1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
3
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang W, Zhang Q, Wang L, Zhou Q, Wang P, Qing Y, Sun C. The effects of capsaicin intake on weight loss among overweight and obese subjects: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2023; 130:1645-1656. [PMID: 36938807 DOI: 10.1017/s0007114523000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Animal studies have shown that capsaicin plays a positive role in weight management. However, the results in human research are controversial. Therefore, the present systematic review and meta-analysis aimed to evaluate the effect of capsaicin on weight loss in adults. We searched PubMed, Embase, China Biomedical Literature Database (CBM), Cochrane library and clinical registration centre, identifying all randomised controlled trials (RCT) published in English and Chinese to 3 May 2022. A random-effect model was used to calculate the weighted mean difference (WMD) and 95 % CI. Heterogeneity between studies was assessed by the Cochran Q statistic and I-squared tests (I 2 ). Statistical analyses were performed using STATA version 15.1. P-values < 0·05 were considered as statistically significant. From 2377 retrieved studies, fifteen studies were finally included in the meta-analyses. Fifteen RCT with 762 individuals were included in our meta-analysis. Compared with the control group, the supplementation of capsaicin resulted in significant reduction on BMI (WMD: -0·25 kg/m2, 95 % CI = -0·35, -0·15 kg/m2, P < 0·05), body weight (BW) (WMD: -0·51 kg, 95 % CI = -0·86, -0·15 kg, P < 0·05) and waist circumference (WC) (WMD: -1·12 cm, 95 % CI = -2·00, -0·24 cm, P < 0·05). We found no detrimental effect of capsaicin on waist-to-hip ratio (WMD: -0·05, 95 % CI = -0·17, 0·06, P > 0·05). The current meta-analysis suggests that capsaicin supplementation may have rather modest effects in reducing BMI, BW and WC for overweight or obese individuals.
Collapse
Affiliation(s)
- Wensen Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Lianke Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Qianyu Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Panpan Wang
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Ying Qing
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Changqing Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| |
Collapse
|
5
|
Shaik Mohamed Sayed UF, Moshawih S, Goh HP, Kifli N, Gupta G, Singh SK, Chellappan DK, Dua K, Hermansyah A, Ser HL, Ming LC, Goh BH. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Front Pharmacol 2023; 14:1182937. [PMID: 37408757 PMCID: PMC10318930 DOI: 10.3389/fphar.2023.1182937] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.
Collapse
Affiliation(s)
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Hui Poh Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Nurolaini Kifli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
| | - Hooi Leng Ser
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Karam M, Najjar H, El Sabban M, Hamade A, Najjar F. Regenerative Medicine for Polycystic Ovary Syndrome: Stem Cell-Based Therapies and Brown Adipose Tissue Activation. Stem Cell Rev Rep 2023; 19:853-865. [PMID: 36633783 DOI: 10.1007/s12015-023-10505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a pathological condition prevalent among women of reproductive age: it is associated with varied etiological factors (lifestyle, genetic, environmental…) and characterized by an increased polycystic morphology of the ovaries leading to disturbances in the menstrual cycle and its correlated infertility. Interconnections between PCOS, obesity, and insulin resistance have been recently investigated thoroughly in the scientific community; these findings directed PCOS therapies into unraveling possibilities to target insulin resistance and central adiposity as efficient treatment. On the other hand, brown adipose tissue is known to possess a thermogenic activity that increases lipolysis and directly attenuates fat deposition. Therefore, brown adipose tissue activation lands itself as a potential target for reducing obesity and its induced insulin resistance, subsequently rescuing PCOS phenotypes. In addition, regenerative medicine has proven efficacy in resolving PCOS-associated infertility and its metabolic symptoms. In particular, many stem/progenitor cells have been verified to possess the differentiation capacity into functional brown adipocytes. Thus, throughout this review, we will discuss the different brown adipose tissue activation strategies and stem-cell-based therapies applied to PCOS models and the possible combination of both therapeutic approaches to synergistically act on the activation of brown adipose tissue and attenuate PCOS-correlated infertility and retract the consequences of the metabolic syndrome on the physiological state of patients.
Collapse
Affiliation(s)
- Mario Karam
- Laboratoire d'Innovation Thérapeutique, "Stem Cell, Organogenesis and Regenerative Medicine" Master Program, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Hélène Najjar
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Hadat, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Aline Hamade
- Laboratoire d'Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| | - Fadia Najjar
- Laboratoire d'Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| |
Collapse
|
7
|
Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022; 11:cells11243996. [PMID: 36552762 PMCID: PMC9776638 DOI: 10.3390/cells11243996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Collapse
Affiliation(s)
- Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| |
Collapse
|
8
|
Sheikhhossein F, Amini MR, Askari M, Pourreza S, Hosseini F, Clark CCT, Djafarian K, Ghanbari M, Shab-Bidar S. The effects of capsinoids supplementation on body composition and anthropometric measures: A systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 52:381-394. [PMID: 36513480 DOI: 10.1016/j.clnesp.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS The present systematic review and meta-analysis was conducted to investigate the effects of capsinoids on body mass index (BMI), body weight (BW), waist circumference (WC), waist-hip ratio (WHR), fat mass (FM), fat-free mass (FFM), visceral fat area (VFA), and percentage body fat (PBF). METHODS Four databases were searched from inception to November 2020 using relevant keywords. All clinical trials investigating the effects of capsinoids supplementation on body composition and anthropometric measures were retained. RESULTS Overall, 19 effect sizes and 13 trials with a total sample size of 838 participants were included. Capsinoids supplementation had no effect on BW (P = 0.230), BMI (P = 0.182), WC (P = 0.611), FM (P = 0.946), FFM (P = 0.917), WHR (P = 0.599), VFA (P = 0.836), and PBF (P = 0.973). Findings from subgroup analysis revealed a significant reduction in BW in trials conducted on overweight participants, and lasted ≥12 weeks, However, no significant non-linear associations were found between capsinoids supplementation dosage and study duration with both BW (For dosage: Pnon-linearity = 0.527, for duration: Pnon-linearity = 0.410) and BMI (For dosage: Pnon-linearity = 0.308, for duration: Pnon-linearity = 0.578). CONCLUSION Capsinoids supplementation has no significant effect on obesity indicators. However, capsinoids in trials conducted on overweight participants, and lasted ≥12 weeks may have a significant and modest reduction in BW. Well-designed RCTs with larger sample size and longer duration are needed to confirm these results.
