1
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
2
|
Li W, Li Z, Yan Y, Zhang J, Zhou Q, Wang R, He M. Association of urinary arsenic metabolism with type 2 diabetes and glucose homeostasis: Cross-sectional and longitudinal associations. ENVIRONMENTAL RESEARCH 2023; 239:117410. [PMID: 37858693 DOI: 10.1016/j.envres.2023.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Previous researches have assessed the relationships of urinary arsenic metabolism with type 2 diabetes (T2D) and glucose-insulin homeostasis, but the results were controversial, and potential mechanisms remain largely unclear. OBJECTIVES This study aimed to investigate the cross-sectional and longitudinal associations of urinary arsenic metabolism with T2D prevalence and glucose changes in relatively higher arsenic exposure, and further to evaluate the underlying roles of oxidative damage in these relationships. METHODS We included 796 participants at baseline, among them 509 participants were followed up after 2 years. Logistic regression model and leave-one-out approach were applied to evaluate the associations of arsenic metabolism with T2D prevalence. Linear mixed model was conducted to estimate the relationship of arsenic metabolism with glycemic changes over two years. The associations between arsenic metabolism and indicators of oxidative stress were assessed with a linear regression model. We further performed mediation analysis to investigate the role of oxidative stress in the associations of arsenic metabolism with 2-year change of glucose levels. RESULTS Higher urinary MMA% increased T2D prevalence and baseline glucose levels. MMA% was positively associated with 2-year change of glucose levels. Moreover, we observed significant dose-response relationship between MMA% and 8-hydroxy-2-deoxyguanosine (8-OHdG). However, the mediating role of 8-OHdG in the association of MMA% and 2-year change of glucose levels was not observed in this population. CONCLUSIONS In this population exposure to relatively higher arsenic levels, higher MMA% contributed to increased T2D prevalence and glucose homeostasis disorder. Arsenic metabolism also affected oxidative stress levels, especially 8-OHdG. Further studies are required to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Todero J, Douillet C, Shumway AJ, Koller BH, Kanke M, Phuong DJ, Stýblo M, Sethupathy P. Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127021. [PMID: 38150313 PMCID: PMC10752418 DOI: 10.1289/ehp12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic + 3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.
Collapse
Affiliation(s)
- Jenna Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandria J. Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Beverly H. Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Neamtiu IA, Bloom MS, Clark JM, Pop C, Marincas O, Berindan-Neagoe I, Braicu C, Gurzau ES. Urinary arsenic and spontaneous pregnancy loss - a hypothesis-generating case-control investigation in western Romania. CHEMOSPHERE 2023; 335:139167. [PMID: 37295686 PMCID: PMC10335628 DOI: 10.1016/j.chemosphere.2023.139167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Arsenic occurs as a natural contaminant of drinking water supplies in arsenic endemic areas, posing a threat to public health. Our aim was to evaluate the relationship between urinary arsenic concentrations and spontaneous pregnancy loss in a population with low-moderate level drinking water arsenic exposure (mostly <10 μg/L). We enrolled 150 women with incident spontaneous pregnancy losses and 150 controls with ongoing pregnancies matched by gestational age. We measured arsenic species in urine using high performance liquid chromatography paired to inductively coupled plasma mass spectrometry. Urinary arsenic was not related to spontaneous pregnancy loss in conditional logistic regression models adjusted for confounding factors. However, a 10 μg/L increase in urinary arsenic (III + V) salt concentrations was associated with 8.00-fold (95% CI: 0.68, 3.35 × 105) greater odds of spontaneous loss among women using prenatal vitamins in an interaction model (P for interaction = 0.07), although the effect estimate was imprecise. In an additional interaction model, prenatal vitamin use was associated with lower odds of loss (OR = 0.30; 95% CI: 0.13, 0.66), although the association was diminished in the presence of a 10 μg/L increase in urinary inorganic arsenic (OR = 0.44; 95% CI: 0.70, 3.22). Total urinary arsenic was associated with 1.48-fold (95% CI: 0.20, 11.35) greater odds for loss among women with urinary cotinine >50 μg/L in another interaction model (P for interaction = 0.07). These results suggest a potential modest increase in the odds of pregnancy loss associated with increased total urinary arsenic among women smoking during pregnancy (urinary cotinine >50 μg/L). Prenatal vitamin use may act as a protective factor for arsenic exposure associated pregnancy loss, but appears to be less protective with increasing urinary inorganic arsenic concentrations.
Collapse
Affiliation(s)
- Iulia A Neamtiu
- Health Department, Environmental Health Center Part of ALS, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania; Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294, Cluj-Napoca, Romania.
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr, Fairfax, VA, United States.
| | - Juliana M Clark
- Department of Global and Community Health, George Mason University, 4400 University Dr, Fairfax, VA, United States.
| | - Cristian Pop
- Physico-chemical and Biotoxicological Analysis Laboratory, Environmental Health Center Part of ALS, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania.
| | - Olivian Marincas
- Physico-chemical and Biotoxicological Analysis Laboratory, Environmental Health Center Part of ALS, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347, Cluj-Napoca, Romania.
| | - Eugen S Gurzau
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400347, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Douillet C, Miller M, Cable PH, Shi Q, El-Masri H, Matoušek T, Koller BH, Thomas DJ, Stýblo M. Fate of arsenicals in mice carrying the human AS3MT gene exposed to environmentally relevant levels of arsenite in drinking water. Sci Rep 2023; 13:3660. [PMID: 36871058 PMCID: PMC9985638 DOI: 10.1038/s41598-023-30723-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Although mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice. We determined tissue and urinary concentrations and proportions of iAs, methylarsenic (MAs), and dimethylarsenic (DMAs) in male and female Hs and wild-type (WT) mice that received 25- or 400-ppb iAs in drinking water. At both exposure levels, Hs mice excrete less total arsenic (tAs) in urine and retain more tAs in tissues than WT mice. Tissue tAs levels are higher in Hs females than in Hs males, particularly after exposure to 400-ppb iAs. Tissue and urinary fractions of tAs present as iAs and MAs are significantly greater in Hs mice than in WT mice. Notably, tissue tAs dosimetry in Hs mice resembles human tissue dosimetry predicted by a physiologically based pharmacokinetic model. These data provide additional support for use of Hs mice in laboratory studies examining effects of iAs exposure in target tissues or cells.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Madison Miller
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Beverly H Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Dinkey Creek Consulting, LLC, Chapel Hill, NC, 27517, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
| |
Collapse
|
6
|
Abstract
Arsenic is a naturally occurring hazardous element that is environmentally ubiquitous in various chemical forms. Upon exposure, the human body initiates an elimination pathway of progressive methylation into relatively less bioreactive and more easily excretable pentavalent methylated forms. Given its association with decreasing the internal burden of arsenic with ensuing attenuation of its related toxicities, biomethylation has been applauded for decades as a pure route of arsenic detoxification. However, the emergence of detectable trivalent species with profound toxicity has opened a long-standing debate regarding whether arsenic methylation is a detoxifying or bioactivating mechanism. In this review, we approach the topic of arsenic metabolism from both perspectives to create a complete picture of its potential role in the mitigation or aggravation of various arsenic-related pathologies.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
7
|
Zhao C, Du M, Yang J, Guo G, Wang L, Yan Y, Li X, Lei M, Chen T. Changes in arsenic accumulation and metabolic capacity after environmental management measures in mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158652. [PMID: 36108864 DOI: 10.1016/j.scitotenv.2022.158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Due to the public health concern of arsenic, environmental management measures in mining areas had been implemented. To assess the effect of environmental management measures in the mining area comprehensively, arsenic accumulation in the urine, hair, nails, and urinary metabolites of residents in a realgar mining area in Hunan province, China were investigated in 2019, and the changes in arsenic levels in the biomarkers during 2012-2019 were tracked. The importance of confounding factors (age, sex, occupation, residence, clinical history, vegetable source, cooking fuel, smoking, alcohol consumption, BMI) was analyzed using the Boruta algorithm. After the implementation of environmental management measures (including ceasing mining and smelting activities, building landfills, adjusting the planting structure, and soil restoration), urine, hair, and nail arsenic concentration decreased drastically but were still excessive. Arsenic accumulation was highest in older male miners who were long settled in the mining area and consumed homegrown vegetables. The only factor for changes in urinary arsenic levels was the cooking fuel type; residents using wood as cooking fuel experienced sustained arsenic exposure. Occupation and sex were important for determining arsenic changes in the hair and nails. Short-term arsenic accumulation in urine was affected by arsenic exposure, while long-term accumulation in hair and nails by arsenic metabolic capacity. The percentage of urinary arsenic metabolism and arsenic methylation indices of the participants in the mining area were within the normal range (%iAs: 10-30 %, %MMA: 10-20 %, % DMA: 60-80 %); samples indicated worse metabolic capacity than the reference population. The arsenic metabolic capacity of male miners was relatively weak, probably aggravated by alcohol drinking and smoking. Without soil remediation, arsenic exposure will continue. Homegrown vegetables and biomass fuels should be abandoned; reduced cigarette and alcohol consumption is recommended. Urinary arsenic would be more proper for assessing environmental remediation in mining areas.
Collapse
Affiliation(s)
- Chen Zhao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Du
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanghui Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewen Li
- Shandong University, School of Public Health, Jinan, Shandong, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Khanam T, Liang S, Xu S, Musstjab Akber Shah Eqani SA, Shafqat MN, Rasheed H, Bibi N, Shen H, Zhang J. Arsenic exposure induces urinary metabolome disruption in Pakistani male population. CHEMOSPHERE 2023; 312:137228. [PMID: 36372340 DOI: 10.1016/j.chemosphere.2022.137228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Millions of people are at risk of consuming arsenic (As) contaminated drinking water in Pakistan. The current study aimed to investigate urinary arsenic species [iAsIII, iAsV, dimethylarsinic acid (DMA), methylarsonic acid (MMA)] and their potential toxicity biomarkers (based on urinary metabolome) in order to characterize the health effects in general adult male participants (n = 588) exposed to various levels of arsenic in different floodplain areas of Pakistan. The total urinary arsenic concentration (mean; 161 μg/L) of studied participants was lower and/or comparable than those values reported from other highly contaminated regions, but exceeded the Agency for Toxic Substances and Disease Registry (ATSDR) limits. For all the participants, the most excreted species was DMA accounting for 65% of the total arsenic, followed by MMA (20%) and iAs (16%). The percentage of MMA detected in this study was higher than those of previously reported data from other countries. These results suggested that studied population might have high risk of developing arsenic exposure related adverse health outcomes. Furthermore, random forest machine learning algorithm, partial correlation and binary logistic regression analysis were performed to screen the arsenic species-related urinary metabolites. A total of thirty-eight metabolites were extracted from 2776 metabolic features and identified as the potential arsenic toxicity biomarkers. The metabolites were mainly classified into xanthines, purines, and amino acids, which provided the clues linking the arsenic exposure with oxidative stress, one-carbon metabolism, purine metabolism, caffeine metabolism and hormone metabolism. These results would be helpful to develop early health warning system in context of arsenic exposure among the general populations of Pakistan.
