1
|
Kumar S, Singh S, Shiv K, Singh A, Kumar P, Prasad LB. Phytotoxic impact of di-butyl phthalate (DBP) on physiological, biochemical, and oxidative stress parameters of rice (Oryza sativa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35951-1. [PMID: 39885067 DOI: 10.1007/s11356-025-35951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Phthalates are synthetic compounds, well-known plasticizers, with numerous applications and reported to have adverse effects on all living organisms residing in terrestrial and aquatic environments. In this study, the rice (Oryza sativa) seedlings were exposed to di-butyl phthalate (DBP) exogenously for 7 days, with varying concentrations of 0, 200, 400, 800, and 1600 mg/L, to explore the toxicological, physiological, and biochemical consequences by measuring various parameters such as pigment, lipid, and H2O2 (hydrogen peroxide) contents. The biochemical analysis of seedlings showed that the pigments, lipids, and H2O2 concentrations were altered abnormally. After 7 days of exposure, the maximum amount of DBP was accumulated and translocated in both the shoot and root of the grown seedlings, and all morphological parameters (i.e., length and weight of both shoot and root) and pigment content (such as total carotenoid, chlorophyll a and b) were declined significantly. Superoxide dismutase (SOD), H2O2, and thiobarbituric acid reactive substance (TBARS) levels in seedlings increase as the stress increases due to the higher exposure dose of DBP. Cell viability was observed under a confocal microscope confirming the damage of the plasma membrane. Additionally, molecular docking studies indicated that DBP has a good binding affinity with key antioxidant enzymes of Oryza sativa, interacting via hydrogen bonds with specific amino acids. This suggests a potential mechanistic pathway for the observed biochemical changes in Oryza sativa.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shivani Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kunal Shiv
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Lal Bahadur Prasad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Lim J, Chang CJ, White AJ, Lo S, Wang H, Goodney G, Miao R, Barochia AV, Roger VL, Sandler DP, Wong JYY. Personal care product use and risk of adult-onset asthma: findings from the Sister Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.10.25320341. [PMID: 39830231 PMCID: PMC11741502 DOI: 10.1101/2025.01.10.25320341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Personal care products (PCPs) contain endocrine-disrupting chemicals (EDCs) linked to hormonally-sensitive diseases. Population studies have found associations between prenatal EDC exposure and childhood asthma; however, few have investigated adult-onset asthma. OBJECTIVES We investigated the associations between commonly used PCPs and the risk of adult-onset asthma in a prospective cohort study of U.S. women. METHODS We analyzed 39,408 participants from the Sister Study (2003-2009). The participants self-reported their usage frequency of 41 PCPs in the 12-month period before baseline. Latent classes were used to identify groups with similar usage patterns ('infrequent', 'moderate', 'frequent') within types of products ('beauty', 'everyday hair', 'hygiene', and 'skincare'). Multivariable Cox regression models were used to assess the associations between PCP use and incident adult-onset asthma. RESULTS Over an average 12.5-year follow-up, 1,774 incident asthma cases were identified. Compared to infrequent users, moderate (hazard ratio [HR]=1.21 (95% confidence interval (CI):1.07,1.37)) and frequent (HR=1.22 (95%CI:1.08,1.38)) users of beauty products had significantly higher asthma risk. Similar associations were observed for hygiene (moderate: HR=1.14 (95%CI:1.01,1.29) and frequent: HR=1.20 (95%CI:1.06,1.36)) and skincare products (moderate: HR=1.21 (95%CI:1.06,1.38) and frequent: HR=1.20 (95%CI:1.06,1.35)). Several individual everyday hair products (hair spray, hair styling gel/mousse, and pomade or hair grease) were positively associated with asthma risk, but associations were not detected for everyday hair latent classes. DISCUSSION Our findings suggest that PCP use potentially contributes to future risk of adult-onset asthma among women. These novel findings reinforce the need for regulation of PCPs and their components to reduce the burden of asthma.
Collapse
|
3
|
Baker BH, Day DB, Hazlehurst MF, Herkert NJ, Stapleton HM, Sathyanarayana S. Associations of environmental chemical exposures measured in personal silicone wristbands with sociodemographic factors, COVID-19 restrictions, and child respiratory health. ENVIRONMENTAL RESEARCH 2024; 262:119776. [PMID: 39142453 PMCID: PMC11568935 DOI: 10.1016/j.envres.2024.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Although human biomonitoring of environmental chemicals has been considered a gold standard, these methods can be costly, burdensome, and prone to unwanted sources of variability that may cause confounding. Silicone wristbands have recently emerged as innovative passive samplers for measuring personal exposures. METHODS In a pilot study from 2019 to 2021 involving 55 children aged 5-9 years in Seattle and Yakima, Washington, we utilized silicone wristbands to explore associations of sociodemographic variables and COVID-19-related restrictions, including school closures, with exposures to numerous chemicals including brominated and organophosphate ester (OPE) flame retardants, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs), phthalates, and pesticides. We additionally conducted the first analysis testing silicone wristband chemicals as predictors of child wheeze, individually and in mixtures via logistic weighted quantile sum regression (WQS). RESULTS Among 109 semi-volatile organic compounds measured, we detected 40 in >60% of wristbands worn by children continuously for an average of 5 days. Chemicals were generally positively correlated, especially within the same class. Male sex and increasing age were linked with higher exposures across several chemical classes; Hispanic/Latino ethnicity was linked with higher exposures to some phthalates and OPEs. COVID-19 restrictions were associated with lower wristband concentrations of brominated and triaryl OPE flame retardants. Each one-decile higher WQS exposure index was suggestively associated with 2.11-fold [95% CI: 0.93-4.80] higher odds of child wheeze. Risk of child wheeze was higher per 10-fold increase in the PAH chrysene (RR = 1.93[1.07-3.49]), the pesticide cis-permethrin (3.31[1.23-8.91]), and di-isononyl phthalate (DINP) (5.40[1.22-24.0]) CONCLUSIONS: Our identification of demographic factors including sex, age, and ethnicity associated with chemical exposures may aid efforts to mitigate exposure disparities. Lower exposures to flame retardants during pandemic restrictions corroborates prior evidence of higher levels of these chemicals in school versus home environments. Future research in larger cohorts is needed to validate these findings.
Collapse
Affiliation(s)
- Brennan H Baker
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Cao N, Zhao L, Li R, Liang Y, Zhang Z. Glycolysis mediates the association between phthalate exposure and the prevalence of childhood asthma: The National Health and Nutrition Examination Survey 2009-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117088. [PMID: 39357376 DOI: 10.1016/j.ecoenv.2024.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Identified as a critical risk factor for childhood asthma, environmental pollution plays a pivotal role. However, research on the effects and mechanisms of phthalates mixture and their interactions in relation to childhood asthma is still lacking. In the National Health and Nutrition Examination Survey (NHANES) conducted from 2009 to 2018, our research explored the link between phthalates in urine and the prevalence of childhood asthma. In this study, which involved 810 participants, we used four different statistical analysis methods to investigate the association between urinary phthalate levels and childhood asthma. Additionally, we conducted a mediation analysis to explore whether the impact mechanism of phthalate exposure on childhood asthma operates through the glycolysis. Among the participants, 525 (64.81 %) individuals were diagnosed with asthma, with 330 (40.74 %) individuals undergoing testing for glycolytic markers. Through Spearman correlation analysis and weighted principal component analysis (W-PCA), it was found that mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl)-hexyl phthalate (MEHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) are the four most highly correlated phthalates. In addition, comprehensive analysis by the weighted generalized linear models (W-GLM), weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models showed that phthalates mixture were positively associated with the prevalence of childhood asthma, especially MECPP, MEHHP and MEOHP. More importantly, glycolysis participated as a mediator in the relationship between MECPP, MEHHP and MEOHP exposure and the prevalence of childhood asthma, explaining 41.194 %, 38.322 % and 39.871 % of the effects respectively. Therefore, our study revealed that phthalate exposure is a risk factor for asthma in children, and glycolysis may be involved as a potential mediator in this process. This conclusion will be verified through more prospective studies in the future.
Collapse
Affiliation(s)
- Na Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Ren Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Yufen Liang
- Yuncheng Central Hospital, Yuncheng 044000, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Hauptman M, Jackson-Browne MS, Busgang S, Andra SS, Patti MA, Henderson NB, Curtin P, Teitelbaum SL, Acosta K, Maciag M, Gaffin JM, Petty CR, Wright RO, Gold DR, Phipatanakul W. Urinary biomarkers of environmental exposures and asthma morbidity in a school inner city asthma study. Int J Hyg Environ Health 2024; 262:114430. [PMID: 39205349 DOI: 10.1016/j.ijheh.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/09/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The burden of pediatric asthma and other allergic diseases is not evenly distributed among United States populations. OBJECTIVE To determine whether urinary biomarkers are associated with asthma morbidity, and if associations vary by child race, ethnicity and sex. METHODS This study includes n = 152 children with physician-diagnosed asthma who participated in the School Inner-City Asthma Intervention Study (SICAS-2). Metabolites of phenol, paraben, polycyclic aromatic hydrocarbons, and phthalate analytes were analyzed from urine samples collected at baseline. Asthma symptom days over the past 2 weeks were dichotomized to no asthma symptom days or any asthma symptom days. Cross-sectional regression models were adjusted for age, sex, number of colds, household income, prescription control, race and ethnicity, body mass index (BMI) percentile, and smoke exposure. Weighted quantile sum regression was used to analyze each chemical class and a total mixture effect, controlling for the same covariates. Analyses were conducted with the assistance of the National Institute of Environmental Health Sciences Children's Health Exposure Analysis Resource (CHEAR). RESULTS Participants were mostly Hispanic/Latino and low income with an average age of 7.83 years and the average maximum asthma symptom days over the past two weeks of 2.13 (standard deviation: 3.56). The maximum concentrations indicate extreme values for several chemicals, including bisphenol-3, 2,5-dichlorophenol, propyl and methyl parabens, triclosan, methyl paraben and cotinine. We found a significant interaction effect and differing contributions of analytes for children with allergen sensitivity versus those that did not. For stratified analyses assessing effect modification by child race and ethnicity, weighted quantile sum interaction models showed reduced odds of asthma symptoms to a greater magnitude in children of other races and ethnicities compared to Black, Non-Hispanic children. CONCLUSIONS Preliminary analyses of the association between environmental chemical exposure and asthma symptoms among inner-city children revealed an inverse association, which may be due to personal care and medication use and can be understood further in future analyses. Beneficial effects were detected for most of the chemicals.
Collapse
Affiliation(s)
- Marissa Hauptman
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA; Region 1 New England Pediatric Environmental Health Specialty Unit, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Medina S Jackson-Browne
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Stefanie Busgang
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Health Exposure Analysis Resource Data Center, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Lautenberg Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa A Patti
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Noelle B Henderson
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Paul Curtin
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Health Exposure Analysis Resource Data Center, New York, NY, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Health Exposure Analysis Resource Data Center, New York, NY, USA
| | - Keith Acosta
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA; Region 1 New England Pediatric Environmental Health Specialty Unit, Boston, MA, USA
| | - Michelle Maciag
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan M Gaffin
- Harvard Medical School, Boston, MA, USA; Division of Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Carter R Petty
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Health Exposure Analysis Resource Data Center, New York, NY, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane R Gold
- Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Respiratory Epidemiology, Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, MA, USA; Division of Allergy and Immunology, Boston Children's Hospital, Boston, MA, USA; Institutional Centers for Clinical and Translational Research, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Hu CY, Alcala CS, Lamadrid-Figueroa H, Tamayo-Ortiz M, Mercado-Garcia A, Rivera Rivera N, Just AC, Gennings C, Téllez-Rojo MM, Wright RO, Wright RJ, Carroll KN, Rosa MJ. Associations of prenatal exposure to phthalates and their mixture with lung function in Mexican children. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134863. [PMID: 38885590 PMCID: PMC11250751 DOI: 10.1016/j.jhazmat.2024.134863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Early life phthalates exposure has been associated with adverse respiratory outcomes. However, evidence linking prenatal phthalates exposure and childhood lung function has been inconclusive. Additionally, few studies have examined phthalates exposure as a mixture and explored sexually dimorphic associations. We aimed to investigate sex-specific associations of prenatal phthalates mixtures with childhood lung function using the PROGRESS cohort in Mexico (N = 476). Prenatal phthalate concentrations were measured in maternal urine collected during the 2nd and 3rd trimesters. Children's lung function was evaluated at ages 8-13 years. Individual associations were assessed using multivariable linear regression, and mixture associations were modeled using repeated holdout WQS regression and hierarchical BKMR; data was stratified by sex to explore sex-specific associations. We identified significant interactions between 2nd trimester phthalates mixture and sex on FEV1 and FVC z-scores. Higher 2nd trimester phthalate concentrations were associated with higher FEV1 (β = 0.054, 95 %CI: 0.005, 0.104) and FVC z-scores (β = 0.074, 95 % CI: 0.024, 0.124) in females and with lower measures in males (FEV1, β = -0.017, 95 %CI: -0.066, 0.026; FVC, β = -0.014, 95 %CI: -0.065, 0.030). This study indicates that prenatal exposure to phthalates is related to childhood lung function in a sex-specific manner.