Collapse
Affiliation(s)
- Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Askari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, CV15FB, UK
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahtab Ghanbari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
9
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
10
|
Osuna-Prieto FJ, Acosta FM, Perez de Arrilucea Le Floc’h UA, Riquelme-Gallego B, Merchan-Ramirez E, Xu H, De La Cruz-Márquez JC, Amaro-Gahete FJ, Llamas-Elvira JA, Triviño-Ibáñez EM, Segura-Carretero A, Ruiz JR. Dihydrocapsiate does not increase energy expenditure nor fat oxidation during aerobic exercise in men with overweight/obesity: a randomized, triple-blinded, placebo-controlled, crossover trial. J Int Soc Sports Nutr 2022; 19:417-436. [PMID: 35875695 PMCID: PMC9302013 DOI: 10.1080/15502783.2022.2099757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Prior evidence suggests that capsinoids ingestion may increase resting energy expenditure (EE) and fat oxidation (FATox), yet whether they can modulate those parameters during exercise conditions remains poorly understood. We hypothesized that dihydrocapsiate (DHC) ingestion would increase EE and specifically FATox during an acute bout of aerobic exercise at FATmax intensity (the intensity that elicits maximal fat oxidation during exercise [MFO]) in men with overweight/obesity. Since FATmax and MFO during aerobic exercise appear to be indicators of metabolic flexibility, whether DHC has an impact on FATox in this type of population is of clinical interest. Methods A total of 24 sedentary men (age = 40.2 ± 9.2 years-old; body mass index = 31.6 ± 4.5 kg/m2 [n = 11 overweight, n = 13 obese]) participated in this randomized, triple-blinded, placebo-controlled, crossover trial (registered under ClinicalTrials.gov Identifier no. NCT05156697). On the first day, participants underwent a submaximal exercise test on a cycle ergometer to determine their MFO and FATmax intensity during exercise. After 72 hours had elapsed, the participants returned on 2 further days (≥ 72 hours apart) and performed a 60 min steady-state exercise bout (i.e. cycling at their FATmax, constant intensity) after ingesting either 12 mg of DHC or placebo; these conditions were randomized. Respiratory gas exchange was monitored by indirect calorimetry. Serum marker concentrations (i.e. glucose, triglycerides, non-esterified fatty acids (NEFAs), skin temperature, thermal perception, heart rate, and perceived fatigue) were assessed. Results There were no significant differences (P > 0.05) between DHC and placebo conditions in the EE and FATox during exercise. Similarly, no significant changes were observed in glucose, triglycerides, or NEFAs serum levels, neither in the skin temperature nor thermal perception across conditions. Heart rate and perceived fatigue did not differ between conditions. Conclusions DHC supplementation does not affect energy metabolism during exercise in men with overweight/obesity.
Collapse
Affiliation(s)
- Francisco J. Osuna-Prieto
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Francisco M. Acosta
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Unai A. Perez de Arrilucea Le Floc’h
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Blanca Riquelme-Gallego
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Elisa Merchan-Ramirez
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Huiwen Xu
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Juan Carlos De La Cruz-Márquez
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J. Amaro-Gahete
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, EFFECTS-262 Research group, University of Granada, Granada, Spain
| | - Jose A. Llamas-Elvira
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Nuclear Medicine. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Eva M. Triviño-Ibáñez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Nuclear Medicine. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Jonatan R Ruiz
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
11
|
Shin S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J Obes Metab Syndr 2022; 31:147-160. [PMID: 35691686 PMCID: PMC9284576 DOI: 10.7570/jomes22014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acids (LCFA) modulate metabolic, oxidative, and inflammatory responses, and the physiological effects of LCFA are determined by chain length and the degree of saturation. Adipose tissues comprise multiple cell types, and play a significant role in energy storage and expenditure. Fatty acid uptake and oxidation are the pathways through which fatty acids participate in the regulation of energy homeostasis, and their dysregulation can lead to the development of obesity and chronic obesity-related disorders, including type 2 diabetes, cardiovascular diseases, and certain types of cancer. Numerous studies have reported that many aspects of adipose tissue biology are influenced by the number and position of double bonds in LCFA, and these effects are mediated by various signaling pathways, including those regulating adipocyte differentiation (adipogenesis), thermogenesis, and inflammation in adipose tissue. This review aims to describe the underlying molecular mechanisms by which different types of LCFA influence adipose tissue metabolism, and to further clarify their relevance to metabolic dysregulation associated with obesity. A better understanding of the effects of LCFA on adipose tissue metabolism may lead to improved nutraceutical strategies to address obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea
| |
Collapse
|
12
|
Nonivamide induces brown fat-like characteristics in porcine subcutaneous adipocytes. Biochem Biophys Res Commun 2022; 619:68-75. [PMID: 35738067 DOI: 10.1016/j.bbrc.2022.06.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Obesity, which is associated with type 2 diabetes, is a threat to human health. There are studies, which suggest that some compounds can induce browning of white adipocytes to combat obesity. In this study, we selected nonivamide, an analog of capsaicin, to detect whether it influenced the browning of porcine white adipocytes. First, we found 25 μM nonivamide promoted apoptosis of porcine subcutaneous pre-adipocytes. After pre-adipocytes differentiation, nonivamide inhibited adipogenesis by reducing the expressions of Pparγ, Cebpα, while it promoted lipolysis by up-regulating Hsl, Atgl. Nonivamide also induced browning of porcine subcutaneous adipocytes by up-regulating the expression of brown and beige adipocyte gene markers, such as Prdm16, Cidea, and Slc27a1. Additionally, thermogenesis gene markers Cpt1a and Cpt1b were significantly up-regulated by nonivamide. Furthermore, nonivamide promoted mitochondrial biogenesis by up-regulating the expression of Tfam, Nrf1, Nrf2, and Tomm20. In conclusion, nonivamide is a potent compound to induce porcine adipocyte browning for treating obesity.
Collapse
|
13
|
Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021; 8:727951. [PMID: 34631766 PMCID: PMC8495072 DOI: 10.3389/fnut.2021.727951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, Ruiz JR. Activation of Brown Adipose Tissue and Promotion of White Adipose Tissue Browning by Plant-based Dietary Components in Rodents: A Systematic Review. Adv Nutr 2021; 12:2147-2156. [PMID: 34265040 PMCID: PMC8634450 DOI: 10.1093/advances/nmab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Activation of brown adipose tissue (BAT) and promotion of white adipose tissue (WAT) browning is considered a potential tool to combat obesity and cardiometabolic disorders. The use of plant-based dietary components has become one of the most used strategies for activating BAT and promoting WAT browning in rodents. The main reason is because plant-based dietary components are usually recognized as safe when the dose is properly adjusted, and they can easily be administrated by being added to the diet or dissolved in water. The present systematic review aimed to study the effects of plant-based dietary components on activation of BAT and promotion of WAT browning in rodents. A systematic search of PubMed and Scopus (from 1978 to 2019) identified eligible studies. Studies assessing the effects of plant-based dietary components added to diet and/or water on uncoupling protein 1 (UCP1) expression in BAT and/or WAT were included. Studies that used dietary components of animal origin, did not specify the effects on UCP1, or were conducted in other species different from mice or rats were excluded. Of 3919 studies identified in the initial screening, 146 studies were finally included in the review. We found that tea extract catechins, resveratrol, capsaicin and capsinoids, cacao extract flavanols, and quercetin were the most studied components. Scientific evidence suggests that some of these dietary components activate BAT and promote WAT browning via activation of the AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These findings reveal that there is strong scientific evidence supporting the use of plant-based dietary components to activate BAT and promote WAT browning in rodents and thus to potentially combat obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. Del Conocimiento, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Suchacki KJ, Stimson RH. Nutritional Regulation of Human Brown Adipose Tissue. Nutrients 2021; 13:nu13061748. [PMID: 34063868 PMCID: PMC8224032 DOI: 10.3390/nu13061748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent identification of brown adipose tissue in adult humans offers a new strategy to increase energy expenditure to treat obesity and associated metabolic disease. While white adipose tissue (WAT) is primarily for energy storage, brown adipose tissue (BAT) is a thermogenic organ that increases energy expenditure to generate heat. BAT is activated upon cold exposure and improves insulin sensitivity and lipid clearance, highlighting its beneficial role in metabolic health in humans. This review provides an overview of BAT physiology in conditions of overnutrition (obesity and associated metabolic disease), undernutrition and in conditions of altered fat distribution such as lipodystrophy. We review the impact of exercise, dietary macronutrients and bioactive compounds on BAT activity. Finally, we discuss the therapeutic potential of dietary manipulations or supplementation to increase energy expenditure and BAT thermogenesis. We conclude that chronic nutritional interventions may represent a useful nonpharmacological means to enhance BAT mass and activity to aid weight loss and/or improve metabolic health.
