1
|
Wright JM, Lee AL, Rappazzo KM, Ru H, Radke EG, Bateson TF. Systematic review and meta-analysis of birth weight and PFNA exposures. ENVIRONMENTAL RESEARCH 2023; 222:115357. [PMID: 36706898 DOI: 10.1016/j.envres.2023.115357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
We used a systematic review that included risk of bias and study sensitivity analysis to identify 34 studies examining changes in birth weight (BWT) in relation to PFNA biomarker measures (e.g., maternal serum/plasma or umbilical cord samples). We fit a random effects model of the overall pooled estimate and stratified estimates based on sample timing and overall study confidence. We conducted a meta-regression to further examine the impact of gestational age at biomarker sample timing. We detected a -32.9 g (95%CI: -47.0, -18.7) mean BWT deficit per each ln PFNA increase from 27 included studies. We did not detect evidence of publication bias (pE = 0.30) or between-study heterogeneity in the summary estimate (pQ = 0.05; I2 = 36%). The twelve high confidence studies yielded a smaller pooled effect estimate (β = -28.0 g; 95%CI: -49.0, -6.9) than the ten medium (β = -39.0 g; 95%CI: -61.8, -16.3) or four low (β = -36.9 g; 95%CI: -82.9, 9.1) confidence studies. The stratum-specific results based on earlier pregnancy sampling periods in 11 studies showed smaller deficits (β = -22.0 g; 95%CI: -40.1, -4.0) compared to 10 mid- and late-pregnancy (β = -44.2 g; 95%CI: -64.8, -23.5) studies and six post-partum studies (β = -42.9 g; 95%CI: -88.0, 2.2). Using estimates of the specific gestational week of sampling, the meta-regression showed results consistent with the categorical sample analysis, in that as gestational age at sampling time increases across these studies, the summary effect estimate of a mean BWT deficit got larger. Overall, we detected mean BWT deficits for PFNA that were larger and more consistent across studies than previous PFAS meta-analyses. Compared to studies with later sampling, BWT deficits were smaller but remained sizeable for even the earliest sampling periods. Contrary to earlier meta-analyses for PFOA and PFOS, BWT deficits that were detected across all strata did not appear to be fully explained by potential bias due to pregnancy hemodynamics from sampling timing differences.
Collapse
Affiliation(s)
- J M Wright
- US EPA, Office of Research and Development, Center for Public Health & Environmental Assessment, Chemical and Pollutant Assessment Division, USA.
| | - A L Lee
- US EPA, Office of Research and Development, Center for Public Health & Environmental Assessment, Chemical and Pollutant Assessment Division, USA
| | - K M Rappazzo
- US EPA, Office of Research and Development, Center for Public Health & Environmental Assessment, Public Health and Environmental Systems Division, USA
| | - H Ru
- US EPA, Office of Research and Development, Center for Public Health & Environmental Assessment, Chemical and Pollutant Assessment Division, USA
| | - E G Radke
- US EPA, Office of Research and Development, Center for Public Health & Environmental Assessment, Chemical and Pollutant Assessment Division, USA
| | - T F Bateson
- US EPA, Office of Research and Development, Center for Public Health & Environmental Assessment, Chemical and Pollutant Assessment Division, USA
| |
Collapse
|
2
|
Yim G, Minatoya M, Kioumourtzoglou MA, Bellavia A, Weisskopf M, Ikeda-Araki A, Miyashita C, Kishi R. The associations of prenatal exposure to dioxins and polychlorinated biphenyls with neurodevelopment at 6 Months of age: Multi-pollutant approaches. ENVIRONMENTAL RESEARCH 2022; 209:112757. [PMID: 35065939 DOI: 10.1016/j.envres.2022.112757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants, including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (DL-PCBs), and nondioxin-like PCBs (NDL-PCBs), has been hypothesized to have a detrimental impact on neurodevelopment. However, the association of prenatal exposure to a dioxin and PCB mixture with neurodevelopment remains largely inconclusive partly because these chemical levels are correlated. OBJECTIVES We aimed to elucidate the association of in utero exposure to a mixture of dioxins and PCBs with neurodevelopment measured at 6 months of age by applying multipollutant methods. METHODS A total of 514 pregnant women were recruited between July 2002 and October 2005 in the Sapporo cohort, Hokkaido Study on Environment and Children's Health. The concentrations of individual dioxin and PCB isomers were assessed in maternal peripheral blood during pregnancy. The mental and psychomotor development of the study participants' infants was evaluated using the Bayley Scales of Infant Development-2nd Edition (n = 259). To determine both the joint and individual associations of prenatal exposure to a dioxin and PCB mixture with infant neurodevelopment, Bayesian kernel machine regression (BKMR) and quantile-based g-computation were employed. RESULTS Suggestive inverse associations were observed between in utero exposure to a dioxin and PCB mixture and infant psychomotor development in both the BKMR and quantile g-computation models. In contrast, we found no association of a dioxin and PCB mixture with mental development. When group-specific posterior inclusion probabilities were estimated, BKMR suggested prenatal exposure to mono-ortho PCBs as the more important contributing factors to early psychomotor development compared with the other dioxin or PCB groups. No evidence of nonlinear exposure-outcome relationships or interactions among the chemical mixtures was detected. CONCLUSIONS Applying the two complementary statistical methods for chemical mixture analysis, we demonstrated limited evidence of inverse associations of prenatal exposure to dioxins and PCBs with infant psychomotor development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Machiko Minatoya
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | | | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Atsuko Ikeda-Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan; Hokkaido University Faculty of Health Sciences, Kita 12, Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
3
|