Collapse
Affiliation(s)
- Tasawar Khanam
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Shijia Liang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Song Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | | | | | - Hifza Rasheed
- National Laboratory for the Water Quality, Pakistan Council Research Water Resources, Islamabad, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
9
|
Choi JW, Song YC, Cheong NY, Lee K, Kim S, Lee KM, Ji K, Shin MY, Kim S. Concentrations of blood and urinary arsenic species and their characteristics in general Korean population. ENVIRONMENTAL RESEARCH 2022; 214:113846. [PMID: 35820651 DOI: 10.1016/j.envres.2022.113846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) exposure has been extensively studied by investigating As species (e.g., inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)) in urine, yet recent research suggests that blood could be a possible biomarker of As exposure. These investigations, however, were conducted on iAs-contaminated areas, and evidence on populations exposed to low levels of iAs is limited. This study aimed to describe the levels and distributions of As species in urine and blood, as well as to estimate methylation efficiency and related factors in the Korean population. Biological samples were obtained by the Korean Ministry of Food and Drug Safety. A total of 2025 urine samples and 598 blood samples were utilized in this study. Six As species were measured using ultra-high-performance liquid chromatography with inductively coupled plasma mass spectrometry (UPLC-ICP-MS): As(V), As(III), MMA, DMA, arsenobetaine (AsB), and arsenocholine (AsC). Multiple linear regression models were used to examine the relationship between As species (concentrations and proportions) and covariates. AsB was the most prevalent species in urine and blood. The relative composition of iAs, MMA, DMA, and AsC in urine and blood differed significantly. Consumption of blue-backed fish was linked to higher levels of AsB in urine and blood. Type of drinking water and multigrain rice consumption were associated with increased iAs concentration in urine. Except for iAs, every species had correlations in urine and blood in both univariate and multivariate analyses. Adolescents and smokers presented a lower methylation efficiency (higher %MMA and lower %DMA in urine) and females presented a higher methylation efficiency (lower %iAs, %MMA, and higher %DMA in urine). In conclusion, blood iAs concentration cannot represent urinary iAs; nonetheless, different compositions of urine and blood might reflect distinct information about iAs exposure. Further investigations on exposure factors and health are needed using low-exposure groups.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yoon Chae Song
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Nam-Yong Cheong
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kyoung-Mu Lee
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi-do, South Korea
| | - Mi-Yeon Shin
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Office of Dental Education, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
10
|
Alshana U, Altun B, Ertaş N, Çakmak G, Kadioglu E, Hisarlı D, Aşık E, Atabey E, Çelebi CR, Bilir N, Serçe H, Tuncer AM, Burgaz S. Evaluation of low-to-moderate arsenic exposure, metabolism and skin lesions in a Turkish rural population exposed through drinking water. CHEMOSPHERE 2022; 304:135277. [PMID: 35688195 DOI: 10.1016/j.chemosphere.2022.135277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND There is no human data regarding the exposure, metabolism and potential health effects of arsenic (As) contamination in drinking water in the Central Anatolian region of Turkey. METHODS Residents in ten villages with drinking water of total As (T-As) level >50 μg L-1 and 10-50 μg L-1 were selected as an exposed group (n = 420) and <10 μg L-1 as an unexposed group (n = 185). Time-weighted average-As (TWA-As) intake was calculated from T-As analysis of drinking water samples. Concentrations of T-As in urine and hair samples, urinary As species [i.e., As(III), As(V), MMA(V) and DMA(V], and some micronutrients in serum samples of residents of the study area were determined. Primary and secondary methylation indices (PMI and SMI, respectively) were assessed from urinary As species concentrations and the presence of skin lesion was examined. RESULTS TWA-As intake was found as 75 μg L-1 in the exposed group. Urinary and hair T-As and urinary As species concentrations were significantly higher in the exposed group (P < 0.05). The PMI and SMI values revealed that methylation capacities of the residents were efficient and that there was no saturation in As metabolism. No significant increase was observed in the frequency of skin lesions (hyperpigmentation, hypopigmentation, keratosis) of the exposed group (P > 0.05). Only frequency of keratosis either at the hand or foot was higher in individuals with hair As concentration >1 μg g-1 (P < 0.05). CONCLUSIONS Individuals living in the study area were chronically exposed to low-to-moderate As due to geological contamination in drinking water. No significant increase was observed in the frequency of skin lesions. Because of the controversy surrounding the health risks of low-to-moderate As exposure, it is critical to initiate long-term follow-up studies on health effects in this region.
Collapse
Affiliation(s)
- Usama Alshana
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Beril Altun
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Nusret Ertaş
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Gonca Çakmak
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Ela Kadioglu
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Deniz Hisarlı
- Middle East Technical University, Department of Biochemistry, Ankara, Turkey
| | - Elif Aşık
- Middle East Technical University, Department of Biotechnology, Ankara, Turkey
| | - Eşref Atabey
- General Directorate of Mineral Research and Exploration, Ankara, Turkey
| | | | - Nazmi Bilir
- Hacettepe University, Faculty of Medicine, Department of Public Health, Ankara, Turkey
| | - Hakan Serçe
- Ürgüp State Hospital, Turkish Ministry of Health, Nevşehir, Turkey
| | - A Murat Tuncer
- Turkish Ministry of Health, Cancer Control Department, Ankara, Turkey
| | - Sema Burgaz
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| |
Collapse
|
11
|
Xenakis JG, Douillet C, Bell TA, Hock P, Farrington J, Liu T, Murphy CEY, Saraswatula A, Shaw GD, Nativio G, Shi Q, Venkatratnam A, Zou F, Fry RC, Stýblo M, Pardo-Manuel de Villena F. An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mamm Genome 2022; 33:575-589. [PMID: 35819478 PMCID: PMC9761582 DOI: 10.1007/s00335-022-09957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.
Collapse
Affiliation(s)
- James G Xenakis
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy A Bell
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Farrington
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline E Y Murphy
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Avani Saraswatula
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gustavo Nativio
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Rangel-Moreno K, Gamboa-Loira B, López-Carrillo L, Cebrián ME. Prevalence of type 2 diabetes mellitus in relation to arsenic exposure and metabolism in Mexican women. ENVIRONMENTAL RESEARCH 2022; 210:112948. [PMID: 35189103 DOI: 10.1016/j.envres.2022.112948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Experimental studies have shown the diabetogenic potential of inorganic arsenic (iAs); however, the epidemiological evidence is still inconclusive. This could be explained by differences in exposure, metabolism efficiency, nutritional and genetic factors. OBJECTIVE To evaluate the association between type 2 diabetes mellitus (T2DM) prevalence with arsenic exposure and metabolism, considering one-carbon metabolism nutrient intake and arsenite methyltransferase (AS3MT) polymorphisms. METHODS From healthy controls of a case control study for female breast cancer in northern Mexico, 227 self-reported diabetic women were age-matched with 454 non-diabetics. Participants were interviewed about dietary, sociodemographic and clinical characteristics. Urinary iAs metabolites were determined by HPLC-ICP-MS, methylation efficiency parameters were calculated, and AS3MT c.860 T > C and c.529-56G > C genotypes were determined. Unconditional logistic regression models were used to evaluate associations. RESULTS Total arsenic in urine (TAs) ranged from 0.73 to 248.12 μg/L with a median of 10.48 μg/L. In unadjusted analysis, TAs (μg/g) was significantly higher in cases than controls, but not when expressed as TAs (μg/L). Cases had significantly lower urinary monomethylarsonic acid percentage (%MMA), first methylation ratio (FMR), creatinine, and choline and selenium intakes. In multi-adjusted models and in women without HTA history T2DM showed significant positive associations with %iAs and FMR, respectively, and a significant negative association with %DMA. In participants with HTA history there was a marginal positive association (p = 0.08) between T2DM and TAs concentrations (μg/g) without other significant associations. CONCLUSIONS Our results support an association between T2DM prevalence and iAs metabolism but not with urinary arsenic levels. However, elucidation of the interplay among iAs metabolism, T2DM and HTA merit further studies.
Collapse
Affiliation(s)
- Karla Rangel-Moreno
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Brenda Gamboa-Loira
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Lizbeth López-Carrillo
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P. 07360, Mexico.
| |
Collapse
|
13
|
Ur Rehman H, Ahmed S, Ur Rahman M, Mehmood MS. Arsenic contamination, induced symptoms, and health risk assessment in groundwater of Lahore, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49796-49807. [PMID: 35218488 DOI: 10.1007/s11356-022-19405-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study is to evaluate the arsenic concentration and related health risks in groundwater extracted from tube wells. The physicochemical parameters, including arsenic (As), were investigated using standard procedures. The parameters were found within the permissible limits except for arsenic, which was 78 µg/L. Unfortunately, 82% of the collected water samples were found contaminated with arsenic and exceeded the permissible limit set by the world health organization (10 µg/L). The water intake and its relationship between arsenic concentration, time, and induced symptoms in the study area residents were observed. Skin pigmentation, skin irritation, and numbness of the body were recognized as the major symptoms, and these symptoms were significantly correlated with p-value ˂ 0.05. In comparison, individuals who intake As-contaminated water (> 50 µg/L) for a duration of > 20 years show severe symptoms. Furthermore, health risk assessment associated with arsenic in terms of chronic daily intake (CRI), hazard quotient (HQ), and cancer risk assessment probability (CR) in groundwater was also studied. The HQ of arsenic was 7.46, and the CR value of As on Ravi road was as high as 0.00149, which indicates a possibility of cancer risk in the community Ravi road, Lahore. Based on the findings, the study area needs special monitoring and management of groundwater to reduce health risks associated with contaminated drinking water. Moreover, suitable remediation methods for removing arsenic should be adopted to avoid arsenic exposure and related health risks.
