1
|
Yang K, Lu C, Chen K, Shan Z, Teng W, Li Y. Association Between Long-Term Exposure to Environmental Fine Particulate Matter and the Prevalence of Thyroid Disorders: A National Cross-Sectional Study in China. Thyroid 2024; 34:1094-1104. [PMID: 39163037 DOI: 10.1089/thy.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Background: Exposure to particles with an aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with the occurrence of thyroid dysfunction among pregnant women and neonates, but it is not known if this association occurs in the general population. We aimed to determine the association of prolonged exposure to PM2.5 with the prevalence of thyroid disorders among adults in China. Methods: A nationally representative cross-sectional study of thyroid disorders, iodine status, and diabetes status was carried out in all 31 provinces across China from 2015 to 2017. In total, 73,900 adults aged 18 years and older were included. Serum concentrations of thyroid hormones, thyrotropin, and thyroid antibodies and the urine iodine concentration were measured. The environmental concentration of PM2.5 for each participant's residential address at a spatial resolution of 1 × 1 km was estimated. Results: The average long-term exposure to PM2.5 at residential addresses was 66.41 μg/m3, ranging from 17.58 μg/m3 to 120.40 μg/m3. Compared with that of individuals with lower exposure levels, the prevalence of thyroid diseases such as autoimmune thyroiditis and subclinical hypothyroidism was greater in those with PM2.5 concentrations within the third quartile range (60.18 to 73.78 μg/m3). Compared with those in the first quartile (17.58 to 46.38 μg/m3), participants in the highest PM2.5 quartile (73.78 to 120.40 μg/m3) presented an increased risk of overt hypothyroidism (OR 1.23 [CI 0.94-1.61]), subclinical hypothyroidism (1.10 [1.01-1.21]), autoimmune thyroiditis (1.09 [1.00-1.18]), and thyroglobulin antibody positivity (1.17 [1.07-1.29]). However, there was no association between PM2.5 exposure and overt hyperthyroidism, subclinical hyperthyroidism, Graves' disease, or thyroid peroxidase antibody positivity (p > 0.05). Each 10 μg/m³ increase in the PM2.5 concentration was associated with an increased risk of overt hypothyroidism (OR 1.05 [1.00-1.11]), subclinical hypothyroidism (1.02 [1.00-1.03]), and thyroglobulin antibody positivity (1.02 [1.00-1.04]). Furthermore, a nearly linear exposure-response relationship was observed between long-term PM2.5 exposure and thyroglobulin antibody positivity. Conclusions: PM2.5 exposure was associated with thyroid disorders among Chinese adults. A dose-response relationship between PM2.5 exposure and autoimmune thyroiditis, as well as thyroglobulin antibody positivity, was also observed.
Collapse
Affiliation(s)
- Kaijie Yang
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China
| | - Cihang Lu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kang Chen
- Department of Ophthalmology, First Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China
| | - Yongze Li
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Gea M, Fea E, Racca L, Gilli G, Gardois P, Schilirò T. Atmospheric endocrine disruptors: A systematic review on oestrogenic and androgenic activity of particulate matter. CHEMOSPHERE 2024; 349:140887. [PMID: 38070607 DOI: 10.1016/j.chemosphere.2023.140887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
The alarming human health effects induced by endocrine disruptors (ED) have raised the attention of public opinion and policy makers leading worldwide to regulations that are continuously improved to reduce exposure to them. However, decreasing the exposure levels is challenging because EDs are ubiquitous and exposure occurs through multiple routes. The main exposure route is considered ingestion, but, recently, the inhalation has been hypothesized as an important additional route. To explore this scenario, some authors applied bioassays to assess the endocrine activity of air. This review summarizes for the first time the applied methods and the obtained evidences about the in vitro endocrine activity of airborne particulate matter (PM) collected outdoor. Among the bioassay endpoints, (anti)oestrogenic and (anti)androgenic activities were selected because are the most studied endocrine activities. A total of 24 articles were ultimately included in this review. Despite evidences are still scarce, the results showed that PM can induce oestrogenic, antioestrogenic, androgenic and antiandrogenic effects, suggesting that PM has an endocrine disrupting potential that should be considered because it could represent a further source of exposure to EDs. Although it is difficult to estimate how much inhalation can contribute to the total burden of EDs, endocrine activity of PM may increase the human health risk. Finally, the results pointed out that the overall endocrine activity is difficult to predict from the concentrations of individual pollutants, so the assessment using bioassays could be a valuable additional tool to quantify the health risk posed by EDs in air.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Elisabetta Fea
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Letizia Racca
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Paolo Gardois
- Biblioteca Federata di Medicina Ferdinando Rossi, University of Torino, Torino, 10126, Italy.
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| |
Collapse
|
4
|
Dehghani S, Moshfeghinia R, Ramezani M, Vali M, Oskoei V, Amiri-Ardekani E, Hopke P. Exposure to air pollution and risk of ovarian cancer: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:439-450. [PMID: 35575767 DOI: 10.1515/reveh-2021-0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Exposure to air pollution has destructive health consequences and a potential role in ovarian cancer etiology. We conducted a systematic review of the studies assessing the associations between ovarian malignancy and exposure to air pollutants. CONTENT The included studies were categorized based on types of measured ambient air pollutants, including particulate matter (five studies), gases (two studies), air pollutant mixtures (eight studies), and traffic indicators for air pollution (only one study). Because of the heterogeneity of quantitative data of the reviewed studies, we qualitatively reviewed the air pollution role in ovarian cancer risk with representing incidence and/or the mortality rate of ovarian cancer in related with air pollution. Nine studies were ecological study design. Except for one, all studies confirmed a positive correlation between exposure to ambient air pollution (AAP) and increased ovarian cancer risks. SUMMARY We concluded that prolonged air pollution exposure through possible mechanisms, estrogen-like effects, and genetic mutations might affect ovarian tumorigenesis. This research surveyed the limitations of the previous studies, including issues with ambient air pollution surveillance and assessing the exposure, determining the air pollution sources, data analysis approaches, and study designs. OUTLOOK Finally, the authors provide suggestions for future environmental epidemiological inquiries on the impact of exposure to ambient air pollution on ovarian malignancy.