Collapse
|
16
|
Gupta R, Kapoor B, Gulati M, Kumar B, Gupta M, Singh SK, Awasthi A. Sweet pepper and its principle constituent capsiate: functional properties and health benefits. Crit Rev Food Sci Nutr 2021; 62:7370-7394. [PMID: 33951968 DOI: 10.1080/10408398.2021.1913989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Capsiate is a non-pungent analogue of capsaicin. It belongs to the family of capsinoids which are esters of vanillyl alcohol with fatty acids while capsaicin belongs to the family of capsaicinoids that are amides of vanillylamine with a variety of branched-chain fatty acids. While capsaicin is extensively reported for plethora of pharmacological actions, capsiate remains much less explored. Extracted from various species of Capsicum plant, the molecule has also been chemically synthesized via a number of synthetic and enzymatic routes. Based on its action on transient receptor potential vanilloid subfamily member 1 receptors, recent research has focused on its potential roles in treatment of obesity, metabolic disorders, cancer, cardiovascular disorders and gastro-intestinal disorders. Its toxicity profile has been reported to be much safe. The molecule, however, faces the challenge of low aqueous solubility and stability. It has been commercialized for its use as a weight loss supplement. However, the therapeutic potential of the compound which is much beyond boosting metabolism remains unexplored hitherto. This comprehensive review summarizes the studies demonstrating the therapeutic potential of capsiate in various pathological conditions. Discussed also are potential future directions for formulation strategies to develop efficient, safe and cost-effective dosage forms of capsiate to explore its role in various disease conditions. The databases investigated include Cochrane library, Medline, Embase, Pubmed and in-house databases. The search terms were "capsiate," "capsinoids," "thermogenesis," and their combinations. The articles were screened for relevance by going through their abstract. All the articles pertaining to physicochemical, physiological, pharmacological and therapeutic effects of capsiate have been included in the manuscript.
Collapse
Affiliation(s)
- Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
Liao SF, Korivi M, Tsao JP, Huang CC, Chang CC, Cheng IS. Effect of Capsinoids Supplementation on Fat Oxidation and Muscle Glycogen Restoration During Post-exercise Recovery in Humans. Curr Pharm Des 2021; 27:981-988. [PMID: 32838710 DOI: 10.2174/1381612826666200824104856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Capsinoids (CSN), the novel non-pungent capsaicin analogs have been reported to promote metabolic health and exercise tolerance. However, the effect of CSN on fat oxidation and changes in skeletal muscle glycogen levels during post-exercise recovery has not been investigated in humans. PURPOSE We examined the effect of CSN supplementation on energy reliance, glycogen resynthesis and molecular proteins in the skeletal muscle of young adults during post-exercise recovery. METHODS In this crossover-designed study, nine healthy adult male volunteers (aged 21.4±0.2 years, BMI 21.9±1.3 kg/m2) completed a 60-min cycling exercise at 70% VO2max. Participants consumed either CSN (12 mg, single dosage) or placebo capsules with a high-carbohydrate meal (2 g carb/kg bodyweight) immediately after exercise. Biopsied muscle samples (vastus lateralis), blood, and gaseous samples were obtained during 3h postexercise recovery period. RESULTS We found that oral CSN supplementation right after exercise significantly altered the energy reliance on fat oxidation during recovery. This was evidenced by lower respiratory exchange ratio (RER) and higher fat oxidation rate in CSN trial. Despite this, acute CSN dosage does not contribute in enhancing the glycogen replenishment in skeletal muscle during 3h recovery. We identified no significant differences in postprandial glucose and insulin area under the curve in both trials. Western blot data showed an increased muscle GLUT4 expression, but no significant response of p-Akt/Akt ratio with CSN during post-exercise recovery. CONCLUSION Our findings conclude that acute CSN intake could change energy reliance on fat oxidation but is unable to enhance muscle glycogen resynthesis during post-exercise recovery. Thus, ergogenic properties of CSN in relevance to muscle glycogen restoration following exercise needs to be further investigated in young adults.
Collapse
Affiliation(s)
- Su-Fen Liao
- Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua City, Taiwan
| | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Jung-Piao Tsao
- Center for General Education, National Taichung University of Education, Taichung City, Taiwan
| | - Chun-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Chia-Chen Chang
- Physical Education Center, National Dong Hwa University, Hualien City, Taiwan
| | - I-Shiung Cheng
- Department of Physical Education, National Taichung University of Education, Taichung City, Taiwan
| |
Collapse
|
18
|
|
19
|
Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines 2021; 9:biomedicines9010040. [PMID: 33466493 PMCID: PMC7824911 DOI: 10.3390/biomedicines9010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.
Collapse
|
20
|
Tobita N, Makino M, Fujita R, Jyotaki M, Shinohara Y, Yamamoto T. Sweet scent lactones activate hot capsaicin receptor, TRPV1. Biochem Biophys Res Commun 2020; 534:547-552. [PMID: 33239169 DOI: 10.1016/j.bbrc.2020.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the activation of Transient receptor potential vanilloid subtype 1, TRPV1, by lactones, a representative flavor ingredient currently used for foods and beverages. As a result, we found that some lactones having C4 acyl chain length, γ-octalactone, δ-nonalactone and β-methyl-γ-octalactone, γ-undecalactone with C7 acyl chain length and δ-undecalactone with C6 acyl chain length activated TRPV1. TRPV1 is known as a non-selective cation channels that respond to a wide range of physical and chemical stimuli such as high temperature, protons, capsaicin and so on. Furthermore, it has been also demonstrated that activation of TRPV1 induced energy expenditure enhancement and thermogenesis, suppressed accumulation of visceral fat in mice and prevented non-alcoholic fatty acid liver. Thus, lactones that function as TRPV1 agonists are thought to be important candidates for decreasing the risks of developing a metabolic syndrome.
Collapse
Affiliation(s)
- Naoya Tobita
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Masanari Makino
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Ryujiro Fujita
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Masafumi Jyotaki
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Yuhei Shinohara
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Takeshi Yamamoto
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan.
| |
Collapse
|
21
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
22
|
Hai J, Kawabata F, Uchida K, Nishimura S, Tabata S. Intragastric administration of AMG517, a TRPV1 antagonist, enhanced activity-dependent energy metabolism via capsaicin-sensitive sensory nerves in mice. Biosci Biotechnol Biochem 2020; 84:2121-2127. [PMID: 32633621 DOI: 10.1080/09168451.2020.1789836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a nociceptive cation channel, is known to play roles in regulating the energy metabolism (EM) of the whole body. We previously reported that TRPV1 antagonists such as AMG517 enhanced EM in mice, however, these mechanisms remain unclear. The aim of this study was to explore the mechanisms underlying the enhancement of EM by AMG517, a selective TRPV1 antagonist, in mice. Respiratory gas analysis indicated that intragastric administration of AMG517 enhanced EM along with increasing locomotor activity in mice. Next, to clarify the possible involvement with afferent sensory nerves, including the vagus, we desensitized the capsaicin-sensitive sensory nerves of mice by systemic capsaicin treatment. In the desensitized mice, intragastric administration of AMG517 did not change EM and locomotor activity. Therefore, this study indicated that intragastric administration of AMG517 enhanced EM and increased locomotor activity via capsaicin-sensitive sensory nerves, including vagal afferents in mice.