Collapse
Affiliation(s)
- Habib Ur Rehman
- School of Chemistry and Material Science, Northwest University, Xian, 710027, China
- Pakistan Council of Research in Water Resources, Main Raiwind Road, Lahore, Pakistan
| | - Saeed Ahmed
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Mujeeb Ur Rahman
- School of Chemistry and Material Science, Northwest University, Xian, 710027, China
- Government College University Faisalabad, Sub-campus, Layyah, Pakistan
| | | |
Collapse
|
14
|
Jiang R, Zhang Q, Ji D, Jiang T, Hu Y, He S, Tao L, Shen J, Zhang W, Song Y, Ma Y, Tong S, Tao F, Yao Y, Liang C. Influence of combined exposure levels of total arsenic and inorganic arsenic on arsenic methylation capacity among university students: findings from Bayesian kernel machine regression analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28714-28724. [PMID: 34988804 DOI: 10.1007/s11356-021-17906-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The arsenic (As) methylation capacity is an important determinant of susceptibility to As-related diseases. Total As (TAs) or inorganic As (iAs) was reported to associated with As methylation capacity. We measured urinary concentrations of iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) by using HPLC-HG-AFS and calculated the primary methylation capacity index (PMI) and secondary methylation capacity index (SMI) in 209 university students in Hefei, China, a non-As endemic area. Volunteers were given a standardized questionnaire asking about their sociodemographic characteristics. Bayesian kernel machine regression (BKMR) analysis was used to estimate the association of lnTAs and lniAs levels with methylation indices (ln%MMA, ln%DMA, lnPMI, lnSMI). The median concentrations of iAs, MMA, and DMA were 1.22, 0.92, and 12.17 μg/L, respectively; the proportions of iAs, MMA, and DMA were 8.76%, 6.13%, and 84.84%, respectively. Females had higher %DMA and lower %MMA than males. The combined levels of lnTAs and lniAs showed a decrease in the changes in ln%DMA and lnSMI. With regard to the single exposure level, the lnTAs showed positive correlations with ln%DMA, lnPMI, and lnSMI when lniAs was set at a specific level, while lniAs showed negative correlations with ln%DMA, lnPMI, and lnSMI when lnTAs was set at a specific level; all the dose-response relationships were nonlinear. Our results suggested that combined levels of TAs and iAs play an important role in reducing As methylation capacity, especially iAs, and the reduction only occurs when TAs and iAs are present up to a certain combined level.
Collapse
Affiliation(s)
- Rui Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Dongmei Ji
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Hu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Long Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Shen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuxiang Song
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yicheng Ma
- The Second Clinical Medical College, Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Shilu Tong
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
15
|
Rehman MYA, Briedé JJ, van Herwijnen M, Krauskopf J, Jennen DGJ, Malik RN, Kleinjans JCS. Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118279. [PMID: 34619179 DOI: 10.1016/j.envpol.2021.118279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination in groundwater is responsible for numerous adverse health outcomes among millions of people. Epigenetic alterations are among the most widely studied mechanisms of As toxicity. To understand how As exposure alters gene expression through epigenetic modifications, a systematic genome-wide study was designed to address the impact of multiple important single nucleotide polymorphisms (SNPs) related to As exposure on the methylome of drinking water As-exposed rural subjects from Pakistan. Urinary As levels were used to stratify subjects into low, medium and high exposure groups. Genome-wide DNA methylation was investigated using MeDIP in combination with NimbleGen 2.1 M Deluxe Promotor arrays. Transcriptome levels were measured using Agilent 8 × 60 K expression arrays. Genotyping of selected SNPs (As3MT, DNMT1a, ERCC2, EGFR and MTHFR) was measured and an integrated genetic risk factor for each respondent was calculated by assigning a specific value to the measured genotypes based on known risk allele numbers. To select a representative model related to As exposure we compared 9 linear mixed models comprising of model 1 (including the genetic risk factor), model 2 (without the genetic risk factor) and models with individual SNPs incorporated into the methylome data. Pathway analysis was performed using ConsensusPathDB. Model 1 comprising the integrated genetic risk factor disclosed biochemical pathways including muscle contraction, cardio-vascular diseases, ATR signaling, GPCR signaling, methionine metabolism and chromatin modification in association with hypo- and hyper-methylated gene targets. A unique pathway (direct P53 effector) was found associated with the individual DNMT1a polymorphism due to hyper-methylation of CSE1L and TRRAP. Most importantly, we provide here the first evidence of As-associated DNA methylation in relation with gene expression of ATR, ATF7IP, TPM3, UBE2J2. We report the first evidence that integrating SNPs data with methylome data generates a more representative epigenome profile and discloses a better insight in disease risks of As-exposed individuals.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jacco Jan Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands.
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| |
Collapse
|
16
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Sarker MK, Tony SR, Siddique AE, Karim MR, Haque N, Islam Z, Islam MS, Khatun M, Islam J, Hossain S, Alam Saud Z, Miyataka H, Sumi D, Barchowsky A, Himeno S, Hossain K. Arsenic Secondary Methylation Capacity Is Inversely Associated with Arsenic Exposure-Related Muscle Mass Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9730. [PMID: 34574656 PMCID: PMC8472591 DOI: 10.3390/ijerph18189730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle mass reduction has been implicated in insulin resistance (IR) that promotes cardiometabolic diseases. We have previously reported that arsenic exposure increases IR concomitantly with the reduction of skeletal muscle mass among individuals exposed to arsenic. The arsenic methylation capacity is linked to the susceptibility to some arsenic exposure-related diseases. However, it remains unknown whether the arsenic methylation capacity affects the arsenic-induced reduction of muscle mass and elevation of IR. Therefore, this study examined the associations between the arsenic methylation status and skeletal muscle mass measures with regard to IR by recruiting 437 participants from low- and high-arsenic exposure areas in Bangladesh. The subjects' skeletal muscle mass was estimated by their lean body mass (LBM) and serum creatinine levels. Subjects' drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and the percentages of MMA, as well as inversely associated with the percentages of DMA and the secondary methylation index (SMI). Subjects' LBM and serum creatinine levels were positively associated with the percentage of DMA and SMI, as well as inversely associated with the percentage of MMA. HOMA-IR showed an inverse association with SMI, with a confounding effect of sex. Our results suggest that reduced secondary methylation capacity is involved in the arsenic-induced skeletal muscle loss that may be implicated in arsenic-induced IR and cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Md. Rezaul Karim
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh; (M.R.K.); (M.S.I.)
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Md. Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh; (M.R.K.); (M.S.I.)
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| |
Collapse
|
18
|
Nigra AE, Moon KA, Jones MR, Sanchez TR, Navas-Acien A. Urinary arsenic and heart disease mortality in NHANES 2003-2014. ENVIRONMENTAL RESEARCH 2021; 200:111387. [PMID: 34090890 PMCID: PMC8403626 DOI: 10.1016/j.envres.2021.111387] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Evidence evaluating the prospective association between low-to moderate-inorganic arsenic (iAs) exposure and cardiovascular disease in the general US population is limited. We evaluated the association between urinary arsenic concentrations in National Health and Nutrition Examination Survey (NHANES) 2003-2014 and heart disease mortality linked from the National Death Index through 2015. METHODS We modeled iAs exposure as urinary total arsenic and dimethylarsinate among participants with low seafood intake, based on low arsenobetaine levels (N = 4990). We estimated multivariable adjusted hazard ratios (HRs) for heart disease mortality per interquartile range (IQR) increase in urinary arsenic levels using survey-weighted, Cox proportional hazards models, and evaluated flexible dose-response analyses using restricted quadratic spline models. We updated a previously published relative risk of coronary heart disease mortality from a dose-response meta-analysis per a doubling of water iAs (e.g., from 10 to 20 μg/L) with our results from NHANES 2003-2014, assuming all iAs exposure came from drinking water. RESULTS A total of 77 fatal heart disease events occurred (median follow-up time 75 months). The adjusted HRs (95% CI) of heart disease mortality for an increase in urinary total arsenic and DMA corresponding to the interquartile range were 1.20 (0.83, 1.74) and 1.18 (0.68, 2.05), respectively. Restricted quadratic splines indicate a significant association between increasing urinary total arsenic and the HR of fatal heart disease for all participants at the lowest exposure levels <4.5 μg/L. The updated pooled relative risk of coronary heart disease mortality per doubling of water iAs (μg/L) was 1.16 (95% CI 1.07, 1.25). CONCLUSIONS Despite a small number of events, relatively short follow-up time, and high analytical limits of detection for urinary arsenic species, iAs exposure at low-to moderate-levels is consistent with increased heart disease mortality in NHANES 2003-2014 although the associations were only significant in flexible dose-response models.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Katherine A Moon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Miranda R Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
19
|
Das A, Sanyal T, Bhattacharjee P, Bhattacharjee P. Depletion of S-adenosylmethionine pool and promoter hypermethylation of Arsenite methyltransferase in arsenic-induced skin lesion individuals: A case-control study from West Bengal, India. ENVIRONMENTAL RESEARCH 2021; 198:111184. [PMID: 33894237 DOI: 10.1016/j.envres.2021.111184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Methylation of arsenic compounds in the human body occurs following a series of biochemical reactions in the presence of methyl donor S-adenosylmethionine (SAM) and catalyzed by arsenite methyltransferase (AS3MT). However, the extent and pattern of methylation differs among the arsenic exposed individuals leading to differential susceptibility. The mechanism for such inter-individual difference is enigmatic. In the present case-control study we recruited exposed individuals with and without arsenic induced skin lesion (WSL and WOSL), and an unexposed cohort, each having 120 individuals. Using ELISA, we observed a reduction in SAM levels (p < 0.05) in WSL compared to WOSL. Linear regression analysis revealed a negative correlation between urinary arsenic concentration and SAM concentration between the study groups. qRT-PCR revealed a significant down-regulation (p < 0.01) of key regulatory genes like MTHFR, MTR, MAT2A and MAT2B of SAM biogenesis pathway in WSL cohort. Methylation-specific PCR revealed significant promoter hypermethylation of AS3MT (WSL vs. WOSL: p < 0.01) which resulted in its subsequent transcriptional repression (WSL vs. WOSL: p < 0.001). Linear regression analysis also showed a negative correlation between SAM concentration and percentage of promoter methylation. Taken together, these results indicate that reduction in SAM biogenesis along with a higher utilization of SAM results in a decreased availability of methyl donor. These along with epigenetic down-regulation of AS3MT may be responsible for higher susceptibility in arsenic exposed individuals.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tamalika Sanyal
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
20
|