Burns CJ, LaKind JS. Using the Matrix to bridge the epidemiology/risk assessment gap: a case study of 2,4-D. Crit Rev Toxicol 2021; 51:591-599. [PMID: 34796780 DOI: 10.1080/10408444.2021.1997911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Matrix is designed to facilitate discussions between practitioners of risk assessment and epidemiology and, in so doing, to enhance the utility of epidemiology research for public health decision-making. The Matrix is comprised of nine fundamental "asks" of epidemiology studies, focusing on the types of information valuable to the risk assessment process. OBJECTIVE A 2,4-dichlorophenoxyacetic acid (2,4-D) case study highlights the extent to which existing epidemiology literature includes information generally needed for risk assessments and proffers suggestions that would assist in bridging the epidemiology/risk assessment gap. METHODS Thirty-one publications identified in the US Environmental Protection Agency 2,4-D epidemiology review were assessed. These studies focused on associations between 2,4-D exposure and non-Hodgkin lymphoma (NHL), respiratory effects, and birth outcomes. RESULTS Many of the papers met one or more specific elements of the Matrix. However, from this case study, it is clear that some aspects of risk assessment, such as evaluating source-to-intake pathways, are generally not considered in epidemiology research. Others are incorporated, but infrequently (e.g. dose-response information, harmonization of exposure categories). We indicated where additional analyses or modifications to future study design could serve to improve the translation. DISCUSSION Interaction with risk assessors during the study design phase and using the Matrix "asks" to guide the conversations could shape research and provide the basis for requests for funds to support these additional activities. The use of the Matrix as a foundation for communication and education across disciplines could produce more impactful and consequential epidemiology research for robust risk assessments and decision-making.
Collapse
Affiliation(s)
- Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI, USA
| | - Judy S LaKind
- LaKind Associates, LLC, University of Maryland School of Medicine, Catonsville, MD, USA
| |
Collapse
|
4
|
LaKind JS, Burns CJ, Pottenger LH, Naiman DQ, Goodman JE, Marchitti SA. Does ozone inhalation cause adverse metabolic effects in humans? A systematic review. Crit Rev Toxicol 2021; 51:467-508. [PMID: 34569909 DOI: 10.1080/10408444.2021.1965086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We utilized a practical, transparent approach for systematically reviewing a chemical-specific evidence base. This approach was used for a case study of ozone inhalation exposure and adverse metabolic effects (overweight/obesity, Type 1 diabetes [T1D], Type 2 diabetes [T2D], and metabolic syndrome). We followed the basic principles of systematic review. Studies were defined as "Suitable" or "Supplemental." The evidence for Suitable studies was characterized as strong or weak. An overall causality judgment for each outcome was then determined as either causal, suggestive, insufficient, or not likely. Fifteen epidemiologic and 33 toxicologic studies were Suitable for evidence synthesis. The strength of the human evidence was weak for all outcomes. The toxicologic evidence was weak for all outcomes except two: body weight, and impaired glucose tolerance/homeostasis and fasting/baseline hyperglycemia. The combined epidemiologic and toxicologic evidence was categorized as weak for overweight/obesity, T1D, and metabolic syndrome,. The association between ozone exposure and T2D was determined to be insufficient or suggestive. The streamlined approach described in this paper is transparent and focuses on key elements. As systematic review guidelines are becoming increasingly complex, it is worth exploring the extent to which related health outcomes should be combined or kept distinct, and the merits of focusing on critical elements to select studies suitable for causal inference. We recommend that systematic review results be used to target discussions around specific research needs for advancing causal determinations.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, Catonsville, MD, USA.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI, USA
| | | | - Daniel Q Naiman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
5
|
Goodman M, Li J, Flanders WD, Mahood D, Anthony LG, Zhang Q, LaKind JS. Epidemiology of PCBs and neurodevelopment: Systematic assessment of multiplicity and completeness of reporting. GLOBAL EPIDEMIOLOGY 2020. [DOI: 10.1016/j.gloepi.2020.100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Schantz SL, Eskenazi B, Buckley JP, Braun JM, Sprowles JN, Bennett DH, Cordero J, Frazier JA, Lewis J, Hertz-Picciotto I, Lyall K, Nozadi SS, Sagiv S, Stroustrup A, Volk HE, Watkins DJ. A framework for assessing the impact of chemical exposures on neurodevelopment in ECHO: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2020; 188:109709. [PMID: 32526495 PMCID: PMC7483364 DOI: 10.1016/j.envres.2020.109709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
The Environmental influences on Child Health Outcomes (ECHO) Program is a research initiative funded by the National Institutes of Health that capitalizes on existing cohort studies to investigate the impact of early life environmental factors on child health and development from infancy through adolescence. In the initial stage of the program, extant data from 70 existing cohort studies are being uploaded to a database that will be publicly available to researchers. This new database will represent an unprecedented opportunity for researchers to combine data across existing cohorts to address associations between prenatal chemical exposures and child neurodevelopment. Data elements collected by ECHO cohorts were determined via a series of surveys administered by the ECHO Data Analysis Center. The most common chemical classes quantified in multiple cohorts include organophosphate pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, environmental phenols (including bisphenol A), phthalates, and metals. For each of these chemicals, at least four ECHO cohorts also collected behavioral data during infancy/early childhood using the Child Behavior Checklist. For these chemicals and this neurodevelopmental assessment (as an example), existing data from multiple ECHO cohorts could be pooled to address research questions requiring larger sample sizes than previously available. In addition to summarizing the data that will be available, the article also describes some of the challenges inherent in combining existing data across cohorts, as well as the gaps that could be filled by the additional data collection in the ECHO Program going forward.