Collapse
Affiliation(s)
- Jun Hai
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College , Fukuoka, Japan
| | - Fuminori Kawabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan.,Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University , Aomori, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College , Fukuoka, Japan.,Division of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka , Shizuoka, Japan
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| |
Collapse
|
23
|
Feeding brown fat: dietary phytochemicals targeting non-shivering thermogenesis to control body weight. Proc Nutr Soc 2020; 79:338-356. [PMID: 32290888 PMCID: PMC7663322 DOI: 10.1017/s0029665120006928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive adipose accumulation, which is the main driver for the development of secondary metabolic complications, has reached epidemic proportions and combined pharmaceutical, educational and nutritional approaches are required to reverse the current rise in global obesity prevalence rates. Brown adipose tissue (BAT) is a unique organ able to dissipate energy and thus a promising target to enhance BMR to counteract a positive energy balance. In addition, active BAT might support body weight maintenance after weight loss to prevent/reduce relapse. Natural products deliver valuable bioactive compounds that have historically helped to alleviate disease symptoms. Interest in recent years has focused on identifying nutritional constituents that are able to induce BAT activity and thereby enhance energy expenditure. This review provides a summary of selected dietary phytochemicals, including isoflavones, catechins, stilbenes, the flavonoids quercetin, luteolin and resveratrol as well as the alkaloids berberine and capsaicin. Most of the discussed phytochemicals act through distinct molecular pathways e.g. sympathetic nerve activation, AMP-kinase signalling, SIRT1 activity or stimulation of oestrogen receptors. Thus, it might be possible to utilise this multitude of pathways to co-activate BAT using a fine-tuned combination of foods or combined nutritional supplements.
Collapse
|
24
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol (Lausanne) 2020; 11:222. [PMID: 32373072 PMCID: PMC7186310 DOI: 10.3389/fendo.2020.00222] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Since the recent rediscovery of brown adipose tissue (BAT) in adult humans, this thermogenic tissue has been attracting increasing interest. The inverse relationship between BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. Cold exposure activates and recruits BAT, resulting in increased energy expenditure and decreased body fatness. The stimulatory effects of cold exposure are mediated through transient receptor potential (TRP) channels and the sympathetic nervous system (SNS). Most TRP members also function as chemesthetic receptors for various food ingredients, and indeed, agonists of TRP vanilloid 1 such as capsaicin and its analog capsinoids mimic the effects of cold exposure to decrease body fatness through the activation and recruitment of BAT. The antiobesity effect of other food ingredients including tea catechins may be attributable, at least in part, to the activation of the TRP-SNS-BAT axis. BAT is also involved in the facultative thermogenesis induced by meal intake, referred to as diet-induced thermogenesis (DIT), which is a significant component of the total energy expenditure in our daily lives. Emerging evidence suggests a crucial role for the SNS in BAT-associated DIT, particularly during the early phase, but several gut-derived humoral factors may also participate in meal-induced BAT activation. One intriguing factor is bile acids, which activate BAT directly through Takeda G-protein receptor 5 (TGR5) in brown adipocytes. Given the apparent beneficial effects of some TRP agonists and bile acids on whole-body substrate and energy metabolism, the TRP/TGR5-BAT axis represents a promising target for combating obesity and related metabolic disorders in humans.
Collapse
Affiliation(s)
- Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Masayuki Saito
| | | | - Takeshi Yoneshiro
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
26
|
Fernández-Galilea M, Félix-Soriano E, Colón-Mesa I, Escoté X, Moreno-Aliaga MJ. Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. J Physiol Biochem 2019; 76:251-267. [PMID: 31853728 DOI: 10.1007/s13105-019-00720-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Adipose tissue dysfunction represents the hallmark of obesity. Brown/beige adipose tissues play a crucial role in maintaining energy homeostasis through non-shivering thermogenesis. Brown adipose tissue (BAT) activity has been inversely related to body fatness, suggesting that BAT activation is protective against obesity. BAT plays also a key role in the control of triglyceride clearance, glucose homeostasis, and insulin sensitivity. Therefore, BAT/beige activation has been proposed as a strategy to prevent or ameliorate obesity development and associated commorbidities. In the last few years, a variety of preclinical studies have proposed n-3 polyunsaturated fatty acids (n-3 PUFAs) as novel inducers of BAT activity and white adipose tissue browning. Here, we review the in vitro and in vivo available evidences of the thermogenic properties of n-3 PUFAs, especially focusing on the molecular and cellular physiological mechanisms involved. Finally, we also discuss the challenges and future perspectives to better characterize the therapeutic potential of n-3 PUFAs as browning agents, especially in humans.
Collapse
Affiliation(s)
- Marta Fernández-Galilea
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain.,IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Elisa Félix-Soriano
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain
| | - Ignacio Colón-Mesa
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain
| | - Xavier Escoté
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain.,Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, Reus, Spain
| | - Maria J Moreno-Aliaga
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain. .,IDISNA, Navarra's Health Research Institute, Pamplona, Spain. .,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.
| |
Collapse
|
27
|
Liu L, Ding C, Tian M, Yi D, Wang J, Zhao J, Hu Y, Wang C. Fermentation improves the potentiality of capsicum in decreasing high-fat diet-induced obesity in C57BL/6 mice by modulating lipid metabolism and hormone response. Food Res Int 2019; 124:49-60. [DOI: 10.1016/j.foodres.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
|
28
|
Li C, Hirano H, Kasajima I, Yamagishi N, Yoshikawa N. Virus-induced gene silencing in chili pepper by apple latent spherical virus vector. J Virol Methods 2019; 273:113711. [PMID: 31404574 DOI: 10.1016/j.jviromet.2019.113711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022]
Abstract
Apple latent spherical virus (ALSV) can infect a variety of crops, usually without inducing symptoms. Partial gene sequences can be introduced into ALSV vectors for the induction of virus-induced gene silencing (VIGS). These features are beneficial for the estimation of gene functions in plants, with relatively concise experimental manipulations. Given that the infectability of chili peppers (Capsicum spp.) by ALSV was unknown, an ALSV infectivity test was performed on the highly pungent Capsicum chinense cultivar 'Habanero'. The chili pepper plants were not infected after rub-inoculation with a crude homogenate of ALSV-infected Chenopodium quinoa leaves, whereas inoculating them with a concentrated ALSV virus preparation caused an infection. Inoculation with an ALSV RNA preparation by gold particle bombardment resulted in high infection rates (about 90%). The infection was systemic and the infected plants were symptomless. For the induction of VIGS, 201-nucleotide fragments of the putative aminotransferase (pAMT) gene were introduced into the ALSV vector. These ALSV vectors infected 80-90% of RNA-inoculated chili pepper seedlings. Expression of pAMT-mRNA was repressed in the placenta of immature fruit of infected plants. The silencing of pAMT in the infected plants caused a substantial decrease in capsaicin content and a concomitant moderate accumulation of the non-pungent bioactive metabolite capsiate in these plants. These results showed that ALSV could be used to study gene functions by VIGS and to enhance capsiate accumulation in chili pepper through genetic modification.
