1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
2
|
DiSalvo RW, Hill EL. Drinking Water Contaminant Concentrations and Birth Outcomes. JOURNAL OF POLICY ANALYSIS AND MANAGEMENT : [THE JOURNAL OF THE ASSOCIATION FOR PUBLIC POLICY ANALYSIS AND MANAGEMENT] 2023; 43:368-399. [PMID: 38983462 PMCID: PMC11230651 DOI: 10.1002/pam.22558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Previous research in the US has found negative health effects of contamination when it triggers regulatory violations. An important question is whether levels of contamination that do not trigger a health-based violation impact health. We study the impact of drinking water contamination in community water systems on birth outcomes using drinking water sampling results data in Pennsylvania. We focus on the effects of water contamination for births not exposed to regulatory violations. Our most rigorous specification employs mother fixed effects and finds changing from the 10th to the 90th percentile of water contamination (among births not exposed to regulatory violations) increases low birth weight by 12% and preterm birth by 17%.
Collapse
Affiliation(s)
- Richard W DiSalvo
- Princeton School of Public and International Affairs, Princeton University
| | - Elaine L Hill
- Department of Public Health Sciences and Department of Economics, University of Rochester & NBER, 265 Crittenden Blvd., Box 420644, Rochester, NY
| |
Collapse
|
3
|
Gupta A, Tiwari RK, Agnihotri R, Padalia K, Mishra S, Dwivedi S. A critical analysis of various post-harvest arsenic removal treatments of rice and their impact on public health due to nutrient loss. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1073. [PMID: 37615784 DOI: 10.1007/s10661-023-11669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Rice (Oryza sativa L.) is particularly susceptible to arsenic (As) accumulation. Currently, to decrease the level of As accumulated in rice, various post-harvest methods, i.e., polishing, parboiling, pH-dependent soaking, washing, and cooking at different rice-to-water ratios (r/w), are being focused, because it removes significant amount of As from rice grain. Depending upon the rice variety and type, i.e., rough (with husk), husked (without husk/brown), or polished rice, these methods can remove 39-54% As by parboiling, 38-55% by polishing, 37-63% by soaking, and 6-80% by washing and cooking. Infants are highly vulnerable to As exposure; thus, these methods can be helpful for the production of rice-based infant foods. Although concern arises during the use of these methods that apart from decreasing the level of As in rice grain, they also lead to a significant loss of nutrients, such as macro- and micro-elements present in rice. Among these discussed methods, parboiling curtails 5-59%, polishing curtails 6-96%, soaking curtails 33-83%, and washing and cooking in different r/w reduce 8-81% of essential nutrients resulting in 2-90% reduction in contribution to the RDI of these nutrients through rice-based diet. Thus, these post-harvest arsenic removal methods, although reduce arsenic induced health hazard, but may also lead to malnutrition and compromised health in the population based on rice diet. There is a need to explore another way to reduce As from rice without compromising the nutrient availability or to supplement these nutrients through grain enrichment or by introducing additional dietary sources by changing eating habits; however, this may impose an extra economic burden on people.
Collapse
Affiliation(s)
- Apoorv Gupta
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Ravi Kumar Tiwari
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ruchi Agnihotri
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kalpana Padalia
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Seema Mishra
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India.
| | - Sanjay Dwivedi
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
4
|
Qiu F, Zhang H, He Y, Liu H, Zheng T, Xia W, Xu S, Zhou J, Li Y. Associations of arsenic exposure with blood pressure and platelet indices in pregnant women: A cross-sectional study in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114378. [PMID: 36525950 DOI: 10.1016/j.ecoenv.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental inorganic arsenic (iAs) exposure is potentially related to abnormal blood pressure (BP) changes and abnormal platelet activation. However, limited epidemiological studies have explored the impacts of iAs exposure on platelet change mediated by BP, especially for pregnant women. OBJECTIVES Our purpose was to investigate the associations of arsenic exposure with blood pressure and platelet indices among pregnant women. METHODS The present study population included 765 pregnant women drawn from a prospective birth cohort study in Wuhan, China, recruited between October 2013 and April 2016. Urine sampled in the second trimester were used to assess arsenic species concentrations. The relative distribution of urinary arsenic species was used to measure human methylation capacity. BP parameters and platelet indices originated from the medical record. We applied multivariable linear regression models to explore the cross-sectional relationships between urinary arsenic metabolites, BP parameters, and platelet indices. We utilized mediation analysis to investigate the impacts of arsenic exposure on platelet indices through BP as mediator variables. RESULTS We observed significant positive correlations between iAs and systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). Pregnant women with higher methylation capacity to metabolize iAs characterized by higher secondary methylation index (SMI) and total methylation index (TMI) had a more significant reduction in SBP, DBP, and MAP. Pregnant women with higher DBP and MAP had higher platelet counts (PLC). A decreased PLC was found in subjects wither higher SMI. Additionally, SMI was negatively linked to PLC mediated through MAP. CONCLUSIONS Obtained results suggested that higher methylation capacity to metabolize iAs might contribute to decreased PLC among pregnant women, and MAP might mediate the influence of SMI on PLC.
Collapse
Affiliation(s)
- Feng Qiu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jieqiong Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
6
|
Patti MA, Kelsey KT, MacFarlane AJ, Papandonatos GD, Arbuckle TE, Ashley-Martin J, Fisher M, Fraser WD, Lanphear BP, Muckle G, Braun JM. Maternal Folate Status and the Relation between Gestational Arsenic Exposure and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11332. [PMID: 36141604 PMCID: PMC9517145 DOI: 10.3390/ijerph191811332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Gestational arsenic exposure adversely impacts child health. Folate-mediated 1-carbon metabolism facilitates urinary excretion of arsenic and may prevent arsenic-related adverse health outcomes. We investigated the potential for maternal folate status to modify associations between gestational arsenic exposure and child health. We used data from 364 mother-child pairs in the MIREC study, a prospective pan-Canadian cohort. During pregnancy, we measured first trimester urinary arsenic concentrations, plasma folate biomarkers, and folic acid supplementation intake. At age 3 years, we evaluated twelve neurodevelopmental and anthropometric features. Using latent profile analysis and multinomial regression, we developed phenotypic profiles of child health, estimated covariate-adjusted associations between arsenic and these phenotypic profiles, and evaluated whether folate status modified these associations. We identified three phenotypic profiles of neurodevelopment and three of anthropometry, ranging from less to more optimal child health. Gestational arsenic was associated with decreased odds of optimal neurodevelopment. Maternal folate status did not modify associations of arsenic with neurodevelopmental phenotypic profiles, but gestational arsenic was associated with increased odds of excess adiposity among those who exceed recommendations for folic acid (>1000 μg/day). However, arsenic exposure was low and folate status was high. Gestational arsenic exposure may adversely impact child neurodevelopment and anthropometry, and maternal folate status may not modify these associations; however, future work should examine these associations in more arsenic-exposed or lower folate-status populations.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Amanda J. MacFarlane
- Nutrition Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - George D. Papandonatos
- Department of Biostatistics, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - William D. Fraser
- Department D’obstétrique et Gynécologie, Université de Sherbrooke, 2500 Bd de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Bruce P. Lanphear
- Department of Health Sciences, Simon Fraser University, 515 W Haastings St., Vancouver, BC V5A 1S6, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Ville de Québec, 2325 Rue de L’Université, Québec, QC G1V 0B4, Canada
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| |
Collapse
|
7
|
García-Villarino M, Signes-Pastor AJ, Karagas MR, Riaño-Galán I, Rodríguez-Dehli C, Grimalt JO, Junqué E, Fernández-Somoano A, Tardón A. Exposure to metal mixture and growth indicators at 4-5 years. A study in the INMA-Asturias cohort. ENVIRONMENTAL RESEARCH 2022; 204:112375. [PMID: 34785205 PMCID: PMC8671344 DOI: 10.1016/j.envres.2021.112375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to toxic and non-toxic metals impacts childhood growth and development, but limited data exists on exposure to metal mixtures. Here, we investigated the effects of exposure to individual metals and a mixture of barium, cadmium, cobalt, lead, molybdenum, zinc, and arsenic on growth indicators in children 4-5 years of age. METHODS We used urine metal concentrations as biomarkers of exposure in 328 children enrolled in the Spanish INMA-Asturias cohort. Anthropometric measurements (arm, head, and waist circumferences, standing height, and body mass index) and parental sociodemographic variables were collected through face-to-face interviews by trained study staff. Linear regressions were used to estimate the independent effects and were adjusted for each metal in the mixture. We applied Bayesian kernel machine regression to examine non-linear associations and potential interactions. RESULTS In linear regression, urinary levels of cadmium were associated with reduced arm circumference (βadjusted = -0.44, 95% confidence interval [CI]: -0.73, -0.15), waist circumference (βadjusted = -1.29, 95% CI: -2.10, -0.48), and standing height (βadjusted = -1.09, 95% CI: -1.82, -0.35). Lead and cobalt concentrations were associated with reduced standing height (βadjusted = -0.64, 95% CI: -1.20, -0.07) and smaller head circumference (βadjusted = -0.29, 95% CI: -0.49, -0.09), respectively. However, molybdenum was positively associated with head circumference (βadjusted = 0.22, 95% CI: 0.01, 0.43). BKMR analyses showed strong linear negative associations of cadmium with arm and head circumference and standing height. BKMR analyses also found lead and cobalt in the metal mixture were related to reduce standing height and head circumference, and consistently found molybdenum was related to increased head circumference. CONCLUSION Our findings suggest that exposure to metal mixtures impacts growth indicators in children.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| | - Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA; Department of Public Health. Universidad Miguel Hernández, Avenida de Alicante KM 87, 03550, Sant Joan D'Alacant, Spain
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Roma Avenue S/n, 33001, Oviedo, Asturias, Spain
| | | | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain.