Abuawad A, Bozack AK, Saxena R, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation. Toxicology 2021; 457:152803. [PMID: 33905762 PMCID: PMC8349595 DOI: 10.1016/j.tox.2021.152803] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic (As) is a major public health concern globally. Inorganic As (InAs) undergoes hepatic methylation to form monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species, facilitating urinary As elimination. MMAsIII is considerably more toxic than either InAsIII or DMAsV, and a higher proportion of MMAs in urine has been associated with risk for a wide range of adverse health outcomes. Efficiency of As methylation differs substantially between species, between individuals, and across populations. One-carbon metabolism (OCM) is a biochemical pathway that provides methyl groups for the methylation of As, and is influenced by folate and other micronutrients, such as vitamin B12, choline, betaine and creatine. A growing body of evidence has demonstrated that OCM-related micronutrients play a critical role in As methylation. This review will summarize observational epidemiological studies, interventions, and relevant experimental evidence examining the role that OCM-related micronutrients have on As methylation, toxicity of As, and risk for associated adverse health-related outcomes. There is fairly robust evidence supporting the impact of folate on As methylation, and some evidence from case-control studies indicating that folate nutritional status influences risk for As-induced skin lesions and bladder cancer. However, the potential for folate to be protective for other As-related health outcomes, and the potential beneficial effects of other OCM-related micronutrients on As methylation and risk for health outcomes are less well studied and warrant additional research.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Abuawad A, Spratlen MJ, Parvez F, Slavkovich V, Ilievski V, Lomax-Luu AM, Saxena R, Shahriar H, Nasir Uddin M, Islam T, Graziano JH, Navas-Acien A, Gamble MV. Association between body mass index and arsenic methylation in three studies of Bangladeshi adults and adolescents. ENVIRONMENT INTERNATIONAL 2021; 149:106401. [PMID: 33549917 PMCID: PMC7976732 DOI: 10.1016/j.envint.2021.106401] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Water-borne arsenic (As) exposure is a global health problem. Once ingested, inorganic As (iAs) is methylated to mono-methyl (MMA) and dimethyl (DMA) arsenicals via one-carbon metabolism (OCM). People with higher relative percentage of MMA (MMA%) in urine (inefficient As methylation), have been shown to have a higher risk of cardiovascular disease and several cancers but appear to have a lower risk of diabetes and obesity in populations from the US, Mexico, and Taiwan. It is unknown if this opposite pattern with obesity is present in Bangladesh, a country with lower adiposity and higher As exposure in drinking water. OBJECTIVE To characterize the association between body mass index (BMI) and As methylation in Bangladeshi adults and adolescents participating in the Folic Acid and Creatine Trial (FACT); Folate and Oxidative Stress (FOX) study; and Metals, Arsenic, and Nutrition in Adolescents Study (MANAS). METHODS Arsenic species (iAs, MMA, DMA) were measured in urine and blood. Height and weight were measured to calculate BMI. The associations between concurrent BMI with urine and blood As species were analyzed using linear regression models, adjusting for nutrients involved in OCM such as choline. In FACT, we also evaluated the prospective association between weight change and As species. RESULTS Mean BMIs were 19.2/20.4, 19.8/21.0, and 17.7/18.7 kg/m2 in males/females in FACT, FOX, and MANAS, respectively. BMI was associated with As species in female but not in male participants. In females, after adjustment for total urine As, age, and plasma folate, the adjusted mean differences (95% confidence) in urinary MMA% and DMA% for a 5 kg/m2 difference in BMI were -1.21 (-1.96, -0.45) and 2.47 (1.13, 3.81), respectively in FACT, -0.66 (-1.56, 0.25) and 1.43 (-0.23, 3.09) in FOX, and -0.59 (-1.19, 0.02) and 1.58 (-0.15, 3.30) in MANAS. The associations were attenuated after adjustment for choline. Similar associations were observed with blood As species. In FACT, a 1-kg of weight increase over 2 to 10 (mean 5.4) years in males/females was prospectively associated with mean DMA% that was 0.16%/0.19% higher. DISCUSSION BMI was negatively associated with MMA% and positively associated with %DMA in females but not males in Bangladesh; associations were attenuated after plasma choline adjustment. These findings may be related to the role of body fat on estrogen levels that can influence one-carbon metabolism, e.g. by increasing choline synthesis. Research is needed to determine whether the associations between BMI and As species are causal and their influence on As-related health outcomes.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Angela M Lomax-Luu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H Graziano
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States.
| |
Collapse
|
22
|
Gamboa-Loira B, Cebrián ME, López-Carrillo L. Physical activity, body mass index and arsenic metabolism among Mexican women. ENVIRONMENTAL RESEARCH 2021; 195:110869. [PMID: 33581084 DOI: 10.1016/j.envres.2021.110869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In some epidemiological studies, a positive association of body mass index (BMI) with inorganic arsenic (iAs) metabolism parameters (percentage dimethylarsinic acid [%DMA] and secondary methylation index [SMI]) has been found. In iAs metabolism, S-Adenosyl methionine is converted to S-Adenosyl homocysteine. Sedentarism has been associated with a higher risk of hyperhomocysteinemia. Physical activity has shown an inconsistent negative association with BMI. Therefore, our objective was to evaluate whether physical activity is associated to iAs metabolism independently of BMI. METHODS We performed a cross-sectional secondary analysis on 800 non-diabetic women, ≥18 years, who participated as population controls in a previous study on breast cancer in northern Mexico. Participants were interviewed about physical activity during their lifetime, and their weight and size were obtained. Urinary arsenic metabolites concentrations were determined by high performance liquid chromatography coupled with mass spectrometry. RESULTS In the study population, total arsenic ranged from 0.71 to 303.29 μg/L, and the lifetime average physical activity from 0 to 788.40 min/week. BMI was significantly and negatively associated with percentage monomethylarsonic acid (%MMA) and primary methylation index (PMI), and positively associated with %DMA, SMI and TMI, respectively. Likewise, physical activity was negatively associated with %iAs and %MMA, and positively associated with %DMA, SMI and TMI. These results remained after BMI was adjusted for physical activity and viceversa. CONCLUSION This study confirms the relationship between BMI and iAs metabolism parameters and provides new evidence on the association between physical activity and iAs metabolism.
Collapse
Affiliation(s)
- Brenda Gamboa-Loira
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Mariano E Cebrián
- Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P. 07360, Mexico.
| | - Lizbeth López-Carrillo
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
23
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020; 8:464. [PMID: 33134234 PMCID: PMC7578365 DOI: 10.3389/fpubh.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
24
|
Koller BH, Snouwaert JN, Douillet C, Jania LA, El-Masri H, Thomas DJ, Stýblo M. Arsenic Metabolism in Mice Carrying a BORCS7/AS3MT Locus Humanized by Syntenic Replacement. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:87003. [PMID: 32779937 PMCID: PMC7418654 DOI: 10.1289/ehp6943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) is a significant public health problem. Methylation of iAs by arsenic methyltransferase (AS3MT) controls iAs detoxification and modifies risks of iAs-induced diseases. Mechanisms underlying these diseases have been extensively studied using animal models. However, substantive differences between humans and laboratory animals in efficiency of iAs methylation have hindered the translational potential of the laboratory studies. OBJECTIVES The goal of this study was to determine whether humanization of the As3mt gene confers a human-like pattern of iAs metabolism in mice. METHODS We generated a mouse strain in which the As3mt gene along with the adjacent Borcs7 gene was humanized by syntenic replacement. We compared expression of the mouse As3mt and the human AS3MT and the rate and pattern of iAs metabolism in the wild-type and humanized mice. RESULTS AS3MT expression in mouse tissues closely modeled that of human and differed substantially from expression of As3mt. Detoxification of iAs was much less efficient in the humanized mice than in wild-type mice. Profiles for iAs and its methylated metabolites in tissues and excreta of the humanized mice were consistent with those reported in humans. Notably, the humanized mice expressed both the full-length AS3MT that catalyzes iAs methylation and the human-specific AS3MTd2d3 splicing variant that has been linked to schizophrenia. CONCLUSIONS These results suggest that AS3MT is the primary genetic locus responsible for the unique pattern of iAs metabolism in humans. Thus, the humanized mouse strain can be used to study the role of iAs methylation in the pathogenesis of iAs-induced diseases, as well as to evaluate the role of AS3MTd2d3 in schizophrenia. https://doi.org/10.1289/EHP6943.
Collapse
Affiliation(s)
- Beverly H. Koller
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John N. Snouwaert
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David J. Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Miroslav Stýblo
- Department of Nutrition, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
González-Martínez F, Sánchez-Rodas D, Varela NM, Sandoval CA, Quiñones LA, Johnson-Restrepo B. As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. Int J Mol Sci 2020; 21:ijms21144832. [PMID: 32650499 PMCID: PMC7402318 DOI: 10.3390/ijms21144832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/28/2023] Open
Abstract
The urinary arsenic metabolites may vary among individuals and the genetic factors have been reported to explain part of the variation. We assessed the influence of polymorphic variants of Arsenic-3-methyl-transferase and Glutathione-S-transferase on urinary arsenic metabolites. Twenty-two groundwater wells for human consumption from municipalities of Colombia were analyzed for assessed the exposure by lifetime average daily dose (LADD) (µg/kg bw/day). Surveys on 151 participants aged between 18 and 81 years old were applied to collect demographic information and other factors. In addition, genetic polymorphisms (GSTO2-rs156697, GSTP1-rs1695, As3MT-rs3740400, GSTT1 and GSTM1) were evaluated by real time and/or conventional PCR. Arsenic metabolites: AsIII, AsV, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured using HPLC-HG-AFS. The influence of polymorphic variants, LADD and other factors were tested using multivariate analyses. The median of total arsenic concentration in groundwater was of 33.3 μg/L and the median of LADD for the high exposure dose was 0.33 µg/kg bw/day. Univariate analyses among arsenic metabolites and genetic polymorphisms showed MMA concentrations higher in heterozygous and/or homozygous genotypes of As3MT compared to the wild-type genotype. Besides, DMA concentrations were lower in heterozygous and/or homozygous genotypes of GSTP1 compared to the wild-type genotype. Both DMA and MMA concentrations were higher in GSTM1-null genotypes compared to the active genotype. Multivariate analyses showed statistically significant association among interactions gene-gene and gene-covariates to modify the MMA and DMA excretion. Interactions between polymorphic variants As3MT*GSTM1 and GSTO2*GSTP1 could be potential modifiers of urinary excretion of arsenic and covariates as age, LADD, and alcohol consumption contribute to largely vary the arsenic individual metabolic capacity in exposed people.
Collapse
Affiliation(s)
- Farith González-Martínez
- Environmental Chemistry Research Group and Public Health Research Group, University of Cartagena, Cartagena 130015, Colombia;
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain;
| | - Daniel Sánchez-Rodas
- Center for Research in Sustainable Chemistry, CIQSO, University of Huelva, 21071 Huelva, Spain;
| | - Nelson M. Varela
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain;
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8320000, Chile;
| | - Christopher A. Sandoval
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8320000, Chile;
| | - Luis A. Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain;
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8320000, Chile;
- Correspondence: (L.A.Q.); (B.J.-R.); Tel.: +56-2-297-707-4144 (L.A.Q.); +57-301-363-5979 (B.J.-R.)