Collapse
Affiliation(s)
- Chunjiang Li
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroto Hirano
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Ichiro Kasajima
- Agri-Innovation Center, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Noriko Yamagishi
- Agri-Innovation Center, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan; Agri-Innovation Center, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
29
|
Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol Behav 2019; 206:213-224. [DOI: 10.1016/j.physbeh.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
|
30
|
Osuna-Prieto FJ, Martinez-Tellez B, Sanchez-Delgado G, Aguilera CM, Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A, Ruiz JR. Activation of Human Brown Adipose Tissue by Capsinoids, Catechins, Ephedrine, and Other Dietary Components: A Systematic Review. Adv Nutr 2019; 10:291-302. [PMID: 30624591 PMCID: PMC6416040 DOI: 10.1093/advances/nmy067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human brown adipose tissue (BAT) has attracted clinical interest not only because it dissipates energy but also for its potential capacity to counteract obesity and related metabolic disorders (e.g., insulin resistance and dyslipidemia). Cold exposure is the most powerful stimulus for activating and recruiting BAT, and this stimulatory effect is mediated by the transient receptor potential (TRP) channels. BAT can also be activated by other receptors such as the G-protein-coupled bile acid receptor 1 (GPBAR1) or β-adrenergic receptors. Interestingly, these receptors also interact with several dietary components; in particular, capsinoids and tea catechins appear to mimic the effects of cold through a TRP-BAT axis, and they consequently seem to decrease body fat and improve metabolic blood parameters. This systematic review critically addresses the evidence behind the available human studies analyzing the effect of several dietary components (e.g., capsinoids, tea catechins, and ephedrine) on BAT activity. Even though the results of these studies are consistent with the outcomes of preclinical models, the lack of robust study designs makes it impossible to confirm the BAT-activation capacity of the specified dietary components. Further investigation into the effects of dietary components on BAT is warranted to clarify to what extent these components could serve as a powerful strategy to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
- Department of Medicine, Leiden University Medical Center, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden, Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
| | - Concepción M Aguilera
- Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center for Biomedical Research, University of Granada, Granada, Spain
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Jesús Lozano-Sánchez
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - David Arráez-Román
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - Antonio Segura-Carretero
- Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain; Departments of
| |
Collapse
|
31
|
El Hadi H, Di Vincenzo A, Vettor R, Rossato M. Food Ingredients Involved in White-to-Brown Adipose Tissue Conversion and in Calorie Burning. Front Physiol 2019; 9:1954. [PMID: 30687134 PMCID: PMC6336830 DOI: 10.3389/fphys.2018.01954] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity is the consequence of chronic positive energy balance and considered a leading risk factor for cardiovascular and metabolic diseases. Due to its epidemic trends among children and adults, there is an increasing interest in implementing new therapeutic interventions to tackle overweight and obesity. Activation of brown adipose tissue (BAT) represents today a promising strategy to enhance energy expenditure (EE) through heat production. More recently, “browning” of white adipose tissue (WAT) has gained increasing attention in research area as an alternative method in stimulating energy dissipation. This minireview aims to summarize the current knowledge of some dietary compounds that have been shown to promote BAT activation and WAT browning with subsequent beneficial health effects.
Collapse
Affiliation(s)
- Hamza El Hadi
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| | - Angelo Di Vincenzo
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| | - Marco Rossato
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
32
|
Larson CJ. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. Handb Exp Pharmacol 2019; 251:381-424. [PMID: 30689089 DOI: 10.1007/164_2018_184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human brown adipose tissue (BAT) is experimentally modeled to better understand the biology of this important metabolic tissue, and also to enable the potential discovery and development of novel therapeutics for obesity and sequelae resulting from the persistent positive energy balance. This chapter focuses on translation into humans of findings and hypotheses generated in nonhuman models of BAT pharmacology. Given the demonstrated challenges of sustainably reducing caloric intake in modern humans, potential solutions to obesity likely lie in increasing energy expenditure. The energy-transforming activities of a single cell in any given tissue can be conceptualized as a flow of chemical energy from energy-rich substrate molecules into energy-expending, endergonic biological work processes through oxidative degradation of organic molecules ingested as nutrients. Despite the relatively tight coupling between metabolic reactions and products, some expended energy is incidentally lost as heat, and in this manner a significant fraction of the energy originally captured from the environment nonproductively transforms into heat rather than into biological work. In human and other mammalian cells, some processes are even completely uncoupled, and therefore purely energy consuming. These molecular and cellular actions sum up at the physiological level to adaptive thermogenesis, the endogenous physiology in which energy is nonproductively released as heat through uncoupling of mitochondria in brown fat and potentially skeletal muscle. Adaptive thermogenesis in mammals occurs in three forms, mostly in skeletal muscle and brown fat: shivering thermogenesis in skeletal muscle, non-shivering thermogenesis in brown fat, and diet-induced thermogenesis in brown fat. At the cellular level, the greatest energy transformations in humans and other eukaryotes occur in the mitochondria, where creating energetic inefficiency by uncoupling the conversion of energy-rich substrate molecules into ATP usable by all three major forms of biological work occurs by two primary means. Basal uncoupling occurs as a passive, general, nonspecific leak down the proton concentration gradient across the membrane in all mitochondria in the human body, a gradient driving a key step in ATP synthesis. Inducible uncoupling, which is the active conduction of protons across gradients through processes catalyzed by proteins, occurs only in select cell types including BAT. Experiments in rodents revealed UCP1 as the primary mammalian molecule accounting for the regulated, inducible uncoupling of BAT, and responsive to both cold and pharmacological stimulation. Cold stimulation of BAT has convincingly translated into humans, and older clinical observations with nonselective 2,4-DNP validate that human BAT's participation in pharmacologically mediated, though nonselective, mitochondrial membrane decoupling can provide increased energy expenditure and corresponding body weight loss. In recent times, however, neither beta-adrenergic antagonism nor unselective sympathomimetic agonism by ephedrine and sibutramine provide convincing evidence that more BAT-selective mechanisms can impact energy balance and subsequently body weight. Although BAT activity correlates with leanness, hypothesis-driven selective β3-adrenergic agonism to activate BAT in humans has only provided robust proof of pharmacologic activation of β-adrenergic receptor signaling, limited proof of the mechanism of increased adaptive thermogenesis, and no convincing evidence that body weight loss through negative energy balance upon BAT activation can be accomplished outside of rodents. None of the five demonstrably β3 selective molecules with sufficient clinical experience to merit review provided significant weight loss in clinical trials (BRL 26830A, TAK 677, L-796568, CL 316,243, and BRL 35135). Broader conclusions regarding the human BAT therapeutic hypothesis are limited by the absence of data from most studies demonstrating specific activation of BAT thermogenesis in most studies. Additionally, more limited data sets with older or less selective β3 agonists also did not provide strong evidence of body weight effects. Encouragingly, β3-adrenergic agonists, catechins, capsinoids, and nutritional extracts, even without robust negative energy balance outcomes, all demonstrated increased total energy expenditure that in some cases could be associated with concomitant activation of BAT, though the absence of body weight loss indicates that in no cases did the magnitude of negative energy balance reach sufficient levels. Glucocorticoid receptor agonists, PPARg agonists, and thyroid hormone receptor agonists all possess defined molecular and cellular pharmacology that preclinical models predicted to be efficacious for negative energy balance and body weight loss, yet their effects on human BAT thermogenesis upon translation were inconsistent with predictions and disappointing. A few new mechanisms are nearing the stage of clinical trials and may yet provide a more quantitatively robust translation from preclinical to human experience with BAT. In conclusion, translation into humans has been demonstrated with BAT molecular pharmacology and cell biology, as well as with physiological response to cold. However, despite pharmacologically mediated, statistically significant elevation in total energy expenditure, translation into biologically meaningful negative energy balance was not achieved, as indicated by the absence of measurable loss of body weight over the duration of a clinical study.