Collapse
Affiliation(s)
- Susan L Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | - Jenna N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA.
| | - Jose Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, Division of Child and Adolescent Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Johnnye Lewis
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | | | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA.
| | - Sara S Nozadi
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Sharon Sagiv
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - AnneMarie Stroustrup
- Division of Newborn Medicine, Department of Pediatrics, Department of Environmental Medicine and Public Health, and Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Heather E Volk
- Departments of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Vuong AM, Xie C, Jandarov R, Dietrich KN, Zhang H, Sjödin A, Calafat AM, Lanphear BP, McCandless L, Braun JM, Yolton K, Chen A. Prenatal exposure to a mixture of persistent organic pollutants (POPs) and child reading skills at school age. Int J Hyg Environ Health 2020; 228:113527. [PMID: 32521479 DOI: 10.1016/j.ijheh.2020.113527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/04/2020] [Accepted: 04/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants (POPs) may affect child neurobehavior; however, exposures to mixtures of POPs have rarely been examined. METHODS We estimated associations of prenatal serum concentrations of 17 POPs, namely 5 polybrominated diphenyl ethers (PBDEs), 6 polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyltrichloroethane (DDT), and 4 per- and polyfluoroalkyl substances (PFAS), with Wide Range Achievement Test-4 reading composite scores at age 8 years in 161 children from a pregnancy and birth cohort (Health Outcomes and Measures of the Environment [HOME] Study, 2003-present) in Cincinnati, OH. We applied 6 statistical methods: least absolute shrinkage and selection operator (LASSO), elastic net (ENET), Sparse Principal Component Analysis (SPCA), Weighted Quantile Sum (WQS) regression, Bayesian Kernel Machine Regression (BKMR), and Bayesian Additive Regression Trees (BART), to estimate covariate-adjusted associations with individual and their mixtures in multi-pollutant models. RESULTS Both LASSO and ENET models indicated inverse associations with reading scores for BDE-153 and BDE-28, and positive associations for CB-118, CB-180, perfluoroctanoate (PFOA), and perfluorononanoate (PFNA). The SPCA identified inverse associations for BDE-153 and BDE-100 and positive associations for perfluorooctane sulfonate (PFOS), PFOA, and PFNA, as parts of different principal component scores. The WQS regression showed the highest weights for BDE-100 (0.35) and BDE-28 (0.16) in the inverse association model and for PFNA (0.29) and CB-180 (0.21) in the positive association model. The BKMR model identified BDE-100 and BDE-153 for inverse associations and CB-118, CB-153, CB-180, PFOA, and PFNA for positive associations. The BART method found dose-response functions similar to the BKMR model. No interactions between POPs were identified. CONCLUSIONS Despite some inconsistency among biomarkers, these analyses revealed inverse associations between prenatal PBDE concentrations and children's reading scores. Positive associations of PCB congeners and PFAS with reading skills were also found.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Environmental and Occupational Health, University of Nevada Las Vegas, School of Public Health, United States
| | - Changchun Xie
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Roman Jandarov
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kim N Dietrich
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Andreas Sjödin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, British Columbia, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | | | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Burns CJ, LaKind JS, Mattison DR, Alcala CS, Branch F, Castillo J, Clark A, Clougherty JE, Darney SP, Erickson H, Goodman M, Greiner M, Jurek AM, Miller A, Rooney AA, Zidek A. A matrix for bridging the epidemiology and risk assessment gap. GLOBAL EPIDEMIOLOGY 2019. [DOI: 10.1016/j.gloepi.2019.100005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Martin P, Bladier C, Meek B, Bruyere O, Feinblatt E, Touvier M, Watier L, Makowski D. Weight of Evidence for Hazard Identification: A Critical Review