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| |
Collapse
|
8
|
Sharma V, Gangopadhyay S, Shukla S, Chauhan A, Singh S, Singh RD, Tiwari R, Singh D, Srivastava V. Prenatal exposure to arsenic promotes sterile inflammation through the Polycomb repressive element EZH2 and accelerates skin tumorigenesis in mouse. Toxicol Appl Pharmacol 2022; 443:116004. [DOI: 10.1016/j.taap.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
9
|
Malin Igra A, Warnqvist A, Rahman SM, Ekström EC, Rahman A, Vahter M, Kippler M. Environmental metal exposure and growth to 10 years of age in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 156:106738. [PMID: 34246127 DOI: 10.1016/j.envint.2021.106738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life exposure to arsenic (As), cadmium (Cd), and lead (Pb) has been linked to smaller birth and early childhood anthropometry, but little is known beyond the first years in life. OBJECTIVES To evaluate the impact of gestational and childhood exposures to As, Cd, and Pb on growth up to 10 years of age. METHODS We studied 1530 mother-child dyads from a nested sub-cohort of the MINIMat trial in rural Matlab, Bangladesh. Metal concentrations in maternal erythrocytes during pregnancy and in children's urine at 10y were measured by inductively coupled plasma mass spectroscopy. Child height and weight were measured at 19 occasions from birth until 10y and converted to height-for-age Z-scores (HAZ) and weight-for-age Z-scores (WAZ). Associations between log2-transformed metal concentrations and growth parameters were assessed with multivariable-adjusted regression models. RESULTS Children's concurrent urinary Cd (median 0.24 µg/L), reflecting long-term exposure, was inversely associated with WAZ (B: -0.072; 95% confidence interval (CI): -0.12, -0.020; p = 0.007), and possibly HAZ (B: -0.046; 95% CI: -0.096, 0.0014; p = 0.057), at 10y. The association with WAZ was stronger in boys than in girls. Maternal erythrocyte Cd (median 0.90 µg/kg) during pregnancy was inversely associated with WAZ during childhood only in boys (B: -0.071, 95% CI: -0.14, -0.0047, p = 0.036). Concurrent urinary Pb (median 1.6 µg/L) was inversely associated with WAZ (B: -0.084; 95% CI: -0.16, -0.0085; p = 0.029) and HAZ (B: -0.087; 95% CI: -0.15, -0.021; p = 0.010) in boys, but not in girls. Neither gestational nor childhood As exposure (median maternal erythrocyte As 4.3 µg/kg and children's urinary As 57 µg/L) was associated with growth up to 10y. CONCLUSIONS While all effect estimates were small, environmental exposure to Cd and Pb is common and impaired growth is of public health concern, especially for children already at risk of reduced growth due to malnutrition. Gender differences in susceptibility need further investigation.
Collapse
Affiliation(s)
- Annachiara Malin Igra
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Warnqvist
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva-Charlotte Ekström
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Martinez VD, Lam WL. Health Effects Associated With Pre- and Perinatal Exposure to Arsenic. Front Genet 2021; 12:664717. [PMID: 34659330 PMCID: PMC8511415 DOI: 10.3389/fgene.2021.664717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Inorganic arsenic is a well-established human carcinogen, able to induce genetic and epigenetic alterations. More than 200 million people worldwide are exposed to arsenic concentrations in drinking water exceeding the recommended WHO threshold (10μg/l). Additionally, chronic exposure to levels below this threshold is known to result in long-term health effects in humans. The arsenic-related health effects in humans are associated with its biotransformation process, whereby the resulting metabolites can induce molecular damage that accumulates over time. The effects derived from these alterations include genomic instability associated with oxidative damage, alteration of gene expression (including coding and non-coding RNAs), global and localized epigenetic reprogramming, and histone posttranslational modifications. These alterations directly affect molecular pathways involved in the onset and progression of many conditions that can arise even decades after the exposure occurs. Importantly, arsenic metabolites generated during its biotransformation can also pass through the placental barrier, resulting in fetal exposure to this carcinogen at similar levels to those of the mother. As such, more immediate effects of the arsenic-induced molecular damage can be observed as detrimental effects on fetal development, pregnancy, and birth outcomes. In this review, we focus on the genetic and epigenetic damage associated with exposure to low levels of arsenic, particularly those affecting early developmental stages. We also present how these alterations occurring during early life can impact the development of certain diseases in adult life.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- The Canadian Environmental Exposures in Cancer (CE2C) Network, Halifax, NS, Canada
| | - Wan L. Lam
- The Canadian Environmental Exposures in Cancer (CE2C) Network, Halifax, NS, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
12
|
Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179289. [PMID: 34501878 PMCID: PMC8431101 DOI: 10.3390/ijerph18179289] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
Human breast milk is the most complete foodstuff for infants but can also be a potential source of exposure to toxic chemicals. The aim of this study was to assess the levels of metal pollution in the breast milk of women living in agricultural and industrial/mining areas of the Region of Murcia (Spain) that are well known for their cases of environmental pollution. Human milk samples were collected from 50 mothers and inorganic contaminants were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The mean or maximum concentrations of the different inorganic elements analyzed in breast milk, with the exception of manganese, exceeded the maximum limits established by the WHO and could constitute a high risk for pregnant mothers and their children. The breast milk of women living in the industrial/mining zone presented the highest levels of aluminum, zinc, arsenic, lead, mercury and nickel. On the contrary, the highest concentrations of manganese, chromium and iron were determined in the milk of women living in the agricultural zone. These results suggested and confirmed different profiles of environmental contamination of these areas.
Collapse
|
13
|
Alao ME, Perin J, Brooks WA, Hossain L, Goswami D, Zaman K, Yunus M, Khan MA, Jahan Y, Ahmed D, Slavkovich V, Graziano J, Prosperi C, Higdon M, Deloria-Knoll M, O' Brien KL, George CM. Urinary arsenic is associated with wasting and underweight status in young children in rural Bangladesh. ENVIRONMENTAL RESEARCH 2021; 195:110025. [PMID: 32791251 DOI: 10.1016/j.envres.2020.110025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Deficits in child growth are associated with poor cognitive outcomes and an increased risk for infection and mortality globally. One hundred forty million people are chronically exposed to arsenic from contaminated drinking water worldwide. While arsenic exposure has been associated with cognitive developmental delays in children, there is limited research on the association between arsenic exposure and growth deficits in young children. PURPOSE The objective of this study was to assess the association between chronic arsenic exposure and deficits in growth among children under 5 years in a rural setting in Bangladesh. METHODS Urinary arsenic measurements were collected from 465 children between the ages of 28 days-59 months in rural Matlab, Bangladesh, and analyzed by graphite furnace atomic absorption. Height and weight measurements were collected from children according to World Health Organization child growth standards. A z-score cutoff2 standard deviations below the mean was used to define stunting (height-for-age z-score), underweight (weight-for-age z-score), and wasting (weight-for-height z-score). RESULTS Children under 5 years with urinary arsenic concentrations in the third tertile (greater than 31 μg per liter (μg/L)) had a two times higher odds of being underweight after adjustment for age, creatinine, paternal education, breastfeeding, number of individuals using the same sleeping room, and physician-diagnosed pneumonia (Odds Ratio (OR): 2.29 (95% Confidence Interval (CI): 1.16, 4.52)). Children under 2 years of age had a two times higher odds of being wasted after adjustment for age, creatinine, paternal education, breastfeeding, number of individuals using the same sleeping room, and physician-diagnosed pneumonia (OR: 2.85 (95% CI: 1.18, 6.89)). CONCLUSIONS These findings suggest that arsenic exposure is associated with an increased odds of being wasted and underweight among young children in rural Bangladesh.
Collapse
Affiliation(s)
- Mary E Alao
- Department of International Health, Program in Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jamie Perin
- Department of International Health, Program in Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - W Abdullah Brooks
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Lokman Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Doli Goswami
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Khalequzzaman Zaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Alfazal Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Jahan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Vesna Slavkovich
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph Graziano
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christine Prosperi
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Melissa Higdon
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria Deloria-Knoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine L O' Brien
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Marie George
- Department of International Health, Program in Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
14
|
Baraquoni NA, Qouta SR, Vänskä M, Diab SY, Punamäki RL, Manduca P. It Takes Time to Unravel the Ecology of War in Gaza, Palestine: Long-Term Changes in Maternal, Newborn and Toddlers' Heavy Metal Loads, and Infant and Toddler Developmental Milestones in the Aftermath of the 2014 Military Attacks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186698. [PMID: 32938007 PMCID: PMC7558099 DOI: 10.3390/ijerph17186698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Toxicant, teratogen and carcinogen metal war remnants negatively affect human health. The current study analyzes, first, the persistence of heavy metal contamination in newborn hair in four cohorts across time in Gaza Palestine; second, the change in mothers’ and infants’ heavy metal contamination from birth to toddlerhood; and third, the impact of heavy metal contamination on infants’ and toddlers’ growth and development. The hair of newborns was analyzed for twelve heavy metals by Inductively Coupled Plasma Mass Spectrometry (ICP/MS) in cohorts recruited at delivery in 2011, 2015, 2016, and 2018–2019. In the 2015 cohort, mothers’ hair samples were taken at delivery, and toddlers and mothers hair were also analyzed 18 months later. Growth levels of infants at six months and toddlers at 18 months were assessed according to World Health Organization (WHO) standards according to a mother report and pediatric check-up, respectively. 1. The level of metal contamination in utero was persistently high across 8 years, 2011, 2015, 2016, 2019, following three major military attacks (2009, 2012, 2014). 2. The 2015 cohort babies exposed in utero to attacks in 2014 at six months showed association of high load at birth in mother of arsenic and in newborn of barium with underweight, of barium and molybdenum in newborn with stunting. 3. Eighteen months after birth, toddlers had a higher level of metals in hairs than when they were born, while, in their mothers, such levels were similar to those at delivery, confirming persistence in the environment of war remnants. Underweight and stunting, both in infants and toddlers, were higher than reported for previous years, as well as being progressive within the cohort. Severe environmental factors, metal contamination and food insecurity put Gaza’s infant health at risk.