Collapse
Affiliation(s)
- Samaneh Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Moshfeghinia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- MPH Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsan Ramezani
- Assistant Professor of Emergency Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohebat Vali
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Amiri-Ardekani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Association of Indigenous Knowledge, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceutical (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Philip Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
5
|
Gea M, Macrì M, Marangon D, Pitasi FA, Fontana M, Bonetta S, Schilirò T. Can oestrogenic activity in air contribute to the overall body burden of endocrine disruptors? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104232. [PMID: 37459960 DOI: 10.1016/j.etap.2023.104232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Endocrine disruptors (EDCs) are emerging contaminants that are harmful to health. Human exposure occurs mainly through ingestion or dermal contact, but inhalation could be an additional exposure route; therefore, this study was conducted to evaluate the oestrogenic activity of airborne particulate matter (PM). Outdoor PM was collected for a year in five Italian sites and extracted with organic solvents (four seasonal extracts/site). The oestrogenic activity was assessed using a gene reporter assay (MELN), and the risk to human health through inhalation was quantified using the results. Moreover, extracts were analysed to assess cytotoxicity (WST-1 and LDH assays) on human bronchial cells (BEAS-2B). The extracts induced a significant cytotoxicity and oestrogenic activity. Oestrogenic activity showed a seasonal trend and was correlated with concentrations of benzo(a)pyrene and toxic equivalency factor. Although a low inhalation cancer risk was found, this study confirmed that oestrogenic activity in air could contribute to overall health risks due to EDC exposure.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Daniele Marangon
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Grugliasco, TO, Italy
| | | | - Marco Fontana
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Grugliasco, TO, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
6
|
Valdés S, Doulatram-Gamgaram V, Maldonado-Araque C, Lago-Sampedro A, García-Escobar E, García-Serrano S, García-Vivanco M, Garrido Juan L, Theobald MR, Gil V, Martín-Llorente F, Ocon P, Calle-Pascual A, Castaño L, Delgado E, Menendez E, Franch-Nadal J, Gaztambide S, Girbés J, Chaves FJ, Galán-García JL, Aguilera-Venegas G, Gutierrez-Repiso C, Fernández-García JC, Colomo N, Soriguer F, García-Fuentes E, Rojo-Martínez G. Ambient air pollution and thyroid function in Spanish adults. A nationwide population-based study (Di@bet.es study). Environ Health 2022; 21:76. [PMID: 35978396 PMCID: PMC9387071 DOI: 10.1186/s12940-022-00889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain. METHODS The Di@bet.es study is a national, cross-sectional, population-based survey which was conducted in 2008-2010 using a random cluster sampling of the Spanish population. The present analyses included 3859 individuals, without a previous thyroid disease diagnosis, and with negative thyroid peroxidase antibodies (TPO Abs) and thyroid-stimulating hormone (TSH) levels of 0.1-20 mIU/L. Participants were assigned air pollution concentrations for particulate matter <2.5μm (PM2.5) and Nitrogen Dioxide (NO2), corresponding to the health examination year, obtained by means of modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). TSH, free thyroxine (FT4), free triiodothyronine (FT3) and TPO Abs concentrations were analyzed using an electrochemiluminescence immunoassay (Modular Analytics E170 Roche). RESULTS In multivariate linear regression models, there was a highly significant negative correlation between PM2.5 concentrations and both FT4 (p<0.001), and FT3 levels (p<0.001). In multivariate logistic regression, there was a significant association between PM2.5 concentrations and the odds of presenting high TSH [OR 1.24 (1.01-1.52) p=0.043], lower FT4 [OR 1.25 (1.02-1.54) p=0.032] and low FT3 levels [1.48 (1.19-1.84) p=<0.001] per each IQR increase in PM2.5 (4.86 μg/m3). There was no association between NO2 concentrations and thyroid hormone levels. No significant heterogeneity was seen in the results between groups of men, pre-menopausal and post-menopausal women. CONCLUSIONS Exposures to PM2.5 in the general population were associated with mild alterations in thyroid function.