of the Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:076001. [PMID: 30024384 PMCID: PMC6108859 DOI: 10.1289/ehp3067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Transparency when documenting and assessing weight of evidence (WOE) has been an area of increasing focus for national and international health agencies. OBJECTIVE The objective of this work was to conduct a critical review of WOE analysis methods as a basis for developing a practical framework for considering and assessing WOE in hazard identification in areas of application at the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). METHODS Based on a review of the literature and directed requests to 63 international and national agencies, 116 relevant articles and guidance documents were selected. The WOE approaches were assessed based on three aspects: the extent of their prescriptive nature, their purpose-specific relevance, and their ease of implementation. RESULTS Twenty-four approaches meeting the specified criteria were identified from selected reviewed documents. Most approaches satisfied one or two of the assessed considerations, but not all three. The approaches were grouped within a practical framework comprising the following four stages: (1) planning the assessment, including scoping, formulating the question, and developing the assessment method; (2) establishing lines of evidence (LOEs), including identifying and selecting studies, assessing their quality, and integrating with studies of similar type; (3) integrating the LOEs to evaluate WOE; and (4) presenting conclusions. DISCUSSION Based on the review, considerations for selecting methods for a wide range of applications are proposed. Priority areas for further development are identified. https://doi.org/10.1289/EHP3067.
Collapse
Affiliation(s)
- Pierre Martin
- French Agricultural Research Centre for International Development (CIRAD), Agroecology and sustainable intensification of annual crops (UPR AIDA), Montpellier, France
- AIDA, CIRAD, Montpellier University, Montpellier, France
| | - Claire Bladier
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Bette Meek
- McLaughlin Center for Risk Science, University of Ottawa, Ottawa, Canada
| | - Olivier Bruyere
- WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Aging, Department of Public Health, Epidemiology, and Health Economics, University of Liège, Liège, Belgium
| | - Eve Feinblatt
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and Statistics, Sorbonne Paris Cité (CRESS), Institute for Health and Medical Research (INSERM, U1153), French National Institute of Research for Agriculture (INRA, U1125), National Conservatory of Arts and Crafts (CNAM), Paris University, Bobigny, France
| | - Laurence Watier
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), INSERM, UVSQ, Pasteur Institute, University of Paris-Saclay, Paris, France
| | - David Makowski
- UMR Agronomy, INRA, AgroParisTech, University of Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
10
|
Kraft M, Sievering S, Grün L, Rauchfuss K. Mono-, di-, and trichlorinated biphenyls (PCB 1-PCB 39) in the indoor air of office rooms and their relevance on human blood burden. INDOOR AIR 2018; 28:441-449. [PMID: 29288536 DOI: 10.1111/ina.12448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) from indoor air can lead to a significant increase in lower chlorinated congeners in human blood. Lower chlorinated congeners with short biological half-lives can exhibit an indirect genotoxic potential via their highly reactive metabolites. However, little is known about their occurrence in indoor air and, therefore, about the effects of possible exposure to these congeners. We analyzed all mono-, di-, and trichlorinated biphenyls in the indoor air of 35 contaminated offices, as well as in the blood of the 35 individuals worked in these offices for a minimum of 2 years. The median concentration of total PCB in the indoor air was 479 ng/m3 . The most prevalent PCBs in the indoor air samples were the trichlorinated congeners PCB 31, PCB 18, and PCB 28, with median levels of 39, 31, and 26 ng/m3 , respectively. PCB 8 was the most prevalent dichlorinated congener (median: 9.1 ng/m3 ). Monochlorinated biphenyls were not detected in relevant concentrations. In the blood samples, the most abundant congener was PCB 28; nearly 90% of all mono-, di-, and trichlorinated congeners were attributed to this congener (median: 12 ng/g blood lipid).