Collapse
Affiliation(s)
- Cheng-Yang Hu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadya Rivera Rivera
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Allan C Just
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology, Brown University School of Public Health, 121 S Main St, Providence, RI 02903, USA
| | - Chris Gennings
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Kecia N Carroll
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
7
|
Li X, Li Z, Ye J, Ye W. Association Between Urinary Phthalate Metabolites and Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1421-1431. [PMID: 38948906 PMCID: PMC11212814 DOI: 10.2147/copd.s459435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Objective To determine the association of urinary phthalate metabolites with chronic obstructive pulmonary disease (COPD), airflow obstruction, lung function and respiratory symptoms. Methods Our study included a total of 2023 individuals aged ≥ 40 years old in the National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression was conducted to explore the correlation of eleven urinary phthalate metabolites (MCNP, MCOP, MECPP, MnBP, MCPP, MEP, MEHHP, MEHP, MiBP, MEOHP, and MBzP) with COPD, airflow obstruction and respiratory symptoms. Linear regression analyses were used to evaluate the relationship between urinary phthalate metabolites and lung function. Results When compared to the first tertile, the third tertile of MEHHP was associated with the risk of COPD [OR: 2.779; 95% confidence interval (CI): 1.129-6.840; P = 0.026]. Stratified analysis showed that MEHHP increased the risk of COPD by 7.080 times in male participants. Both MCPP and MBzP were positively correlated with the risk of airflow obstruction. The third tertile of MBzP increased the risk of cough by 1.545 (95% CI: 1.030-2.317; P = 0.035) times. Both FEV1 and FVC were negatively associated with MEHHP, MECPP, MnBP, MEP, MiBP and MEOHP. Conclusion Higher levels of MEHHP are associated with increased risk of COPD, and lower measures of FEV1 and FVC. MBzP is positively related to airflow obstruction and cough.
Collapse
Affiliation(s)
- Xuefang Li
- Department of Infectious Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Jian Ye
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Sun BZ, Gaffin JM. Recent Insights into the Environmental Determinants of Childhood Asthma. Curr Allergy Asthma Rep 2024; 24:253-260. [PMID: 38498229 DOI: 10.1007/s11882-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW Ubiquitous environmental exposures, including ambient air pollutants, are linked to the development and severity of childhood asthma. Advances in our understanding of these links have increasingly led to clinical interventions to reduce asthma morbidity. RECENT FINDINGS We review recent work untangling the complex relationship between air pollutants, including particulate matter, nitrogen dioxide, and ozone and asthma, such as vulnerable windows of pediatric exposure and their interaction with other factors influencing asthma development and severity. These have led to interventions to reduce air pollutant levels in children's homes and schools. We also highlight emerging environmental exposures increasingly associated with childhood asthma. Growing evidence supports the present threat of climate change to children with asthma. Environmental factors play a large role in the pathogenesis and persistence of pediatric asthma; in turn, this poses an opportunity to intervene to change the course of disease early in life.
Collapse
Affiliation(s)
- Bob Z Sun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3121, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3121, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:37-45. [PMID: 36151703 DOI: 10.1515/reveh-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are a kind of synthetic plasticizers, which extensively used as plastic productions to improve their plasticity and flexibility. However, exposure to phthalates has been proved an increased risk of respiratory disease, because by they affect the development and functions of the lung and immune system. Here, we attempt to review respiratory health of phthalate exposure. Firstly, we describe the relationship between phthalates and lung function and airway inflammation. Then, the role of phthalates in asthma, lung cancer, rhinitis, and respiratory tract infections and the possible mechanisms of action are discussed. Finally, possible effective measures to reduce exposure to phthalates are proposed, and health care workers are called upon to provide educational resources and advocate for informed public health policies. Overall, the evidence for association between phthalate exposure and respiratory disease is weak and inconsistent. Therefore, thorough implementation in large populations is needed to produce more consistent and robust results and to enhance the overall understanding of the potential respiratory health risks of phthalate in long-term exposure.
Collapse
Affiliation(s)
- Yun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Chen H, Liu J, Hu L, Yang J, Wang Y, Sun W, Wang R, Ding G, Li Y. Mycotoxins from Alternaria Panax, the specific plant pathogen of Panax ginseng. Mycology 2024; 14:381-392. [PMID: 38187879 PMCID: PMC10769115 DOI: 10.1080/21501203.2023.2265662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Ginseng black spot, caused by Alternaria panax, is one of the most common diseases of Panax ginseng, which usually causes serious yield loss of ginseng plants. However, the pathogenic mechanism of A. panax has not been clarified clearly. Mycotoxins produced by phytopathogens play an important role in the process of infection. Previous study reported that dibutyl phthalate (DBP) identified from the metabolites of A. panax is a potent mycotoxin against P. ginseng. However, more evidence suggests that DBP is one of the constituents of plasticisers. To identify mycotoxins from A. panax and evaluate their phytotoxicity on the leaves of P. ginseng, different chromatographic, spectral and bioassay-guided methods were used together in this report. As a result, tyrosol (1), 3-hydroxy-3-(4-methoxyphenyl) propanoic acid (2), and 3-benzylpiperazine-2,5-dione (3) were isolated and characterised from the extract of A. panax, in which compounds 1 and 2 showed phytotoxic activity on ginseng leaves. Furthermore, DBP was confirmed to come from the residue of ethyl acetate through UPLC-MS/MS analysis, and displayed no phytotoxicity on ginseng leaves based on biological experiments. The results in this report first revealed that tyrosol (1), and 3-hydroxy-3-(4-methoxyphenyl) propanoic acid (2) not DBP were the potent mycotoxins of A. panax.
Collapse
Affiliation(s)
- Huiqing Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wensong Sun
- Liaoning Research Institute of Cash Crops, Liaoyang, China
| | - Rong Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Tokinobu A, Tanaka K, Arakawa M, Miyake Y. Pre- and postnatal maternal hair dye use and risk of wheeze and asthma in 5-year-old Japanese children: the Kyushu Okinawa Maternal and Child Health Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1697-1705. [PMID: 36062394 DOI: 10.1080/09603123.2022.2120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The present study investigated the association between pre- and postnatal maternal hair dye use and the risk of wheeze and asthma in Japanese children aged 5 years. Study participants were 1199 mother-child pairs. Information on the variables under study was obtained using repeated questionnaires completed by parents. Prenatal maternal hair dye use was associated with an increased risk of current wheeze and ever doctor-diagnosed asthma; the adjusted odds ratios (ORs) (95% confidence intervals [CIs]) were 1.44 (1.02-2.02) and 1.51 (1.00-2.25), respectively. Postnatal maternal hair dye use was related to the risk of doctor-diagnosed asthma; the adjusted OR (95% CI) was 1.58 (1.03-2.40). Children who were exposed to maternal hair dye use both prenatally and postnatally had an increased risk of childhood current wheeze and ever doctor-diagnosed asthma; the adjusted ORs (95% CIs) were 1.59 (1.03-2.42) and 1.76 (1.06-2.88), respectively. Our findings suggest that perinatal maternal hair dye use is associated with the risk of wheeze and asthma in children.
Collapse
Affiliation(s)
- Akiko Tokinobu
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Center for Diversity and Inclusion, Okayama University Hospital, Okayama, Japan
| | - Keiko Tanaka
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Center for Data Science, Ehime University, Ehime, Japan
- Research Promotion Unit, Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Masashi Arakawa
- Wellness Research Fields, Faculty of Global and Regional Studies, University of the Ryukyus, Okinawa, Japan
- The Department of Cross Cultural Studies, Osaka University of Tourism, Okinawa, Japan
| | - Yoshihiro Miyake
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Center for Data Science, Ehime University, Ehime, Japan
- Research Promotion Unit, Translational Research Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
12
|
Stroustrup A, Zhang X, Spear E, Bandyopadhyay S, Narasimhan S, Meher AK, Choi J, Qi G, Poindexter BB, Teitelbaum SL, Andra SS, Gennings C, Aschner JL. Phthalate exposure in the neonatal intensive care unit is associated with development of bronchopulmonary dysplasia. ENVIRONMENT INTERNATIONAL 2023; 178:108117. [PMID: 37517179 PMCID: PMC10581357 DOI: 10.1016/j.envint.2023.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Bronchopulmonary dysplasia (BPD) is a serious yet common morbidity of preterm birth. Although prior work suggests a possible role for phthalate exposure in the development of BPD, no study has rigorously evaluated this. Our objective was to determine whether hospital-based phthalate exposure is associated with the development of BPD and to identify developmental windows sensitive to exposure. STUDY DESIGN This is a prospective multicenter cohort study of 360 preterm infants born at 23-33 weeks gestation participating in the Developmental Impact of NICU Exposures (DINE) cohort. 939 urine specimens collected during the NICU stay were analyzed for biomarkers of phthalate exposure by liquid chromatography with tandem mass spectrometry. The modified Shennan definition was used to diagnose bronchopulmonary dysplasia. Reverse distributed-lag modeling identified developmental windows sensitive to specific phthalate exposure, controlling for relevant covariates including sex and respiratory support. RESULTS Thirty-five percent of participants were diagnosed with BPD. Exposure to specific phthalate mixtures at susceptible points in preterm infant development are associated with later diagnosis of BPD in models adjusted for use of respiratory support. The weighted influence of specific phthalate metabolites in the mixtures varied by sex. Metabolites of di(2-ethylhexyl) phthalate, a phthalate previously linked to neonatal respiratory support equipment, drove this association, particularly among female infants, at 26- to 30-weeks post-menstrual age. CONCLUSIONS This is the largest and only multi-site study of NICU-based phthalate exposure and clinical impact yet reported. In well-constructed models accounting for infant sex and respiratory support, we found a significant positive association between ultimate diagnosis of BPD and prior exposure to phthalate mixtures with DEHP predominance at 26- to 30-weeks PMA or 34-36-weeks PMA. This information is critically important as it identifies a previously unrecognized and modifiable contributing factor to BPD.
Collapse
Affiliation(s)
- Annemarie Stroustrup
- Department of Pediatrics and Department of Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, NY, United States; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emily Spear
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanjukta Bandyopadhyay
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY, United States
| | - Srinivasan Narasimhan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anil K Meher
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jaeun Choi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gao Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Brenda B Poindexter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Judy L Aschner
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, United States; Department of Pediatrics and Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
13
|
Quirós-Alcalá L, Belz DC, Woo H, Lorizio W, Putcha N, Koehler K, McCormack MC, Hansel NN. A cross sectional pilot study to assess the role of phthalates on respiratory morbidity among patients with chronic obstructive pulmonary disease. ENVIRONMENTAL RESEARCH 2023; 225:115622. [PMID: 36894111 PMCID: PMC10580394 DOI: 10.1016/j.envres.2023.115622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) affects ∼16 million U.S. adults. Phthalates, synthetic chemicals in consumer products, may adversely impact pulmonary function and airway inflammation; however, their role on COPD morbidity remains unknown. OBJECTIVE We examined associations between phthalate exposures and respiratory morbidity among 40 COPD patients who were former smokers. METHODS We quantified 11 phthalate biomarkers in urine samples collected at baseline in a 9-month prospective cohort study in Baltimore, Maryland. COPD baseline morbidity measures included: health status and quality of life measures (CAT: COPD Assessment Test, CCQ: Clinical COPD Questionnaire, SGRQ: St. George's Respiratory Questionnaire; mMRC: Modified Medical Research Council Dyspnea Scale), and lung function. Information on prospective exacerbation data was monitored monthly during the 9-month longitudinal follow-up period. To examine associations between morbidity measures and phthalate exposures, we used multivariable linear and Poisson regression models for continuous and count outcomes, respectively, adjusting for age, sex, race/ethnicity, education, and smoking pack-years. RESULTS Higher mono-n-butyl phthalate (MBP) concentrations were associated with increased CAT(β, 2.41; 95%CI, 0.31-4.51), mMRC (β, 0.33; 95%CI 0.11-0.55), and SGRQ (β, 7.43; 95%CI 2.70-12.2) scores at baseline. Monobenzyl phthalate (MBzP) was also positively associated with CCQ and SGRQ scores at baseline. Higher concentrations of the molar sum of Di (2-ethylhexyl) phthalate (DEHP) were associated with increased incidence of exacerbations during the follow-up period (incidence rate ratio, IRR = 1.73; 95%CI 1.11, 2.70 and IRR = 1.94; 95%CI 1.22, 3.07, for moderate and severe exacerbations, respectively). MEP concentrations were inversely associated with incidence of exacerbations during the follow-up period. CONCLUSIONS We found that exposure to select phthalates was associated with respiratory morbidity among COPD patients. Findings warrant further examination in larger studies given widespread phthalate exposures and potential implications for COPD patients should relationships observed be causal.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Daniel C Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirsten Koehler
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Coiffier O, Lyon-Caen S, Boudier A, Quentin J, Gioria Y, Pin I, Bayat S, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Philippat C, Siroux V. Prenatal exposure to synthetic phenols and phthalates and child respiratory health from 2 to 36 months of life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121794. [PMID: 37178953 DOI: 10.1016/j.envpol.2023.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Exposure to phthalates and synthetic phenols is ubiquitous. Some of them are suspected to impact child respiratory health, although evidence still remains insufficient. This study investigated the associations between prenatal exposure to phthalates and phenols, individually and as a mixture, and child respiratory health assessed by objective lung function measures since 2 months of age. Among 479 mother-child pairs from the SEPAGES cohort, 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites were measured in 2 pools including each 21 urine samples collected at the 2nd and 3rd pregnancy trimesters. Lung function was measured at 2 months using tidal breathing flow-volume loops and nitrogen multiple-breath washout, and at 3 years using oscillometry. Asthma, wheezing, bronchitis and bronchiolitis were assessed by repeated questionnaires. A cluster-based analysis was applied to identify exposure patterns to phenols and phthalates. Adjusted associations between clusters as well as each individual exposure biomarker and child respiratory health were estimated by regression models. We identified four prenatal exposure patterns: 1) low concentrations of all biomarkers (reference, n = 106), 2) low phenols-moderate phthalates (n = 162), 3) high concentrations of all biomarkers except bisphenol S (n = 109), 4) high parabens-moderate other phenols-low phthalates (n = 102). At 2 months, cluster 2 infants had lower functional residual capacity and tidal volume and higher ratio of time to peak tidal expiratory flow to expiratory time (tPTEF/tE) and cluster 3 had lower lung clearance index and higher tPTEF/tE. Clusters were not associated with respiratory health at 3 years but in the single-pollutant models, parabens were associated with increased area of the reactance curve, bronchitis (methyl, ethyl parabens) and bronchiolitis (propyl paraben). Our results suggested that prenatal exposure to mixtures of phthalates reduced lung volume in early life. Single exposure analyses suggested associations of parabens with impaired lung function and increased risk of respiratory diseases.