Collapse
Affiliation(s)
- Sergio Valdés
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Viyey Doulatram-Gamgaram
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Cristina Maldonado-Araque
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Lago-Sampedro
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva García-Escobar
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara García-Serrano
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta García-Vivanco
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Luis Garrido Juan
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Mark Richard Theobald
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Victoria Gil
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Fernando Martín-Llorente
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Pilar Ocon
- UGC de Laboratorio (Bioquímica), Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Alfonso Calle-Pascual
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition and Instituto de Investigación, Department Medicine II, Sanitaria University Hospital S. Carlos (IdISSC), Universidad Complutense (UCM), Madrid, Spain
| | - Luis Castaño
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario Cruces, UPV/EHU, BioCrucesBarakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elías Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias / University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Edelmiro Menendez
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias / University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Josep Franch-Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- EAP Raval Sud, Institut Català de la Salut, Unitat de Suport a la Recerca (IDIAP - Fundació Jordi Gol), Red GEDAPS, Primary Care, Barcelona, Spain
| | - Sonia Gaztambide
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- EAP Raval Sud, Institut Català de la Salut, Unitat de Suport a la Recerca (IDIAP - Fundació Jordi Gol), Red GEDAPS, Primary Care, Barcelona, Spain
| | - Joan Girbés
- Genomic Studies and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia - INCLIVA, Valencia, Spain
| | - F Javier Chaves
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Genomic Studies and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia - INCLIVA, Valencia, Spain
| | | | | | - Carolina Gutierrez-Repiso
- UGC de Endocrinología y Nutrición. Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Natalia Colomo
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain
- CIBER Enfermedades Hepáticas y Digestivas - CIBEREHD, Instituto de Salud Carlos III, Málaga, Spain
| | - Gemma Rojo-Martínez
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Jin HX, Guo YH, Song WY, Li G, Liu Y, Shi SL. Effect of ambient air pollutants on in vitro fertilization-embryo transfer pregnancy outcome in Zhengzhou, China. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103807. [PMID: 34990867 DOI: 10.1016/j.etap.2021.103807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
With the acceleration of China's urbanization and industrialization, air pollution has become a major environmental problem. Retrospective data analysis of 6564 patients who underwent IVF-ET in the center for reproductive medicine of the First Affiliated Hospital of Zhengzhou University from 2015 to 2020. Different stages were selected from 90 days before oocyte retrieval to 35 days after transfer and divided into five exposure periods. Multivariate logistic regression was used to analyze the relationship between six ambient air pollutants (PM2.5, PM10, NO2, SO2, CO and O3) and the IVF-ET pregnancy outcome. The results showed that air pollutants can significantly affect the IVF pregnancy outcome. The harmful effects of ambient air pollutants are more obvious in the patients aged < 35 years, single embryo transfer and cleavage stage embryo transfer.
Collapse
Affiliation(s)
- Hai-Xia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu-Han Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Yan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen-Lin Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Vasiljevic T, Jariyasopit N, Schuster JK, Harner T. Insights into sources and occurrence of oxy- and nitro-PAHs in the alberta oil sands region using a network of passive air samplers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117513. [PMID: 34126512 DOI: 10.1016/j.envpol.2021.117513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Mining-related activities in the Alberta Oil Sands Region (AOSR) are known to emit polycyclic aromatic hydrocarbons (PAHs) and related compounds to ambient air. This is a concern due to the toxicity of PAHs, including their transformation products such as nitrated (NPAHs) and oxygenated (OPAHs) PAHs. This is the first study that provided a more extensive outlook into the sources, occurrence in air, and spatial and seasonal patterns of NPAHs and OPAHs in the AOSR by using passive air sampling. A sampling campaign from 2013 to 2016 revealed concentrations of NPAHs that were much lower than those of OPAHs. The highest concentrations of NPAHs were concentrated in the region associated with extensive mining activities, with ∑NPAH concentrations ranging from 20 to 250 pg/m3. Within the oil sands (OS) mineable area, NPAHs associated with primary release appear more commonly, while NPAHs produced via oxidative transformation are predominant outside of this area. The concentrations of ∑OPAH ranged from 400 to 2400 pg/m3, with the highest air concentrations in the region located south of the main OS activity zone, with peak concentrations attributed to a 2016 forest fire event. Uptake of PAHs from ambient air and their subsequent conversion to generate OPAHs is believed to play an important role in wildfire emissions of OPAHs. The seasonal trend investigation was inconclusive, with NPAHs slightly higher during the winter, while OPAHs were slightly elevated during summer. A preliminary comparison of ambient concentrations of OPAHs and NPAHs in the AOSR to measurements in the Greater Toronto Area revealed a similar range of concentrations, but also a unique presence of certain NPAHs such as 4-nitrobiphenyl, 2-nitrodibenzothiophene, 2,8-dinitrodibenzothiophene and 6-nitrobenzo-(a)-pyrene. This indicates that AOSR might have its own NPAH profile - creating the need to better understand associated NPAH toxicity and propensity for long range transport.
Collapse
Affiliation(s)
- Tijana Vasiljevic
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada.
| | - Narumol Jariyasopit
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jasmin K Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| |
Collapse
|
9
|
Wei C, Bandowe BAM, Han Y, Cao J, Watson JG, Chow JC, Wilcke W. Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147234. [PMID: 33971611 DOI: 10.1016/j.scitotenv.2021.147234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic compounds (PACs) such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives [oxygenated PAHs (OPAHs), nitrated PAHs (NPAHs), and azaarenes (AZAs)] are toxic and ubiquitous air pollutants. In this study, the concentrations of these PACs were determined in air obtained in spring and autumn of 2012 from urban and rural areas of the Tibetan Plateau, temperate, subtropical, and tropical climate zones in China. Average concentrations (gaseous + particulate) of ∑29PAHs, ∑15OPAHs, ∑11NPAHs, and ∑4AZAs were 928 ± 658, 54 ± 45, 5.3 ± 4.4, 14 ± 11 ng m-3 and 995 ± 635, 67 ± 38, 8.4 ± 6.1, 24 ± 16 ng m-3 in spring and autumn, respectively. Various C fractions and latitude correlated significantly with the concentrations and ratios of PACs. The slopes of the regression of gas-particle partition coefficients (Kp) of PACs on their sub-cooled liquid vapor pressures (PL0), indicated both adsorption and absorption to total suspended particles (TSP) for PAHs, OPAHs, and NPAHs in the four studied climatic zones. This result was further supported by comparing the fractions of PACs in TSP calculated from field data with those predicted by the Junge-Pankow adsorption and KOA absorption models. The concentration ratios of most OPAHs or NPAHs to their parent PAHs and of benzo[e]pyrene/benzo[a]pyrene were higher in autumn than in spring and increased with remoteness from point sources. This suggests enhanced secondary formation of PAH derivatives due to the elevated photochemical activity in autumn and longer ageing of air and associated transformation of PACs during their long-distance transport from source regions (urban sites) to rural sites. Lifetime lung cancer risk estimated from PACs ranged from 0.8 ± 0.6 to 3.1 ± 1.0 (×10-3), exceeding the value (10-5) recommended by the WHO. Gaseous PACs contributed substantially to the estimated cancer risks and their contributions increased with decreasing latitude in China.