Collapse
Affiliation(s)
| | - Samir R. Qouta
- Doha Institute for Graduate Studies, School of Social Sciences and Humanities, Al Tarfa Street, Zone 70, Doha, P.O. Box 200592, Qatar;
| | - Mervi Vänskä
- Department of Psychology, Faculty of Social Sciences, Tampere University, 33014 Tampere, Finland; (M.V.); (S.Y.D.); (R.-L.P.)
| | - Safwat Y. Diab
- Department of Psychology, Faculty of Social Sciences, Tampere University, 33014 Tampere, Finland; (M.V.); (S.Y.D.); (R.-L.P.)
| | - Raija-Leena Punamäki
- Department of Psychology, Faculty of Social Sciences, Tampere University, 33014 Tampere, Finland; (M.V.); (S.Y.D.); (R.-L.P.)
| | - Paola Manduca
- Association for Scientific Research, Nwrg-onlus, 16123 Genova, Italy
- Correspondence:
| |
Collapse
|
15
|
Wai KM, Ser PH, Ahmad SA, Yasmin R, Ito Y, Konishi S, Umezaki M, Watanabe C. In-utero arsenic exposure and growth of infants from birth to 6 months of age: a prospective cohort study in rural Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:421-434. [PMID: 30924685 DOI: 10.1080/09603123.2019.1597835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Arsenic exposure in postnatal life impacts the growth of children, but little is known about the effect of in-utero arsenic exposure on growth very early in childhood. The aim of this study was to examine the associations between in-utero arsenic exposure and the growth of infants from birth to 6 months of age using monthly follow-up data. A prospective cohort study was conducted in rural areas of Bangladesh with 108 mother-infant pairs. This study identified a negative association between in-utero arsenic exposure and head circumference of infants 1-6 months of age (coefficient = -1.20, 95% confidence interval [CI]: -1.97, -0.42), and the effect was more pronounced in the earlier ages of 1-3 months (coefficient = -0.88, 95% CI: -1.70, -0.05). Because head circumference is considered as a surrogate of brain size, our findings suggest that in-utero arsenic exposure influences brain growth during an important developmental period.
Collapse
Affiliation(s)
- Kyi Mar Wai
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Ping Han Ser
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Sk Akhtar Ahmad
- Department of Occupation and Environmental Health, Bangladesh University of Health Sciences , Dhaka, Bangladesh
| | - Rabeya Yasmin
- Department of Occupation and Environmental Health, Bangladesh University of Health Sciences , Dhaka, Bangladesh
| | - Yasunori Ito
- Institute of Environmental Ecology, IDEA Consultants International , Shizuoka, Japan
| | - Shoko Konishi
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
- Department of Anthropology, University of Washington , Seattle, WA, USA
| | - Masahiro Umezaki
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Chiho Watanabe
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
- National Institute for Environmental Studies , Tsukuba, Japan
| |
Collapse
|
16
|
Vahter M, Skröder H, Rahman SM, Levi M, Derakhshani Hamadani J, Kippler M. Prenatal and childhood arsenic exposure through drinking water and food and cognitive abilities at 10 years of age: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2020; 139:105723. [PMID: 32298878 DOI: 10.1016/j.envint.2020.105723] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Our studies of children in a rural Bangladeshi area, with varying concentrations of arsenic in well-water, indicated modest impact on child verbal cognitive function at 5 years of age. OBJECTIVES Follow-up of arsenic exposure and children's cognitive abilities at school-age. METHODS In a nested sub-cohort of the MINIMat supplementation trial, we assessed cognitive abilities at 10 years of age (n = 1523), using Wechsler Intelligence Scale for Children (WISC-IV). Arsenic in maternal urine and erythrocytes in early pregnancy, in child urine at 5 and 10 years, and in hair at 10 years, was measured using Inductively Coupled Plasma Mass Spectrometry. RESULTS Median urinary arsenic at 10 years was 58 µg/L (range 7.3-940 µg/L). Multivariable-adjusted regression analysis showed that, compared to the first urinary arsenic quintile at 10 years (<30 µg/L), the third and fourth quintiles (30-45 and 46-73 µg/L, respectively) had 6-7 points lower Full developmental raw scores (B: -7.23, 95% CI -11.3; -3.18, and B: -6.37, 95% CI -10.5; -2.22, respectively), corresponding to ~0.2 SD. Verbal comprehension and Perceptual reasoning seemed to be affected. Models with children's hair arsenic concentrations showed similar results. Maternal urinary arsenic in early pregnancy, but not late pregnancy, showed inverse associations with Full developmental scores (quintiles 2-4: B: -4.52, 95% CI -8.61; -0.43, B: -5.91, 95% CI -10.0; -1.77, and B: -5.98, 95%CI -10.2; -1.77, respectively, compared to first quintile), as well as with Verbal comprehension, Perceptual reasoning, and Processing speed, especially in girls (p < 0.05 for interaction of sex with Full developmental scores and Perceptual reasoning). In models with all exposure time points included, both concurrent exposure at 10 years and early prenatal exposure remained associated with cognitive abilities. CONCLUSIONS Both early prenatal and childhood arsenic exposure, even at low levels (about 50 µg/L in urine), was inversely associated with cognitive abilities at school-age, although the estimates were modest.
Collapse
Affiliation(s)
- Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jena Derakhshani Hamadani
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Bradham K, Herde C, Herde P, Juhasz AL, Herbin-Davis K, Elek B, Farthing A, Diamond GL, Thomas DJ. Intra- and Interlaboratory Evaluation of an Assay of Soil Arsenic Relative Bioavailability in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2615-2622. [PMID: 32027133 PMCID: PMC8190816 DOI: 10.1021/acs.jafc.9b06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hand-to-mouth activity in children can be an important route for ingestion of soil and dust contaminated with inorganic arsenic. Estimating the relative bioavailability of arsenic present in these media is a critical element in assessing the risks associated with aggregate exposure to this toxic metalloid during their early life. Here, we evaluated the performance of a mouse assay for arsenic bioavailability in two laboratories using a suite of 10 soils. This approach allowed us to examine both intralaboratory and interlaboratory variations in assay performance. Use of a single vendor for preparation of all amended test diets and of a single laboratory for arsenic analysis of samples generated in the participating laboratories minimized contributions of these potential sources of variability in assay performance. Intralaboratory assay data showed that food and water intake and cumulative urine and feces production remained stable over several years. The stability of these measurements accounted for the reproducibility of estimates of arsenic bioavailability obtained from repeated intralaboratory assays using sodium arsenate or soils as the test material. Interlaboratory comparisons found that estimates of variables used to evaluate assay performance (recovery and urinary excretion factor) were similar in the two laboratories. For all soils, estimates of arsenic relative bioavailability obtained in the two laboratories were highly correlated (r2 = 0.94 and slope = 0.9) in a linear regression model. Overall, these findings show that this mouse assay for arsenic bioavailability provides reproducible estimates using a variety of test soils. This robust model may be adaptable for use in other laboratory settings.
Collapse
Affiliation(s)
- Karen Bradham
- Public Health Chemistry Branch, Exposure Measurements and Methods Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Karen Herbin-Davis
- Pharmacokinetics Branch, Integrated Systems Toxicology Divison, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | - Brittany Elek
- Pharmacokinetics Branch, Integrated Systems Toxicology Divison, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | - Amy Farthing
- Pharmacokinetics Branch, Integrated Systems Toxicology Divison, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | | | | |
Collapse
|
18
|
Muse ME, Li Z, Baker ER, Cottingham KL, Korrick SA, Karagas MR, Gilbert-Diamond D. Relation between in utero arsenic exposure and growth during the first year of life in a New Hampshire pregnancy cohort. ENVIRONMENTAL RESEARCH 2020; 180:108604. [PMID: 31710845 PMCID: PMC7333643 DOI: 10.1016/j.envres.2019.108604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND We have previously reported that in utero arsenic exposure is associated with increased length and other anthropometric outcomes at birth in a U.S. cohort. However, it is unknown whether these anthropometric differences persist through early life. OBJECTIVES We assessed in utero arsenic exposure in relation to attained anthropometry and growth trajectories through the first year of life. METHODS Among 760 mother-infant pairs from the New Hampshire Birth Cohort Study, we assessed in utero arsenic exposure using maternal second trimester urinary arsenic and assessed infant growth from medical records. RESULTS Median maternal second trimester total urinary arsenic (tAs; inorganic arsenic + monomethylarsonic acid + dimethylarsinic acid) was 3.96 μg/L (IQR: 2.02, 6.72). In adjusted linear mixed effects models, each doubling of maternal urinary tAs was associated with a 0.05 increase in length WHO Z score (95% CI: 0, 0.09) over the first year of life which corresponds to an approximately 0.12 cm increase in males and 0.13 cm increase in females at 12 months. No associations were observed between urinary tAs and attained weight, weight-for-length, or head circumference. In adjusted piecewise linear mixed effects models, each doubling of urinary tAs was associated with a 0.07 (95% CI: 0.02, 0.12) cm per month decreased length growth rate through 3.5 months with no evidence of an association thereafter. No associations were observed between urinary tAs and infant weight gain or change in weight-for-length and head circumference through one year. CONCLUSIONS On average, infants exposed to higher in utero arsenic attained modestly longer length during the first year, despite having slower linear growth in the first 3.5 months of life. This suggests that the previously demonstrated arsenic-associated longer length among study infants at birth persists through the first year of life. No other anthropometric associations with in utero arsenic exposure were observed across the full study population.
Collapse
Affiliation(s)
- Meghan E Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Zhigang Li
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Emily R Baker
- Children's Environmental Health and Disease Prevention Center at Dartmouth, Hanover, NH, USA; Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Kathryn L Cottingham
- Children's Environmental Health and Disease Prevention Center at Dartmouth, Hanover, NH, USA; Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Susan A Korrick
- Children's Environmental Health and Disease Prevention Center at Dartmouth, Hanover, NH, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Children's Environmental Health and Disease Prevention Center at Dartmouth, Hanover, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Children's Environmental Health and Disease Prevention Center at Dartmouth, Hanover, NH, USA
| |
Collapse
|
19
|
Kambunga SN, Candeias C, Hasheela I, Mouri H. Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2949-2975. [PMID: 30977022 DOI: 10.1007/s10653-019-00288-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.