Collapse
Affiliation(s)
- M Kraft
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Recklinghausen, Germany
| | - S Sievering
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Recklinghausen, Germany
| | - L Grün
- eco-Luftqualität + Raumklima, Köln, Germany
| | - K Rauchfuss
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Recklinghausen, Germany
| |
Collapse
|
11
|
Goodman M, Naiman DQ, LaKind JS. Systematic review of the literature on triclosan and health outcomes in humans. Crit Rev Toxicol 2017; 48:1-51. [DOI: 10.1080/10408444.2017.1350138] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael Goodman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Daniel Q. Naiman
- Department of Applied Mathematics & Statistics, The Johns Hopkins University, Baltimore, MD, USA
| | - Judy S. LaKind
- LaKind Associates, LLC, Catonsville, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
LaKind JS, Anthony LG, Goodman M. Review of reviews on exposures to synthetic organic chemicals and children's neurodevelopment: Methodological and interpretation challenges. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:390-422. [PMID: 28952888 DOI: 10.1080/10937404.2017.1370847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental epidemiology data are becoming increasingly important in public health decision making, which commonly incorporates a systematic review of multiple studies. This review addresses two fundamental questions: What is the quality of available reviews on associations between exposure to synthetic organic chemicals and neurodevelopmental outcomes? What is the value (e.g., quality and consistency) of the underlying literature? Published reviews on associations between synthetic organic environmental chemical exposures and neurodevelopmental outcomes in children were systematically evaluated. Seventy-four relevant reviews were identified, and these were evaluated with respect to four methodological characteristics: (1) systematic inclusion/exclusion criteria and reproducible methods for search and retrieval of studies; (2) structured evaluation of underlying data quality; (3) systematic assessment of consistency across specific exposure-outcome associations; and (4) evaluation of reporting/publication bias. None of the 74 reviews fully met the criteria for all four methodological characteristics. Only four reviews met two criteria, and six reviews fulfilled only one criterion. Perhaps more importantly, the higher quality reviews were not able to meet all of the criteria owing to the shortcomings of underlying studies, which lacked comparability in terms of specific research question of interest, overall design, exposure assessment, outcome ascertainment, and analytic methods. Thus, even the most thoughtful and rigorous review may be of limited value if the underlying literature includes investigations that address different hypotheses and are beset by methodological inconsistencies and limitations. Issues identified in this review of reviews illustrate considerable challenges that are facing assessments of epidemiological evidence.
Collapse
Affiliation(s)
- Judy S LaKind
- a LaKind Associates , LLC , Catonsville , MD 21228 , USA
- b Department of Epidemiology and Public Health , University of Maryland School of Medicine , Baltimore , MD 21201 , USA
| | - Laura G Anthony
- c Center for Autism Spectrum Disorders, Children's National Health System , The George Washington University Medical Center , 15245 Shady Grove Road, Suite 350, Rockville , MD 20850 USA
| | - Michael Goodman
- d Department of Epidemiology, Rollins School of Public Health , Emory University , 1518 Clifton Rd, Atlanta , GA 30322 USA
| |
Collapse
|
13
|
Sheehan MC, Lam J. Use of Systematic Review and Meta-Analysis in Environmental Health Epidemiology: a Systematic Review and Comparison with Guidelines. Curr Environ Health Rep 2015; 2:272-83. [PMID: 26231504 PMCID: PMC4513215 DOI: 10.1007/s40572-015-0062-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systematic review (SR) and meta-analysis (MA) have potential to contribute substantially to environmental health (EH) risk assessment and policy-making, provided study questions are clear and methods sound. We undertook a systematic review of the published epidemiological literature for studies using both SR and MA examining associations between chronic low-dose chemical exposures and adverse health outcomes in general populations and compared actual methods and reporting with a checklist based on available published guidelines. We identified 48 EH SRMAs meeting these criteria. Associations were mainly positive and statistically significant, often involving large populations. A majority of studies followed most general SRMA guidance, although we identified weaknesses in problem formulation, study search, selection and data extraction, and integrating policy implications. Fewer studies followed EH-specific SRMA recommendations, particularly regarding exposure heterogeneity and other risks of bias. Development and adoption of EH-specific SRMA guidelines would contribute to strengthening these tools for public health decision-making.
Collapse
Affiliation(s)
- Mary C Sheehan
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
14
|
LaKind JS, Goodman M, Barr DB, Weisel CP, Schoeters G. Lessons learned from the application of BEES-C: Systematic assessment of study quality of epidemiologic research on BPA, neurodevelopment, and respiratory health. ENVIRONMENT INTERNATIONAL 2015; 80:41-71. [PMID: 25884849 DOI: 10.1016/j.envint.2015.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/10/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Epidemiologic studies evaluating associations between biomarkers of exposure to short-lived chemicals and health endpoints in humans face special challenges. Perhaps the most critical challenges are the need to determine the type and optimal number of samples, and the proper timing of specimen collection. Further, as many short-lived chemicals are ubiquitous in the environment, utmost care is required to avoid sample contamination. A separate set of challenges is associated with appropriate interpretation and reporting of results from multiple simultaneous analyses, which are becoming increasingly feasible. The Biomonitoring, Environmental Epidemiology, and Short-Lived Chemicals (BEES-C) instrument is specifically designed to evaluate the quality of epidemiologic studies that measure biomarkers of chemicals with short physiologic half-lives. The instrument provides systematic guidance for evaluating 14 different aspects of study quality divided into three broad categories: 1) biomarker selection and measurement, 2) strategy and execution of exposure assessment, and 3) general considerations of study design and reporting. We evaluated the utility of the BEES-C instrument using epidemiologic studies of exposure to bisphenol A and its association with neurodevelopmental and respiratory health indicators. Each BEES-C element was assessed with respect to needed modifications and concordance among reviewers using professional, scientific judgment. Based on this first use of the BEES-C instrument, we found that most of its elements were effective in comparing the quality of available studies, with reviews generally concordant and justifications consistent. However, we note that certain elements would be improved with slight adjustments and that one of the elements appeared redundant and should be removed.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, Department of Epidemiology and Public Health, University of Maryland School of Medicine, MD, USA; Department of Pediatrics, Penn State University College of Medicine, Milton S. Hershey Medical Center, PA, USA.