Collapse
Affiliation(s)
- Chong Wei
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shanghai Carbon Data Research Center (SCDRC), CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| | - Yongming Han
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - John G Watson
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Judith C Chow
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| |
Collapse
|
10
|
Nežiková B, Degrendele C, Bandowe BAM, Holubová Šmejkalová A, Kukučka P, Martiník J, Mayer L, Prokeš R, Přibylová P, Klánová J, Lammel G. Three years of atmospheric concentrations of nitrated and oxygenated polycyclic aromatic hydrocarbons and oxygen heterocycles at a central European background site. CHEMOSPHERE 2021; 269:128738. [PMID: 33121801 DOI: 10.1016/j.chemosphere.2020.128738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs, OPAHs) are abundant in the atmosphere and contribute significantly to the health risk associated with inhalation of polluted air. Despite the health hazard they pose, NPAHs and OPAHs were rarely included in monitoring. The aim of this study is to provide the first multi-year temporal trends of the concentrations, composition pattern and fate of NPAHs and OPAHs in air from a site representative of background air quality conditions in central Europe. Samples were collected every second week at a rural background site in the Czech Republic during 2015-2017. Concentrations ranged from 1.3 to 160 pg m-3 for Σ17NPAHs, from 32 to 2600 pg m-3 for Σ10OPAHs and from 5.1 to 4300 pg m-3 for Σ2O-heterocycles. The average particulate mass fraction (θ) ranged from 0.01 ± 0.02 (2-nitronaphthalene) to 0.83 ± 0.22 (1-nitropyrene) for individual NPAHs and from <0.01 ± 0.01 (dibenzofuran) to 0.96 ± 0.08 (6H-benzo (c,d)pyren-6-one) for individual OPAHs and O-heterocycles. The multiyear variations showed downward trends for a number of targeted compounds. This suggests that on-going emission reductions of PAHs are effective also for co-emitted NPAHs and OPAHs.
Collapse
Affiliation(s)
| | | | - Benjamin A M Bandowe
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Petr Kukučka
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Jakub Martiník
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Ludovic Mayer
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Roman Prokeš
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | | | - Jana Klánová
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Gerhard Lammel
- RECETOX Centre, Masaryk University, Brno, Czech Republic; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| |
Collapse
|
11
|
Barhoumi B, Tedetti M, Heimbürger-Boavida LE, Tesán Onrubia JA, Dufour A, Doan QT, Boutaleb S, Touil S, Scippo ML. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). CHEMOSPHERE 2020; 258:127312. [PMID: 32947663 DOI: 10.1016/j.chemosphere.2020.127312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were characterized for their chemical compositions, including mercury (HgPM), as well as organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-associated organic contaminants. Results showed that average HgPM concentration over the entire sampling period was found to be 13.4 ± 12 pg m-3. Seasonal variation in the HgPM concentration was observed with lower values in spring and summer and higher values in winter and autumn due to the variation of meteorological conditions together with the emission sources. Principal component analysis suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic HgPM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts of atmospheric PM from Bizerte city (388.3-1543.6 fg m-3), and shows significant positive correlations with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants, with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and utility of the use of bioassays in risk assessment of complex environmental samples.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | | | - Javier A Tesán Onrubia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Aurélie Dufour
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Que Thi Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
12
|
Nováková Z, Novák J, Kitanovski Z, Kukučka P, Smutná M, Wietzoreck M, Lammel G, Hilscherová K. Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. ENVIRONMENT INTERNATIONAL 2020; 139:105634. [PMID: 32446144 DOI: 10.1016/j.envint.2020.105634] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Air pollution, which represents a major environmental risk to human health, comprises a complex mixture of compounds where only little is known about its specific toxicities. OBJECTIVES This study examined the specific toxicities associated with ambient air pollutant mixtures with respect to gas/particle partitioning, particulate matter (PM) size, pollutant polarity and bioaccessibility from PM, and evaluated the contribution of PAHs and their oxygenated and nitrated derivatives (OPAHs, NPAHs). METHODS Air samples (gas phase, PM10 and size-segregated PM), were collected at urban (in winter and summer) and background (winter) sites in the Czech Republic. The total and bioaccessible concentrations were addressed using organic solvent extraction and simulated lung fluid extraction, respectively. Organic extracts were also further fractionated according to polarity. Aryl hydrocarbon receptor (AhR)-mediated activity, anti-/estrogenicity, anti-/androgenicity, thyroid receptor (TR)-mediated activity and cytotoxicity for bronchial cells were determined by human cell-based in vitro bioassays. The contribution of studied compounds to observed effects was assessed by both modelling and reconstructing the mixtures. RESULTS Significant effects were detected in the sub-micrometre size fraction of PM (estrogenicity, androgenicity, TR- and AhR-mediated activities) and in the gas phase (TR-mediated activity, antiandrogenicity). Compounds interacting with TR showed high bioaccessibility to simulated lung fluid. Relatively lower bioaccessibility was observed for estrogenicity and AhR-mediated activity. However, the toxicity testing of reconstructed mixtures revealed that the targeted pollutants are not the main contributors, except for urban PM air pollution in winter, where they accounted for 5-88% of several effects detected in the original complex environmental samples. DISCUSSION Studied toxicities were mostly driven by polar compounds largely attributed to the easily inhalable PM1, which is of high relevance for human health risk assessment. Except of parent PAHs in some cases, the targeted compounds contributed to the detected effects mostly to a relatively low extent implying huge data gaps in terms of endocrine disruptive potencies of targeted substances and the significance of other polar compounds present in ambient air.