Collapse
Affiliation(s)
- Christopher J Larson
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
33
|
Das M, Basu S, Banerjee B, Sen A, Jana K, Datta G. Hepatoprotective effects of green Capsicum annum against ethanol induced oxidative stress, inflammation and apoptosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:69-81. [PMID: 30118838 DOI: 10.1016/j.jep.2018.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/19/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Capsicum annum L. (CA) is used extensively as a spice and is a rich source of antioxidant vitamins. It has long been used in Indian, Native American, and Chinese traditional medicine as a carminative and an appetizer that normalizes liver function. However, its hepato-protective activity has so far not been studied. AIM OF THE STUDY The present study was undertaken to evaluate the efficacy of aqueous extract of CA at two different doses (125 mg/kg body weight and 250 mg/kg body weight), against ethanol induced oxidative stress and apoptosis in liver tissue. MATERIALS AND METHODS Adult male Wistar rats, weighing 150-200 g, were randomly grouped (n = 6) and treated with ethanol (2 g/kg bw, i.p.), CA125 (125 mg/kg bw, i.p.), CA250 (250 mg/kg bw, i.p.), ethanol with CA (similar doses), and control (0.5 ml normal saline, i.p.) for 30 days. Lipid peroxidation (LPO) and reduced glutathione content (GSH) in tissue homogenate, along with catalase (CAT), superoxide dismutase (Cu-Zn-SOD & Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST) and glucose-6-phosphate dehydrogenase (G-6-P-D) activity were evaluated. Serum levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphate (ALP), triglyceride (TG), total cholesterol (CHLS), high density lipoprotein (HDL), low density lipoprotein (LDL) very low density lipoprotein (VLDL), tumour necrotic factor alpha (TNF-α) and interleukin 6 (IL-6) were also measured using ELISA kits. Histopathological evaluation of the hepatic tissue was performed by hematoxylin and eosin (H&E) and periodic acid-schiff (PAS) staining. TUNEL assay was performed for apoptosis detection. RESULTS Ethanol significantly (p < 0.001) increased ALT, AST, ALP, TNF-α, IL-6, LPO, Cu-Zn-SOD, GST, GPx, TG, CHLS, LDL, VLDL levels, along with significant (p < 0.001) decrease in HDL, Mn-SOD, CAT, GSH, GR and G6PD activity. Co-administration of CA along with ethanol alleviated changes in the above parameters (p < 0.001) in a dose-dependent manner and also reduced the number of apoptotic death cells. Histo-pathological and histo-chemical studies of liver sections also ascertained the outcomes of this study. CONCLUSION Thus, it can be concluded that the aqueous extract of green CA can exert a protective effect against ethanol induced hepato-toxicity. The possible mechanism may be by acting as an antioxidant; preventing ethanol induced apoptosis and reducing pro-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Moumita Das
- Department of Physiology, Rammohan College, 85A, Raja Rammohan Sarani, Kolkata 700009, West Bengal, India
| | - Subhashree Basu
- Department of Physiology, Tamralipta Mahavidyalaya, Tamluk, Poorba Medinipur, India
| | - Bhaswati Banerjee
- Department of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Anurupa Sen
- Department of Physiology, City College, Kolkata, India
| | - Kuladip Jana
- Department of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Gouriprosad Datta
- Department of Physiology, Rammohan College, 85A, Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
34
|
HAI J, KAWABATA F, KAWABATA Y, LIANG R, NISHIMURA S, TABATA S. Differences in the effects of TRPV1 antagonists on energy metabolism in mice . Biomed Res 2018; 39:279-286. [DOI: 10.2220/biomedres.39.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun HAI
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Fuminori KAWABATA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Yuko KAWABATA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Ruojun LIANG
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Shotaro NISHIMURA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Shoji TABATA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| |
Collapse
|
35
|
Uchida K, Sun W, Yamazaki J, Tominaga M. Role of Thermo-Sensitive Transient Receptor Potential Channels in Brown Adipose Tissue. Biol Pharm Bull 2018; 41:1135-1144. [PMID: 30068861 DOI: 10.1248/bpb.b18-00063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown and beige adipocytes are a major site of mammalian non-shivering thermogenesis and energy dissipation. Obesity is caused by an imbalance between energy intake and expenditure and has become a worldwide health problem. Therefore modulation of thermogenesis in brown and beige adipocytes could be an important application for body weight control and obesity prevention. Over the last few decades, the involvement of thermo-sensitive transient receptor potential (TRP) channels (including TRPV1, TRPV2, TRPV3, TRPV4, TRPM4, TRPM8, TRPC5, and TRPA1) in energy metabolism and adipogenesis in adipocytes has been extensively explored. In this review, we summarize the expression, function, and pathological/physiological contributions of these TRP channels and discuss their potential as future therapeutic targets for preventing and combating human obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College.,Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| | - Wuping Sun
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
36
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
37
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
38
|
Panchal SK, Bliss E, Brown L. Capsaicin in Metabolic Syndrome. Nutrients 2018; 10:E630. [PMID: 29772784 PMCID: PMC5986509 DOI: 10.3390/nu10050630] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin.
Collapse
Affiliation(s)
- Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Edward Bliss
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
39
|
Kenig S, Baruca-Arbeiter A, Mohorko N, Stubelj M, Černelič-Bizjak M, Bandelj D, Jenko-Pražnikar Z, Petelin A. Moderate but not high daily intake of chili pepper sauce improves serum glucose and cholesterol levels. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Fan R, Koehler K, Chung S. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:59-70. [PMID: 29679742 DOI: 10.1016/j.bbalip.2018.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Karsten Koehler
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA.