| | - Michael Goodman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, NE, Room 272, Atlanta, GA 30322, USA.
| | - Clifford P Weisel
- Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Greet Schoeters
- Environmental Risk and Health Unit, VITO, Industriezone Vlasmeer 7, 2400 MOL, Belgium; University of Antwerp, Department of Biomedical Sciences, Belgium.
| |
Collapse
|
15
|
Goodman JE, Petito Boyce C, Sax SN, Beyer LA, Prueitt RL. Rethinking Meta-Analysis: Applications for Air Pollution Data and Beyond. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1017-39. [PMID: 25969128 PMCID: PMC4690509 DOI: 10.1111/risa.12405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Meta-analyses offer a rigorous and transparent systematic framework for synthesizing data that can be used for a wide range of research areas, study designs, and data types. Both the outcome of meta-analyses and the meta-analysis process itself can yield useful insights for answering scientific questions and making policy decisions. Development of the National Ambient Air Quality Standards illustrates many potential applications of meta-analysis. These applications demonstrate the strengths and limitations of meta-analysis, issues that arise in various data realms, how meta-analysis design choices can influence interpretation of results, and how meta-analysis can be used to address bias and heterogeneity. Reviewing available data from a meta-analysis perspective can provide a useful framework and impetus for identifying and refining strategies for future research. Moreover, increased pervasiveness of a meta-analysis mindset-focusing on how the pieces of the research puzzle fit together-would benefit scientific research and data syntheses regardless of whether or not a quantitative meta-analysis is undertaken. While an individual meta-analysis can only synthesize studies addressing the same research question, the results of separate meta-analyses can be combined to address a question encompassing multiple data types. This observation applies to any scientific or policy area where information from a variety of disciplines must be considered to address a broader research question.
Collapse
|
16
|
LaKind JS, Goodman M, Makris SL, Mattison DR. Improving Concordance in Environmental Epidemiology: A Three-Part Proposal. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:105-20. [PMID: 26158301 PMCID: PMC4733943 DOI: 10.1080/10937404.2015.1051612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In observational research, evidence is usually derived from multiple studies, and any single result is rarely considered sufficient for public health decision making. Despite more than five decades of research and thousands of studies published, the ability to draw robust conclusions regarding the presence or absence of causal links between specific environmental exposures and human health remains limited. To develop policies that are protective of public health and can withstand scrutiny, agencies need to rely on investigations of satisfactory quality that follow sufficiently concordant protocols in terms of exposure assessment, outcome ascertainment, data analysis, and reporting of results. Absent such concordance, the ability of environmental epidemiology studies to inform decision making is greatly diminished. Systems and tools are proposed here to improve concordance among environmental epidemiology studies. Specifically, working systems in place in other fields of research are critically examined and used as guidelines to develop analogous policies and procedures for environmental epidemiology. A three-part path forward toward more concordant, transparent, and readily accessible environmental epidemiology evidence that parallels ongoing efforts in medical research is proposed. The three parts address methods for improving quality and accessibility of systematic reviews, access to information on ongoing and completed studies, and principles for reporting. The goals are to increase the value of epidemiological research in public health decision making and to stimulate discussions around solutions proposed herein.
Collapse
Affiliation(s)
- Judy S. LaKind
- LaKind Associates, LLC, Catonsville, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Michael Goodman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Susan L. Makris
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, USA
| | - Donald R. Mattison
- Risk Sciences International, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Roth N, Wilks M. Neurodevelopmental and neurobehavioural effects of polybrominated and perfluorinated chemicals: A systematic review of the epidemiological literature using a quality assessment scheme. Toxicol Lett 2014; 230:271-81. [DOI: 10.1016/j.toxlet.2014.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
|
18
|
Goodman M, Mandel JS, DeSesso JM, Scialli AR. Atrazine and pregnancy outcomes: a systematic review of epidemiologic evidence. ACTA ACUST UNITED AC 2014; 101:215-36. [PMID: 24797711 PMCID: PMC4265844 DOI: 10.1002/bdrb.21101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/17/2014] [Indexed: 01/04/2023]
Abstract
Atrazine (ATR) is a commonly used agricultural herbicide that has been the subject of epidemiologic studies assessing its relation to reproductive health problems. This review evaluates both the consistency and the quality of epidemiologic evidence testing the hypothesis that ATR exposure, at usually encountered levels, is a risk factor for birth defects, small for gestational age birth weight, prematurity, miscarriages, and problems of fetal growth and development. We followed the current methodological guidelines for systematic reviews by using two independent researchers to identify, retrieve, and evaluate the relevant epidemiologic literature on the relation of ATR to various adverse outcomes of birth and pregnancy. Each eligible paper was summarized with respect to its methods and results with particular attention to study design and exposure assessment, which have been cited as the main areas of weakness in ATR research. As a quantitative meta-analysis was not feasible, the study results were categorized qualitatively as positive, null, or mixed. The literature on ATR and pregnancy-related health outcomes is growing rapidly, but the quality of the data is poor with most papers using aggregate rather than individual-level information. Without good quality data, the results are difficult to assess; however, it is worth noting that none of the outcome categories demonstrated consistent positive associations across studies. Considering the poor quality of the data and the lack of robust findings across studies, conclusions about a causal link between ATR and adverse pregnancy outcomes are not warranted.