Collapse
Affiliation(s)
- Ophélie Coiffier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Joane Quentin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Yoann Gioria
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Isabelle Pin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | | | | | | | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France.
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| |
Collapse
|
15
|
Liang HW, Snyder N, Wang J, Xun X, Yin Q, LeWinn K, Carroll KN, Bush NR, Kannan K, Barrett ES, Mitchell RT, Tylavsky F, Adibi JJ. A study on the association of placental and maternal urinary phthalate metabolites. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:264-272. [PMID: 36114292 PMCID: PMC10101560 DOI: 10.1038/s41370-022-00478-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalate exposure in pregnancy is typically estimated using maternal urinary phthalate metabolite levels. Our aim was to evaluate the association of urinary and placental tissue phthalates, and to explore the role of maternal and pregnancy characteristics that may bias estimates. METHODS Fifty pregnancies were selected from the CANDLE Study, recruited from 2006 to 2011 in Tennessee. Linear models were used to estimate associations of urinary phthalates (2nd, 3rd trimesters) and placental tissue phthalates (birth). Potential confounders and modifiers were evaluated in categories: temporality (time between urine and placenta sample), fetal sex, demographics, social advantage, reproductive history, medication use, nutrition and adiposity. Molar and quantile normalized phthalates were calculated to facilitate comparison of placental and urinary levels. RESULTS Metabolites detectable in >80% of both urine and placental samples were MEP, MnBP, MBzP, MECPP, MEOHP, MEHHP, and MEHP. MEP was most abundant in urine (geometric mean [GM] 7.00 ×102 nmol/l) and in placental tissue (GM 2.56 ×104 nmol/l). MEHP was the least abundant in urine (GM 5.32 ×101 nmol/l) and second most abundant in placental tissue (2.04 ×104 nmol/l). In aggregate, MEHP differed the most between urine and placenta (2.21 log units), and MEHHP differed the least (0.07 log units). MECPP was positively associated between urine and placenta (regression coefficient: 0.31 95% CI 0.09, 0.53). Other urine-placenta metabolite associations were modified by measures of social advantage, reproductive history, medication use, and adiposity. CONCLUSION Phthalates were ubiquitous in 50 full-term placental samples, as has already been shown in maternal urine. MEP and MEHP were the most abundant. Measurement and comparison of urinary and placental phthalates can advance knowledge on phthalate toxicity in pregnancy and provide insight into the validity and accuracy of relying on maternal urinary concentrations to estimate placental exposures. IMPACT STATEMENT This is the first report of correlations/associations of urinary and placental tissue phthalates in human pregnancy. Epidemiologists have relied exclusively on maternal urinary phthalate metabolite concentrations to assess exposures in pregnant women and risk to their fetuses. Even though it has not yet been confirmed empirically, it is widely assumed that urinary concentrations are strongly and positively correlated with placental and fetal levels. Our data suggest that may not be the case, and these associations may vary by phthalate metabolite and associations may be modified by measures of social advantage, reproductive history, medication use, and adiposity.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Nathaniel Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Qing Yin
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Kaja LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kecia N Carroll
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Kurunthachalam Kannan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, UK
| | - Fran Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Elshaer S, Martin LJ, Baker TA, Roberts E, Rios-Santiago P, Kaufhold R, Butsch Kovacic M. Environmental Health Knowledge Does Not Necessarily Translate to Action in Youth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3971. [PMID: 36900981 PMCID: PMC10001797 DOI: 10.3390/ijerph20053971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental challenges pose serious health problems, especially for children, and lay public action is lacking. This study sought to characterize the relationship between environmental health knowledge and behavior in youth. A cross-sectional, descriptive survey with quantitative and qualitative questions was conducted. Open-ended questions were coded to generate themes/subthemes. Subscales' scores were presented as mean ± SD or median and interquartile range (IQR). T- and Mann-Whitney tests were used to compare groups, and correlations were used to evaluate covariation. A total of 452 children were surveyed. Youth verbalized concerns about their environments and their impact on health. Air pollution was the most concerning issue. Participants had moderate knowledge scores. Few described the three health domains; even fewer included environment. Behavior scores were low and weakly correlated with knowledge, but were moderately correlated with attitude and self-efficacy. Participation in environmental classes, activities, and clubs was associated with higher scores. We found variable environmental health knowledge, limited understanding of the local environment's impact on health, and a weak association between youth's knowledge and behavior. Focused formal and non-formal educational experiences were associated with improved scores, indicating the value of targeted youth educational programming to increase environmental health knowledge and action.
Collapse
Affiliation(s)
- Shereen Elshaer
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Public Health and Preventive Medicine, Mansoura University Faculty of Medicine, Mansoura City 35516, Egypt
| | - Lisa J. Martin
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Theresa A. Baker
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Erin Roberts
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Paola Rios-Santiago
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ross Kaufhold
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Shriver National Institute of Child Health and Human Development, Bethesda, MD 20847, USA
| | - Melinda Butsch Kovacic
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Rehabilitation, Exercise, and Nutrition Sciences, The University of Cincinnati College of Allied Health Sciences, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Bosch de Basea M, Carsin AE, Abellan A, Cobo I, Lertxundi A, Marin N, Soler-Blasco R, Ibarluzea J, Vrijheid M, Sunyer J, Casas M, Garcia-Aymerich J. Gestational phthalate exposure and lung function during childhood: A prospective population-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119833. [PMID: 35931390 DOI: 10.1016/j.envpol.2022.119833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The potential effect of gestational exposure to phthalates on the lung function levels during childhood is unclear. Therefore, we examined this association at different ages (from 4 to 11 years) and over the whole childhood. Specifically, we measured 9 phthalate metabolites (MEP, MiBP, MnBP, MCMHP, MBzP, MEHHP, MEOHP, MECPP, MEHP) in the urine of 641 gestating women from the INMA study (Spain) and the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC in their offspring at ages 4, 7, 9 and 11. We used linear regression and mixed linear regression with a random intercept for subject to assess the association between phthalates and lung function at each study visit and for the overall childhood, respectively. We also assessed the phthalate metabolites mixture effect on lung function using a Weighted Quantile Sum (WQS) regression. We observed that the phthalate metabolites gestational levels were consistently associated with lower FVC and FEV1 at all ages, both when assessed individually and jointly as a mixture, although most associations were not statistically significant. Of note, a 10% increase in MiBP was related to lower FVC (-0.02 (-0.04, 0)) and FEV1 z-scores (-0.02 (-0.04, -0.01) at age 4. Similar significant reductions in FVC were observed at ages 4 and 7 associated with an increase in MEP and MnBP, respectively, and for FEV1 at age 4 associated with an increase in MBzP. WQS regression consistently identified MBzP as an important contributor to the phthalate mixture effect. We can conclude that the gestational exposure to phthalates was associated with children's lower FVC and FEV1, especially in early childhood, and in a statistically significant manner for MEP, MiBP, MBzP and MnBP. Given the ubiquity of phthalate exposure and its established endocrine disrupting effects in children, our findings support current regulations that limit phthalate exposure.
Collapse
Affiliation(s)
- Magda Bosch de Basea
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alicia Abellan
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona. Spain
| | - Inés Cobo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Faculty of Medicine and Nursery of the University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Natalia Marin
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
18
|
Zhao Y, Sun Y, Zhu C, Zhang Y, Hou J, Zhang Q, Ataei Y. Phthalate Metabolites in Urine of Chinese Children and Their Association with Asthma and Allergic Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14083. [PMID: 36360961 PMCID: PMC9654528 DOI: 10.3390/ijerph192114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are ubiquitous 'modern' chemical compounds with potential negative impacts on children's health. A nested case-control study was designed to investigate associations of phthalate exposure with children's asthma and allergic symptoms. We collected 243 first morning urine samples from 4-8-year-old children in Tianjin, China. Eight metabolites (i.e., mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP) and mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)) of five phthalates were analyzed using HPLC-MS. MiBP, MnBP and MECPP were the dominant phthalate metabolites in urine of children in Tianjin with median concentrations of 31.6 μg/L, 26.24 μg/L and 46.12 μg/L, respectively. We found significantly positive associations of diagnosed asthma with MnBP (adjusted odds ratios (AOR): 1.96; 95% confidence intervals (CIs): 1.07-3.61), MEHHP (AOR: 2.00; 95% CI: 1.08-3.71) and MEOHP (AOR: 2.09; 95% CI: 1.06-4.10). Our study indicates that phthalate exposure in childhood, especially to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP), may be a risk factor for children's asthma.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changqi Zhu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yeganeh Ataei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
19
|
Huang S, Ma S, Wang D, Liu H, Li G, Yu Y. National-scale urinary phthalate metabolites in the general urban residents involving 26 provincial capital cities in China and the influencing factors as well as non-carcinogenic risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156062. [PMID: 35597362 DOI: 10.1016/j.scitotenv.2022.156062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are widely used in daily products but can cause a variety of adverse effects in humans. Few studies have been carried out on human internal exposure levels of PAEs on a large-scale, especially in developing countries. In the present study, 1161 urine samples collected from residents of 26 provincial capitals in China were analyzed for nine phthalate metabolites (mPAEs). The chemicals were widely detected, and the median specific gravity adjusted urinary concentration of Σ9mPAEs was 278 μg/L. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the main parent PAEs that the residents were exposed to. Demographic characteristics, such as age and educational level, were significantly associated with PAE exposure. Children and the elderly had higher mPAE levels. Subjects with lower educational levels were more frequently exposed to DnBP and DEHP. However, mono-ethyl phthalate showed the opposite trend, i.e., higher concentrations in subjects aged 18-59 years and with higher educational levels. Geographic differences were detected at the national scale. Residents in northeastern and western China had higher levels of mPAEs than those in central China, most likely because of different industrial usage of the chemicals and different living habits and living conditions of the residents. Health risk assessment showed that hazard indices of PAEs ranged from 0.07 to 9.34, with 20.0% of the subjects being concern for potential non-carcinogenic risk as assessed by Monte Carlo simulation. DEHP and DnBP were the primary contributors, representing 96.7% of total risk. This first large-scale study on PAE human internal exposure in China provides useful information on residents' health in a developing country, which could be used for chemical management and health protection.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongwu Wang
- Shouguang City Center for Disease Control and Prevention in Shandong Province, Weifang 262700, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Seymore TN, Rivera-Núñez Z, Stapleton PA, Adibi JJ, Barrett ES. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol Sci 2022; 188:153-179. [PMID: 35686923 PMCID: PMC9333406 DOI: 10.1093/toxsci/kfac060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phthalates are ubiquitous compounds known to leach from the plastic products that contain them. Due to their endocrine-disrupting properties, a wide range of studies have elucidated their effects on reproduction, metabolism, neurodevelopment, and growth. Additionally, their impacts during pregnancy and on the developing fetus have been extensively studied. Most recently, there has been interest in the impacts of phthalates on the placenta, a transient major endocrine organ critical to maintenance of the uterine environment and fetal development. Phthalate-induced changes in placental structure and function may have significant impacts on the course of pregnancy and ultimately, child health. Prior reviews have described the literature on phthalates and placental health; however to date, there has been no comprehensive, systematic review on this topic. Here, we review 35 papers (24 human and 11 animal studies) and summarize phthalate exposures in relation to an extensive set of placental measures. Phthalate-related alterations were reported for placental morphology, hormone production, vascularization, histopathology, and gene/protein expression. The most consistent changes were observed in vascular and morphologic endpoints, including cell composition. These changes have implications for pregnancy complications such as preterm birth and intrauterine growth restriction as well as potential ramifications for children's health. This comprehensive review of the literature, including common sources of bias, will inform the future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Talia N Seymore
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| |
Collapse
|
21
|
Are Phthalate Exposure Related to Oxidative Stress in Children and Adolescents with Asthma? A Cumulative Risk Assessment Approach. Antioxidants (Basel) 2022; 11:antiox11071315. [PMID: 35883806 PMCID: PMC9312256 DOI: 10.3390/antiox11071315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Childhood asthma has become one of the most common chronic diseases in children and adolescents. However, few case–control studies investigating the relationship between phthalate exposure and asthma in children and adolescents have been conducted, especially in Asia. Therefore, we assessed the potential associations between phthalate exposure and asthma among children and adolescents in Taiwan. Because various demographic and environmental variables may influence the incidence and prognosis of asthma, we performed a case–control study with propensity score matching. Out of 615 Childhood Environment and Allergic Diseases Study participants, we conditionally matched 41 children with clinically diagnosed asthma with 111 controls. We then analyzed 11 phthalate metabolites by using liquid chromatography with tandem mass spectrometry. Compared with the control group, the median urinary phthalate levels for most phthalate metabolites in the case group were slightly increased, including monomethyl phthalate, mono-n-butyl phthalate, monobenzyl phthalate, monoethylhexyl phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, and mono-(2-carboxymethylhexyl) phthalate. Hence, our results suggest that phthalate exposure may be associated with the development of asthma. In addition, prenatal environmental factors, such as active or passive smoking during pregnancy, may increase the risk of asthma.