Collapse
Affiliation(s)
- Selma N Kambunga
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Carla Candeias
- GeoBioTec, Geosciences Department, University of Aveiro, Aveiro, Portugal
- EpiUnit, Public Health Institute, University of Porto, Porto, Portugal
| | - Israel Hasheela
- Environmental and Engineering Geology Division, Geological Survey of Namibia, Windhoek, Namibia
| | - Hassina Mouri
- Department of Geology, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
20
|
Tsai MS, Chen MH, Lin CC, Liu CY, Chen PC. Children's environmental health based on birth cohort studies of Asia (2) - air pollution, pesticides, and heavy metals. ENVIRONMENTAL RESEARCH 2019; 179:108754. [PMID: 31563033 DOI: 10.1016/j.envres.2019.108754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The life style and child raising environment in Asia are quite different compared with Western countries. Besides, the children's environmental threats and difficulties in conducting studies could be different. To address children's environmental health in Asia area, the Birth Cohort Consortium of Asia (BiCCA) was co-established in 2011. We reviewed the mercury, polychlorinated biphenyls, perfluoroalkyl substances, phthalates, and environmental tobacco smoke in pervious based on birth cohort studies in Asia. The aim of this study was to summarize the traditional environmental pollution and the target subjects were also based on the birth cohort in Asia area. Environmental pollutants included air pollutants, pesticides focusing on organochlorine pesticides, diakylphosphates, and pyrethroid, and heavy metals including lead, arsenic, cadmium, manganese, vanadium, and thallium. Fetal growth and pregnancy outcomes, childhood growth and obesity, neurodevelopment and behavioral problems, and allergic disease and immune function were classified to elucidate the children's health effects. In total, 106 studies were selected in this study. The evidences showed air pollution or pesticides may affect growth during infancy or childhood, and associated with neurodevelopmental or behavioral problems. Prenatal exposure to lead or manganese was associated with neurodevelopmental or behavioral problems, while exposure to arsenic or cadmium may influence fetal growth. In addition to the harmonization and international collaboration of birth cohorts in Asia; however, understand the whole picture of exposure scenario and consider more discipline in the research are necessary.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University, College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan; Office of Occupational Safety and Health, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University, College of Public Health, Taipei, Taiwan.
| |
Collapse
|
21
|
Kambunga SN, Candeias C, Hasheela I, Mouri H. The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1987-2009. [PMID: 30778788 DOI: 10.1007/s10653-019-00253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42-), nitrate (NO3-), and nitrite (NO2-) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.
Collapse
Affiliation(s)
- Selma N Kambunga
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Carla Candeias
- GeoBioTec, Geosciences Department, University of Aveiro, Aveiro, Portugal
- EpiUnit, Public Health Institute, University of Porto, Porto, Portugal
| | - Israel Hasheela
- Environmental and Engineering Geology Division, Geological Survey of Namibia, Windhoek, Namibia
| | - Hassina Mouri
- Department of Geology, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
22
|
Medina-Pizzali M, Damián-Bastidas N, Vargas-Reyes M. Arsenic in baby foods: health effects and dietary exposure. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Medina-Pizzali
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| | - N. Damián-Bastidas
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| | - M. Vargas-Reyes
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| |
Collapse
|
23
|
Potential facet for prenatal arsenic exposure paradigm: linking endocrine disruption and epigenetics. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00274-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Vilcins D, Sly PD, Jagals P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. Ann Glob Health 2018. [PMID: 30779500 PMCID: PMC6748290 DOI: 10.29024/aogh.2361] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stunting, a form of malnutrition characterized by impaired linear growth in the first two years of life, affects one quarter of children globally. While nutritional status remains the key cause of stunting, there is evidence that environmental risk factors are associated with stunting. OBJECTIVE The objective of this review is to explore the current literature and compile the environmental risk factors that have been associated with stunting. Further, we seek to discover which risk factors act independently of nutritional intake. METHODS A systematic search of the literature was performed using PubMed, EMBASE, Scopus, TOXNET, and CINAHL. A search of the grey literature was conducted. Papers were included in this review if they examined an association between childhood stunting and exposure to environmental risk factors. FINDINGS We included 71 reports in the final analysis. The included studies showed that foodborne mycotoxins, a lack of adequate sanitation, dirt floors in the home, poor quality cooking fuels, and inadequate local waste disposal are associated with an increased risk of childhood stunting. Access to safe water sources was studied in a large number of studies, but the results remain inconclusive due to inconsistent study findings. Limited studies were available for arsenic, mercury, and environmental tobacco, and thus their role in stunting remains inconclusive. The identified research did not control for nutritional intake. A causal model identified solid fuel use and foodborne mycotoxins as being environmental risk factors with the potential to have direct effects on childhood growth. CONCLUSIONS A diverse range of environmental risk factors are, to varying degrees, associated with stunting, demonstrating the importance of considering how the environment interacts with nutrition. Health promotion activities may be more effective if they consider environmental factors alongside nutritional interventions.
Collapse
Affiliation(s)
- Dwan Vilcins
- Child Health Research Centre, The University of Queensland, Center for Children's Health Research, South Brisbane.,School of Public Health, University of Queensland, AU
| | - Peter D Sly
- Child Health Research Centre, The Universit of Queensland, Center for Children's Health Research South Brisbane, AU
| | - Paul Jagals
- Child Health Research Centre, The University of Queensland, Center for Children's Health Research South Brisbane, AU
| |
Collapse
|
25
|
Vilcins D, Sly PD, Jagals P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. Ann Glob Health 2018; 84:551-562. [PMID: 30779500 PMCID: PMC6748290 DOI: 10.9204/aogh.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Stunting, a form of malnutrition characterized by impaired linear growth in the first two years of life, affects one quarter of children globally. While nutritional status remains the key cause of stunting, there is evidence that environmental risk factors are associated with stunting. OBJECTIVE The objective of this review is to explore the current literature and compile the environmental risk factors that have been associated with stunting. Further, we seek to discover which risk factors act independently of nutritional intake. METHODS A systematic search of the literature was performed using PubMed, EMBASE, Scopus, TOXNET, and CINAHL. A search of the grey literature was conducted. Papers were included in this review if they examined an association between childhood stunting and exposure to environmental risk factors. FINDINGS We included 71 reports in the final analysis. The included studies showed that foodborne mycotoxins, a lack of adequate sanitation, dirt floors in the home, poor quality cooking fuels, and inadequate local waste disposal are associated with an increased risk of childhood stunting. Access to safe water sources was studied in a large number of studies, but the results remain inconclusive due to inconsistent study findings. Limited studies were available for arsenic, mercury, and environmental tobacco, and thus their role in stunting remains inconclusive. The identified research did not control for nutritional intake. A causal model identified solid fuel use and foodborne mycotoxins as being environmental risk factors with the potential to have direct effects on childhood growth. CONCLUSIONS A diverse range of environmental risk factors are, to varying degrees, associated with stunting, demonstrating the importance of considering how the environment interacts with nutrition. Health promotion activities may be more effective if they consider environmental factors alongside nutritional interventions.
Collapse
Affiliation(s)
- Dwan Vilcins
- Child Health Research Centre, The University of Queensland, Center for Children’s Health Research South Brisbane, Queensland, AU
- School of Public Health, University of Queensland, Brisbane, Queensland, AU
| | - Peter D. Sly
- Child Health Research Centre, The University of Queensland, Center for Children’s Health Research South Brisbane, Queensland, AU
| | - Paul Jagals
- Child Health Research Centre, The University of Queensland, Center for Children’s Health Research South Brisbane, Queensland, AU
| |
Collapse
|
26
|
De Loma J, Skröder H, Raqib R, Vahter M, Broberg K. Arsenite methyltransferase (AS3MT) polymorphisms and arsenic methylation in children in rural Bangladesh. Toxicol Appl Pharmacol 2018; 357:80-87. [DOI: 10.1016/j.taap.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
|
27
|
Exposure to Arsenite in CD-1 Mice during Juvenile and Adult Stages: Effects on Intestinal Microbiota and Gut-Associated Immune Status. mBio 2018; 9:mBio.01418-18. [PMID: 30108172 PMCID: PMC6094480 DOI: 10.1128/mbio.01418-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intestinal microbiota composition and gut-associated immune response can contribute to the toxicity of arsenic. We investigated the potential toxicity of short-term arsenic exposure on gut microbiome composition, intestinal immune status, microbial arsenic resistance gene, and arsenic metabolic profiles in adult and developmental stages of CD-1 mice. The potential toxicity of arsenite [As(III)] was determined for two life stages: (i) adult animals at 24 or 48 h after single gavage (0.05 mg/kg body weight [b.w.] [low dose], 0.1 mg/kg b.w. [medium dose], and 0.2 mg/kg b.w. [high dose]) and repeated exposure at 1 mg/liter for 8 days and (ii) postnatal day 10 (PND10) and PND21 after single gavage (0.05 mg/kg b.w.). Dose- and time-dependent responses in bacterial recovery/microbial composition were observed in adults after a single gavage. Repeated exposure caused a transient decrease in the recovery of intestinal bacteria, a shift in the bacterial population with abundance of arsenic resistance genes, and evidence for host metabolism of arsenite into less-reactive trivalent methylated species. Arsenic exposure in adult animals induced high levels of CC chemokines and of proinflammatory and anti-inflammatory cytokine secretion in intestine. Arsenic exposure at PND21 resulted in the development of distinct bacterial populations. Results of this study highlight significant changes in the intestinal microbiome and gut-associated immune status during a single or repeated exposure to arsenic in juvenile and adult animals. The data warrant investigation of the long-term effects of oral arsenic exposure on the microbiome and of immune system development and responses.IMPORTANCE Transformation of organic arsenic to toxic inorganic arsenic (iAs) is likely carried out by intestinal bacteria, and iAs may alter the viability of certain microbial populations. This study addressed the impact of arsenic exposure on intestinal microbiota diversity and host gut-associated immune mediators during early development or adulthood using scenarios of acute or repeated doses. During acute arsenic exposure, animals developed defense functions characterized by higher abundances of bacteria that are involved in arsenic resistance or detoxification mechanisms. Arsenite had a negative effect on the abundance of bacterial species that are involved in the conversion of protein to butyrate, which is an alternative energy source in the intestine. The intestinal mucosal immune cytokine profile reflected a mechanism of protection from arsenic toxicity.
Collapse
|
28
|
Gliga AR, Engström K, Kippler M, Skröder H, Ahmed S, Vahter M, Raqib R, Broberg K. Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Arch Toxicol 2018; 92:2487-2500. [PMID: 29947889 PMCID: PMC6063321 DOI: 10.1007/s00204-018-2239-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023]
Abstract
Exposure to inorganic arsenic (As), a carcinogen and epigenetic toxicant, has been associated with lower circulating levels of insulin-like growth factor 1 (IGF1) and impaired growth in children of pre-school age. The aim of this study was to assess the potential impact of exposure to As on IGF1 and insulin-like growth factor-binding protein 3 (IGFBP3) as well as DNA methylation changes in 9-year-old children. To this end, we studied 9-year-old children from a longitudinal mother-child cohort in rural Bangladesh (n = 551). Prenatal and concurrent exposure to As was assessed via concentrations in maternal urine at gestational week 8 and in child urine at 9 years, measured by HPLC-HG-ICPMS. Plasma IGF1 and IGFBP3 concentrations were quantified with immunoassays. DNA methylation was measured in blood mononuclear cells at 9 years in a sub-sample (n = 113) using the Infinium HumanMethylation450K BeadChip. In multivariable-adjusted linear regression models, prenatal As (natural log-transformed), but not children's concurrent urinary As, was positively associated with IGFBP3 concentrations (β = 76, 95% CI 19, 133). As concentrations were not associated with IGF1. DNA methylation analysis revealed CpGs associated with both prenatal As and IGFBP3. Mediation analysis suggested that methylation of 12 CpG sites for all children was mediator of effect for the association between prenatal As and IGFBP3. We also found differentially methylated regions, generally hypermethylated, that were associated with both prenatal As and IGFBP3. In all, our study revealed that prenatal exposure to As was positively associated with IGFBP3 concentrations in children at 9 years, independent of IGF1, and this association may, at least in part, be epigenetically mediated.