Collapse
|
19
|
Lakind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol 2014; 44:121-50. [PMID: 24392816 DOI: 10.3109/10408444.2013.860075] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bisphenol A (BPA), a high-volume chemical with weak estrogenic properties, has been linked to obesity, cardiovascular diseases (CVD) and diabetes mellitus (DM). This review evaluates both the consistency and the quality of epidemiological evidence from studies testing the hypothesis that BPA exposure is a risk factor for these health outcomes. METHODS We followed the current methodological guidelines for systematic reviews by using two independent researchers to identify, review and summarize the relevant epidemiological literature on the relation of BPA to obesity, CVD, DM, or related biomarkers. Each paper was summarized with respect to its methods and results with particular attention to study design and exposure assessment, which have been cited as the main areas of weakness in BPA epidemiologic research. As quantitative meta-analysis was not feasible, the study results were categorized qualitatively as positive, inverse, null, or mixed. RESULTS Nearly all studies on BPA and obesity-, DM- or CVD-related health outcomes used a cross-sectional design and relied on a single measure of BPA exposure, which may result in serious exposure misclassification. For all outcomes, results across studies were inconsistent. Although several studies used the same data and the same or similar statistical methods, when the methods varied slightly, even studies that used the same data produced different results. CONCLUSION Epidemiological study design issues severely limit our understanding of health effects associated with BPA exposure. Considering the methodological limitations of the existing body of epidemiology literature, assertions about a causal link between BPA and obesity, DM, or CVD are unsubstantiated.
Collapse
|
20
|
Forns J, Torrent M, Garcia-Esteban R, Grellier J, Gascon M, Julvez J, Guxens M, Grimalt JO, Sunyer J. Prenatal exposure to polychlorinated biphenyls and child neuropsychological development in 4-year-olds: an analysis per congener and specific cognitive domain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:338-43. [PMID: 22750179 DOI: 10.1016/j.scitotenv.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 05/22/2023]
Abstract
Polychlorinated biphenyls (PCB) are synthetic organochlorine compounds with potential neurotoxic effects. Although negative effects on neuropsychological development have been observed in previous studies on PCB exposure, there are inconsistencies in these effects at current exposure levels of these compounds which are much lower than for previous generations. This study aimed to disentangle the effects of prenatal and postnatal PCB exposure on neuropsychological development at 4 years of age. This study is based on a population-based birth cohort design established in Menorca (Spain) as part of the INMA [Environment and Childhood] Project. We assessed general neuropsychological development using the McCarthy Scales of Children's Abilities (MCSA). A total of 422 4-year old children were assessed with the MCSA. Levels of PCBs were measured in cord blood (n=405) and in blood samples taken at 4 years (n=285). We found no statistically significant effects of the sum of prenatal PCBs on MCSA scores. Nevertheless, individual congener analyses yielded significant detrimental effects of prenatal PCB153 on the majority of MCSA scores, while no effects were reported for other congeners. The levels of PCBs at 4 years of age were not associated with neuropsychological development. Thus, prenatal exposure to low-level concentrations of PCBs, particularly PCB153, was associated with an overall deleterious effect on neuropsychological development at 4 years of age, including negative effects on executive function, verbal functions and visuospatial abilities, but not on motor development.