Collapse
|
22
|
Feng YL, Singh R, Chao A, Li Y. Diagnostic Fragmentation Pathways for Identification of Phthalate Metabolites in Nontargeted Analysis Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:981-995. [PMID: 35588523 PMCID: PMC9890958 DOI: 10.1021/jasms.2c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phthalates have been studied due to their linkages with adverse developmental effects; however, metabolites of this class of compounds are undercharacterized and are poorly captured by traditional targeted analysis. In this study, we developed a nontargeted analysis approach for identifying and classifying phthalate metabolites based on a comprehensive study of their fragmentation pathways in electrospray ionization (ESI) quadrupole-time-of-flight mass spectrometry (QTOF-MS). This approach identifies molecular features in the data as phthalate metabolites via the detection of three structurally significant fragment ions. Then phthalate metabolites are classified into four types based on the presence of additional fragment ions specific to each type. Cleavage mechanisms for each class of phthalate metabolite are proposed based on fragmentation patterns generated at various collision energies (CE). All of the tested phthalate metabolites including oxidative and nonoxidative metabolites produced a fragment ion at m/z 121.0295, representing the deprotonated benzoate ion [C6H5COO]-. Most tested phthalate metabolites can produce a specific ion at m/z 147.0088, the deprotonated o-phthalic anhydride ion. However, phthalate carboxylate metabolites can only produce the [M-H-R]- ion at m/z 165.0193 and do not produce the fragment at m/z 147.0088. Other phthalate oxidative metabolites (hydroxyl- and oxo-) follow a different fragmentation pathway than nonoxidative metabolites. With this workflow, eight unknown phthalate metabolites were putatively identified in pooled urine, with one identified as a previously unreported metabolite by a combination of the MS/MS spectrum and the predicted retention time. Method detection limits for phthalate metabolites in urine were also estimated.
Collapse
Affiliation(s)
- Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, AL: 2203 B, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - Randolph Singh
- Laboratoire Biogéochimie des Contaminants Organiques, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Rue de l’Ile d’Yeu, BP 21105, Nantes Cedex 3, 44311, France
| | - Alex Chao
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - Yan Li
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, AL: 2203 B, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
23
|
Lyden GR, Vock DM, Barrett ES, Sathyanarayana S, Swan SH, Nguyen RH. A permutation-based approach to inference for weighted sum regression with correlated chemical mixtures. Stat Methods Med Res 2022; 31:579-593. [PMID: 35128995 PMCID: PMC9883011 DOI: 10.1177/09622802211013578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is a growing demand for methods to determine the effects that chemical mixtures have on human health. One statistical challenge is identifying true "bad actors" from a mixture of highly correlated predictors, a setting in which standard approaches such as linear regression become highly variable. Weighted Quantile Sum regression has been proposed to address this problem, through a two-step process where mixture component weights are estimated using bootstrap aggregation in a training dataset and inference on the overall mixture effect occurs in a held-out test set. Weighted Quantile Sum regression is popular in applied papers, but the reliance on data splitting is suboptimal, and analysts who use the same data for both steps risk inflating the Type I error rate. We therefore propose a modification of Weighted Quantile Sum regression that uses a permutation test for inference, which allows for weight estimation using the entire dataset and preserves Type I error. To minimize computational burden, we propose replacing the bootstrap with L1 or L2 penalization and describe how to choose the appropriate penalty given expert knowledge about a mixture of interest. We apply our method to a national pregnancy cohort study of prenatal phthalate exposure and child health outcomes.
Collapse
Affiliation(s)
- Grace R. Lyden
- Division of Biostatistics, University of Minnesota School of Public Health
| | - David M. Vock
- Division of Biostatistics, University of Minnesota School of Public Health
| | | | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health
| | - Shanna H. Swan
- Division of Preventive Medicine and Community Health, Icahn School of Medicine at Mount Sinai
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health
| |
Collapse
|
24
|
Preece AS, Knutz M, Lindh CH, Bornehag CG, Shu H. Prenatal phthalate exposure and early childhood wheeze in the SELMA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:303-311. [PMID: 34475495 DOI: 10.1038/s41370-021-00382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal maternal phthalate exposure has been associated with wheeze and asthma in children, but results are inconclusive. Previous studies typically assessed exposure in late pregnancy, included only a small number of old phthalates, and assessed outcomes in children aged 5 years or older. OBJECTIVE We explored associations between 1st trimester prenatal maternal exposure to a wider range of phthalates and wheeze in early childhood. METHODS First trimester concentrations of 14 metabolites from 8 phthalates and one alternative plasticizer were quantified in first-morning void urine from 1148 mothers in the Swedish SELMA study. Associations between log-transformed metabolite concentrations and parental reported ever wheeze among 24-month-old children were investigated with logistic regression models adjusted for parental asthma/rhinitis, sex of child, maternal education, smoking, and creatinine. RESULTS Metabolites of replacement phthalates di-iso-decyl phthalate (DiDP) and di-2-propylheptyl phthalate (DPHP) were associated with increased risk for wheeze (aOR 1.47, 95% CI 1.08-2.01 and aOR 1.49, 95% CI 1.04-2.15, respectively). The associations with DiDP and DPHP were stronger among children whose parents did not have asthma or rhinitis. In this group, wheeze was also associated with metabolites of butyl-benzyl phthalate (BBzP) and di-iso-nonyl phthalate (DiNP). SIGNIFICANCE Maternal phthalate exposure during early pregnancy may be a risk factor for wheeze in early childhood, especially among children whose parents do not have asthma or rhinitis symptoms.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Malin Knutz
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| |
Collapse
|
25
|
Wang J, Shi J, Zhao Y, Xue L, Li G, Wang B, Huang J, Wu S, Guo X. Cardiorespiratory responses in healthy young adults with exposure to indoor airborne PAEs: A randomized, crossover trial of air purification. ENVIRONMENT INTERNATIONAL 2021; 156:106761. [PMID: 34284317 DOI: 10.1016/j.envint.2021.106761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phthalic acid esters (PAEs) are widely used as plasticizers in industrial process and consumer products. Nowadays, PAEs are ubiquitous in the environment and are reported to be associated with cardiorespiratory diseases. However, studies about the association between indoor airborne PAEs exposure and cardiorespiratory health were limited, and the potential biological mechanism remains under-recognized. METHODS A randomized crossover trial was conducted on 57 healthy young adults in Beijing. Repeated health measurements were performed under real and sham indoor air purification with a washout interval of at least 2 weeks. The concentration of indoor airborne PAEs were determined by gas chromatography-orbit ion trap mass spectrometry. Health indicators including blood pressure, lung function, airway inflammation, and circulating biomarkers reflecting blood coagulation and systematic oxidative stress were measured. Linear mixed-effect model was used to examine the between-treatment differences in health indicators, and three models including single-constituent, constituent-fine particulate matter (PM2.5) joint, and single-constituent residual model were used to estimate the association between indoor airborne PAEs and health indicators. RESULTS The indoor airborne PAEs were reduced effectively under real air purification. The total indoor airborne di-2-ethylhexyl phthalate (DEHP), bis (4-Methyl-2-pentyl) phthalate (DMPP), diphenyl phthalate (DPP), and diethyl phthalate (DEP) were identified to be most significantly associated with the increase of blood pressure and airway inflammation, and decrease of lung function. A doubling increase in DEHP, DMPP, DPP, DEP was associated with the increase of 17.2% (95% CI: 3.9%, 32.2%), 11.7% (95% CI: 3.5%, 20.6%), 7.0% (95% CI: 2.4%, 11.8%), 6.0% (95% CI: 1.8%, 10.4%) in FeNO, respectively, in single-constituent residual model. Significant associations between specific total indoor airborne PAEs and increased levels of health biomarkers including oxidized low-density lipoprotein (ox-LDL), 8-isoprostane (8-isoPGF2α), and soluble P-selectin (sP-selectin) were observed. CONCLUSION Indoor airborne PAEs may cause adverse cardiorespiratory health effects in young healthy adults, and indoor air purification could ameliorate the adverse cardiorespiratory effects.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jiazhang Shi
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
26
|
The association between maternal urinary phthalate metabolites concentrations and pregnancy induced hypertension: Results from the EDEN Mother-Child Cohort. J Gynecol Obstet Hum Reprod 2021; 50:102216. [PMID: 34482002 DOI: 10.1016/j.jogoh.2021.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Studies have suggested that exposure to endocrine disruptors such as phthalates that are widely used in our daily life (food wrapping, cosmetics, toys, medical devices, polyvinyl chloride flooring, and building materials) might be related to raised blood pressure and increased risk of cardiovascular diseases. Phthalates might induce a pro-inflammatory response and increased oxidative stress and may be a cause of pregnancy induced hypertension. METHODS We evaluated the association between maternal exposure to phthalates during pregnancy and pregnancy induced hypertension. 604 pregnant women were included and eleven phthalate metabolites were quantified in spot maternal urine samples collected between the 23rd and 28th week of gestation in a French EDEN mother-child cohort. The associations were assessed by applying multiple logistic regression analysis. RESULTS Twenty nine (4,8%) mothers developed pregnancy induced hypertension. Two low molecular weight phthalate metabolites: Monoethyl phthalate (MEP) and Mono-n‑butyl phthalate (MBP) were positively associated with pregnancy induced hypertension in crude (Odds Ratio: 1.43, 95% Confidence Interval: 1.04-1.96, p-value = 0.02 and 1.48, 1.10-2.01, p-value =0.01) and in adjusted (1.47, 1.01-2.14, p-value = 0.04 and 1.66, 1.11-2.47, p-value = 0.01) models respectively. CONCLUSION Our data suggest that prenatal exposure to some phthalates, including MEP and MBP, might play a role in pregnancy induced hypertension.