Collapse
Affiliation(s)
- Anda R Gliga
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sultan Ahmed
- Division of Infectious Diseases, icddr,b, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rubhana Raqib
- Division of Infectious Diseases, icddr,b, Dhaka, Bangladesh
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
29
|
A Systematic Review of the Effects of Environmental Pollutants, Chemical Factors, and Climate Changes on Children’s Height. HEALTH SCOPE 2018. [DOI: 10.5812/jhealthscope.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Fábelová L, Vandentorren S, Vuillermoz C, Garnier R, Lioret S, Botton J. Hair concentration of trace elements and growth in homeless children aged <6years: Results from the ENFAMS study. ENVIRONMENT INTERNATIONAL 2018; 114:318-325. [PMID: 29150339 DOI: 10.1016/j.envint.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Growth is an important indicator of health in early childhood. This is a critical developmental period, during which a number of factors, including exposure to metals, might play a role in later physical and metabolic functions. OBJECTIVE To study the association between exposure to arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb) and selenium (Se), and physical growth of children from homeless families aged <6years. METHODS This study was based on data of the cross-sectional survey (ENFAMS), which was conducted by the Observatoire du Samu Social on a random sample of homeless sheltered families in the Paris region during winter 2013. Families with children under 6years (N=324) were interviewed in 17 languages using face-to-face questionnaires. A nurse took anthropometric measures and collected hair samples where As, Cd, Hg, Pb and Se levels were measured. We calculated weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ) and BMI-for-age Z-score (BMIZ) of children, using the 2006 WHO Child Growth Standards as a reference. Associations between ln-transformed metal exposures and growth outcomes were tested by multivariable linear regression models with adjustment for potential confounders (including maternal anthropometrical and socio-demographical characteristics, gestational age, child birthweight, breastfeeding, food insecurity of the child). Due to missing data (1.6% to 14.2% depending on the variables), we used multiple imputation by chained equations. RESULTS A strong positive correlation was found between Pb and Cd levels (r=0.65; p<0.001). Positive associations between Se level and HAZ (β=0.61; p=0.05) and between Cd and BMIZ (β=0.21; p=0.03) and negative associations between As and HAZ (β=-0.18; p=0.05) were no more significant after multiple imputation. A weak negative trend was observed between Cd and HAZ (β=-0.14; p=0.14), while positive trends were found between Se and both WAZ (β=0.55; p=0.10) and HAZ (β=0.51; p=0.06) after multiple imputation. CONCLUSION Overall, our results found no strong association between exposure to metals and physical growth of homeless children but we observed some trends that were consistent with previous studies. More research is required studying these associations longitudinally, along with higher sample sizes, for better understanding the sources of exposure in homeless population and the potential effects on growth.
Collapse
Affiliation(s)
- Lucia Fábelová
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France.
| | - Stéphanie Vandentorren
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Department of Social Epidemiology, Paris, France; French Institute for Public Health Surveillance, Saint-Maurice, France
| | - Cécile Vuillermoz
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Department of Social Epidemiology, Paris, France
| | - Robert Garnier
- Centre antipoison et de toxicovigilance de Paris, France
| | - Sandrine Lioret
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France
| | - Jérémie Botton
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France; Faculty of Pharmacy, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
31
|
Liu JT, Bain LJ. Arsenic Induces Members of the mmu-miR-466-669 Cluster Which Reduces NeuroD1 Expression. Toxicol Sci 2018; 162:64-78. [PMID: 29121352 PMCID: PMC6693399 DOI: 10.1093/toxsci/kfx241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chronic arsenic exposure can result in adverse development effects including decreased intellectual function, reduced birth weight, and altered locomotor activity. Previous in vitro studies have shown that arsenic inhibits stem cell differentiation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple cellular processes including embryonic development and cell differentiation. The purpose of this study was to examine whether altered miRNA expression was a mechanism by which arsenic inhibited cellular differentiation. The pluripotent P19 mouse embryonal carcinoma cells were exposed to 0 or 0.5 μM sodium arsenite for 9 days during cell differentiation, and changes in miRNA expression was analyzed using microarrays. We found that the expression of several miRNAs important in cellular differentiation, such as miR-9 and miR-199 were decreased by 1.9- and 1.6-fold, respectively, following arsenic exposure, while miR-92a, miR-291a, and miR-709 were increased by 3-, 3.7-, and 1.6-fold, respectively. The members of the miR-466-669 cluster and its host gene, Scm-like with 4 Mbt domains 2 (Sfmbt2), were significantly induced by arsenic from 1.5- to 4-fold in a time-dependent manner. Multiple miRNA target prediction programs revealed that several neurogenic transcription factors appear to be targets of the cluster. When consensus anti-miRNAs targeting the miR-466-669 cluster were transfected into P19 cells, arsenic-exposed cells were able to more effectively differentiate. The consensus anti-miRNAs appeared to rescue the inhibitory effects of arsenic on cell differentiation due to an increased expression of NeuroD1. Taken together, we conclude that arsenic induces the miR-466-669 cluster, and that this induction acts to inhibit cellular differentiation in part due to a repression of NeuroD1.
Collapse
Affiliation(s)
| | - Lisa J Bain
- Environmental Toxicology Graduate Program
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
32
|
Murko M, Elek B, Styblo M, Thomas DJ, Francesconi KA. Dose and Diet - Sources of Arsenic Intake in Mouse in Utero Exposure Scenarios. Chem Res Toxicol 2018; 31:156-164. [PMID: 29244955 PMCID: PMC6611170 DOI: 10.1021/acs.chemrestox.7b00309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In humans, early life exposure to inorganic arsenic is associated with adverse health effects. Inorganic arsenic in utero or in early postnatal life also produces adverse health effects in offspring of pregnant mice that consumed drinking water containing low part per billion levels of inorganic arsenic. Because aggregate exposure of pregnant mice to inorganic arsenic from both drinking water and food has not been fully evaluated in experimental studies, quantifying arsenic exposure of the developing mouse is problematic. Here, we determined levels of total arsenic and arsenic species in natural ingredient rodent diets that are composed of many plant and animal-derived foodstuffs and in a purified ingredient rodent diet that is composed of a more restricted mixture of foodstuffs. In natural ingredient diets, total arsenic levels ranged from ∼60 to ∼400 parts per billion, and in the purified ingredient diet, total arsenic level was 13 parts per billion. Inorganic arsenic was the predominant arsenic species in trifluoroacetic acid extracts of each diet. Various exposure scenarios were evaluated using information on inorganic arsenic levels in diet and drinking water and on daily food and water consumption of pregnant mice. In a scenario in which pregnant mice consumed drinking water with 10 parts per billion of inorganic arsenic and a natural ingredient diet containing 89 parts per billion of inorganic arsenic, drinking water contributed only ∼20% of inorganic arsenic intake. Quantitation of arsenic species in diets used in studies in which drinking water is the nominal source of arsenic exposure provides more accurate dosimetry and improves understanding of dose-response relations. Use of purified ingredient diets will minimize the discrepancy between the target dosage level and the actual dosage level attained in utero exposure studies designed to evaluate effects of low level exposure to inorganic arsenic.
Collapse
Affiliation(s)
- Manuela Murko
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Brittany Elek
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, North Carolina 27719, United States
| | - David J. Thomas
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | | |
Collapse
|
33
|
Milton AH, Attia J, Alauddin M, McEvoy M, McElduff P, Hussain S, Akhter A, Akter S, Islam MM, Ahmed AMS, Iyengar V, Islam MR. Assessment of Nutritional Status of Infants Living in Arsenic-Contaminated Areas in Bangladesh and Its Association with Arsenic Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010057. [PMID: 29301293 PMCID: PMC5800156 DOI: 10.3390/ijerph15010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 11/16/2022]
Abstract
Data is scarce on early life exposure to arsenic and its association with malnutrition during infancy. This study followed the nutritional status of a cohort of 120 infants from birth to 9 months of age in an arsenic contaminated area in Bangladesh. Anthropometric data was collected at 3, 6 and 9 months of the infant's age for nutritional assessment whereas arsenic exposure level was assessed via tube well drinking water arsenic concentration at the initiation of the study. Weight and height measurements were converted to Z-scores of weight for age (WAZ-underweight), height for age (HAZ-stunting), weight for height (WHZ-wasting) for children by comparing with WHO growth standard. Arsenic exposure levels were categorized as <50 μg/L and ≥50 μg/L. Stunting rates (<-2 SD) were 10% at 3 months and 44% at both 6 and 9 months. Wasting rates (<-2 SD) were 23.3% at 3 months and underweight rates (<-2 SD) were 25% and 10% at 3 and 6 months of age, respectively. There was a significant association of stunting with household drinking water arsenic exposure ≥50 μg/L at age of 9 months (p = 0.009). Except for stunting at 9 months of age, we did not find any significant changes in other nutritional indices over time or with levels of household arsenic exposure in this study. Our study suggests no association between household arsenic exposure and under-nutrition during infancy; with limiting factors being small sample size and short follow-up. Difference in stunting at 9 months by arsenic exposure at ≥50 μg/L might be a statistical incongruity. Further longitudinal studies are warranted to establish any association.