Collapse
Affiliation(s)
- Zuzana Nováková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zoran Kitanovski
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Marco Wietzoreck
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Gerhard Lammel
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
13
|
Ghassabian A, Pierotti L, Basterrechea M, Chatzi L, Estarlich M, Fernández-Somoano A, Fleisch AF, Gold DR, Julvez J, Karakosta P, Lertxundi A, Lopez-Espinosa MJ, Mulder TA, Korevaar TIM, Oken E, Peeters RP, Rifas-Shiman S, Stephanou E, Tardón A, Tiemeier H, Vrijheid M, Vrijkotte TGM, Sunyer J, Guxens M. Association of Exposure to Ambient Air Pollution With Thyroid Function During Pregnancy. JAMA Netw Open 2019; 2:e1912902. [PMID: 31617922 PMCID: PMC6806433 DOI: 10.1001/jamanetworkopen.2019.12902] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IMPORTANCE Air pollutants interact with estrogen nuclear receptors, but their effect on thyroid signaling is less clear. Thyroid function is of particular importance for pregnant women because of the thyroid's role in fetal brain development. OBJECTIVE To determine the short-term association of exposure to air pollution in the first trimester with thyroid function throughout pregnancy. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, 9931 pregnant women from 4 European cohorts (the Amsterdam Born Children and Their Development Study, the Generation R Study, Infancia y Medio Ambiente, and Rhea) and 1 US cohort (Project Viva) with data on air pollution exposure and thyroid function during pregnancy were included. The recruitment period for the Amsterdam Born Children and Their Development Study was January 2003 to March 2004; for Generation R, April 2002 to January 2006; for Infancia y Medio Ambiente, November 2003 to January 2008; for Rhea, February 2007 to February 2008; and for Project Viva, April 1999 to November 2002. Statistical analyses were conducted from January 2018 to April 2019. MAIN OUTCOMES AND MEASURES Residential air pollution concentrations (ie, nitrogen oxide and particulate matter [PM]) during the first trimester of pregnancy were estimated using land-use regression and satellite-derived aerosol optical depth models. Free thyroxine, thyrotropin, and thyroid peroxidase antibody levels were measured across gestation. Hypothyroxinemia was defined as free thyroxine below the fifth percentile of the cohort distribution with normal thyrotropin levels, following the American Thyroid Association guidelines. RESULTS Among 9931 participants, the mean (SD) age was 31.2 (4.8) years, 4853 (48.9%) had more than secondary educational levels, 5616 (56.6%) were nulliparous, 404 (4.2%) had hypothyroxinemia, and 506 (6.7%) tested positive for thyroid peroxidase antibodies. Concentrations of nitrogen dioxide and PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) were lower and had less variation in women in the US cohort than those in European cohorts. No associations of nitrogen oxide with thyroid function were found. Higher exposures to PM2.5 were associated with higher odds of hypothyroxinemia in pregnant women (odds ratio per 5-μg/m3 change, 1.21; 95% CI, 1.00-1.47). Although exposure to PM with an aerodynamic diameter of 10 μm or less was not significantly associated with hypothyroxinemia, the coefficient was similar to that for the association of PM2.5 with hypothyroxinemia (odds ratio per 10-μg/m3 change, 1.18; 95% CI, 0.93-1.48). Absorbances of PM2.5 and PM with aerodynamic diameter from 2.5 to 10 μg and were not associated with hypothyroxinemia. There was substantial heterogeneity among cohorts with respect to thyroid peroxidase antibodies (P for heterogeneity, <.001), showing associations of nitrogen oxide and PM with thyroid autoimmunity only in the women in the Generation R Study. CONCLUSIONS AND RELEVANCE The findings of this study suggest that first-trimester exposures to PM2.5 were associated with mild thyroid dysfunction throughout pregnancy. The association of PM2.5 exposure with thyroid function during pregnancy is of global health importance because air pollution exposure is widespread and hypothyroxinemia may adversely influence the brain development of offspring.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics, Environmental Medicine, and Population Health, School of Medicine, New York University, New York
| | - Livia Pierotti
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikel Basterrechea
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Biodonostia Health Research Institute, San Sebastian, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Leda Chatzi
- Department of Social Medicine, University of Crete, Heraklion, Greece
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Instituto Universaitario de Oncología del Principado de Asturias, Departament of Medicine, University of Oviedo, Oviedo, Spain
| | - Abby F Fleisch
- Department of Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland
| | - Diane R Gold
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Polyxeni Karakosta
- Department of Social Medicine, University of Crete, Heraklion, Greece
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Biodonostia Health Research Institute, San Sebastian, Spain
- Department of Public Health and Preventive Medicine, University of Basque Country, Bilbao, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Tessa A Mulder
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tim I M Korevaar
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institution, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sheryl Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institution, Boston, Massachusetts
| | | | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Instituto Universaitario de Oncología del Principado de Asturias, Departament of Medicine, University of Oviedo, Oviedo, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Tanja G M Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Rundle AG, Gallagher D, Herbstman JB, Goldsmith J, Holmes D, Hassoun A, Oberfield S, Miller RL, Andrews H, Widen EM, Hoepner LA, Perera F. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5-14 years. ENVIRONMENTAL RESEARCH 2019; 177:108595. [PMID: 31352299 PMCID: PMC7393736 DOI: 10.1016/j.envres.2019.108595] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 05/05/2023]
Abstract
There is evidence that exposures to polycyclic aromatic hydrocarbons (PAH) and fine particles in air pollution are associated with higher childhood body mass index (BMI). Birth cohort analyses of prenatal exposures to PAH and child BMI Z-scores from age 5-14 years were conducted. African-American and Hispanic children born in the Bronx or Northern Manhattan, New York (1998-2006), whose mothers underwent personal air monitoring for airborne PAH exposure during pregnancy, were followed up with measurements of height and weight at approximate ages 5, 7, 9, 10, 11, 12.5 and 13.5 years. Multivariable generalized estimating equation analyses were used to relate prenatal airborne PAH exposures to child BMI Z-scores through time. The analyses adjusted for many known risk factors for childhood obesity and included interactions terms between age and exposure tertiles and age squared and exposure tertiles. In total, 535 children had at least one height and weight measure during follow-up. The prevalence of obesity was 20.6% at age 5 and increased across follow-ups until age 11 when it was 33.0%. At age 5, BMI Z-scores were significantly greater for children in the third tertile of exposure relative to the first tertile (0.35 Z-score units, 95% CI 0.09, 0.61, p = 0.007) and were non-significantly higher for the second tertile of exposure compared to the first tertile (0.25 Z-score units, 95% CI -0.02, 0.52, P = 0.075). The trajectories of BMI Z-scores by tertiles of exposure converged as the children aged, such that by age 11 years the estimated mean BMI Z-scores associated with each tertile of exposure were not different. Prenatal exposures to airborne PAH were associated with higher childhood BMI Z-scores at a young age, but growth trajectories converged by age 11 years. Accordingly, highly exposed children spend a greater proportion of their childhood with higher BMI Z-scores.
Collapse
Affiliation(s)
- Andrew G Rundle
- Columbia University Mailman School of Public Health, New York, United States.
| | - Dympna Gallagher
- Columbia University Vagelos College of Physicians & Surgeons, New York, United States.
| | - Julie B Herbstman
- Columbia University Mailman School of Public Health, New York, United States.
| | - Jeff Goldsmith
- Columbia University Mailman School of Public Health, New York, United States.
| | - Darrell Holmes
- Columbia University Mailman School of Public Health, New York, United States.
| | - Abeer Hassoun
- Columbia University Vagelos College of Physicians & Surgeons, New York, United States.
| | - Sharon Oberfield
- Columbia University Vagelos College of Physicians & Surgeons, New York, United States.
| | - Rachel L Miller
- Columbia University Vagelos College of Physicians & Surgeons, New York, United States.
| | - Howard Andrews
- Columbia University Mailman School of Public Health, New York, United States.
| | | | - Lori A Hoepner
- SUNY Downstate Medical Center, School of Public Health, Brooklyn, United States.
| | - Frederica Perera
- Columbia University Mailman School of Public Health, New York, United States.
| |
Collapse
|
15
|
McDonough CA, Franks DG, Hahn ME, Lohmann R. Aryl hydrocarbon receptor-mediated activity of gas-phase ambient air derived from passive sampling and an in vitro bioassay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:748-759. [PMID: 30648756 PMCID: PMC6467651 DOI: 10.1002/etc.4361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 05/30/2023]
Abstract
The gaseous fraction of hydrophobic organic contaminants (HOCs) in ambient air appears to be responsible for a significant portion of aryl hydrocarbon receptor (AhR)-mediated activity, but the majority of compounds contributing to this activity remain unidentified. The present study investigated the use of polyethylene passive samplers to isolate gaseous HOCs from ambient air for use in in vitro bioassays and to improve our understanding of the toxicological relevance of the gaseous fraction of ambient air in urban and residential environments. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and organic flame retardants were measured in polyethylene passive sampler extracts. Extracts were also analyzed using an in vitro bioassay to measure AhR-mediated activity. Bioassay-derived benzo[a]pyrene (BaP) equivalents (BaP-Eqbio ), a measure of potency of HOC mixtures, were greatest in the downtown Cleveland area and lowest at rural/residential sites further from the city center. The BaP-Eqbio was weakly correlated with concentrations of 2-ring alkyl/substituted PAHs and one organophosphate flame retardant, ethylhexyl diphenyl phosphate. Potency predicted based on literature-derived induction equivalency factors (IEFs) explained only 2 to 23% of the AhR-mediated potency observed in bioassay experiments. Our results suggests that health risks of gaseous ambient air pollution predicted using data from targeted chemical analysis may underestimate risks of exposure, most likely due to augmentation of potency by unmonitored chemicals in the mixture, and the lack of relevant IEFs for many targeted analytes. Environ Toxicol Chem 2019;38:748-759. © 2019 SETAC.