Collapse
|
27
|
Miura R, Ikeda-Araki A, Ishihara T, Miyake K, Miyashita C, Nakajima T, Kobayashi S, Ishizuka M, Kubota T, Kishi R. Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children's Health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147035. [PMID: 33872906 DOI: 10.1016/j.scitotenv.2021.147035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 05/16/2023]
Abstract
Prenatal exposure to phthalates negatively affects the offspring's health. In particular, epigenetic alterations, such as DNA methylation, may connect phthalate exposure with health outcomes. Here, we evaluated the association of di-2-ethylhexyl phthalate (DEHP) exposure in utero with cord blood epigenome-wide DNA methylation in 203 mother-child pairs enrolled in the Hokkaido Study on Environment and Children's Health, using the Illumina HumanMethylation450 BeadChip. Epigenome-wide association analysis demonstrated the predominant positive associations between the levels of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), in maternal blood and DNA methylation levels in cord blood. The genes annotated to the CpGs positively associated with MEHP levels were enriched for pathways related to metabolism, the endocrine system, and signal transduction. Among them, methylation levels of CpGs involved in metabolism were inversely associated with the offspring's ponderal index (PI). Further, clustering and mediation analyses suggested that multiple increased methylation changes may jointly mediate the association of DEHP exposure in utero with the offspring's PI at birth. Although further studies are required to assess the impact of these changes, this study suggests that differential DNA methylation may link phthalate exposure in utero to fetal growth and further imply that DNA methylation has predictive value for the offspring's obesity.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Hokkaido University Faculty of Health Sciences Japan
| | - Toru Ishihara
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Kunio Miyake
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
28
|
Islam MS, Huq S, Ahmed S, Roy S, Schwarze J, Sheikh A, Saha SK, Cunningham S, Nair H. Operational definitions of paediatric asthma used in epidemiological studies: A systematic review. J Glob Health 2021; 11:04032. [PMID: 34326990 PMCID: PMC8285759 DOI: 10.7189/jogh.11.04032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Researchers use different definitions to identify children with asthma in epidemiological surveys. We conducted a systematic review to describe the definitions used in epidemiologic studies for wheeze and asthma in the paediatric population, aimed to inform the development of a uniform definition of paediatric asthma for future epidemiological research. Methods We systematically searched terms to identify asthma and/or wheeze among children aged <13 years and published between 1995-2020 across seven databases (MEDLINE, EMBASE, PsycINFO, Global Health, AMED, LILACS and CINAHL). PRISMA guidelines were followed for this review. Results We extracted a total of 11 886 records, where 190 met our eligibility criteria and included in the analysis. Among the included studies, 62.1% (n = 118/190) used the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaires, predominantly in developing countries (80%, n = 64/80). ‘Wheeze’ was reported in five categories, subdivided by 14 different definitions. “Current wheeze”, defined as caregivers report of wheezing sounds from the chest of the child in the past 12 months and “Wheeze ever”, defined as caregivers’ report of wheezing or whistling in the chest of the child at any previous time, were the most common wheeze category reported in 129 and 95 studies, respectively. Asthma was reported in nine categories using 53 definitions. The most common asthma category was “Asthma ever”, which was reported in 89 studies, based on caregiver statement that the child had asthma in the past. Conclusion Definitions of wheeze and asthma for children used in surveys are primarily based on parent-reported clinical features. Studies from developing countries more frequently used the ISAAC definitions to report childhood asthma and wheeze compared to the studies from developed counties. The use of a uniform asthma definition will aid the interpretation of research findings globally.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, UK.,Child Health Research Foundation, Dhaka, Bangladesh
| | - Samin Huq
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Salahuddin Ahmed
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, UK.,Projahnmo Research Foundation, Dhaka, Bangladesh
| | - Sudipto Roy
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, UK.,KEM Hospital Research Centre, Pune, India
| | - Jürgen Schwarze
- Child Life and Health, University of Edinburgh, UK.,Centre for Inflammation Research, University of Edinburgh, UK
| | - Aziz Sheikh
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Steve Cunningham
- Child Life and Health, University of Edinburgh, UK.,Centre for Inflammation Research, University of Edinburgh, UK
| | - Harish Nair
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| | | |
Collapse
|
29
|
Tsai CK, Cheng HH, Hsu TY, Wang JY, Hung CH, Tsai CC, Lai YJ, Lin YJ, Huang HC, Chan JYH, Tain YL, Chen CC, Tsai TA, Yu HR. Prenatal Exposure to Di-Ethyl Phthalate (DEP) Is Related to Increasing Neonatal IgE Levels and the Altering of the Immune Polarization of Helper-T Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126364. [PMID: 34208324 PMCID: PMC8296186 DOI: 10.3390/ijerph18126364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Introduction: Phthalates are substances that are added to plastic products to increase their plasticity. These substances are released easily into the environment and can act as endocrine disruptors. Epidemiological studies in children have showed inconsistent findings regarding the relationship between prenatal or postnatal exposure to phthalates and the risk of allergic disease. Our hypothesis is that prenatal exposure to phthalates may contribute to the development of allergies in children. Material and methods: The objective of this study was to determine the associations between urinary phthalate metabolite concentrations in pregnant women, maternal atopic diathesis, maternal lifestyle, and cord blood IgE. Pregnant mothers and paired newborns (n = 101) were enrolled from an antenatal clinic. The epidemiologic data and the clinical information were collected using standard questionnaires and medical records. The maternal blood and urine samples were collected at 24–28 weeks gestation, and cord blood IgE, IL-12p70, IL-4, and IL-10 levels were determined from the newborns at birth. The link between phthalates and maternal IgE was also assessed. To investigate the effects of phthalates on neonatal immunity, cord blood mononuclear cells (MNCs) were used for cytokine induction in another in vitro experiment. Results: We found that maternal urine monoethyl phthalate (MEP) (a metabolite of di-ethyl phthalate (DEP)) concentrations are positively correlated with the cord blood IgE of the corresponding newborns. The cord blood IL-12p70 levels of mothers with higher maternal urine MEP groups (high DEP exposure) were lower than mothers with low DEP exposure. In vitro experiments demonstrated that DEP could enhance IL-4 production of cord blood MNCs rather than adult MNCs. Conclusion: Prenatal DEP exposure is related to neonatal IgE level and alternation of cytokines relevant to Th1/Th2 polarization. This suggests the existence of a link between prenatal exposure to specific plasticizers and the future development of allergies.
Collapse
Affiliation(s)
- Chang-Ku Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City 704302, Taiwan;
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ti-An Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8713); Fax: +886-7-733-8009
| |
Collapse
|
30
|
Wang CW, Chen SC, Wu DW, Chen HC, Lin HH, Su H, Shiea JT, Lin WY, Hung CH, Kuo CH. Effect of dermal phthalate levels on lung function tests in residential area near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27333-27344. [PMID: 33511527 DOI: 10.1007/s11356-020-12322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Phthalates can leach into indoor and outdoor airborne particulate matter and dust, which can then be ingested or absorbed and induce lung injury. Dermal phthalate levels can be used as a matrix for exposure direct absorption from air, particle deposition, and contact with contaminated products. However, the association between dermal phthalate levels in skin wipes and lung function tests remains unknown. A total of 397 participants were included. Spirometry measurements of forced expiratory volume in 1 s (FEV1, L) and forced vital capacity (FVC, L) were calculated. Dermal phthalate levels of diethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) on forehead skin wipes were detected. The one-unit increases in logarithm (log) dermal DnBP (β = - 0.08; 95% CI - 0.16, - 0.003, p = 0.041), BBzP (β = - 0.09; 95% CI - 0.16, - 0.02, p = 0.009), DEHP (β = - 0.07; 95% CI - 0.14, - 0.003, p = 0.042), and DiNP (β = - 0.08; 95% CI - 0.15, - 0.02, p = 0.017) were significantly associated with decreases in FVC. For elderly participants, one-unit increases in log dermal DnBP (β = - 0.25; 95% CI - 0.46, - 0.04, p = 0.021), BBzP (β = - 0.17; 95% CI - 0.33, - 0.01, p = 0.042), and DiDP (β = - 0.19; 95% CI - 0.39, < 0.01, p = 0.052) were associated with decreases in FEV1. In conclusion, dermal phthalate levels were significantly associated with decreases in lung function tests.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jen-Taie Shiea
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yi Lin
- Department of Occupational Medicine, Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Chan M, Mita C, Bellavia A, Parker M, James-Todd T. Racial/Ethnic Disparities in Pregnancy and Prenatal Exposure to Endocrine-Disrupting Chemicals Commonly Used in Personal Care Products. Curr Environ Health Rep 2021; 8:98-112. [PMID: 34046860 PMCID: PMC8208930 DOI: 10.1007/s40572-021-00317-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Endocrine-disrupting chemical (EDC) exposure during pregnancy is linked to adverse maternal and child health outcomes that are racially/ethnically disparate. Personal care products (PCP) are one source of EDCs where differences in racial/ethnic patterns of use exist. We assessed the literature for racial/ethnic disparities in pregnancy and prenatal PCP chemical exposures. RECENT FINDINGS Only 3 studies explicitly examined racial/ethnic disparities in pregnancy and prenatal exposure to PCP-associated EDCs. Fifty-three articles from 12 cohorts presented EDC concentrations stratified by race/ethnicity or among homogenous US minority populations. Studies reported on phthalates and phenols. Higher phthalate metabolites and paraben concentrations were observed for pregnant non-Hispanic Black and Hispanic women. Higher concentrations of benzophenone-3 were observed in non-Hispanic White women; results were inconsistent for triclosan. This review highlights need for future research examining pregnancy and prenatal PCP-associated EDCs disparities to understand and reduce racial/ethnic disparities in maternal and child health.
Collapse
Affiliation(s)
- Marissa Chan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA
| | - Carol Mita
- Countway Library, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA
| | - Michaiah Parker
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA.
- Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02120, USA.
| |
Collapse
|
32
|
Preece AS, Shu H, Knutz M, Krais AM, Wikström S, Bornehag CG. Phthalate levels in indoor dust and associations to croup in the SELMA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:257-265. [PMID: 32952153 DOI: 10.1038/s41370-020-00264-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous indoor pollutants which have been associated with child airway disease although results are inconclusive. This study examined associations between phthalate levels in residential indoor dust and croup during infancy. Settled indoor dust was collected in 482 homes of 6-month-old infants in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study and analysed for seven phthalates and one phthalate replacement using gas chromatography tandem mass spectrometry. The incidence of parental reported croup at 12 months was 6.4% for girls and 13.4% for boys. Associations between phthalate dust levels and croup were analysed by logistic regression adjusted for potential confounders. We found significant associations between di-ethyl phthalate (DEP) and di-ethyl-hexyl phthalate (DEHP) in residential dust and parental reported croup (adjusted odds ratio (aOR) = 1.71; 95% CI: 1.08-2.73 and 2.07; 1.00-4.30, respectively). Stratified results for boys showed significant associations between DEP and butyl-benzyl phthalate (BBzP) in dust and infant croup (aOR = 1.86; 95% CI: 1.04-3.34 and 2.02; 1.04-3.90, respectively). Results for girls had questionable statistical power due to few cases. Our results suggest that exposure to phthalates in dust is a risk factor for airway inflammatory responses in infant children.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Malin Knutz
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sverre Wikström
- School of Medical Science, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
| |
Collapse
|
33
|
Wang CW, Wu DW, Chen SC, Chen HC, Lin HH, Su H, Shiea JT, Lin WY, Hung CH, Kuo CH. Associations of dermal diethyl phthalate level with changes in lung function test value mediated by absolute eosinophil count: A panel study of adults in southern Taiwan. ENVIRONMENTAL RESEARCH 2021; 194:110613. [PMID: 33345897 DOI: 10.1016/j.envres.2020.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Phthalate concentrations in indoor and outdoor dust are associated with respiratory disease. Both immunoglobulin E (IgE) and eosinophil count are associated with airway inflammation from exposure to environmental allergens. Dermal phthalate level can be used as a matrix for assessing personal exposure through direct absorption from the air, particle deposition, or contact with contaminated products. However, the association between dermal phthalate level and changes in lung function test values, as mediated by immunological response, remains unclear. In total, 237 adults in southern Taiwan were recruited. Spirometry measurements (in L) of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were taken on visits 1 (2016-2018) and 2 (2019). Dermal phthalate level, absolute eosinophil count, and IgE level were recorded on visit 1. Mean changes in FVC and FEV1 decrease pear year, as determined through pairwise comparisons, were significant (diffFVCper year: -0.46, 95% CI: -0.51, -0.41; p < 0.001; diffFEV1per year: -0.37, 95% confidence interval [CI]: -0.41, -0.34; p < 0.001). For FEV1 decrease, log-unit increases in dermal diethyl phthalate (DEP) were positively associated with diffFEV1per year (β = 0.096; 95% CI: 0.042, 0.150; p = 0.001) and negatively associated with absolute eosinophil count (β= -0.201; 95% CI: -0.380, -0.023; p= 0.027). Log-unit increases in absolute eosinophil count were negatively associated with diffFEV1per year (β= -0.109; 95% CI: -0.150, -0.068; p < 0.001). Absolute eosinophil count mediated 19.70% of the association between dermal DEP level and diffFEV1per year. For FVC decrease, log-unit increases in dermal DEP were positively associated with diffFVCper year (β = 0.095; 95% CI: 0.035, 0.155; p = 0.002) and negatively associated with absolute eosinophil count (β = -0.243; 95% CI: -0.427, -0.060; p = 0.010). Log-unit increases in absolute eosinophil count were negatively associated with diffFVCper year (β= -0.122; 95% CI: -0.168, -0.076; p < 0.001). Absolute eosinophil count mediated 29.98% of the association between dermal DEP level and diffFVCper year. The results suggest that dermal DEP level is positively associated with changes in lung function test values and is mediated by absolute eosinophil count.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University Kaohsiung, Taiwan
| | - Jen-Taie Shiea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Chemistry, National Sun Yat-Sen University Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yi Lin
- Department of Occupational Medicine, Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Hsing Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Suen JL, Wu TT, Li YH, Lee CL, Kuo FC, Yan PS, Wu CF, Tran M, Wang CJ, Hung CH, Wu MT, Chan MWY, Huang SK. Environmental Factor-Mediated Transgenerational Inheritance of Igf2r Hypomethylation and Pulmonary Allergic Response via Targeting Dendritic Cells. Front Immunol 2020; 11:603831. [PMID: 33424850 PMCID: PMC7786300 DOI: 10.3389/fimmu.2020.603831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
The developmental origin of allergic diseases has been suggested, but the molecular basis remains enigmatic. Exposure to environmental factors, such as di-(2-ethylhexyl) phthalate (DEHP; a common plasticizer), is suggested to be associated with increased childhood allergic asthma, but the causal relationship and its underlying mechanism remain unknown. This study explored the transgenerational mechanism of DEHP on allergic asthma and dendritic cell (DC) homeostasis through epigenetic modification. In a murine model, ancestral exposure of C57BL/6 mice to low-dose DEHP led to trans-generational promoter hypomethylation of the insulin-like growth factor 2 receptor (Igf2r), concomitant with enhanced Igf2r expression and increased apoptosis prominently in CD8α+ DCs upon ligand stimulation, with consequent reduction in their IL-12 secretion and subsequent T cell-derived IFN-γ, thereby promoting a default Th2-associated pulmonary allergic response. Increased apoptosis was also noted in circulating IGF2Rhigh human DCs. Further, in human placenta, the methylation level at the orthologous IGF2R promoter region was shown to be inversely correlated with the level of maternal DEHP intake. These results support the importance of ancestral phthalate exposure in conferring the trans-generational risk of allergic phenotypes, featuring hypo-methylation of the IGF2R gene and dysregulated DC homeostasis.