Collapse
Affiliation(s)
- Abul Hasnat Milton
- Centre for Clinical Epidemiology & Biostatistics (CCEB), School of Medicine and Public Health, Faculty of Health, The University of Newcastle, Kookaburra Close, New Lambton Heights, NSW 2305, Australia.
| | - John Attia
- Centre for Clinical Epidemiology & Biostatistics (CCEB), School of Medicine and Public Health, Faculty of Health, The University of Newcastle, Kookaburra Close, New Lambton Heights, NSW 2305, Australia.
| | - Mohammad Alauddin
- Department of Chemistry, Wagner College, 1 Campus Road, Staten Island, NY 10301, USA.
| | - Mark McEvoy
- Centre for Clinical Epidemiology & Biostatistics (CCEB), School of Medicine and Public Health, Faculty of Health, The University of Newcastle, Kookaburra Close, New Lambton Heights, NSW 2305, Australia.
| | - Patrick McElduff
- Centre for Clinical Epidemiology & Biostatistics (CCEB), School of Medicine and Public Health, Faculty of Health, The University of Newcastle, Kookaburra Close, New Lambton Heights, NSW 2305, Australia.
| | - Sumaira Hussain
- Centre for Clinical Epidemiology & Biostatistics (CCEB), School of Medicine and Public Health, Faculty of Health, The University of Newcastle, Kookaburra Close, New Lambton Heights, NSW 2305, Australia.
| | - Ayesha Akhter
- Goulburn Valley Health, Graham Street, Shepparton, VIC 3630, Australia.
| | - Shahnaz Akter
- Department of Paediatrics, Institute of Child and Mother Health, Matuail, Dhaka 1212, Bangladesh.
| | - M Munirul Islam
- International Centre for Diarrhoeal Diseases Research, Mohakhali, Dhaka 1212, Bangladesh.
| | - A M Shamsir Ahmed
- International Centre for Diarrhoeal Diseases Research, Mohakhali, Dhaka 1212, Bangladesh.
| | - Vasu Iyengar
- Goulburn Valley Health, Graham Street, Shepparton, VIC 3630, Australia.
- Department of Rural Health, University of Melbourne, Graham Street, Shepparton, VIC 3630, Australia.
- School of Health and Social Development, Deakin University, VIC 3125, Australia.
| | - Md Rafiqul Islam
- Centre for Clinical Epidemiology & Biostatistics (CCEB), School of Medicine and Public Health, Faculty of Health, The University of Newcastle, Kookaburra Close, New Lambton Heights, NSW 2305, Australia.
- Goulburn Valley Health, Graham Street, Shepparton, VIC 3630, Australia.
- Department of Rural Health, University of Melbourne, Graham Street, Shepparton, VIC 3630, Australia.
- School of Health and Social Development, Deakin University, VIC 3125, Australia.
| |
Collapse
|
34
|
Caldwell KK, Hafez A, Solomon E, Cunningham M, Allan AM. Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner. Neurotoxicol Teratol 2017; 66:102-112. [PMID: 29132937 DOI: 10.1016/j.ntt.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
Our previous studies suggest that prenatal arsenic exposure (50ppb) modifies epigenetic control of the programming of the glucocorticoid receptor (GR) signaling system in the developing mouse brain. These deficits may lead to long-lasting consequences, including deficits in learning and memory, increased depressive-like behaviors, and an altered set-point of GR feedback throughout life. To understand the arsenic-induced changes within the GR system, we assessed the impact of in utero arsenic exposure on the levels of the GR and growth arrest-specific-5 (Gas5), a noncoding RNA, across a key gestational period for GR programming (gestational days, GD 14-18) in mice. Gas5 contains a glucocorticoid response element (GRE)-like sequence that binds the GR, thereby decreasing GR-GRE-dependent gene transcription and potentially altering GR programming. Prenatal arsenic exposure resulted in sex-dependent and age-dependent shifts in the levels of GR and Gas5 expression in fetal telencephalon. Nuclear GR levels were reduced in males, but unchanged in females, at all gestational time points tested. Total cellular Gas5 levels were lower in arsenic-exposed males with no changes seen in arsenic-exposed females at GD16 and 18. An increase in total cellular Gas-5 along with increased nuclear levels in GD14 arsenic-exposed females, suggests a differential regulation of cellular compartmentalization of Gas5. RIP assays revealed reduced Gas5 associated with the GR on GD14 in the nuclear fraction prepared from arsenic-exposed males and females. This decrease in levels of GR-Gas5 binding continued only in the females at GD18. Thus, nuclear GR signaling potential is decreased in prenatal arsenic-exposed males, while it is increased or maintained at levels approaching normal in prenatal arsenic-exposed females. These findings suggest that females, but not males, exposed to arsenic are able to regulate the levels of nuclear free GR by altering Gas5 levels, thereby keeping GR nuclear signaling closer to control (unexposed) levels.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexander Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Matthew Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
35
|
Rahman A, Granberg C, Persson LÅ. Early life arsenic exposure, infant and child growth, and morbidity: a systematic review. Arch Toxicol 2017; 91:3459-3467. [PMID: 28905217 DOI: 10.1007/s00204-017-2061-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022]
Abstract
Epidemiological studies have suggested a negative association between early life arsenic exposure and fetal size at birth, and subsequently with child morbidity and growth. However, our understanding of the relationship between arsenic exposure and morbidity and growth is limited. This paper aims to systematically review original human studies with an analytical epidemiological study design that have assessed arsenic exposure in fetal life or early childhood and evaluated the association with one or several of the following outcomes: fetal growth, birth weight or other birth anthropometry, infant and child growth, infectious disease morbidity in infancy and early childhood. A literature search was conducted in PubMed, TOXLINE, Web of Science, SciFinder and Scopus databases filtered for human studies. Based on the predefined eligibility criteria, two authors independently evaluated the studies. A total of 707 studies with morbidity outcomes were identified, of which six studies were eligible and included in this review. For the growth outcomes, a total of 2959 studies were found and nine fulfilled the criteria and were included in the review. A majority of the papers (10/15) emanated from Bangladesh, three from the USA, one from Romania and one from Canada. All included studies on arsenic exposure and morbidity showed an increased risk of respiratory tract infections and diarrhea. The findings in the studies of arsenic exposure and fetal, infant, and child growth were heterogeneous. Arsenic exposure was not associated with fetal growth. There was limited evidence of negative associations between arsenic exposures and birth weight and growth during early childhood. More studies from arsenic-affected low- and middle-income countries are needed to support the generalizability of study findings.
Collapse
Affiliation(s)
- Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh.
| | - Caroline Granberg
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Lars-Åke Persson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
36
|
VIGEH M, YOKOYAMA K, MATSUKAWA T, SHINOHARA A, SHARIAT M, OHTANI K. Effects of Hair Metals on Body Weight in Iranian Children Aged 20 to 36 Months. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1018-1027. [PMID: 28894702 PMCID: PMC5575380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Although the level of exposure to many toxic metals decreased recently, the adverse effects of these metals on children's growth and development remain a serious public health issue. METHODS The present study was conducted in three teaching hospitals affiliated with Tehran University of Medical Sciences (Tehran, Iran) from Sep 2012 to Mar 2013. To study the relationship between metals and childhood growth, concentrations of zinc and several potentially toxic metals (lead, cadmium, antimony, cobalt, and molybdenum) were measured in scalp hair for 174 children, aged 20 to 36 months. RESULTS The hair concentrations of cobalt were significantly (P<0.05) higher in children at the lower percentile of weight than in higher-weight children (0.026 ± 0.04 vs. 0.015 ± 0.01 μg/g, respectively). Hair contents of lead, cobalt, and antimony were significantly higher (P<0.05) in girls than in boys (8.08 ± 8.7 vs. 4.92 ± 5.6 μg/g for lead, 0.026 ± 0.03 vs. 0.16 ± 0.02 μg/g for cobalt, and 0.188 ± 0.29 vs. 0.102 ± 0.12 μg/g for antimony). There were also significant correlations between lead and other metals in the children's hair. CONCLUSION Gender may play a significant role in absorption and/or accumulation of metals. It should be considered when we study metal toxicity in children.
Collapse
Affiliation(s)
- Mohsen VIGEH
- Maternal, Fetal & Neonatal Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran,Dept. of Epidemiology and Environmental Health, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, Japan,Occupational Epidemiology Research Group, National Institute of Occupational Safety and Health, 6-21-6 Nagao, Tama-Ku, Kawasaki, Japan,Corresponding Author:
| | - Kazuhito YOKOYAMA
- Dept. of Epidemiology and Environmental Health, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Takehisa MATSUKAWA
- Dept. of Epidemiology and Environmental Health, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Atsuko SHINOHARA
- Dept. of Epidemiology and Environmental Health, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Mamak SHARIAT
- Maternal, Fetal & Neonatal Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Katsumi OHTANI
- Occupational Epidemiology Research Group, National Institute of Occupational Safety and Health, 6-21-6 Nagao, Tama-Ku, Kawasaki, Japan
| |
Collapse
|
37
|
Szymkowicz DB, Sims KC, Castro NM, Bridges WC, Bain LJ. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:1-10. [PMID: 28237603 PMCID: PMC5395342 DOI: 10.1016/j.aquatox.2017.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/06/2023]
Abstract
Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb AsIII from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended.
Collapse
MESH Headings
- Animals
- Arsenic/toxicity
- Behavior, Animal/drug effects
- Embryonic Development/drug effects
- Environmental Exposure/analysis
- Female
- Fundulidae/embryology
- Fundulidae/genetics
- Fundulidae/growth & development
- Gene Expression Regulation, Developmental/drug effects
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Dana B Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Kaleigh C Sims
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Noemi M Castro
- Department of Biochemistry and Molecular Biology, University of California-Davis, Davis, CA, United States
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, United States
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
38
|
Wei Y, Shi Q, Wang Z, Zhang R, Su L, Quamruzzaman Q, Rahman M, Chen F, Christiani DC. Maternal/fetal metabolomes appear to mediate the impact of arsenic exposure on birth weight: A pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:313-319. [PMID: 27966664 PMCID: PMC5972365 DOI: 10.1038/jes.2016.74] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 05/19/2023]
Abstract
Arsenic exposure has been associated with low birth weight. However, the underlying mechanisms are not well understood. Alterations to metabolites may act as causal mediators of the effect of arsenic exposure on low birth weight. This pilot study aimed to explore the role of metabolites in mediating the association of arsenic exposure on infant birth weight. Study samples were selected from a well-established prospectively enrolled cohort in Bangladesh comprising 35 newborns and a subset of 20 matched mothers. Metabolomics profiling was performed on 35 cord blood samples and 20 maternal peripheral blood samples collected during the second trimester of pregnancy. Inorganic arsenic (iAs) exposure was evaluated via cord blood samples and maternal toenail samples collected during the first trimester. Multiple linear regression and mediation analyses were used to explore the relationship between iAs exposure, metabolite alterations, and low birth weight. Cord blood arsenic level was correlated with elevated levels of 17-methylstearate, laurate (12:0) and 4-vinylphenol sulfate along with lower birth weight. Prenatal maternal toenail iAs level was associated with two peripheral blood metabolites (butyrylqlycine and tartarate), which likely contributed to higher cord blood iAs levels both independently and interactively. Findings of this pilot study indicate that both intrauterine and maternal peripheral blood metabolites appear to influence the toxic effect of inorganic arsenic exposure on low birth weight.