Collapse
Affiliation(s)
- Carrie A. McDonough
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI, USA
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI, USA
| |
Collapse
|
16
|
Vondráček J, Pivnička J, Machala M. Polycyclic aromatic hydrocarbons and disruption of steroid signaling. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Awonaike B, Wang C, Goss KU, Wania F. Quantifying the equilibrium partitioning of substituted polycyclic aromatic hydrocarbons in aerosols and clouds using COSMOtherm. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:288-299. [PMID: 28155951 DOI: 10.1039/c6em00636a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Functional groups attached to polycyclic aromatic hydrocarbons (PAHs) can significantly modify the environmental fate of the parent compound. Equilibrium partition coefficients, which are essential for describing the environmental phase distribution of a compound, are largely unavailable for substituted PAHs (SPAHs). Here, COSMOtherm, a software based on quantum-chemical calculations is used to estimate the atmospherically relevant partition coefficients between the gas phase, the aqueous bulk phase, the water surface and the water insoluble organic matter phase, as well as the salting-out coefficients, for naphthalene, anthracene, phenanthrene, benz(a)anthracene, benzo(a)pyrene and dibenz(a,h)anthracene and 62 of their substituted counterparts. They serve as input parameters for the calculation of equilibrium phase distribution of these compounds in aerosols and clouds. Our results, which were compared with available experimental data, show that the effect of salts, the adsorption to the water surface and the dissolution in a bulk aqueous phase can be safely neglected when estimating the gas-particle partitioning of SPAHs in aerosols. However, for small PAHs with more than one polar functional group the aqueous phase can be the dominant reservoir in a cloud.
Collapse
Affiliation(s)
- Boluwatife Awonaike
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C, 1A4, Canada.
| | - Chen Wang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C, 1A4, Canada.
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C, 1A4, Canada.
| |
Collapse
|
18
|
Bandowe BAM, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:237-257. [PMID: 28069306 DOI: 10.1016/j.scitotenv.2016.12.115] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/07/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are derivatives of PAHs with at least one nitro-functional group (-NO2) on the aromatic ring. The toxic effects of several nitro-PAHs are more pronounced than those of PAHs. Some nitro-PAHs are classified as possible or probable human carcinogens by the International Agency for Research on Cancer. Nitro-PAHs are released into the environment from combustion of carbonaceous materials (e.g. fossil fuels, biomass, waste) and post-emission transformation of PAHs. Most studies on nitro-PAHs are about air (gas-phase and particulate matter), therefore less is known about the occurrence, concentrations, transport and fate of nitro-PAHs in soils, aquatic environment and biota. Studies on partition and exchange of nitro-PAHs between adjacent environmental compartments are also sparse. The concentrations of nitro-PAHs cannot easily be predicted from the intensity of anthropogenic activity or easily related to those of PAHs. This is because anthropogenic source strengths of nitro-PAHs are different from those of PAHs, and also nitro-PAHs have additional sources (formed by photochemical conversion of PAHs). The fate and transport of nitro-PAHs could be considerably different from their related PAHs because of their higher molecular weights and considerably different sorption mechanisms. Hence, specific knowledge on nitro-PAHs is required. Regulations on nitro-PAHs are also lacking. We present an extensive review of published literature on the sources, formation, physico-chemical properties, methods of determination, occurrence, concentration, transport, fate, (eco)toxicological and adverse health effects of nitro-PAHs. We also make suggestions and recommendations about data needs, and future research directions on nitro-PAHs. It is expected that this review will stimulate scientific discussion and provide the basis for further research and regulations on nitro-PAHs.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| |
Collapse
|
19
|
Oziol L, Alliot F, Botton J, Bimbot M, Huteau V, Levi Y, Chevreuil M. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3142-3152. [PMID: 27858277 DOI: 10.1007/s11356-016-8045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.
Collapse
Affiliation(s)
- Lucie Oziol
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Fabrice Alliot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| | - Jérémie Botton
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Team "Early Origin of the Child's Health and Development" (ORCHAD), Paris Descartes University, Paris, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Maya Bimbot
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Viviane Huteau
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Yves Levi
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Marc Chevreuil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
20
|
Croes K, Van den Heuvel R, Van den Bril B, Staelens J, Denison MS, Van Langenhove K, Vandermarken T, Elskens M. Assessment of estrogenic and androgenic activity in PM10 air samples from an urban, industrial and rural area in Flanders (Belgium) using the CALUX bioassay. ENVIRONMENTAL RESEARCH 2016; 150:66-72. [PMID: 27257826 PMCID: PMC7932495 DOI: 10.1016/j.envres.2016.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/25/2016] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals represent a broad class of compounds, are widespread in the environment and can pose severe health effects. OBJECTIVES The objective of this study was to investigate and compare the overall estrogen and androgen activating potential of PM10 air samples at an urban, rural and industrial location in Flanders, using a human in vitro cell bioassay. METHODS PM10 samples were collected on glass fiber filters every six days between April 2013 and January 2014 using a high-volume sampler. Extraction was executed with a hexane/acetone mixture before analysis using a recombinant estrogen- or androgen responsive human carcinoma cell line. Results were expressed as bioanalytical equivalents (BEQs) per cubic meter of air. RESULTS High fluctuations in estrogenic activity were observed during the entire sampling period, with median BEQs of 32.1, 35.9 and 31.1 fg E2-Eq m(-)³ in the industrial, urban and rural background area, respectively. Estrogenic activity was measured in 70% of the samples, while no androgenic activity was observed in any of the samples. The estrogenic activity in the industrial area was positively correlated with the airborne concentration of the sum of the non-carcinogenic PAHs pyrene and fluoranthene (rho=0.48; p<0.01) and the sum of the carcinogenic PAHs (rho=0.36; p=0.05). CONCLUSIONS This study showed that no androgenic activity was present in PM10 and that although the median estrogenic activity was rather low and comparable in the three locations, high fluctuations in estrogenic response exist over time. While atmospheric PAHs contributed to the observed estrogenic response, especially in the industrial area, the chemicals responsible for the majority of estrogenic activity remain to be identified.