Collapse
Affiliation(s)
- Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wise A, Parham F, Axelrad DA, Guyton KZ, Portier C, Zeise L, Zoeller RT, Woodruff TJ. Upstream adverse effects in risk assessment: a model of polychlorinated biphenyls, thyroid hormone disruption and neurological outcomes in humans. ENVIRONMENTAL RESEARCH 2012; 117:90-9. [PMID: 22770859 DOI: 10.1016/j.envres.2012.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Increasing data on early biological changes from chemical exposures requires new interpretation tools to support decision-making. OBJECTIVES To test the possibility of applying a quantitative approach using human data linking chemical exposures and upstream biological perturbations to overt downstream outcomes. METHODS Using polychlorinated biphenyl (PCB) exposures and maternal thyroid hormone (TH) perturbations as a case study, we model three relationships: (1) prenatal PCB exposures and TH changes, using free T(4) (FT(4)); (2) prenatal TH and childhood neurodevelopmental outcomes; and (3) prenatal PCB exposures and childhood neurodevelopmental outcomes (IQ). We surveyed the epidemiological literature; extracted relevant quantitative data; and developed models for each relationship, applying meta-analysis where appropriate. RESULTS For relationship 1, a meta-analysis of 3 studies gives a coefficient of -0.27 pg/mL FT(4) per ln(sum of PCBs) (95% confidence interval [CI] -0.82 to 0.27). For relationship 2, regression coefficients from three studies of maternal FT(4) levels and cognitive scores ranged between 0.99 IQ points/(pg/mL FT(4)) (95% CI -0.31 to 2.2) and 7.6 points/(pg/mL FT(4)) (95% CI 1.2 to 16.3). For relationship 3, a meta-analysis of five studies produces a coefficient of -1.98 IQ points (95% CI -4.46 to 0.50) per unit increase in ln(sum of PCBs). Combining relationships 1 and 2 yields an estimate of -2.0 to -0.27 points of IQ per unit increase in ln(sum of PCBs). CONCLUSIONS Combining analysis of chemical exposures and early biological perturbations (PCBs and FT(4)) with analysis of early biological perturbations and downstream overt effects (FT(4) and IQ) yields estimates within the range of studies of exposures and overt effects (PCBs and IQ). This is an example approach using upstream biological perturbations for effect prediction.
Collapse
Affiliation(s)
- Amber Wise
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Grandjean P, Weihe P, Nielsen F, Heinzow B, Debes F, Budtz-Jørgensen E. Neurobehavioral deficits at age 7 years associated with prenatal exposure to toxicants from maternal seafood diet. Neurotoxicol Teratol 2012; 34:466-72. [PMID: 22705177 PMCID: PMC3407364 DOI: 10.1016/j.ntt.2012.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
To determine the possible neurotoxic impact of prenatal exposure to polychlorinated biphenyls (PCBs), we analyzed banked cord blood from a Faroese birth cohort for PCBs. The subjects were born in 1986-1987, and 917 cohort members had completed a series of neuropsychological tests at age 7 years. Major PCB congeners (118, 138, 153, and 180), the calculated total PCB concentration, and the PCB exposure estimated in a structural equation model showed weak associations with test deficits, with statistically significant negative associations only with the Boston Naming test. Likewise, neither hexachlorobenzene nor p,p'-dichlorodiphenyldichloroethylene showed clear links to neurobehavioral deficits. Thus, these associations were much weaker than those associated with the cord-blood mercury concentration, and adjustment for mercury substantially attenuated the regression coefficients for PCB exposure. When the outcomes were joined into motor and verbally mediated functions in a structural equation model, the PCB effects remained weak and virtually disappeared after adjustment for methylmercury exposure, while mercury remained statistically significant. Thus, in the presence of elevated methylmercury exposure, PCB neurotoxicity may be difficult to detect, and PCB exposure does not explain the methylmercury neurotoxicity previously reported in this cohort.
Collapse
Affiliation(s)
- Philippe Grandjean
- Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | |
Collapse
|
23
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2054] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Youngstrom E, Kenworthy L, Lipkin PH, Goodman M, Squibb K, Mattison DR, Anthony LG, Makris SL, Bale AS, Raffaele KC, LaKind JS. A proposal to facilitate weight-of-evidence assessments: Harmonization of Neurodevelopmental Environmental Epidemiology Studies (HONEES). Neurotoxicol Teratol 2011; 33:354-9. [PMID: 21315817 DOI: 10.1016/j.ntt.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/13/2011] [Accepted: 01/30/2011] [Indexed: 11/26/2022]
Abstract
The ability to conduct weight-of-evidence assessments to inform the evaluation of potential environmental neurotoxicants is limited by lack of comparability of study methods, data analysis, and reporting. There is a need to establish consensus guidelines for conducting, analyzing, and reporting neurodevelopmental environmental epidemiologic studies, while recognizing that consistency is likewise needed for epidemiology studies examining other health outcomes. This paper proposes a set of considerations to be used by the scientific community at-large as a tool for systematically evaluating the quality of proposed and/or published studies in terms of their value for weight-of-evidence assessments. Particular emphasis is placed on evaluating factors influencing the risk of incorrect conclusions at the level of study findings. The proposed considerations are the first step in what must be a larger consensus-based process and can serve to catalyze such a discussion. Achieving consensus in these types of endeavors is difficult; however, opportunities exist for further interdisciplinary discussion, collaboration, and research that will help realize this goal. Broad acceptance and application of such an approach can facilitate the expanded use of environmental epidemiology studies of potential neurodevelopmental toxicants in the protection of public health, and specifically children's health.
Collapse
Affiliation(s)
- Eric Youngstrom
- Departments of Psychology and Psychiatry, University of North Carolina at Chapel Hill/Davie Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|