Collapse
Affiliation(s)
- Yongyue Wei
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
| | - Qianwen Shi
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Ruyang Zhang
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | | | | | - Feng Chen
- Department of Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Nanjing, China
- Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Li H, Wang M, Liang Q, Jin S, Sun X, Jiang Y, Pan X, Zhou Y, Peng Y, Zhang B, Zhou A, Zhang Y, Chen Z, Cao J, Zhang H, Xia W, Zheng T, Cai Z, Li Y, Xu S. Urinary metabolomics revealed arsenic exposure related to metabolic alterations in general Chinese pregnant women. J Chromatogr A 2017; 1479:145-152. [DOI: 10.1016/j.chroma.2016.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/16/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
|
40
|
Developmental Exposure to Environmental Chemicals and Metabolic Changes in Children. Curr Probl Pediatr Adolesc Health Care 2016; 46:255-85. [PMID: 27401018 DOI: 10.1016/j.cppeds.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of childhood obesity, type 2 diabetes, and other forms of metabolic disease have been rising over the past several decades. Although diet and physical activity play important roles in these trends, other environmental factors also may contribute to this significant public health issue. In this article, we discuss the possibility that widespread exposure to endocrine-disrupting chemicals (EDCs) may contribute to the development of metabolic diseases in children. We summarize the epidemiological evidence on exposure to environmental chemicals during early development and metabolic outcomes in infants and children. Prenatal exposure to EDCs, particularly the persistent organic pollutant DDT and its metabolite DDE, may influence growth patterns during infancy and childhood. The altered growth patterns associated with EDCs vary according to exposure level, sex, exposure timing, pubertal status, and age at which growth is measured. Early exposure to air pollutants also is linked to impaired metabolism in infants and children. As a result of these and other studies, professional health provider societies have called for a reduction in environmental chemical exposures. We summarize the resources available to health care providers to counsel patients on how to reduce chemical exposures. We conclude with a discussion of environmental policies that address chemical exposures and ultimately aim to improve public health.
Collapse
|
41
|
Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. Associations between Blood and Urine Arsenic Concentrations and Global Levels of Post-Translational Histone Modifications in Bangladeshi Men and Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1234-40. [PMID: 26967670 PMCID: PMC4977054 DOI: 10.1289/ehp.1510412] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Exposure to inorganic arsenic is associated with numerous adverse health outcomes, with susceptibility differing by sex. Although evidence from in vitro studies suggests that arsenic alters post-translational histone modifications (PTHMs), evidence in humans is limited. OBJECTIVES The objectives were to determine: a) if arsenic exposure is associated with global (percent) levels of PTHMs H3K36me2, H3K36me3, and H3K79me2 in a sex-dependent manner, and b) if %PTHMs are stable when arsenic exposure is reduced. METHODS We examined associations between arsenic, measured in blood and urine, and %PTHMs in peripheral blood mononuclear cells from 317 participants enrolled in the Bangladesh Folic Acid and Creatine Trial (FACT). We also examined the stability of %PTHMs after the use of arsenic-removal water filters (n = 60). RESULTS Associations between natural log-transformed (ln) urinary arsenic, adjusted for creatinine (uAsCr), and %H3K36me2 differed significantly between men and women (p = 0.01). ln(uAsCr) was positively associated with %H3K36me2 in men [β = 0.12; 95% confidence interval (CI): 0.01, 0.23, p = 0.03] but was negatively associated with %H3K36me2 in women (β = -0.05; 95% CI: -0.12, 0.02, p = 0.19). The patterns of associations with blood arsenic were similar. On average, water filter use was also associated with reductions in %H3K36me2 (p < 0.01), but this did not differ significantly by sex. Arsenic was not significantly associated with %H3K36me3 or %H3K79me2 in men or women. CONCLUSIONS Arsenic exposure was associated with %H3K36me2 in a sex-specific manner but was not associated with %H3K36me3 or %H3K79me2. Additional studies are needed to assess changes in %H3K36me2 after arsenic removal. CITATION Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. 2016. Associations between blood and urine arsenic concentrations and global levels of post-translational histone modifications in Bangladeshi men and women. Environ Health Perspect 124:1234-1240; http://dx.doi.org/10.1289/ehp.1510412.
Collapse
Affiliation(s)
| | | | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | - Abu B. Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N. Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Max Costa
- Department of Environmental Medicine, Langone Medical Center, New York University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences,
- Address correspondence to M.V. Gamble, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 11th Floor, 722 W. 168th St., New York, NY 10032 USA. Telephone: (212) 305-7949. E-mail:
| |
Collapse
|
42
|
Environmental pollutants and child health-A review of recent concerns. Int J Hyg Environ Health 2016; 219:331-42. [PMID: 27216159 DOI: 10.1016/j.ijheh.2016.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/09/2023]
Abstract
In recent years, many new studies have evaluated associations between environmental pollutants and child health. This review aims to provide a broad summary of this literature, comparing the state of epidemiological evidence for the effects of a wide range of environmental contaminants (air pollutants, heavy metals, organochlorine compounds, perfluoroalkyl substances, polybrominated diphenyl ethers, pesticides, phthalates and bisphenol A) on child health outcomes. The review addresses effects on foetal growth and prematurity, neurodevelopment, respiratory and immune health, and childhood growth and obesity. Findings of recent prospective studies and meta-analyses have corroborated previous good evidence, often at lower exposure levels, for effects on foetal growth of air pollution and polychlorinated biphenyls (PCBs), for neurotoxic effects of lead, methylmercury, PCBs and organophosphate pesticides, and for respiratory health effects of air pollution. Moderate evidence has emerged for a potential role of environmental pollutants in attention deficit hyperactivity disorder and autism (lead, PCBs, air pollution), respiratory and immune health (dichlorodiphenyldichloroethylene - DDE - and PCBs), and obesity (DDE). In addition, there is now moderate evidence that certain chemicals of relatively recent concern may be associated with adverse child health outcomes, specifically perfluorooctanoate and foetal growth, and polybrominated diphenyl ethers and neurodevelopment. For other chemicals of recent concern, such as phthalates and bisphenol A, the literature is characterised by large inconsistencies preventing strong conclusions. In conclusion, since most of the recent literature evaluates common exposures in the general population, and not particularly high exposure situations, this accumulating body of evidence suggests that the unborn and young child require more protection than is currently provided. Large, coordinated research efforts are needed to improve understanding of long-term effects of complex chemical mixtures.
Collapse
|
43
|
Kippler M, Skröder H, Rahman SM, Tofail F, Vahter M. Elevated childhood exposure to arsenic despite reduced drinking water concentrations--A longitudinal cohort study in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2016; 86:119-25. [PMID: 26580026 DOI: 10.1016/j.envint.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 05/20/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the massive efforts to lower water arsenic concentrations in Bangladesh. METHODS In our large mother-child cohort in rural Matlab, we measured the arsenic concentrations (and other elements) in drinking water and evaluated the actual exposure (urinary arsenic), from early gestation to 10 years of age (n=1017). RESULTS Median drinking water arsenic decreased from 23 (2002-2003) to <2 μg/L (2013), and the fraction of wells exceeding the national standard (50 μg/L) decreased from 58 to 27%. Still, some children had higher water arsenic at 10 years than earlier. Installation of deeper wells (>50 m) explained much of the lower water arsenic concentrations, but increased the manganese concentrations. The highest manganese concentrations (~900 μg/L) appeared in 50-100 m wells. Low arsenic and manganese concentrations (17% of the children) occurred mainly in >100 m wells. The decrease in urinary arsenic concentrations over time was less apparent, from 82 to 58 μg/L, indicating remaining sources of exposure, probably through food (mean 133 μg/kg in rice). CONCLUSION Despite decreased water arsenic concentrations in rural Bangladesh, the children still have elevated exposure, largely from food. Considering the known risks of severe health effects in children, additional mitigation strategies are needed.
Collapse
Affiliation(s)
- Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden.
| | - Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden.
| | - Syed Moshfiqur Rahman
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), GPO Box 128, Dhaka 1000, Bangladesh.
| | - Fahmida Tofail
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), GPO Box 128, Dhaka 1000, Bangladesh.
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
44
|
Low-level arsenic exposure and developmental neurotoxicity in children: A systematic review and risk assessment. Toxicology 2015; 337:91-107. [PMID: 26388044 DOI: 10.1016/j.tox.2015.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/06/2015] [Accepted: 09/12/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Risk assessments of arsenic have focused on skin, bladder, and lung cancers and skin lesions as the sensitive cancer and non-cancer health endpoints, respectively; however, an increasing number of epidemiologic studies that can inform risk assessment have examined neurodevelopmental effects in children. We conducted a systematic review and risk assessment based on the epidemiologic literature on possible neurodevelopmental effects at lower arsenic exposures. Twenty-four cross-sectional, case-control, and cohort studies were identified that report on the association between low-level arsenic exposure (i.e., largely <100 μg/L of arsenic in drinking water) and neurological outcomes in children. Although the overall evidence does not consistently show a causal dose-response relationship at low doses, the most rigorously conducted studies from Bangladesh indicate possible inverse associations with cognitive function, predominantly involving concurrent arsenic exposure as measured by biomarkers (i.e., arsenic in urine or blood) and raw verbal test scores at ages 5-11 years. Issues such as non-comparability of outcome measures across studies; inaccuracies of biomarkers and other measures of inorganic arsenic exposure; potential effect modification by cultural practices; insufficient adjustment for nutritional deficiencies, maternal IQ, and other important confounders; and presence of other neurotoxicants in foreign populations limit generalizability to U.S. POPULATIONS Of the few U.S. studies available, the most rigorously conducted study did not find a consistent dose-response relationship between arsenic concentrations in tap water or toenails and decrements in IQ scores. Assuming that the strongest dose-response relationship from the most rigorous evidence from Bangladesh is generalizable to U.S. populations, possible reference doses were estimated in the range of 0.0004-0.001 mg/kg-day. These doses are higher than the U.S. Environmental Protection Agency reference dose for chronic lifetime exposure, thus indicating protectiveness of the existing value for potential neurotoxicity in children. This reference dose is undergoing revision as EPA considers various health endpoints in the reassessment of inorganic arsenic health risks.