Collapse
Affiliation(s)
- Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tai-Ting Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yue-Hyuan Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Chen Kuo
- Department of Gynecology and Obstetrics, E-Da Hospital, Kaohsiung, Taiwan
- Graduate Institute of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pearlly S. Yan
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mita Tran
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hsing Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Community Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Lyden GR, Barrett ES, Sathyanarayana S, Bush NR, Swan SH, Nguyen RH. Pregnancy intention and phthalate metabolites among pregnant women in The Infant Development and Environment Study cohort. Paediatr Perinat Epidemiol 2020; 34:736-743. [PMID: 32249967 PMCID: PMC7541656 DOI: 10.1111/ppe.12674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preconception life style and health play a pivotal role in positively impacting the health of a pregnancy, and this includes the reduction of exposure to endocrine-disrupting chemicals such as phthalates. We have previously demonstrated that women planning a pregnancy with assisted reproductive technology (ART) have lower phthalate metabolite concentrations than their non-ART-using counterparts. OBJECTIVE To determine whether women who intended to become pregnant had lower phthalate metabolite concentrations than those who had an unintended pregnancy, or whether change in phthalate exposure across pregnancy differed between these two groups. METHODS A total of 721 women enrolled in The Infant Development and Environment Study (TIDES), a multicentre US prospective pregnancy cohort; 513 (71%) indicated their pregnancy was planned. Urine samples from first- and third-trimester visits were analysed for 10 specific-gravity-adjusted, natural-log-transformed phthalate metabolites. Simple and multivariable linear regression, adjusting for centre, race, age, income, marital status, and parity, were employed to determine whether phthalate metabolite concentrations differed by pregnancy intention. RESULTS In bivariate analyses, the geometric mean concentrations of all first-trimester and most third-trimester phthalates were higher in women with unplanned pregnancies. However, after covariate adjustment, only first-trimester monoisobutyl phthalate (MiBP) remained associated with pregnancy intention, and the association changed direction such that unplanned pregnancies had lower MiBP concentrations (ß -0.18, 95% CI -0.35, -0.02). CONCLUSIONS We did not find evidence of a difference in phthalate exposure between pregnancy planners and non-planners.
Collapse
Affiliation(s)
- Grace R. Lyden
- University of Minnesota School of Public Health, Division of Biostatistics, Minneapolis, MN, USA
| | - Emily S. Barrett
- Rutgers School of Public Health, Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Sheela Sathyanarayana
- University of Washington School of Public Health, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Nicole R. Bush
- University of California, San Francisco, Department of Psychiatry, Department of Pediatrics, San Francisco, CA, USA
| | - Shanna H. Swan
- Mount Sinai School of Medicine, Division of Preventive Medicine and Community Health, New York, NY, USA
| | - Ruby H.N. Nguyen
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, USA
| |
Collapse
|
36
|
Adgent MA, Carroll KN, Hazlehurst MF, Loftus CT, Szpiro AA, Karr CJ, Barrett ES, LeWinn KZ, Bush NR, Tylavsky FA, Kannan K, Sathyanarayana S. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. ENVIRONMENT INTERNATIONAL 2020; 143:105970. [PMID: 32763629 PMCID: PMC7708520 DOI: 10.1016/j.envint.2020.105970] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Previous studies of prenatal phthalate exposure and childhood asthma are inconsistent. These studies typically model phthalates as individual, rather than co-occurring, exposures. We investigated whether prenatal phthalates are associated with childhood wheeze and asthma using a mixtures approach. METHODS We studied dyads from two prenatal cohorts in the ECHO-PATHWAYS consortium: CANDLE, recruited 2006-2011 and TIDES, recruited 2011-2013. Parents reported child respiratory outcomes at age 4-6 years: ever asthma, current wheeze (symptoms in past 12 months) and current asthma (two affirmative responses from ever asthma, recent asthma-specific medication use, and/or current wheeze). We quantified 11 phthalate metabolites in third trimester urine and estimated associations with child respiratory outcomes using weighted quantile sum (WQS) logistic regression, using separate models to estimate protective and adverse associations, adjusting for covariates. We examined effect modification by child sex and maternal asthma. RESULTS Of 1481 women, most identified as White (46.6%) or Black (44.6%); 17% reported an asthma history. Prevalence of ever asthma, current wheeze and current asthma in children was 12.3%, 15.8% and 12.3%, respectively. Overall, there was no adverse association with respiratory outcomes. In sex-stratified analyses, boys' phthalate index was adversely associated with all outcomes (e.g., boys' ever asthma: adjusted odds ratio per one quintile increase in WQS phthalate index (AOR): 1.42; 95% confidence interval (CI): 1.08, 1.85, with mono-ethyl phthalate (MEP) weighted highest). Adverse associations were also observed in dyads without maternal asthma history, driven by MEP and mono-butyl phthalate (MBP), but not in those with maternal asthma history. We observed protective associations between the phthalate index and respiratory outcomes in analysis of all participants (e.g., ever asthma: AOR; 95% CI: 0.81; 0.68, 0.96), with di(2-ethylhexyl)phthalate (DEHP) metabolites weighted highest. CONCLUSIONS Results suggest effect modification by child sex and maternal asthma in associations between prenatal phthalate mixtures and child asthma and wheeze.
Collapse
Affiliation(s)
- Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, 2146 Belcourt Avenue, Nashville TN 37212, USA; Department of Health Policy, Vanderbilt University Medical Center, 1500 21st Ave S, Suite 2600, Nashville TN 37212, USA.
| | - Kecia N Carroll
- Department of Pediatrics, Vanderbilt University Medical Center, 2146 Belcourt Avenue, Nashville TN 37212, USA
| | - Marnie F Hazlehurst
- Department of Epidemiology, Box 357236, University of Washington, Seattle, WA 98195-7236, USA
| | - Christine T Loftus
- Department of Occupational and Environmental Health Sciences, Box 357234, University of Washington, Seattle, WA 98195-7234, USA
| | - Adam A Szpiro
- Department of Biostatistics, Box 35732, University of Washington, Seattle, WA 98195-7232, USA
| | - Catherine J Karr
- Department of Occupational and Environmental Health Sciences, Box 357234, University of Washington, Seattle, WA 98195-7234, USA; Department of Pediatrics, Box 356320, University of Washington, Seattle, WA 98195-6320, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Ave., San Francisco, CA 94143, USA
| | - Nicole R Bush
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Ave., San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA
| | - Frances A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, 66 N. Pauline Street, Suite 633, Memphis, TN 38163, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA
| | - Sheela Sathyanarayana
- Department of Occupational and Environmental Health Sciences, Box 357234, University of Washington, Seattle, WA 98195-7234, USA; Department of Pediatrics, Box 356320, University of Washington, Seattle, WA 98195-6320, USA; Seattle Children's Research Institute, 2001 8th Ave, Seattle, WA 98121, USA
| |
Collapse
|
37
|
Berger K, Coker E, Rauch S, Eskenazi B, Balmes J, Kogut K, Holland N, Calafat AM, Harley K. Prenatal phthalate, paraben, and phenol exposure and childhood allergic and respiratory outcomes: Evaluating exposure to chemical mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138418. [PMID: 32302842 PMCID: PMC7255953 DOI: 10.1016/j.scitotenv.2020.138418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chemicals found in personal care products and plastics have been associated with asthma, allergies, and lung function, but methods to address real life exposure to mixtures of these chemicals have not been applied to these associations. METHODS We quantified urinary concentrations of eleven phthalate metabolites, four parabens, and five other phenols in mothers twice during pregnancy and assessed probable asthma, aeroallergies, and lung function in their age seven children. We implemented Bayesian Profile Regression (BPR) to cluster women by their exposures to these chemicals and tested the clusters for differences in outcome measurements. We used Bayesian Kernel Machine Regression (BKMR) to fit biomarkers into one model as joint independent variables. RESULTS BPR clustered women into seven groups characterized by patterns of personal care product and plastic use, though there were no significant differences in outcomes across clusters. BKMR showed that monocarboxyisooctyl phthalate and 2,4-dichlorophenol were associated with probable asthma (predicted probability of probable asthma per IQR of biomarker z-score (standard deviation) = 0.08 (0.09) and 0.11 (0.12), respectively) and poorer lung function (predicted probability per IQR = -0.07 (0.05) and -0.07 (0.06), respectively), and that mono(3-carboxypropyl) phthalate and bisphenol A were associated with aeroallergies (predicted probability per IQR = 0.13 (0.09) and 0.11 (0.08), respectively). Several biomarkers demonstrated positive additive effects on other associations. CONCLUSIONS BPR and BKMR are useful tools to evaluate associations of biomarker concentrations within a mixture of exposure and should supplement single-chemical regression models when data allow.
Collapse
Affiliation(s)
- Kimberly Berger
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Eric Coker
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - John Balmes
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Katie Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA 30341, USA.
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| |
Collapse
|
38
|
Yang C, Harris SA, Jantunen LM, Kvasnicka J, Nguyen LV, Diamond ML. Phthalates: Relationships between Air, Dust, Electronic Devices, and Hands with Implications for Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8186-8197. [PMID: 32539399 DOI: 10.1021/acs.est.0c00229] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Exposure to phthalates is pervasive and is of concern due to associations with adverse health effects. Exposures and exposure pathways of six phthalates were investigated for 51 women aged 18-44 years in Ontario, Canada, based on measured phthalate concentrations in hand wipes and indoor media in their residences. All six phthalates had detection frequencies of 100% in air (∑6670 ng m-3 geomean) and floor dust (∑6630 μg g-1), nearly 100% detection frequencies for hand palms and backs that were significantly correlated and concentrations were repeatable over a 3 week interval. Phthalates on hands were significantly correlated with levels in air and dust, as expected according to partitioning theory. Total exposure was estimated as 4860 ng kg bw-1 day-1 (5th and 95th percentiles 1980-16 950 ng kg bw-1 day-1), with dust ingestion, followed by hand-to-mouth transfer, as the dominant pathways. With the exception of diethyl phthalate (DEP), phthalates had over 50% detection frequencies in surface wipes of most electronic devices sampled, including devices in which the use of phthalates was not expected. Phthalate concentrations on surfaces of hand-held devices were ∼10 times higher than on non-hand-held devices and were correlated with levels on hands. The data are consistent with phthalate emissions from sources such as laminate flooring and personal care products (e.g., scented candles), followed by partitioning among air, dust, and surface films that accumulate on electronic devices and skin, including hands. We hypothesize that hands transfer phthalates from emission sources and dust to hand-held electronic devices, which accumulate phthalates due to infrequent washing and which act as a sink and then a secondary source of exposure. The findings support those of others that exposure can be mitigated by increasing ventilation, damp cloth cleaning, and minimizing the use of phthalate-containing products and materials.
