmonary lobules as units. DIAGNOSES HCoV-NL63 was detected by metagenomic next-generation sequencing (NGS), and HCoV-NL63 viral pneumonia was diagnosed. INTERVENTIONS The treatment was mainly based on the use of antiviral therapy, hormone administration, and gamma-globulin. OUTCOMES After the therapy, the body temperature returned to normal, the chest CT findings had improved on review, and the viral copy number eventually became negative. LESSONS The latest NGS is an effective method for early infection diagnosis. The HCoV-NL63 virus can cause inflammatory factor storm and alter the neutrophil-to-lymphocyte ratio (NLR). This case suggests that the patient's NLR and cytokine levels could be monitored during the clinical treatment to assess the disease and its treatment outcome in a timely manner.
Collapse
MESH Headings
- Antiviral Agents/administration & dosage
- Coronavirus Infections/diagnosis
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Coronavirus NL63, Human/genetics
- Coronavirus NL63, Human/immunology
- Coronavirus NL63, Human/isolation & purification
- Drug Therapy, Combination/methods
- Hematopoietic Stem Cell Transplantation/adverse effects
- High-Throughput Nucleotide Sequencing
- Humans
- Immunocompromised Host
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/therapy
- Lung/diagnostic imaging
- Male
- Metagenomics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Tomography, X-Ray Computed
- Transplantation, Homologous/adverse effects
- Young Adult
- gamma-Globulins/administration & dosage
Collapse
Affiliation(s)
- Zhihui Li
- Department of Bone Marrow Transplantation
| | - Shuo Meng
- Department of Bone Marrow Transplantation
| | - Qinlong Zheng
- Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China
| | - Tong Wu
- Department of Bone Marrow Transplantation
| |
Collapse
|
11
|
Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, Aman R, Mwangangi M, Amoth P, Kasera K, Ng'ang'a W, Rombo C, Yegon C, Kithi K, Odhiambo E, Rotich T, Orgut I, Kihara S, Otiende M, Bottomley C, Mupe ZN, Kagucia EW, Gallagher KE, Etyang A, Voller S, Gitonga JN, Mugo D, Agoti CN, Otieno E, Ndwiga L, Lambe T, Wright D, Barasa E, Tsofa B, Bejon P, Ochola-Oyier LI, Agweyu A, Scott JAG, Warimwe GM. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science 2021; 371:79-82. [PMID: 33177105 PMCID: PMC7877494 DOI: 10.1126/science.abe1916] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on 12 March 2020, and an overwhelming number of cases and deaths were expected, but by 31 July 2020, there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti-SARS-CoV-2 immunoglobulin G among blood donors in Kenya in April-June 2020. Crude seroprevalence was 5.6% (174 of 3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% confidence interval, 2.9 to 5.8%) and was highest in urban counties Mombasa (8.0%), Nairobi (7.3%), and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance, and these results will help guide the pandemic response in Kenya and across Africa.
Collapse
Affiliation(s)
- Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Ifedayo M O Adetifa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | | | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Rashid Aman
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | | | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | | | - Wangari Ng'ang'a
- Presidential Policy and Strategy Unit, The Presidency, Government of Kenya, Nairobi, Kenya
| | - Charles Rombo
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Christine Yegon
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Khamisi Kithi
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Elizabeth Odhiambo
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Thomas Rotich
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Irene Orgut
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Sammy Kihara
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Mark Otiende
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Christian Bottomley
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Zonia N Mupe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Katherine E Gallagher
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | - Shirine Voller
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Edward Otieno
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Teresa Lambe
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Daniel Wright
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Edwine Barasa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | | | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - George M Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| |
Collapse
|
12
|
Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, Aman R, Mwangangi M, Amoth P, Kasera K, Ng'ang'a W, Rombo C, Yegon C, Kithi K, Odhiambo E, Rotich T, Orgut I, Kihara S, Otiende M, Bottomley C, Mupe ZN, Kagucia EW, Gallagher KE, Etyang A, Voller S, Gitonga JN, Mugo D, Agoti CN, Otieno E, Ndwiga L, Lambe T, Wright D, Barasa E, Tsofa B, Bejon P, Ochola-Oyier LI, Agweyu A, Scott JAG, Warimwe GM. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science 2021; 371:79-82. [PMID: 33177105 DOI: 10.1101/2020.07.27.20162693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 05/24/2023]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on 12 March 2020, and an overwhelming number of cases and deaths were expected, but by 31 July 2020, there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti-SARS-CoV-2 immunoglobulin G among blood donors in Kenya in April-June 2020. Crude seroprevalence was 5.6% (174 of 3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% confidence interval, 2.9 to 5.8%) and was highest in urban counties Mombasa (8.0%), Nairobi (7.3%), and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance, and these results will help guide the pandemic response in Kenya and across Africa.
Collapse
Affiliation(s)
- Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Ifedayo M O Adetifa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | | | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Rashid Aman
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | | | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | | | - Wangari Ng'ang'a
- Presidential Policy and Strategy Unit, The Presidency, Government of Kenya, Nairobi, Kenya
| | - Charles Rombo
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Christine Yegon
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Khamisi Kithi
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Elizabeth Odhiambo
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Thomas Rotich
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Irene Orgut
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Sammy Kihara
- Kenya National Blood Transfusion Services, Ministry of Health, Nairobi, Kenya
| | - Mark Otiende
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Christian Bottomley
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Zonia N Mupe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Katherine E Gallagher
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | - Shirine Voller
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Edward Otieno
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Teresa Lambe
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Daniel Wright
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Edwine Barasa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | | | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - George M Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| |
Collapse
|