Collapse
|
45
|
Marsit CJ. Influence of environmental exposure on human epigenetic regulation. ACTA ACUST UNITED AC 2015; 218:71-9. [PMID: 25568453 DOI: 10.1242/jeb.106971] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Environmental toxicants can alter epigenetic regulatory features such as DNA methylation and microRNA expression. As the sensitivity of epigenomic regulatory features may be greatest during the in utero period, when critical windows are narrow, and when epigenomic profiles are being set, this review will highlight research focused on that period. I will focus on work in human populations, where the impact of environmental toxicants in utero, including cigarette smoke and toxic trace metals such as arsenic, mercury and manganese, on genome-wide, gene-specific DNA methylation has been assessed. In particular, arsenic is highlighted, as this metalloid has been the focus of a number of studies and its detoxification mechanisms are well understood. Importantly, the tissues and cells being examined must be considered in context in order to interpret the findings of these studies. For example, by studying the placenta, it is possible to identify potential epigenetic adaptations of key genes and pathways that may alter the developmental course in line with the developmental origins of health and disease paradigm. Alternatively, studies of newborn cord blood can be used to examine how environmental exposure in utero can impact the composition of cells within the peripheral blood, leading to immunological effects of exposure. The results suggest that in humans, like other vertebrates, there is a susceptibility for epigenomic alteration by the environment during intrauterine development, and this may represent a mechanism of plasticity of the organism in response to its environment as well as a mechanism through which long-term health consequences can be shaped.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology and Toxicology and Section of Epidemiology and Biostatistics in the Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
46
|
Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:175025. [PMID: 26339590 PMCID: PMC4538324 DOI: 10.1155/2015/175025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure induces a decrease in glucose type 4 transporter (GLUT4) expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2) exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n = 15) were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P < 0.01) and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P < 0.05) in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups.
Collapse
|
47
|
Dreser N, Zimmer B, Dietz C, Sügis E, Pallocca G, Nyffeler J, Meisig J, Blüthgen N, Berthold MR, Waldmann T, Leist M. Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology 2015; 50:56-70. [PMID: 26238599 DOI: 10.1016/j.neuro.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
Functional assays, such as the "migration inhibition of neural crest cells" (MINC) developmental toxicity test, can identify toxicants without requiring knowledge on their mode of action (MoA). Here, we were interested, whether (i) inhibition of migration by structurally diverse toxicants resulted in a unified signature of transcriptional changes; (ii) whether statistically-identified transcript patterns would inform on compound grouping even though individual genes were little regulated, and (iii) whether analysis of a small group of biologically-relevant transcripts would allow the grouping of compounds according to their MoA. We analyzed transcripts of 35 'migration genes' after treatment with 16 migration-inhibiting toxicants. Clustering, principal component analysis and correlation analyses of the data showed that mechanistically related compounds (e.g. histone deacetylase inhibitors (HDACi), PCBs) triggered similar transcriptional changes, but groups of structurally diverse toxicants largely differed in their transcriptional effects. Linear discriminant analysis (LDA) confirmed the specific clustering of HDACi across multiple separate experiments. Similarity of the signatures of the HDACi trichostatin A and suberoylanilide hydroxamic acid to the one of valproic acid (VPA), suggested that the latter compound acts as HDACi when impairing neural crest migration. In conclusion, the data suggest that (i) a given functional effect (e.g. inhibition of migration) can be associated with highly diverse signatures of transcript changes; (ii) statistically significant grouping of mechanistically-related compounds can be achieved on the basis of few genes with small regulations. Thus, incorporation of mechanistic markers in functional in vitro tests may support read-across procedures, also for structurally un-related compounds.
Collapse
Affiliation(s)
- Nadine Dreser
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Bastian Zimmer
- Center for Stem Cell Biology, Sloan-Kettering Institute, New York City, NY, USA; Developmental Biology Program, Sloan-Kettering Institute, New York City, NY, USA.
| | - Christian Dietz
- Lehrstuhl für Bioinformatik und Information Mining, University of Konstanz, Konstanz, Germany
| | - Elena Sügis
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Giorgia Pallocca
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Johanna Nyffeler
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Michael R Berthold
- Lehrstuhl für Bioinformatik und Information Mining, University of Konstanz, Konstanz, Germany
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
48
|
Davis MA, Higgins J, Li Z, Gilbert-Diamond D, Baker ER, Das A, Karagas MR. Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ Health 2015; 14:12. [PMID: 25971349 PMCID: PMC4429981 DOI: 10.1186/1476-069x-14-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/04/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Early life exposure to arsenic is associated with decreased birth weight in highly exposed populations but little is known about effects of low-level arsenic exposure on growth in utero. METHODS Using a sample of 272 pregnancies from New Hampshire we obtained biometric measurements directly from fetal ultrasound reports commonly found in electronic medical records. We used information extraction methods to develop and validate an automated approach for mining biometric measurements from the text of clinical reports. As a preliminary analysis, we examined associations between in utero low-level arsenic exposure (as measured by maternal urinary arsenic concentration) and fetal growth measures (converted to Z-scores based on reference populations for estimated fetal weight, head, and other body measures) at approximately 18 weeks of gestation. RESULTS In a preliminary cross-sectional analysis of 223 out of 272 pregnancies, maternal urinary arsenic concentration (excluding arsenobetaine) was associated with a reduction in head circumference Z-score (Spearman correlation coefficient, rs = -0.08, p-value = 0.21) and a stronger association was observed among female fetuses at approximately 18 weeks of gestation (rs = - 0.21, p-value < 0.05). Although, associations were attenuated in adjusted analyses - among female fetuses a 1 μg/L increase in maternal urinary arsenic concentration was associated with a decrease of 0.047 (95% CI: -0.115, 0.021) in head circumference and 0.072 (95% CI: -0.151, 0.007) decrease in biparietal head diameter Z-score. CONCLUSIONS Our study demonstrates that useful data can be extracted directly from electronic medical records for epidemiologic research. We also found evidence that exposure to low-level arsenic may be associated with reduced head circumference in a sex dependent manner that warrants further investigation.
Collapse
Affiliation(s)
- Matthew A Davis
- />Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH USA
- />Institute for Quantitative Biomedical Sciences Graduate Program, Dartmouth College, Hanover, NH USA
- />University of Michigan School of Nursing, Ann Arbor, MI USA
- />Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - John Higgins
- />Collaboratory for Healthcare and Biomedical Informatics, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Zhigang Li
- />Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH USA
- />Department of Biostatistics, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Diane Gilbert-Diamond
- />Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH USA
- />Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Emily R Baker
- />Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH USA
- />Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Amar Das
- />Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH USA
- />Collaboratory for Healthcare and Biomedical Informatics, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Margaret R Karagas
- />Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH USA
- />Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- />Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, 7927 Rubin Building, 03756 Lebanon, NH USA
| |
Collapse
|
49
|
Gossai A, Lesseur C, Farzan S, Marsit C, Karagas MR, Gilbert-Diamond D. Association between maternal urinary arsenic species and infant cord blood leptin levels in a New Hampshire Pregnancy Cohort. ENVIRONMENTAL RESEARCH 2015; 136:180-6. [PMID: 25460635 PMCID: PMC4262605 DOI: 10.1016/j.envres.2014.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
Leptin is an important pleiotropic hormone involved in the regulation of nutrient intake and energy expenditure, and is known to influence body weight in infants and adults. High maternal levels of arsenic have been associated with reduced infant birth weight, but the mechanism of action is not yet understood. This study aimed to investigate the association between in utero arsenic exposure and infant cord blood leptin concentrations within 156 mother-infant pairs from the New Hampshire Birth Cohort Study (NHBCS) who were exposed to low to moderate levels of arsenic through well water and diet. In utero arsenic exposure was obtained from maternal second trimester urinary arsenic concentration, and plasma leptin levels were assessed through immunoassay. Results indicate that urinary arsenic species concentrations were predictive of infant cord blood leptin levels following adjustment for creatinine, infant birth weight for gestational age percentile, infant sex, maternal pregnancy-related weight gain, and maternal education level amongst 149 white mother-infant pairs in multivariate linear regression models. A doubling or 100% increase in total urinary arsenic concentration (iAs+MMA+DMA) was associated with a 10.3% (95% CI: 0.8-20.7%) increase in cord blood leptin levels. A 100% increase in either monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA) was also associated with an 8.3% (95% CI: -1.0-18.6%) and 10.3% (95% CI: 1.2-20.2%) increase in cord blood leptin levels, respectively. The association between inorganic arsenic (iAs) and cord blood leptin was of similar magnitude and direction as other arsenic species (a 100% increase in iAs was associated with a 6.5% (95% CI: -3.4-17.5%) increase in cord blood leptin levels), albeit not significant. These results suggest in utero exposure to low levels of arsenic influences cord blood leptin concentration and presents a potential mechanism by which arsenic may impact early childhood growth.
Collapse
Affiliation(s)
- Anala Gossai
- Institute of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Corina Lesseur
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755, USA
| | - Shohreh Farzan
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Carmen Marsit
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret R Karagas
- Institute of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Diane Gilbert-Diamond
- Institute of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
50
|
Khalil N, Chen A, Lee M. Endocrine disruptive compounds and cardio-metabolic risk factors in children. Curr Opin Pharmacol 2014; 19:120-4. [PMID: 25306432 DOI: 10.1016/j.coph.2014.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
The endocrine disrupting chemicals (EDC) are exogenous chemicals that can disrupt hormonal signaling system. EDCs are ubiquitous in our environment and many EDC are detectable in humans. With the increasing obesity prevalence in children it is imperative to explore the role of EDC as obesogens. This review summarizes recent epidemiological evidence regarding impact of these EDC on weight gain and metabolic outcomes in children. The EDCs include pharmaceuticals, pesticides, industrial by-products, and cigarette smoke. Current evidence suggests a link between early life exposure to some industrial by-products, synthetic hormones and cigarette smoke with weight gain. However, there is inconclusive evidence of an association between exposure to fungicides, dioxin, phytoestrogens, flame retardants, heavy metals and childhood obesity.
Collapse
Affiliation(s)
- Naila Khalil
- 3123 Research Blvd., Suite #200, Center for Global Health, Department of Community Health, Wright State University, Boonshoft School of Medicine, Dayton, OH, USA.
| | - Aimin Chen
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Miryoung Lee
- Lifespan Health Research Center, Department of Community Health, Wright State University, Boonshoft School of Medicine, Dayton, OH 45420-4006, USA; Department of Pediatrics, Wright State University, Boonshoft School of Medicine, Dayton, OH 45404-1815, USA
| |
Collapse
|