| |
Collapse
|
41
|
Rigamonti AE, Casnici C, Marelli O, De Col A, Tamini S, Lucchetti E, Tringali G, De Micheli R, Abbruzzese L, Bortolotti M, Cella SG, Sartorio A. Acute administration of capsaicin increases resting energy expenditure in young obese subjects without affecting energy intake, appetite, and circulating levels of orexigenic/anorexigenic peptides. Nutr Res 2018. [PMID: 29530622 DOI: 10.1016/j.nutres.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although capsaicin has been reported to reduce energy intake and increase energy expenditure in an adult (normal weight or overweight) population, thus resulting in a net negative energy balance and weight loss, these beneficial effects have not been investigated in young obese subjects. We hypothesize that capsaicin acutely administered in young obese subjects exerts the same effects on energy balance and that these effects are mediated by changes in gastrointestinal peptides regulating appetite. Thus, the aim of the present study was to evaluate the acute effects of capsaicin (2 mg) or placebo on energy intake, hunger, and satiety in obese adolescents and young adults (female-male ratio: 4:6, age: 21.0 ± 5.8 years; body mass index: 41.5 ± 4.3 kg/m2) provided an ad libitum dinner. Furthermore, circulating levels of some orexigenic (ghrelin) and anorexigenic (glucagon-like peptide 1 and peptide YY) peptides were measured after a meal completely consumed (lunch), together with the evaluation of hunger and satiety and assessment of resting energy expenditure (REE) through indirect computerized calorimetry. When compared to placebo, capsaicin did not significantly change either energy intake or hunger/satiety 6 hours after its administration (dinner). No differences in circulating levels of ghrelin, glucagon-like peptide 1, and peptide YY and in hunger/satiety were found in the 3 hours immediately after food ingestion among obese subjects treated with capsaicin or placebo (lunch). By contrast, the meal significantly increased REE in the capsaicin- but not placebo-treated group (capsaicin: from 1957.2 ± 455.1 kcal/d up to 2342.3 ± 562.1 kcal/d, P < .05; placebo: from 2060.1 ± 483.4 kcal/d up to 2296.0 ± 484.5 kcal/d). The pre-post meal difference in REE after capsaicin administration was significantly higher than that observed after placebo (385.1 ± 164.4 kcal/d vs 235.9 ± 166.1 kcal/d, P < .05). In conclusion, although capsaicin does not exert hypophagic effects, these preliminary data demonstrate its ability as a metabolic activator in young obese subjects.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Claudia Casnici
- University of Milan, Department of Medical Biotechnologies and Translational Medicine, Milan, Italy; Ferdinando Santarelli Foundation, Milan, Italy
| | - Ornella Marelli
- University of Milan, Department of Medical Biotechnologies and Translational Medicine, Milan, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Sofia Tamini
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Elisa Lucchetti
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Gabriella Tringali
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Roberta De Micheli
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Laura Abbruzzese
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy; Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Verbania, Italy
| | - Mauro Bortolotti
- University of Bologna, Department of Internal Medicine and Gastroenterology, Bologna, Italy
| | - Silvano G Cella
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy; Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Verbania, Italy
| |
Collapse
|
42
|
Abstract
Since the rediscovery of brown adipose tissue (BAT) in humans, its energy-dissipating ability has been well-recognized. The negative correlations of BAT activity with adiposity and insulin sensitivity provided an obvious rationale for discerning reliable and practical strategies for stimulating BAT. Though cold exposure or use of pharmacological adrenomimetics can activate BAT, they may have adverse effects. Therefore, determining alternative stimulants of BAT with lower risks such as commonly used food ingredients is highly desirable. Recent observations revealed that chemical activation of temperature-sensitive transient receptor potential (TRP) channels by food ingredients can recruit BAT in humans. Furthermore, animal studies have identified several food-derived stimulants of BAT acting through multiple mechanisms distinct from a TRP-mediated process. Dietary compounds acting as an activator of Sirtuin 1, a critical regulator of mitochondrial biogenesis and brown adipocyte differentiation, are one such class of promising food-derived BAT activators in humans. While the individual effects of various dietary factors are increasingly established in a laboratory setting, the potential synergistic effects of multiple stimulants on BAT remain to be tested in a clinical environment. These investigations may support the development of efficient, flexible dietary regimens capable of boosting BAT thermogenesis.
Collapse
|
43
|
Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 Channels in Energy Homeostasis. Front Endocrinol (Lausanne) 2018; 9:420. [PMID: 30108548 PMCID: PMC6079260 DOI: 10.3389/fendo.2018.00420] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
The ion channel TRPV1 is involved in a wide range of processes including nociception, thermosensation and, more recently discovered, energy homeostasis. Tightly controlling energy homeostasis is important to maintain a healthy body weight, or to aid in weight loss by expending more energy than energy intake. TRPV1 may be involved in energy homeostasis, both in the control of food intake and energy expenditure. In the periphery, it is possible that TRPV1 can impact on appetite through control of appetite hormone levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may increase energy expenditure via heat production. Dietary supplementation with TRPV1 agonists, such as capsaicin, has yielded conflicting results with some studies indicating a reduction in food intake and increase in energy expenditure, and other studies indicating the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated in obesity and contributing to the development of this disease. The mechanisms behind this dysregulation are currently unknown but interactions with other systems, such as the endocannabinoid systems, could be altered and therefore play a role in this dysregulation. Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore, given its plausible involvement in regulation of energy and glucose homeostasis and its dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes. However, further research is required too fully elucidate TRPV1s role in these processes. The review provides an overview of current knowledge in this field and potential areas for development.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gary A. Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Amanda J. Page
| |
Collapse
|
44
|
Baboota RK, Khare P, Mangal P, Singh DP, Bhutani KK, Kondepudi KK, Kaur J, Bishnoi M. Dihydrocapsiate supplementation prevented high-fat diet-induced adiposity, hepatic steatosis, glucose intolerance, and gut morphological alterations in mice. Nutr Res 2017; 51:40-56. [PMID: 29673543 DOI: 10.1016/j.nutres.2017.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
Despite the lipolytic and thermogenic properties of capsaicin, its putative use as a weight-lowering dietary supplement has been limited because of the burning sensation caused by capsaicin when it comes in contact with mucous membranes. A potential alternative to capsaicin are the capsinoids, nonpungent capsaicin analogs that exhibit effects similar to capsaicin. Whereas the antiobesity properties of capsinoids have been reported, the effectiveness of FDA-approved synthetic dihydrocapsiate has not yet been investigated. In the present study, we hypothesized that dihydrocapsiate might ameliorate high-fat diet (HFD)-induced metabolic disorders in a manner similar to capsaicin and therefore can be its nonpungent alternative. To test this hypothesis, HFD-fed mice were orally administered dihydrocapsiate (2 and 10mg/kg body weight) for 12weeks. Dihydrocapsiate modestly reduced the HFD-induced weight gain and significantly prevented the associated hyperglyceridemia and hyperinsulinemia while improving glucose tolerance. Histological and gene expression analysis showed that dihydrocapsiate significantly prevented the lipid accumulation in white adipose tissue and brown adipose tissue via targeting genes involved in energy expenditure and mitochondrial biogenesis, respectively. Dihydrocapsiate corrected hepatic triglyceride concentrations and normalized expression of genes regulating hepatic lipid and glucose metabolism. Moreover, dihydrocapsiate administration significantly improved gut morphology and altered gut microbial composition, resulting in reduced host energy availability. Collectively, these results indicate that dihydrocapsiate administration improved glucose tolerance, prevented adiposity and hepatic steatosis, as well as improved HFD-induced gut alterations, positing dihydrocapsiate as a potential food ingredient for the dietary management of HFD-induced metabolic alterations.
Collapse
Affiliation(s)
- Ritesh K Baboota
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India 160071; Biotechnology division, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India 160036
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India 160071
| | - Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India 160062
| | | | - Kamlesh K Bhutani
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India 160062
| | - Kanthi K Kondepudi
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India 160071
| | - Jaspreet Kaur
- Biotechnology division, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India 160036.
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India 160071.
| |
Collapse
|
45
|
Uchida K, Dezaki K, Yoneshiro T, Watanabe T, Yamazaki J, Saito M, Yada T, Tominaga M, Iwasaki Y. Involvement of thermosensitive TRP channels in energy metabolism. J Physiol Sci 2017; 67:549-560. [PMID: 28656459 PMCID: PMC10717017 DOI: 10.1007/s12576-017-0552-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
To date, 11 thermosensitive transient receptor potential (thermo-TRP) channels have been identified. Recent studies have characterized the mechanism of thermosensing by thermo-TRPs and the physiological role of thermo-TRPs in energy metabolism. In this review, we highlight the role of various thermo-TRPs in energy metabolism and hormone secretion. In the pancreas, TRPM2 and other TRPs regulate insulin secretion. TRPV2 expressed in brown adipocytes contributes to differentiation and/or thermogenesis. Sensory nerves that express TRPV1 promote increased energy expenditure by activating sympathetic nerves and adrenaline secretion. Here, we first show that capsaicin-induced adrenaline secretion is completely impaired in TRPV1 knockout mice. The thermogenic effects of TRPV1 agonists are attributable to brown adipose tissue (BAT) activation in mice and humans. Moreover, TRPA1- and TRPM8-expressing sensory nerves also contribute to potentiation of BAT thermogenesis and energy expenditure in mice. Together, thermo-TRPs are promising targets for combating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Biosciences (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI (The University of Advanced Studies), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, Fukuoka, 814-0193, Japan.