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group and Public Health Research Group, University of Cartagena, Cartagena 130015, Colombia;
- Correspondence: (L.A.Q.); (B.J.-R.); Tel.: +56-2-297-707-4144 (L.A.Q.); +57-301-363-5979 (B.J.-R.)
| |
Collapse
|
26
|
Szymańska-Chabowska A, Matys T, Łaczmański Ł, Czerwińska K, Janus A, Smyk B, Mazur G, Poręba R, Gać P. The relationship between PNP, GSTO-1, AS3MT and ADRB3 gene polymorphisms and urinary arsenic concentration among copper smelter and refinery employers. Hum Exp Toxicol 2020; 39:1443-1453. [PMID: 32452228 DOI: 10.1177/0960327120925891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The aim of this study was to assess the relationship between polymorphisms of genes encoding enzymes involved in arsenic metabolism and urinary arsenic concentration in people occupationally exposed to arsenic. MATERIALS AND METHODS The data from 113 employers directly exposed to lead, cadmium, and arsenic in copper smelter in Legnica and Glogow were collected. Urinary arsenic concentration was measured. In addition, blood level of cadmium, lead, and zinc protoporphyrins was assayed. Genetic analyses included polymorphism of PNP (rs 1130650), GSTO-1 (rs 4925), AS3MT (rs 11191439), and ADRB3 (rs4994) genes. RESULTS Individuals occupationally exposed to arsenic compounds, who have allele T in homozygous constellation in locus rs 1130650 of PNP gene, are predisposed to lower urinary arsenic concentration, while AA homozygosity in locus rs 4925 of GSTO-1 gene may result in statistically significant higher urinary arsenic concentration. Polymorphisms of AS3MT and ADRB3 genes showed no statistically significant correlation with urinary arsenic, however, there was a tendency to higher arsenic concentration in allele A carriers in locus rs4994 of ADRB3 gene and in allele T carriers in rs 11191439 of AS3MT gene. CONCLUSION This study indicates that arsenic absorption and metabolism depend on polymorphisms of genes encoding PNP and GSTO-1. Individuals with disadvantageous constellation of polymorphisms are more susceptible to harmful effects of arsenic exposure.
Collapse
Affiliation(s)
- A Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - T Matys
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Ł Łaczmański
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - K Czerwińska
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| | - A Janus
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - B Smyk
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - G Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - R Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - P Gać
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
27
|
Castriota F, Zushin PJH, Sanchez SS, Phillips RV, Hubbard A, Stahl A, Smith MT, Wang JC, La Merrill MA. Chronic arsenic exposure impairs adaptive thermogenesis in male C57BL/6J mice. Am J Physiol Endocrinol Metab 2020; 318:E667-E677. [PMID: 32045263 PMCID: PMC7272725 DOI: 10.1152/ajpendo.00282.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human epidemiological studies support arsenic exposure as a risk factor for T2D, although the precise mechanism is unclear. We hypothesized that chronic arsenic ingestion alters glucose homeostasis by impairing adaptive thermogenesis, i.e., body heat production in cold environments. Arsenic is a pervasive environmental contaminant, with more than 200 million people worldwide currently exposed to arsenic-contaminated drinking water. Male C57BL/6J mice exposed to sodium arsenite in drinking water at 300 μg/L for 9 wk experienced significantly decreased metabolic heat production when acclimated to chronic cold tolerance testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic exposure increased total fat mass and subcutaneous inguinal white adipose tissue (iWAT) mass. RNA sequencing analysis of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid metabolism. Western blotting in WAT confirmed that arsenic significantly decreased TOMM20, a correlate of mitochondrial abundance; PGC1A, a master regulator of mitochondrial biogenesis; and, CPT1B, the rate-limiting step of fatty acid oxidation (FAO). Our findings show that chronic arsenic exposure impacts the mitochondrial proteins of thermogenic tissues involved in energy expenditure and substrate regulation, providing novel mechanistic evidence for arsenic's role in T2D development.
Collapse
Affiliation(s)
- Felicia Castriota
- Superfund Research Program, University of California, Berkeley, California
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
| | - Sylvia S Sanchez
- Superfund Research Program, University of California, Berkeley, California
| | - Rachael V Phillips
- Superfund Research Program, University of California, Berkeley, California
| | - Alan Hubbard
- Superfund Research Program, University of California, Berkeley, California
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
| | - Martyn T Smith
- Superfund Research Program, University of California, Berkeley, California
| | - Jen-Chywan Wang
- Superfund Research Program, University of California, Berkeley, California
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| |
Collapse
|
28
|
Khan MA, Hira-Smith M, Ahmed SI, Yunus M, Hasan SMT, Liaw J, Balmes J, Raqib R, Yuan Y, Kalman D, Roh T, Steinmaus C, Smith AH. Prospective cohort study of respiratory effects at ages 14 to 26 following early life exposure to arsenic in drinking water. Environ Epidemiol 2020; 4:e089. [PMID: 32337474 PMCID: PMC7147401 DOI: 10.1097/ee9.0000000000000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/07/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We previously reported chronic respiratory effects in children who were then 7-17 years of age in Matlab, Bangladesh. One group of children had been exposed to high concentrations of arsenic in drinking water in utero and early childhood (average 436 µg/L), and the other group of children were never known to have been exposed to >10 µg/L. The exposed children, both males and females, had marked increases in chronic respiratory symptoms. METHODS The current study involves a further follow-up of these children now 14-26 years of age with 463 located and agreeing to participate. They were interviewed for respiratory symptoms and lung function was measured. Data were collected on smoking, body mass index (BMI), and number of rooms in the house as a measure of socioeconomic status. RESULTS Respiratory effects were still present in males but not females. In the high exposure group (>400 µg/L in early life) the odds ratio (OR) among male participants for dry cough in the last 12 months was 2.36 (95% confidence interval [CI] = 1.21, 4.63, P = 0.006) and for asthma OR = 2.51 (95% CI = 1.19, 5.29, P = 0.008). Forced vital capacity (FVC) was reduced in males in the early life high-exposure group compared with those never exposed (-95ml, P = 0.04), but not in female participants. CONCLUSIONS By the age range 14-26, there was little remaining evidence of chronic respiratory effects in females but pronounced effects persisted in males. Mechanisms for the marked male female differences warrant further investigation along with further follow-up to see if respiratory effects continue in males.
Collapse
Affiliation(s)
- Md Alfazal Khan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meera Hira-Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - Syed Imran Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Yunus
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S. M. Tafsir Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jane Liaw
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - John Balmes
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
- Department of Medicine, University of California, San Francisco, California
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yan Yuan
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - David Kalman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Taehyun Roh
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Allan H. Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, California
| |
Collapse
|
29
|
Apata M, Pfeifer SP. Recent population genomic insights into the genetic basis of arsenic tolerance in humans: the difficulties of identifying positively selected loci in strongly bottlenecked populations. Heredity (Edinb) 2020; 124:253-262. [PMID: 31776483 PMCID: PMC6972707 DOI: 10.1038/s41437-019-0285-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genomics have enabled researchers to shed light on the evolutionary processes driving human adaptation, by revealing the genetic architectures underlying traits ranging from lactase persistence, to skin pigmentation, to hypoxic response, to arsenic tolerance. Complicating the identification of targets of positive selection in modern human populations is their complex demographic history, characterized by population bottlenecks and expansions, population structure, migration, and admixture. In particular, founder effects and recent strong population size reductions, such as those experienced by the indigenous peoples of the Americas, have severe impacts on genetic variation that can lead to the accumulation of large allele frequency differences between populations due to genetic drift rather than natural selection. While distinguishing the effects of demographic history from selection remains challenging, neglecting neutral processes can lead to the incorrect identification of candidate loci. We here review the recent population genomic insights into the genetic basis of arsenic tolerance in Andean populations, and utilize this example to highlight both the difficulties pertaining to the identification of local adaptations in strongly bottlenecked populations, as well as the importance of controlling for demographic history in selection scans.
Collapse
Affiliation(s)
- Mario Apata
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85821, USA
| | - Susanne P Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85821, USA.
| |
Collapse
|
30
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020. [PMID: 33134234 DOI: 10.3389/fpubh/2020.00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
31
|
Pedron T, Freire BM, Castro CE, Ribal LF, Batista BL. Availability of arsenic in rice grains by in vitro and in vivo (humans) assays. J Trace Elem Med Biol 2019; 56:184-191. [PMID: 31494482 DOI: 10.1016/j.jtemb.2019.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/17/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rice grains are consumed by approximately half of the world's population. This cereal has higher arsenic (As) concentrations in grains than wheat or barley. Arsenic determination in food and/or in vitro studies are important for risk assessment; however, it is not enough to assess the real human exposure. METHOD In vitro bioaccessibility was carried out in husked-rice using gastric and intestinal solutions similar to humans. Also, As naturally found in husked-rice was evaluated by in vivo bioavailability in humans. For this purpose, diets from the 1st and 2nd days were free of foods known to be high in As; 3rd and 4th days the diets were composed by rice and water and; 5th and 6th the diet was similar the 1st and 2nd days. During all experimentation, a representative aliquot of each meal, blood and urine were collected for total As (t-As) determination. Arsenic species were determined in the urine. RESULTS t-As in husked rice varied from 157.3 ± 30.6 to 240.2 ± 85.2 μg kg-1. The in vitrobioaccessible fractions ranged from 91 to 94%. Inorganic As (i-As) ranged from 99.7 ± 11.2 to 159.5 ± 29.4 μg kg-1. For the in vivo assay, t-As concentrations in the woman and man blood were about 3 μg mL-1 from the 1st to 6th day. Arsenic from the rice ingested was excreted by urine about 72 h after ingestion. The t-As and dimethyl As (DMA) in urine ranged from 3.59 to 47.17 and 1.02 to 2.55 μg g-1 creatinine for the volunteers, indicating a two-fold DMA-increase in urine after ingestion of husked-rice. CONCLUSION After rice ingestion, As was quickly metabolized. The higher As concentrations were found in urine 72 h after rice ingestion. The main As-specie found in urine was DMA, indicating that methylation of As from rice followed by urine excretion is the main biological pathway for As excretion.