Collapse
Affiliation(s)
- Congqiao Yang
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
| | - Shelley Anne Harris
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada M5T 3M7
- Occupational Cancer Research Center, Cancer Care Ontario, Toronto, Ontario, Canada M5G 1X3
| | - Liisa M Jantunen
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
- Air Quality Processes Research Section, Environment and Climate Change Canada, Egbert, Ontario, Canada L0L 1N0
| | - Jacob Kvasnicka
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
| | - Linh V Nguyen
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada M5T 3M7
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
39
|
Wu W, Wu C, Ji C, Diao F, Peng J, Luo D, Mu X, Ruan X. Association between phthalate exposure and asthma risk: A meta-analysis of observational studies. Int J Hyg Environ Health 2020; 228:113539. [PMID: 32335495 DOI: 10.1016/j.ijheh.2020.113539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Phthalates are ubiquitously found in numerous environments and have been related to a variety of adverse health effects. Previous studies have suggested that phthalate exposure is associated with asthma risk in humans; however, such findings are inconsistent. METHODS The aim of the present meta-analysis was to clarify the association between phthalate exposure and asthma risk. A literature search was conducted using PubMed, EMBASE and Web of Science for relevant studies published up to January 5, 2020. Fixed-effects or random-effects models were applied to combine the results, and several subgroup analyses were used to explore the sources of heterogeneity. RESULTS A total of 14 studies containing more than 14,000 participants were included in the present study. A positive, significant association between mono-benzyl phthalate (MBzP) levels and asthma risk was found, and the overall odds ratio (OR) was 1.17 (95% confidence interval [CI]: 1.06-1.28, P-value for overall effect [Pz] = 0.001), with a low heterogeneity (P-value for heterogeneity [Phet] = 0.193, I2 = 23.6%). The pooled ORs for mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) concentrations were 1.13 (95% CI: 1.03-1.24, Pz = 0.011) and 1.20 (95% CI: 1.00-1.42, Pz = 0.045), respectively. Children with high levels of MBzP or mono-(carboxynonyl) phthalate (MCNP) were suggested to have increased odds of asthma compared to older populations. In the subgroup analysis by study location, an increased risk for asthma in relation to levels of the sum of di-2-ethylhexyl phthalate (ΣDEHP) was observed in European studies (OR = 1.16, 95% CI: 1.00-1.34, Pz = 0.048) compared to Asia and North America. CONCLUSIONS Urinary levels of MBzP, MEHHP, MECPP, MCNP, and DEHP were positively related to asthma risk. No significant association was observed for the other phthalate metabolites in relation to asthma risk. Further research is needed to verify these findings and shed light on the molecular mechanism by which phthalates are associated with asthma.
Collapse
Affiliation(s)
- Weixiang Wu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cunwei Ji
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Fuqiang Diao
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Jinglun Peng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaoping Mu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China.
| | - Xiaolin Ruan
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China.
| |
Collapse
|
40
|
Sears CG, Lanphear BP, Calafat AM, Chen A, Skarha J, Xu Y, Yolton K, Braun JM. Lowering Urinary Phthalate Metabolite Concentrations among Children by Reducing Contaminated Dust in Housing Units: A Randomized Controlled Trial and Observational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4327-4335. [PMID: 32101426 PMCID: PMC7494216 DOI: 10.1021/acs.est.9b04898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dust in homes can contain phthalates that may adversely affect child development, but whether residential interventions and dust removal can prevent children's exposure to phthalates is unknown. We quantified the influence of a residential lead hazard intervention and dust control on children's urinary phthalate metabolite concentrations. Between 2003 and 2006, The Health Outcomes and Measures of the Environment (HOME) Study randomized 355 pregnant women to receive an intervention to reduce either residential lead or injury hazards before delivery. We quantified eight urinary phthalate metabolites from 288 children at ages 1, 2, or 3 years (680 observations). During yearly home visits, we assessed dust accumulation in housing units. Children in the lead intervention group had 11-12% lower concentrations of the sum of di(2-ethylhexyl) phthalate metabolites, monocarboxyoctyl phthalate, and monocarboxynonyl phthalate compared to the injury intervention group. Monoethyl phthalate concentrations did not differ by group. In observational analyses, children living in housing units that appeared clean had 12-17% lower concentrations of these phthalate metabolites and monobenzyl phthalate, compared to children living in housing units with more dust accumulation. Features of this lead hazard intervention and measures to control dust may reduce children's exposure to phthalates found in building materials and household furnishings.
Collapse
Affiliation(s)
- Clara G. Sears
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julianne Skarha
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
41
|
Araki A, Ait Bamai Y, Bastiaensen M, Van den Eede N, Kawai T, Tsuboi T, Miyashita C, Itoh S, Goudarzi H, Konno S, Covaci A, Kishi R. Combined exposure to phthalate esters and phosphate flame retardants and plasticizers and their associations with wheeze and allergy symptoms among school children. ENVIRONMENTAL RESEARCH 2020; 183:109212. [PMID: 32058144 DOI: 10.1016/j.envres.2020.109212] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/12/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phthalate esters and phosphate flame retardants and plasticizers (PFRs) are both used as plasticizers and are commonly detected in indoor environments. Although both phthalates and PFRs are known to be associated with children's wheeze and allergic symptoms, there have been no previous studies examining the effects of mixtures of these exposures. OBJECTIVES To investigate the association between exposure to mixtures of phthalate esters and PFRs, and wheeze and allergic symptoms among school-aged children. METHODS A total of 128 elementary school-aged children were enrolled. Metabolites of 3 phthalate esters and 7 PFRs were measured in urine samples. Parent-reported symptoms of wheeze, rhinoconjunctivitis, and eczema were evaluated using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. In the primary model, we created a phthalate ester and PFR mixture exposure index, and estimated odds ratios (ORs) using weighted quantile sum (WQS) regression and quantile g (qg)-computation. The two highest chemicals according to qg-computation weight %s were combined to create a combination high × high exposure estimate, with ORs calculated using the "low × low" exposure group as the reference category. Concentrations of each metabolite were corrected by multiplying this value by the sex- and body size-Standardised creatinine concentration and dividing by the observed creatinine value. All models were adjusted for sex, grade, dampness index and annual house income. RESULTS The odds ratio of rhinoconjunctivitis for the association between exposure to chemical mixtures according to the WQS index positive models was; OR = 2.60 (95% confidence interval [CI]: 1.38-5.14). However, wheeze and eczema of the WQS index positive model, none of the WQS index negative models or qg-computation result yielded statistically significant results. Combined exposure to the two highest WQS weight %s of "high-high" ΣTCIPP and ΣTPHP was associated with an increased prevalence of rhino-conjunctivitis, OR = 5.78 (1.81-18.43) to the "low × low" group. CONCLUSIONS Significant associations of mixed exposures to phthalates and PFRs and increased prevalence of rhinoconjunctivitis was found among elementary school-aged children in the WQS positive model. Mixed exposures were not associated with any of allergic symptoms in the WQS negative model or qg-computation approach. However, the combined effects of exposure to two PFRs suggested an additive and/or multiplicative interaction, potentially increasing the prevalence of rhinoconjunctivitis. A further study with a larger sample size is needed to confirm these results.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Yu Ait Bamai
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| | - Chihiro Miyashita
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Medical Education and International Relations, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
42
|
Podlecka D, Gromadzińska J, Mikołajewska K, Fijałkowska B, Stelmach I, Jerzynska J. Longitudinal effect of phthalates exposure on allergic diseases in children. Ann Allergy Asthma Immunol 2020; 125:84-89. [PMID: 32244034 DOI: 10.1016/j.anai.2020.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Environmental chemicals, such as phthalates, phenols, and parabens, may affect children's immune development and contribute to the risk of atopic diseases and asthma. OBJECTIVE To evaluate the associations between prenatal and childhood phthalate exposure and atopic diseases in children at the age of 9 years. METHODS This analysis is restricted to 145 mother-child pairs from the prospective Polish Mother and Child Cohort Study. Phthalate metabolite levels were assessed in the urine samples collected from mothers during the third trimester of pregnancy and from children at age of 2 and 9 years. For the appropriate recognition of children's health status, a questionnaire was administered to the mothers and completed with information from the medical record of each child. The clinical examination was performed by a pediatrician/allergist in the presence of the mother or a relative. RESULTS A higher urine concentration of mono-2-ethyl-5-oxohexyl phthalate increased the risk of food allergy in children at the age of 9 years (odds ratio [OR], 1.75; 95% CI, 1.19-2.57; P = .004) and decreased the risk of atopic dermatitis (OR, 0.49; 95% CI, 0.27-0.87; P = .02). For mono-2-ethyl-5-hydroxyhexyl phthalate, an increased risk of atopic dermatitis was observed (OR, 1.90; 95% CI, 1.18-3.05; P = .008). A higher urine concentration of mono-benzyl phthalate increased the risk of asthma in children (OR, 1.67; 95% CI, 1.08-2.58; P = .02), but the risk of asthma decreased when the concentration of mono-2-ethylhexyl phthalate was higher (OR, 0.64; 95% CI, 10.43-0.97; P = .04). CONCLUSION Our study has not provided clear evidence of the negative effect of phthalate exposure during pregnancy and within the 9 years after birth on allergic diseases in children.
Collapse
Affiliation(s)
- Daniela Podlecka
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Jolanta Gromadzińska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Karolina Mikołajewska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Fijałkowska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Iwona Stelmach
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Jerzynska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland.
| |
Collapse
|
43
|
Conrad L, Perzanowski MS. The Role of Environmental Controls in Managing Asthma in Lower-Income Urban Communities. Clin Rev Allergy Immunol 2020; 57:391-402. [PMID: 30903438 DOI: 10.1007/s12016-019-08727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Children living in lower-income urban communities are at much greater risk of developing asthma, going to the emergency department for an asthma attack and being hospitalized for asthma than children living in upper- and middle-income communities. For many asthmatic children living in urban communities, especially those with greater morbidity, the allergic pathway is important in the etiology of the disease. The stages of developing allergic disease can be divided into the onset of allergic sensitization, development of allergic disease and subsequent exacerbations, and it is useful to consider the relevance of interventions at each of these stages. Indoor allergens and environmental exposures are a major contributor to allergic disease, particularly among lower socioeconomic status, urban, minority communities. These exposures include allergens, environmental tobacco smoke, combustion by-products, and mold, all of which can play an important role in asthma progression as well as morbidity. These exposures are often not found in isolation and thus these concomitant exposures need to be considered when conducting environmental interventions. There have been numerous studies looking at both primary and tertiary prevention strategies and the impact on allergic sensitization and asthma with varied results. While the outcomes of these studies have been mixed, what has emerged is the need for tertiary interventions to be targeted to the individual and to reduce all relevant exposures to which an asthmatic child is exposed and sensitized. In addition, effective intervention strategies must also consider other social determinants of asthma morbidity impacting low socioeconomic, urban communities.
Collapse
Affiliation(s)
- Laura Conrad
- Division of Pulmonology, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 11th floor, New York, NY, 10032, USA.
| |
Collapse
|
44
|
Jøhnk C, Høst A, Husby S, Schoeters G, Timmermann CAG, Kyhl HB, Beck IH, Andersson AM, Frederiksen H, Jensen TK. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environ Health 2020; 19:32. [PMID: 32169083 PMCID: PMC7069194 DOI: 10.1186/s12940-020-00586-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been suggested to alter immune responses and increase the risk of asthma, eczema and rhinitis. However, few studies have examined the effects in prospective cohorts and only one examined rhinitis. We therefore studied associations between maternal urinary concentrations of phthalate metabolites and asthma, eczema and rhinitis in offspring aged 5 years. METHODS From 552 pregnant women in the Odense Child Cohort, we quantified urinary concentrations of 12 phthalate metabolites in third trimester. We assessed asthma, rhinitis and eczema in their offspring at age 5 years with a questionnaire based on the International Study of Asthma and Allergies in Childhood (ISAAC), and conducted logistic regression adjusting for relevant confounders. RESULTS 7.4% of the children had asthma, 11.7% eczema and 9.2% rhinitis. Phthalate exposure was low compared to previous cohorts. No significant associations between prenatal phthalate exposure and asthma were found. Odds ratios (ORs) of child rhinitis with a doubling in ΣDiNPm and di-2-ethylhexyl phthalate metabolite (ΣDEHPm) concentrations were, respectively, 1.15 (95% confidence interval (CI) 0.97,1.36) and 1.21 (CI 0.93,1.58). The OR of eczema when doubling ΣDiNPm was 1.24 (CI 1.00,1.55), whereas the OR of using medicine against eczema when doubling a di-ethyl phthalate (DEP) metabolite was 0.81 (CI 0.68,0.96). CONCLUSION The lack of association between maternal phthalate exposure and asthma in the offspring may be due to low exposure and difficulties in determining asthma in 5-year-olds. The higher odds of rhinitis may raise public concern but further research in larger cohorts of older children is warranted.