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Takeshi Yoneshiro
- Diabetes Center, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA, 94143-0669, USA
| | - Tatsuo Watanabe
- Faculty of Future Industry, Happy Science University, 4427-1 Hitotsumatsu-hei, Chosei-mura, Chiba, 299-4325, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, Fukuoka, 814-0193, Japan
| | - Masayuki Saito
- Hokkaido University, Kita18-Nishi9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Biosciences (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The University of Advanced Studies), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| |
Collapse
|
46
|
Song JX, Ren H, Gao YF, Lee CY, Li SF, Zhang F, Li L, Chen H. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice. Front Physiol 2017; 8:602. [PMID: 28890700 PMCID: PMC5575157 DOI: 10.3389/fphys.2017.00602] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background: The effects of capsaicin on obesity and glucose homeostasis are still controversial and the mechanisms underlying these effects remain largely unknown. This study aimed to investigate the potential relationship between the regulation of obesity and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in obese diabetic ob/ob mice. Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%), or high-capsaicin (0.02%) diet for 6 weeks, respectively. Obesity phenotypes, glucose homeostasis, the gut microbiota structure and composition, short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines were measured. Results: Both the low- and high-capsaicin diets failed to prevent the increase in body weight, adiposity index, and Lee's obesity index. However, dietary capsaicin at both the low and high doses significantly inhibited the increase of fasting blood glucose and insulin levels. These inhibitory effects were comparable between the two groups. Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both the low- and high-capsaicin diets, acting in similar ways, significantly increased the Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia abundance and decreased the Bacteroides and Parabacteroides abundances at the genus level. Spearman's correlation analysis revealed that the Roseburia abundance was negatively while the Bacteroides and Parabacteroides abundances were positively correlated to the fasting blood glucose level and area under the curve by the oral glucose tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1β, and IL-6 levels as compared with the normal diet. Conclusions: The beneficial effects of dietary capsaicin on glucose homeostasis are likely associated with the alterations of specific bacteria at the genus level. These alterations in bacteria induced by dietary capsaicin contribute to improved glucose homeostasis through increasing short-chain fatty acids, regulating gastrointestinal hormones and inhibiting pro-inflammatory cytokines. However, our results should be interpreted cautiously due to the lower caloric intake at the initial stage after capsaicin diet administration.
Collapse
Affiliation(s)
- Jun-Xian Song
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hui Ren
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Yuan-Feng Gao
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Chong-You Lee
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Long Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| |
Collapse
|
47
|
Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, Ohue-Kitano R, Jheng HF, Takahashi N, Kano Y, Yu R, Kishino S, Ogawa J, Uchida K, Yamazaki J, Tominaga M, Kawada T, Goto T. 10-oxo-12( Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J 2017; 31:5036-5048. [PMID: 28754711 DOI: 10.1096/fj.201700151r] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/17/2017] [Indexed: 11/11/2022]
Abstract
Gut microbiota can regulate the host energy metabolism; however, the underlying mechanisms that could involve gut microbiota-derived compounds remain to be understood. Therefore, in this study, we investigated the effects of KetoA [10-oxo-12(Z)-octadecenoic acid]-a linoleic acid metabolite produced by gut lactic acid bacteria-on whole-body energy metabolism and found that dietary intake of KetoA could enhance energy expenditure in mice, thereby protecting mice from diet-induced obesity. By using Ca2+ imaging and whole-cell patch-clamp methods, KetoA was noted to potently activate transient receptor potential vanilloid 1 (TRPV1) and enhance noradrenalin turnover in adipose tissues. In addition, KetoA up-regulated genes that are related to brown adipocyte functions, including uncoupling protein 1 (UCP1) in white adipose tissue (WAT), which was later diminished in the presence of a β-adrenoreceptor blocker. By using obese and diabetic model KK-Ay mice, we further show that KetoA intake ameliorated obesity-associated metabolic disorders. In the absence of any observed KetoA-induced antiobesity effect or UCP1 up-regulation in TRPV1-deficient mice, we prove that the antiobesity effect of KetoA was caused by TRPV1 activation-mediated browning in WAT. KetoA produced in the gut could therefore be involved in the regulation of host energy metabolism.-Kim, M., Furuzono, T., Yamakuni, K., Li, Y., Kim, Y.-I., Takahashi, H., Ohue-Kitano, R., Jheng, H.-F., Takahashi, N., Kano, Y., Yu, R., Kishino, S., Ogawa, J., Uchida, K., Yamazaki, J., Tominaga, M., Kawada, T., Goto, T. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1.
Collapse
Affiliation(s)
- Minji Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Furuzono
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kanae Yamakuni
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yongjia Li
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Yuriko Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University, Kobe, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Shigenobu Kishino
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan.,Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; .,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Zsiborás C, Mátics R, Hegyi P, Balaskó M, Pétervári E, Szabó I, Sarlós P, Mikó A, Tenk J, Rostás I, Pécsi D, Garami A, Rumbus Z, Huszár O, Solymár M. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Crit Rev Food Sci Nutr 2017; 58:1419-1427. [PMID: 28001433 DOI: 10.1080/10408398.2016.1262324] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Csaba Zsiborás
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Róbert Mátics
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Academy of Sciences - University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
- Department of Translational Medicine, First Department of Medicine, University of Pécs, Pécs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Imre Szabó
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs, Hungary
| | - Patrícia Sarlós
- Department of Translational Medicine, First Department of Medicine, University of Pécs, Pécs, Hungary
| | - Alexandra Mikó
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Judit Tenk
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ildikó Rostás
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dániel Pécsi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - András Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Rumbus
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Orsolya Huszár
- First Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
49
|
Okla M, Kim J, Koehler K, Chung S. Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis. Adv Nutr 2017; 8:473-483. [PMID: 28507012 PMCID: PMC5421122 DOI: 10.3945/an.116.014332] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized fat tissue that has a high capacity to dissociate cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Adult humans possess a substantial amount of BAT in the form of constitutively active brown fat or inducible beige fat. BAT activity in humans is inversely correlated with adiposity, blood glucose concentrations, and insulin sensitivity; this suggests that strategies aimed at BAT-mediated bioenergetics are an attractive therapeutic target in combating the continuing epidemic of obesity and diabetes. Despite advances in knowledge regarding the developmental lineage and transcriptional regulators of brown and beige adipocytes, our current understanding of environmental modifiers of BAT thermogenesis, such as diet, is limited. In this review, we consolidated the latest research on dietary molecules that may serve to promote BAT thermogenesis. Here, we summarized the thermogenic function of selected phytochemicals (e.g., capsaicin, resveratrol, curcumin, green tea, and berberine), dietary fatty acids (e.g., fish oil and conjugated linoleic acids), and all-trans retinoic acid, a vitamin A metabolite. We also delineated the proposed mechanisms whereby these dietary molecules promote BAT activity and/or browning of white adipose tissue. Characterizing thermogenic dietary factors may offer novel insight into revising nutritional intervention strategies aimed at obesity and diabetes prevention and management.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyoung Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| | - Karsten Koehler
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| |
Collapse
|
50
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|