Collapse
Affiliation(s)
- Tatiana Pedron
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Bruna Moreira Freire
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Carlos Eduardo Castro
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Luiz Felipe Ribal
- Center of Engineering, Modeling and Applied Social Sciences of the Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Postal Code 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
32
|
Nigra AE, Olmedo P, Grau-Perez M, O'Leary R, O'Leary M, Fretts AM, Umans JG, Best LG, Francesconi KA, Goessler W, Cole SA, Navas-Acien A. Dietary determinants of inorganic arsenic exposure in the Strong Heart Family Study. ENVIRONMENTAL RESEARCH 2019; 177:108616. [PMID: 31442790 PMCID: PMC6748659 DOI: 10.1016/j.envres.2019.108616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) in the US occurs mainly through drinking water and diet. Although American Indian (AI) populations have elevated urinary arsenic concentrations compared to the general US population, dietary sources of arsenic exposure in AI populations are not well characterized. METHODS We evaluated food frequency questionnaires to determine the major dietary sources of urinary arsenic concentrations (measured as the sum of arsenite, arsenate, monomethylarsonate, and dimethylarsinate, ΣAs) for 1727 AI participants in the Strong Heart Family Study (SHFS). We compared geometric mean ratios (GMRs) of urinary ΣAs for an interquartile range (IQR) increase in reported food group consumption. Exploratory analyses were stratified by gender and study center. RESULTS In fully adjusted generalized estimating equation models, the percent increase (95% confidence interval) of urinary ΣAs per increase in reported food consumption corresponding to the IQR was 13% (5%, 21%) for organ meat, 8% (4%, 13%) for rice, 7% (2%, 13%) for processed meat, and 4% (1%, 7%) for non-alcoholic drinks. In analyses stratified by study center, the association with organ meat was only observed in North/South Dakota. Consumption of red meat [percent increase -7% (-11%, -3%)] and fries and chips [-6% (-10%, -2%)] was inversely associated with urinary ΣAs. CONCLUSIONS Organ meat, processed meat, rice, and non-alcoholic drinks contribute to ΣAs exposure in the SHFS population. Organ meat is a unique source of ΣAs exposure for North and South Dakota participants and may reflect local food consumption. Further studies should comprehensively evaluate drinking water arsenic in SHFS communities and determine the relative contribution of diet and drinking water to total arsenic exposure.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Granada, Spain
| | - Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute Hospital Clinic of Valencia, Valencia, Spain
| | - Rae O'Leary
- Missouri Breaks Industries Research Inc, Eagle Butte, SD, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research Inc, Eagle Butte, SD, USA
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jason G Umans
- MedStar Health Research Institute; Washington, DC, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc, Eagle Butte, SD, USA
| | | | | | - Shelley A Cole
- Texas Biomedical Research Institute, Hyattsville, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
33
|
Stýblo M, Douillet C, Bangma J, Eaves LA, de Villena FPM, Fry R. Differential metabolism of inorganic arsenic in mice from genetically diverse Collaborative Cross strains. Arch Toxicol 2019; 93:2811-2822. [PMID: 31493028 DOI: 10.1007/s00204-019-02559-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
Abstract
Mice have been frequently used to study the adverse effects of inorganic arsenic (iAs) exposure in laboratory settings. Like humans, mice metabolize iAs to monomethyl-As (MAs) and dimethyl-As (DMAs) metabolites. However, mice metabolize iAs more efficiently than humans, which may explain why some of the effects of iAs reported in humans have been difficult to reproduce in mice. In the present study, we searched for mouse strains in which iAs metabolism resembles that in humans. We examined iAs metabolism in male mice from 12 genetically diverse Collaborative Cross (CC) strains that were exposed to arsenite in drinking water (0.1 or 50 ppm) for 2 weeks. Concentrations of iAs and its metabolites were measured in urine and livers. Significant differences in total As concentration and in proportions of total As represented by iAs, MAs, and DMAs were observed between the strains. These differences were more pronounced in livers, particularly in mice exposed to 50 ppm iAs. In livers, large variations among the strains were found in percentage of iAs (15-48%), MAs (11-29%), and DMAs (29-66%). In contrast, DMAs represented 96-99% of total As in urine in all strains regardless of exposure. Notably, the percentages of As species in urine did not correlate with total As concentration in liver, suggesting that the urinary profiles were not representative of the internal exposure. In livers of mice exposed to 50 ppm, but not to 0.1 ppm iAs, As3mt expression correlated with percent of iAs and DMAs. No correlations were found between As3mt expression and the proportions of As species in urine regardless of exposure level. Although we did not find yet a CC strain in which proportions of As species in urine would match those reported in humans (typically 10-30% iAs, 10-20% MAs, 60-70% DMAs), CC strains characterized by low %DMAs in livers after exposure to 50 ppm iAs (suggesting inefficient iAs methylation) could be better models for studies aiming to reproduce effects of iAs described in humans.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
| | - Christelle Douillet
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA
| | - Lauren A Eaves
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
34
|
Tapia J, Murray J, Ormachea M, Tirado N, Nordstrom DK. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:309-325. [PMID: 31075598 DOI: 10.1016/j.scitotenv.2019.04.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/17/2019] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Elevated concentrations of arsenic in water supplies represent a worldwide health concern. In at least 14 countries of South America, high levels have been detected relative to international standards and guidelines. Within these countries, the high plateau referred to as the "Altiplano-Puna", encompassing areas of Argentina, Bolivia, Chile, and Perú, exhibits high arsenic concentrations that could be affecting 3 million inhabitants. The origins of arsenic in the Altiplano-Puna plateau are diverse and are mainly natural in origin. Of the natural sources, the most important correspond to mineral deposits, brines, hot springs, and volcanic rocks, whereas anthropogenic sources are related to mining activities and the release of acid mine drainage (AMD). Arsenic is found in all water types of the Altiplano-Puna plateau over a wide range of concentrations (0.01 mg·L-1 < As in water > 10 mg·L-1) which in decreasing order correspond to: AMD, brines, saline waters, hot springs, rivers affected by AMD, rivers and lakes, and groundwater. Despite the few studies which report As speciation, this metalloid appears mostly in its oxidized form (As[V]) and its mobility is highly susceptible to the influence of dry and wet seasons. Once arsenic is released from its natural sources, it also precipitates in secondary minerals where it is generally stable in the form of saline precipitates and Fe oxides. In relation to human health, arsenic adaptation has been detected in some aboriginal communities of the Puna together with an efficient metabolism of this metalloid. Also, the inefficient methylation of inorganic As in women of the Altiplano might lead to adverse health effects such as cancer. Despite the health risks of living in this arsenic-rich environment with limited water resources, not all of the Altiplano-Puna is properly characterized and there exists a lack of information regarding the basic geochemistry of arsenic in the region.
Collapse
Affiliation(s)
- J Tapia
- Escuela de Geología, Facultad de Ingeniería, Universidad Santo Tomás, Santiago, Chile.
| | - J Murray
- Instituto de Bio y Geo Ciencias del NOA (IBIGEO), Universidad Nacional de Salta - CONICET, Av. 9 de Julio 14, Rosario de Lerma, Salta, Argentina; Laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg/EOST-CNRS UMR 7517, 1 Rue Blessig, 67084 Strasbourg, France
| | - M Ormachea
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario, Calle 27 Cota Cota, Casilla 303, La Paz, Bolivia
| | - N Tirado
- Instituto de Genética-Facultad de Medicina, Universidad Mayor de San Andrés, Av. Saavedra No 2246, La Paz, Bolivia
| | | |
Collapse
|
35
|
Joneidi Z, Mortazavi Y, Memari F, Roointan A, Chahardouli B, Rostami S. The impact of genetic variation on metabolism of heavy metals: Genetic predisposition? Biomed Pharmacother 2019; 113:108642. [DOI: 10.1016/j.biopha.2019.108642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/08/2023] Open
|
36
|
Navas-Acien A, Sanchez TR, Mann K, Jones MR. Arsenic Exposure and Cardiovascular Disease: Evidence Needed to Inform the Dose-Response at Low Levels. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00186-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Results of the first national human biomonitoring in Slovenia: Trace elements in men and lactating women, predictors of exposure and reference values. Int J Hyg Environ Health 2019; 222:563-582. [DOI: 10.1016/j.ijheh.2019.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
|
38
|
Stajnko A, Šlejkovec Z, Mazej D, France-Štiglic A, Briški AS, Prpić I, Špirić Z, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in Croatian-Slovenian population from PHIME-CROME study. ENVIRONMENTAL RESEARCH 2019; 170:301-319. [PMID: 30612060 DOI: 10.1016/j.envres.2018.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The relationships between inorganic arsenic (iAs) metabolism, selenium (Se) status, and genetic polymorphisms of various genes, commonly studied in populations exposed to high levels of iAs from drinking water, were studied in a Croatian-Slovenian population from the wider PHIME-CROME project. Population consisted of 136 pregnant women in the 3rd trimester and 176 non-pregnant women with their children (n = 176, 8-9 years old). Their exposure to iAs, defined by As (speciation) analyses of biological samples, was low. The sums of biologically active metabolites (arsenite + arsenate + methylated As forms) for pregnant women, non-pregnant women, and children, respectively were: 3.23 (2.84-3.68), 1.83 (1.54-2.16) and 2.18 (1.86-2.54) ng/mLSG; GM (95 CI). Corresponding plasma Se levels were: 54.8 (52.8-56.9), 82.3 (80.4-84.0) and 65.8 (64.3-67.3) ng/mL; GM (95 CI). As methylation efficiency indexes confirmed the relationship between pregnancy/childhood and better methylation efficiency. Archived blood and/or saliva samples were used for single nucleotide polymorphism (SNP) genotyping of arsenic(3+) methyltransferase - AS3MT (rs7085104, rs3740400, rs3740393, rs3740390, rs11191439, rs10748835, rs1046778 and the corresponding AS3MT haplotype); methylene tetrahydrofolate reductase - MTHFR (rs1801131, rs1801133); aquaporin - AQP 4 and 9 (rs9951307 and rs2414539); selenoprotein P1 - SELENOP (rs7579, rs3877899); indolethylamine N-methyltransferase - INMT (rs6970396); and metallothionein 2A - MT2A (rs28366003). Associations of SNPs with As parameters and urine Se were determined through multiple regression analyses adjusted using appropriate confounders (blood As, plasma Se, ever smoking, etc.). SNPs' influence on As methylation, defined particularly by the secondary methylation index (SMI), confirmed the 'protective' role of minor alleles of six AS3MT SNPs and their haplotype only among non-pregnant women. Among the other investigated genes, the carriers of AQP9 (rs2414539) were associated with more efficient As methylation and higher urine concentration of As and Se among non-pregnant women; poorer methylation was observed for carriers of AQP4 (rs9951307) among pregnant women and SELENOP (rs7579) among non-pregnant women; MT2A (rs28366003) was associated with higher urine concentration of AsIII regardless of the pregnancy status; and INMT (rs6970396) was associated with higher As and Se concentration in non-pregnant women. Among confounders, the strongest influence was observed for plasma Se; it reduced urine AsIII concentration during pregnancy and increased secondary methylation index among non-pregnant women. In the present study of populations with low As exposure, we observed a few new As-gene associations (particularly with AQPs). More reliable interpretations will be possible after their confirmation in larger populations with higher As exposure levels.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Zdenka Šlejkovec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Alenka France-Štiglic