Collapse
Affiliation(s)
- Camilla Jøhnk
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Arne Høst
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Clara Amalie Gade Timmermann
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| | - Iben Have Beck
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
45
|
Eriksson AC, Andersen C, Krais AM, Nøjgaard JK, Clausen PA, Gudmundsson A, Wierzbicka A, Pagels J. Influence of Airborne Particles' Chemical Composition on SVOC Uptake from PVC Flooring-Time-Resolved Analysis with Aerosol Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:85-91. [PMID: 31682111 DOI: 10.1021/acs.est.9b04159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We sampled ammonium sulfate particles and indoor particles of outdoor origin through a small chamber covered with polyvinyl chloride flooring. We measured the uptake of semivolatile organic compounds (SVOCs) by the airborne particles in real time. The particles acquired SVOC mass fractions up to 10%. The phthalate ester (di(2-ethylhexyl)phthalate) (DEHP), a known endocrine disruptor, contributed by approximately half of the sorbed SVOC mass. The indoor particles acquired a higher DEHP fraction than laboratory-generated ammonium sulfate aerosol. We attribute this increased uptake to absorption by organic matter present in the indoor particles. Using a thermodenuder to remove volatile components, predominantly organics, reduced the SVOC uptake. Positive matrix factorization applied to the organic mass spectra suggests that hydrocarbon-like organic aerosol (typically fresh traffic exhaust) sorbs DEHP more efficiently than aged organic aerosol. The SVOC uptake is one of the processes that modify outdoor pollution particles after they penetrate buildings, where the majority of exposure occurs. Particles from indoor sources, typically dominated by organic matter, will undergo such processes as well. Aerosol mass spectrometry improves the time resolution of experimental investigations into these processes and enables experiments with lower, relevant particle concentrations. Additionally, particle size-resolved results are readily obtained.
Collapse
Affiliation(s)
| | | | - Annette M Krais
- Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, Box 118, SE-22100 Lund, Sweden
| | | | - Per-Axel Clausen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
46
|
Navaranjan G, Takaro TK, Wheeler AJ, Diamond ML, Shu H, Azad MB, Becker AB, Dai R, Harris SA, Lefebvre DL, Lu Z, Mandhane PJ, McLean K, Moraes TJ, Scott JA, Turvey SE, Sears MR, Subbarao P, Brook JR. Early life exposure to phthalates in the Canadian Healthy Infant Longitudinal Development (CHILD) study: a multi-city birth cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:70-85. [PMID: 31641275 DOI: 10.1038/s41370-019-0182-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few studies have examined phthalate exposure during infancy and early life, critical windows of development. The Canadian Healthy Infant Longitudinal Development (CHILD) study, a population-based birth cohort, ascertained multiple exposures during early life. OBJECTIVE To characterize exposure to phthalates during infancy and early childhood. METHODS Environmental questionnaires were administered, and urine samples collected at 3, 12, and 36 months. In the first 1578 children, urine was analyzed for eight phthalate metabolites: mono-methyl phthalate (MMP), mono-ethyl phthalate (MEP), mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-3-carboxypropyl phthalate (MCPP). Geometric mean (GM) concentrations were calculated by age, together with factors that may influence concentrations. Trends with age were examined using mixed models and differences within factors examined using ANOVA. RESULTS The highest urinary concentration was for the metabolite MBP at all ages (GM: 15-32 ng/mL). Concentrations of all phthalate metabolites significantly increased with age ranging from GM: 0.5-15.1 ng/mL at 3 months and 1.9-32.1 ng/mL at 36 months. Concentrations of all metabolites were higher in the lowest income categories except for MEHP at 3 months, among children with any breastfeeding at 12 months, and in urine collected on dates with warmer outdoor temperatures (>17 °C), except for MBzP at 3 months and MEHP at 3 and 12 months. No consistent differences were found by gender, study site, or maternal age. CONCLUSIONS Higher phthalate metabolite concentrations were observed among children in lower income families. Examination of factors associated with income could inform interventions aimed to reduce infant phthalate exposure.
Collapse
Affiliation(s)
| | | | - Amanda J Wheeler
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
- University of Tasmania, Hobart, TAS, Australia
| | - Miriam L Diamond
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
| | - Huan Shu
- Stockholm University, Stockholm, Sweden
- Karlstad University, Karlstad, Sweden
| | | | | | - Ruixue Dai
- Hospital for Sick Children, Toronto, ON, Canada
| | - Shelley A Harris
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
- Cancer Care Ontario, Toronto, ON, Canada
| | | | - Zihang Lu
- Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Theo J Moraes
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | - James A Scott
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
| | | | | | - Padmaja Subbarao
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | - Jeffrey R Brook
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada.
| |
Collapse
|
47
|
Stroustrup A, Bragg JB, Spear EA, Aguiar A, Zimmerman E, Isler JR, Busgang SA, Curtin PC, Gennings C, Andra SS, Arora M. Cohort profile: the Neonatal Intensive Care Unit Hospital Exposures and Long-Term Health (NICU-HEALTH) cohort, a prospective preterm birth cohort in New York City. BMJ Open 2019; 9:e032758. [PMID: 31772104 PMCID: PMC6887035 DOI: 10.1136/bmjopen-2019-032758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The Neonatal Intensive Care Unit Hospital Exposures and Long-Term Health (NICU-HEALTH) longitudinal preterm birth cohort studies the impact of the NICU exposome on early-life development. NICU-HEALTH collects multiple biospecimens, complex observational and survey data and comprehensive multisystem outcome assessments to allow measurement of the impact of modifiable environmental exposures during the preterm period on neurodevelopmental, pulmonary and growth outcomes. PARTICIPANTS Moderately preterm infants without genetic or congenital anomalies and their mothers are recruited from an urban academic medical centre level IV NICU in New York City, New York, USA. Recruitment began in 2011 and continues through multiple enrolment phases to the present with goal enrolment of 400 infants. Follow-up includes daily data collection throughout the NICU stay and six follow-up visits in the first 2 years. Study retention is 77% to date, with the oldest patients turning age 8 in 2019. FINDINGS TO DATE NICU-HEALTH has already contributed significantly to our understanding of phthalate exposure in the NICU. Phase I produced the first evidence of the clinical impact of phthalate exposure in the NICU population. Further study identified specific sources of exposure to clinically relevant phthalate mixtures in the NICU. FUTURE PLANS Follow-up from age 3 to 12 is co-ordinated through integration with the Environmental Influences on Child Health Outcomes (ECHO) programme. The NICU-HEALTH cohort will generate a wealth of biomarker, clinical and outcome data from which future studies of the impact of early-life chemical and non-chemical environmental exposures can benefit. Findings from study of this cohort and other collaborating environmental health cohorts will likely translate into improvements in the hospital environment for infant development. TRIAL REGISTRATION NUMBERS This observational cohort is registered with ClinicalTrials.gov (NCT01420029 and NCT01963065).
Collapse
Affiliation(s)
- Annemarie Stroustrup
- Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jennifer B Bragg
- Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Emily A Spear
- Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Andrea Aguiar
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Zimmerman
- Communication Sciences and Disorders, Northeastern University, Boston, Massachusetts, USA
| | - Joseph R Isler
- Pediatrics, Columbia University, New York City, New York, USA
| | - Stefanie A Busgang
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Paul C Curtin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Chris Gennings
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Syam S Andra
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Manish Arora
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
48
|
Odebeatu CC, Taylor T, Fleming LE, J. Osborne N. Phthalates and asthma in children and adults: US NHANES 2007-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28256-28269. [PMID: 31368075 PMCID: PMC6791917 DOI: 10.1007/s11356-019-06003-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/16/2019] [Indexed: 04/12/2023]
Abstract
Environmental exposure to phthalates may contribute to an increased risk of asthma in children and adults. We aimed to assess the direction and strength of the association between urinary phthalates metabolites and current asthma in children and adults that participated in the National Health and Nutrition Examination Survey (NHANES) 2007-2012. Data on ten urinary phthalate metabolites, self-reported questionnaires, spirometry measures, and covariates were obtained from 7765 participants (28.1% were children aged 6-17 years) taking part in the NHANES 2007-2012. Asthma was assessed using self-reported questionnaires for children and adults, and via spirometry measures for adults alone. We used crude and adjusted logistic regression models to estimate the odds ratios (ORs) and 95% confidence interval (CI) per one log10 unit change in the concentration of phthalate metabolites. We further modeled the effect modification by sex. Out of 10 metabolites, only mono-benzyl phthalate (MBzP) was positively associated with the prevalence of self-reported asthma in children, after adjusting for a range of potential confounders (odds ratio 1.54; 95% confidence interval 1.05-2.27). No significant relationship was observed for adults. The association of mono-ethyl phthalate (MEP) was modified by sex, with significantly increased odds of asthma among males [boys (2.00; 1.14-3.51); adult males (1.32; 1.04-1.69)]. While no other phthalates showed a positive relationship with current asthma in males, mono-(carboxynonyl) phthalate (MCNP) and mono-(3-carboxylpropyl) phthalate (MCPP) were inversely associated with spirometrically defined asthma in adult females. A sex-specific relationship in adults was evident when spirometry, but not self-reported measures were used to define asthma. We found no clear association between exposure to phthalates and current asthma, except for a significant relationship between MBzP metabolites and self-reported asthma in children. As a result, exposure to phthalates and asthma development and/or exacerbations remains controversial, suggesting a need for a well-designed longitudinal study.
Collapse
Affiliation(s)
- Chinonso Christian Odebeatu
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
| | - Timothy Taylor
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
| | - Lora E. Fleming
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
| | - Nicholas J. Osborne
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
- School of Public Health and Community Medicine, University of New South Wales, Kensington, Sydney, 2052 Australia
- School of Public Health, The University of Queensland, Herston, Queensland 4006 Australia
| |
Collapse
|
49
|
Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, Malecki KMC, Martin MB, Miller RL, Neuhausen SL, Silk K, Trentham-Dietz A. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res 2019; 21:96. [PMID: 31429809 PMCID: PMC6701090 DOI: 10.1186/s13058-019-1168-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention. Main text Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland’s structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers. Conclusions An integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1611, New York, NY, 10032, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Drive South, CHS 71-254, Los Angeles, CA, 90095, USA
| | | | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road A-1039F, Bethesda, MD, 20814, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA, 91010, USA
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute and Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant St., Amherst, MA, 01003, USA
| | - Kristen M C Malecki
- Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 605, Madison, WI, 53726, USA
| | - Mary Beth Martin
- Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University Medical Center, E411 New Research Building, Washington, DC, 20057, USA
| | - Rachel L Miller
- Departments of Medicine, Pediatrics, Environmental Health Sciences; Vagelos College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, PH8E-101B, 630 W. 168th St, New York, NY, 10032, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Kami Silk
- Department of Communication, University of Delaware, 250 Pearson Hall, 125 Academy St, Newark, DE, 19716, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 307, Madison, WI, 53726, USA.
| | | |
Collapse
|
50
|
Phthalates Exposure and Occupational Symptoms among Slovakian Hairdressing Apprentices. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of the study were to examine occupational exposure to phthalates of hairdressing apprentices from Slovakia (n = 74, 89.2% females; 10.8% males), outcomes related to body composition and pulmonary functions. We used high-performance liquid chromatography and tandem mass spectrometry to the quantified urinary concentration of phthalates. Pulmonary function test (PFT), anthropometric measurements, and questionnaire were also conducted. We observed a decrease of % of predicted values of forced vital capacity (FVC% of PV) related exposure to mono(2-ethyl-5-oxohexyl) phthalate (MEOHP; p = 0.054) and sum of bis(2-ethylhexyl) phthalate metabolites (∑DEHP; p = 0.037), and a decrease of % of predicted values of vital capacity (VC% of PV) related to exposure to MEOHP, ∑DEHP (p = 0.008), and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP; p = 0.014) in females. We detected associations between forced vital capacity (FVC) with weight (p = 0.002) and fat-free mass index (FFMI, p = 0.010). Vital capacity (VC) and VC% of PV increased with weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), the waist-height ratio (WHtR), fat mass index (FMI) and FFMI in females (p ≤ 0.014). Results of multivariate regression between PFT and anthropometric parameters adjusted to phthalates indicated exposure to MnBP and MEHP, changing body structure (BMI and FMI), subsequently affecting values of FEV1/FVC.
Collapse
|