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Pediatrics, University Hospital Centre Rijeka, Krešimirova 42, Rijeka, Croatia; Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, Rijeka, Croatia
| | - Zdravko Špirić
- Green infrastructure ltd., Fallerovo šetalište 22, Zagreb, Croatia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Huang MC, Douillet C, Dover EN, Zhang C, Beck R, Tejan-Sie A, Krupenko SA, Stýblo M. Metabolic Phenotype of Wild-Type and As3mt-Knockout C57BL/6J Mice Exposed to Inorganic Arsenic: The Role of Dietary Fat and Folate Intake. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:127003. [PMID: 30675811 PMCID: PMC6371649 DOI: 10.1289/ehp3951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a diabetogen. Interindividual differences in iAs metabolism have been linked to susceptibility to diabetes in iAs-exposed populations. Dietary folate intake has been shown to influence iAs metabolism, but to our knowledge its role in iAs-associated diabetes has not been studied. OBJECTIVE The goal of this study was to assess how folate intake, combined with low-fat (LFD) and high-fat diets (HFD), affects the metabolism and diabetogenic effects of iAs in wild-type (WT) mice and in As3mt-knockout (KO) mice that have limited capacity for iAs detoxification. METHODS Male and female WT and KO mice were exposed to 0 or [Formula: see text] iAs in drinking water. Mice were fed the LFD containing [Formula: see text] or [Formula: see text] folate for 24 weeks, followed by the HFD with the same folate levels for 13 weeks. Metabolic phenotype and iAs metabolism were examined before and after switching to the HFD. RESULTS iAs exposure had little effect on the phenotype of mice fed LFD regardless of folate intake. High folate intake stimulated iAs metabolism, but only in WT females. KO mice accumulated more fat than WT mice and were insulin resistant, with males more insulin resistant than females despite similar %fat mass. Feeding the HFD increased adiposity and insulin resistance in all mice. However, iAs-exposed male and female WT mice with low folate intake were more insulin resistant than unexposed controls. High folate intake alleviated insulin resistance in both sexes, but stimulated iAs metabolism only in female mice. CONCLUSIONS Exposure to [Formula: see text] iAs in drinking water resulted in insulin resistance in WT mice only when combined with a HFD and low folate intake. The protective effect of high folate intake may be independent of iAs metabolism, at least in male mice. KO mice were more prone to developing insulin resistance, possibly due to the accumulation of iAs in tissues. https://doi.org/10.1289/EHP3951.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen N Dover
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chongben Zhang
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rowan Beck
- Curriculum of Genetics and Molecular Biology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ahmad Tejan-Sie
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sergey A Krupenko
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Kim K, Heo YK, Chun S, Kim CH, Bian Y, Bae ON, Lee MY, Lim KM, Chung JH. Arsenic May Act as a Pro-Metastatic Carcinogen Through Promoting Tumor Cell-Induced Platelet Aggregation. Toxicol Sci 2018; 168:18-27. [DOI: 10.1093/toxsci/kfy247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yoon-Kyung Heo
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Soyoung Chun
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Chang-Hwan Kim
- The 5th R&D Institute, Agency for Defense Development, Daejeon 34186, South Korea
| | - Yiying Bian
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggido, South Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggido 10326, South Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
41
|
Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Arch Toxicol 2018; 93:25-35. [PMID: 30357543 DOI: 10.1007/s00204-018-2332-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
The mammalian gut microbiome (GM) plays a critical role in xenobiotic biotransformation and can profoundly affect the toxic effects of xenobiotics. Previous in vitro studies have demonstrated that gut bacteria have the capability to metabolize arsenic (As); however, the specific roles of the gut microbiota in As metabolism in vivo and the toxic effects of As are largely unknown. Here, we administered sodium arsenite to conventionally raised mice (with normal microbiomes) and GM-disrupted mice with antibiotics to investigate the role of the gut microbiota in As biotransformation and its toxicity. We found that the urinary total As levels of GM-disrupted mice were much higher, but the fecal total As levels were lower, than the levels in the conventionally raised mice. In vitro experiments, in which the GM was incubated with As, also demonstrated that the gut bacteria could adsorb or take up As and thus reduce the free As levels in the culture medium. With the disruption of the gut microbiota, arsenic biotransformation was significantly perturbed. Of note, the urinary monomethylarsonic acid/dimethylarsinic acid ratio, a biomarker of arsenic metabolism and toxicity, was markedly increased. Meanwhile, the expression of genes of one-carbon metabolism, including folr2, bhmt, and mthfr, was downregulated, and the liver S-adenosylmethionine (SAM) levels were significantly decreased in the As-treated GM-disrupted mice only. Moreover, As exposure altered the expression of genes of the p53 signaling pathway, and the expression of multiple genes associated with hepatocellular carcinoma (HCC) was also changed in the As-treated GM-disrupted mice only. Collectively, disruption of the GM enhances the effect of As on one-carbon metabolism, which could in turn affect As biotransformation. GM disruption also increases the toxic effects of As and may increase the risk of As-induced HCC in mice.
Collapse
|
42
|
Laine JE, Ilievski V, Richardson DB, Herring AH, Stýblo M, Rubio-Andrade M, Garcia-Vargas G, Gamble MV, Fry RC. Maternal one carbon metabolism and arsenic methylation in a pregnancy cohort in Mexico. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:505-514. [PMID: 30068932 PMCID: PMC6531675 DOI: 10.1038/s41370-018-0041-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/06/2017] [Indexed: 05/04/2023]
Abstract
The prenatal period represents a critical window of susceptibility to inorganic arsenic (iAs) exposure from contaminated drinking water. Ingested iAs undergoes hepatic methylation generating mono and di-methyl arsenicals (MMAs and DMAs, respectively), a process that facilitates urinary arsenic (As) elimination. Differences in pregnant women's metabolism of As as indicated by greater proportions of MMAs and smaller proportions of DMAs in urine are a risk factor for adverse birth outcomes. One carbon metabolism (OCM), the nutritionally-regulated pathway essential for supplying methyl groups, plays a role in As metabolism and is understudied during the prenatal period. In this cross-sectional study from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, we assessed the relationships among OCM indicators (e.g. maternal serum B12, folate, and homocysteine (Hcys)), and levels of iAs and its metabolites in maternal urine and in neonatal cord serum. The prevalence of folate sufficiency (folate levels > 9 nmol/L) in the cohort was high 99%, and hyperhomocysteinemia (Hcys levels > 10.4 μmol/L) was low (8%). However, 74% of the women displayed a deficiency in B12 (serum levels < 148 pmol/L). Association analyses identified that infants born to mothers in the lowest tertile of serum folate had significantly higher mean levels of %MMA in cord serum relative to folate replete women. In addition, elevated maternal Hcys was associated with total As in maternal urine and cord serum as well as cord serum %MMAs. The results from this study indicate that maternal OCM status may influence the distribution of As metabolites in cord serum.
Collapse
Affiliation(s)
- Jessica E Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amy H Herring
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo Garcia-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Laine JE, Ilievski V, Richardson DB, Herring AH, Stýblo M, Rubio-Andrade M, Garcia-Vargas G, Gamble MV, Fry RC. Maternal one carbon metabolism and arsenic methylation in a pregnancy cohort in Mexico. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018. [PMID: 30068932 DOI: 10.1038/s41370-41018-40041-41371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The prenatal period represents a critical window of susceptibility to inorganic arsenic (iAs) exposure from contaminated drinking water. Ingested iAs undergoes hepatic methylation generating mono and di-methyl arsenicals (MMAs and DMAs, respectively), a process that facilitates urinary arsenic (As) elimination. Differences in pregnant women's metabolism of As as indicated by greater proportions of MMAs and smaller proportions of DMAs in urine are a risk factor for adverse birth outcomes. One carbon metabolism (OCM), the nutritionally-regulated pathway essential for supplying methyl groups, plays a role in As metabolism and is understudied during the prenatal period. In this cross-sectional study from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, we assessed the relationships among OCM indicators (e.g. maternal serum B12, folate, and homocysteine (Hcys)), and levels of iAs and its metabolites in maternal urine and in neonatal cord serum. The prevalence of folate sufficiency (folate levels > 9 nmol/L) in the cohort was high 99%, and hyperhomocysteinemia (Hcys levels > 10.4 μmol/L) was low (8%). However, 74% of the women displayed a deficiency in B12 (serum levels < 148 pmol/L). Association analyses identified that infants born to mothers in the lowest tertile of serum folate had significantly higher mean levels of %MMA in cord serum relative to folate replete women. In addition, elevated maternal Hcys was associated with total As in maternal urine and cord serum as well as cord serum %MMAs. The results from this study indicate that maternal OCM status may influence the distribution of As metabolites in cord serum.
Collapse
Affiliation(s)
- Jessica E Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amy H Herring
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo Garcia-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Zhou H, Zhao W, Ye L, Chen Z, Cui Y. Postnatal low-concentration arsenic exposure induces autism-like behavior and affects frontal cortex neurogenesis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:188-198. [PMID: 30064059 DOI: 10.1016/j.etap.2018.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to explore the effects of postnatal low-concentration arsenic exposure on learning, social skills and frontal cortex neurogenesis in rats. Water-based arsenic exposure rat models were established on postnatal days 4-10 (P4-P10). The experimental animals were divided into four groups: the control group, a 15 μg/L As2O3 water group, a 30 μg/L As2O3 water group, and a 45 μg/L As2O3 water group. Cognitive function was examined with the Morris water maze, anxiety-like behavior with the open field test and light-dark box test, and social skills with a social interaction test. The frontal cortices of pups from each experimental group were sectioned at various time points after arsenic exposure. The morphologies and neurogenesis of the neurons in the frontal cortices were observed by hematoxylin-eosin staining, Nissl staining, and doublecortin (DCX) immunostaining. Significant positive correlations between arsenic concentration and deficits in learning and social skills were found, and the arsenic exposure groups showed significant increases in anxiety-like behavior compared with the control group (all Ps<0.05). Abnormal morphologic changes in the external granular layer and external pyramidal layer were positively correlated with the water arsenic concentration in the acute phase of arsenic exposure. However, at five weeks after arsenic exposure, the frontal cortex morphology was restored. Moreover, immunohistochemistry revealed that compared to the control group, the groups that were exposed to arsenic exhibited significantly higher levels of DCX expression in the external granular and external pyramidal layers (all Ps<0.001). Furthermore, the 30 μg/L and 45 μg/L arsenic exposure groups still showed some DCX expression at five weeks after exposure. In conclusion, postnatal low-concentration arsenic exposure impaired learning and social skills and increased anxiety-like behaviors, and abnormal frontal cortex neurogenesis may be the mechanism underlying these effects.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China.
| | | | - Liu Ye
- Otolaryngological Department, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China
| | - Zhihe Chen
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China; Guizhou Medical University, 550004, China.
| |
Collapse
|
45
|
Hoen AG, Madan JC, Li Z, Coker M, Lundgren SN, Morrison HG, Palys T, Jackson BP, Sogin ML, Cottingham KL, Karagas MR. Sex-specific associations of infants' gut microbiome with arsenic exposure in a US population. Sci Rep 2018; 8:12627. [PMID: 30135504 PMCID: PMC6105615 DOI: 10.1038/s41598-018-30581-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/31/2018] [Indexed: 02/01/2023] Open
Abstract
Arsenic is a ubiquitous environmental toxicant with antimicrobial properties that can be found in food and drinking water. The influence of arsenic exposure on the composition of the human microbiome in US populations remains unknown, particularly during the vulnerable infant period. We investigated the relationship between arsenic exposure and gut microbiome composition in 204 infants prospectively followed as part of the New Hampshire Birth Cohort Study. Infant urine was analyzed for total arsenic concentration using inductively coupled plasma mass spectrometry. Stool microbiome composition was determined using sequencing of the bacterial 16S rRNA gene. Infant urinary arsenic related to gut microbiome composition at 6 weeks of life (p = 0.05, adjusted for infant feeding type and urine specific gravity). Eight genera, six within the phylum Firmicutes, were enriched with higher arsenic exposure. Fifteen genera were negatively associated with urinary arsenic concentration, including Bacteroides and Bifidobacterium. Upon stratification by both sex and feeding method, we found detectable associations among formula-fed males (p = 0.008), but not other groups (p > 0.05 for formula-fed females and for breastfed males and females). Our findings from a US population indicate that even moderate arsenic exposure may have meaningful, sex-specific effects on the gut microbiome during a critical window of infant development.
Collapse
Affiliation(s)
- Anne G Hoen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA.
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| | - Juliette C Madan
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Division of Neonatology, Department of Pediatrics, Children's Hospital at Dartmouth, Lebanon, New Hampshire, USA
| | - Zhigang Li
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Modupe Coker
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sara N Lundgren
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Thomas Palys
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Kathryn L Cottingham
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
46
|
Gamboa-Loira B, Hernández-Alcaraz C, Gandolfi AJ, Cebrián ME, Burguete-García A, García-Martínez A, López-Carrillo L. Arsenic methylation capacity in relation to nutrient intake and genetic polymorphisms in one-carbon metabolism. ENVIRONMENTAL RESEARCH 2018; 164:18-23. [PMID: 29459232 DOI: 10.1016/j.envres.2018.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Nutrients and genetic polymorphisms participating in one-carbon metabolism may explain interindividual differences in inorganic arsenic (iAs) methylation capacity, which in turn may account for variations in susceptibility to iAs-induced diseases. OBJECTIVES 1) To evaluate the association between polymorphisms in five one-carbon metabolism genes (FOLH1 c.223 T > C, MTHFD1 c.1958 G > A, MTHFR c.665 C > T, MTR c.2756 A > G, and MTRR c.66 A > G) and iAs methylation capacity; 2) To assess if previously reported associations between nutrient intake and iAs methylation capacity are modified by those polymorphisms. METHODS Women (n = 1027) exposed to iAs in Northern Mexico were interviewed. Blood and urine samples were collected. Nutrient dietary intake was estimated using a validated food frequency questionnaire. iAs methylation capacity was calculated from urinary iAs species (iAs, monomethylarsonic acid [MMA] and dimethylarsinic acid [DMA]) measured by high performance liquid chromatography (HPLC-ICP-MS). One polymorphism in each of the five genes evaluated was genotyped by allelic discrimination. Multivariable linear regression models were used to evaluate if genetic polymorphisms modified the associations between iAs methylation capacity parameters and nutrient intake. RESULTS The median (min-max) concentration of total arsenic (TAs) was 20.2 (1.3-2776.0) µg/g creatinine in the study population. Significant interactions for iAs metabolism were only found with FOLH1 c.223 T > C polymorphism and vitamin B12 intake, so that CT and CC genotype carriers had significantly lower %iAs, and higher DMA/iAs with an increased vitamin B12 intake, as compared to carriers of wild-type TT. CONCLUSION Differences in dietary nutrient intake and genetic variants in one-carbon metabolism may jointly influence iAs methylation capacity. Confirmation of these interactions in other populations is warranted.
Collapse
Affiliation(s)
- Brenda Gamboa-Loira
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México.
| | - César Hernández-Alcaraz
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México.
| | - A Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P. 07360, Ciudad de México, México.
| | - Ana Burguete-García
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México.
| | - Angélica García-Martínez
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México.
| | - Lizbeth López-Carrillo
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
47
|
Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr 2018; 38:401-429. [PMID: 29799766 DOI: 10.1146/annurev-nutr-082117-051757] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exposure to inorganic arsenic (InAs) via drinking water and/or food is a considerable worldwide problem. Methylation of InAs generates monomethyl (MMAsIII+V)- and dimethyl (DMAsIII+V)-arsenical species in a process that facilitates urinary As elimination; however, MMAs is considerably more toxic than either InAs or DMAs. Emerging evidence suggests that incomplete methylation of As to DMAs, resulting in increased MMAs, is associated with increased risk for a host of As-related health outcomes. The biochemical pathway that provides methyl groups for As methylation, one-carbon metabolism (OCM), is influenced by folate and other micronutrients, including choline and betaine. Individuals and species differ widely in their ability to methylate As. A growing body of research, including cell-culture, animal-model, and epidemiological studies, has demonstrated the role of OCM-related micronutrients in As methylation. This review examines the evidence that nutritional status and nutritional interventions can influence the metabolism and toxicity of As, with a primary focus on folate.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
48
|
Niedzwiecki MM, Liu X, Zhu H, Hall MN, Slavkovich V, Ilievski V, Levy D, Siddique AB, Kibriya MG, Parvez F, Islam T, Ahmed A, Navas-Acien A, Graziano JH, Finnell RH, Ahsan H, Gamble MV. Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh: A one-carbon metabolism candidate gene study. ENVIRONMENT INTERNATIONAL 2018; 113:133-142. [PMID: 29421402 PMCID: PMC5873983 DOI: 10.1016/j.envint.2018.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/28/2017] [Accepted: 01/18/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Inorganic arsenic (As) is methylated via one carbon metabolism (OCM) to mono- and dimethylated arsenicals (MMA and DMA), facilitating urinary excretion. Hyperhomocysteinemia (HHcys), a marker of impaired OCM, is a risk factor for As-induced skin lesions, but the influences of single nucleotide polymorphisms (SNPs) in OCM genes on Hcys, As metabolism and skin lesion risk is unclear. OBJECTIVES To (i) explore genetic sources of Hcys and the causal role of HHcys in As-induced skin lesion development using OCM genetic proxies for HHcys and (ii) identify OCM SNPs associated with urinary As metabolite proportions and/or skin lesion incidence. METHODS We conducted a case-control study nested in the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh which 876 incident skin lesion cases were matched to controls on sex, age, and follow-up time. We measured serum Hcys, urinary As metabolites, and 26 SNPs in 13 OCM genes. RESULTS Serum Hcys and urinary %DMA were independently associated with increased and decreased odds of skin lesions, respectively. The T allele of MTHFR 677 C ➔ T (rs1801133) was associated with HHcys, higher %MMA, and lower %DMA, but not with skin lesions. Interactions between SNPs and water As on skin lesion risk were suggestive for three variants: the G allele of MTRR rs1801394 and T allele of FOLR1 rs1540087 were associated with lower odds of skin lesions with lower As (≤50 μg/L), and the T allele of TYMS rs1001761 was associated with higher odds of skin lesions with higher As. CONCLUSIONS While HHcys and decreased %DMA were associated with increased risk for skin lesions, and MTHFR 677 C ➔ T was a strong predictor of HHcys, MTHFR 677 C ➔ T was not associated with skin lesion risk. Future studies should explore (i) non-OCM and non-genetic determinants of Hcys and (ii) if genetic findings are replicated in other As-exposed populations, mechanisms by which OCM SNPs may influence the dose-dependent effects of As on skin lesion risk.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Huiping Zhu
- Department of Pediatrics, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tariqul Islam
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Alauddin Ahmed
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard H Finnell
- Department of Pediatrics, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
49
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
50
|
Chi L, Gao B, Tu P, Liu CW, Xue J, Lai Y, Ru H, Lu K. Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mamm Genome 2018; 29:63-79. [PMID: 29429126 DOI: 10.1007/s00335-018-9736-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023]
Abstract
Arsenic (As) contamination in water or food is a global issue affecting hundreds of millions of people. Although As is classified as a group 1 carcinogen and is associated with multiple diseases, the individual susceptibility to As-related diseases is highly variable, such that a proportion of people exposed to As have higher risks of developing related disorders. Many factors have been found to be associated with As susceptibility. One of the main sources of the variability found in As susceptibility is the variation in the host genome, namely, polymorphisms of many genes involved in As transportation, biotransformation, oxidative stress response, and DNA repair affect the susceptibility of an individual to As toxicity and then influence the disease outcomes. In addition, lifestyles and many nutritional factors, such as folate, vitamin C, and fruit, have been found to be associated with individual susceptibility to As-related diseases. Recently, the interactions between As exposure and the gut microbiome have been of particular concern. As exposure has been shown to perturb gut microbiome composition, and the gut microbiota has been shown to also influence As metabolism, which raises the question of whether the highly diverse gut microbiota contributes to As susceptibility. Here, we review the literature and summarize the factors, such as host genetics and nutritional status, that influence As susceptibility, and we also present potential mechanisms of how the gut microbiome may influence As metabolism and its toxic effects on the host to induce variations in As susceptibility. Challenges and future directions are also discussed to emphasize the importance of characterizing the specific role of these factors in interindividual susceptibility to As-related diseases.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bei Gao
- NIH West Coast Metabolomics Center, University of California, Davis, CA, 95616, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|