Collapse
Affiliation(s)
- Kim Croes
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium.
| | | | - Bo Van den Bril
- Unit Air, Flanders Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Jeroen Staelens
- Unit Air, Flanders Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Michael S Denison
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Kersten Van Langenhove
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tara Vandermarken
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Elskens
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Yoshizaki K, Fuziwara CS, Brito JM, Santos TMN, Kimura ET, Correia AT, Amato-Lourenco LF, Vasconcellos P, Silva LF, Brentani MM, Mauad T, Saldiva PHN, Macchione M. The effects of urban particulate matter on the nasal epithelium by gender: An experimental study in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:359-369. [PMID: 26942683 DOI: 10.1016/j.envpol.2016.02.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Nose is the first portion of the respiratory system into contact with air pollution particles, including organic compounds that could act as endocrine releasers. The objective was to identify and quantify estrogenic receptor-β (ERβ), aryl hydrocarbon receptor (AhR), the cytochrome P450 enzymes CYP1A1, 1A2, 1B1, and mucus profile in the nasal epithelium of mice. BALB/c mice male (n = 32) and female (n = 82) in proestrus, estrus and diestrus were divided into two groups: 1) exposed to ambient air; 2) concentrated ambient particles (CAPs) to achieve an accumulated dose (concentration vs. time product) of 600 μg/m(3), the time of the exposure was controlled to ensure the same concentration for all groups (5 days per week for 40-51 days). RT-PCR (Erβ-1, Erβ-2, Ahr, Cyp1a1, Cyp1a2, Cyp1b1), immunohistochemistry and morphometry (ERβ, AhR) were used to analyze. The mucus profiles were examined using acid (Alcian Blue) and neutral (periodic acid Schiff's) stains. Exposed females had significantly lower levels of Erβ-2 mRNA than exposed males (p = 0.036). Cyp1b1 mRNA in diestrus females was significantly lower in the CAP-exposed group compared with the ambient air group (p ≤ 0.05). ERβ expression in the epithelium and submucosa nucleus was lower in estrus exposed to CAPs compared with ambient air. CAPs increases AhR in the epithelium (p = 0.044) and submucosa (p = 0.001) nucleus of female when compared with male mice. Exposure to CAPs, also led to relatively increased acidic content in the mucus of males (p = 0.048), but decreased acidic content in that of females (p = 0.04). This study revealed sex-dependent responses to air pollution in the nasal epithelium that may partially explain the predisposition of females to airway respiratory diseases.
Collapse
Affiliation(s)
- K Yoshizaki
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - C S Fuziwara
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - J M Brito
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - T M N Santos
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - E T Kimura
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - A T Correia
- Thoracic Surgery Division, Department of Cardiopneumology, InCor, Clinics Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - L F Amato-Lourenco
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - P Vasconcellos
- Chemistry Institute, University of Sao Paulo; National Institutes of Science and Technology (INCT), Sao Paulo, Brazil
| | - L F Silva
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - M M Brentani
- Departament of Oncology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - T Mauad
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - P H N Saldiva
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - M Macchione
- Department of Pathology, Experimental Air Pollution Laboratory, LIM05 - School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Croes K, Debaillie P, Van den Bril B, Staelens J, Vandermarken T, Van Langenhove K, Denison MS, Leermakers M, Elskens M. Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). CHEMOSPHERE 2016; 144:392-398. [PMID: 26383266 PMCID: PMC7976781 DOI: 10.1016/j.chemosphere.2015.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 05/29/2023]
Abstract
Endocrine disrupting chemicals represent a broad class of compounds, are widespread in the environment and can pose severe health effects. The objective of this study was to investigate the overall estrogen activating potential of PM10 air samples at an urban location with high traffic incidence in Flanders, using a human in vitro cell bioassay. PM10 samples (n = 36) were collected on glass fiber filters every six days between April 2013 and January 2014 using a high-volume sampler. Extraction was executed with a hexane/acetone mixture before analysis using a recombinant estrogen-responsive human ovarian carcinoma (BG1Luc4E2) cell line. In addition, several samples and procedural blanks were extracted with ultra-pure ethanol or acetonitrile to compare extraction efficiencies. Results were expressed as bioanalytical equivalents (BEQs) in femtogram 17β-estradiol equivalent (fg E2-Eq) per cubic meter of air. High fluctuations in estrogenic activity were observed during the entire sampling period, with mean and median BEQs of 50.7 and 35.9 fg E2-Eq m(-)(3), respectively. Estrogenic activity was measured in more than 70% of the samples and several sample extracts showed both high BEQs and high cytotoxicity, which could not be related to black carbon, PM10 or heavy metal concentrations. At this moment, it remains unclear which substances cause this toxicity, but comparison of results obtained with different extraction solvents indicated that acetone/hexane extracts contained more compounds that were cytotoxic and suppressive of responses than those extracted using ultra-pure ethanol. Although more research is needed, the use of a more polar extraction solvent seems to be advisable.
Collapse
Affiliation(s)
- Kim Croes
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Pieterjan Debaillie
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; Department of Chemistry, Ghent University, Krijgslaan, 9000 Ghent, Belgium
| | - Bo Van den Bril
- Unit Air, Flemish Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Jeroen Staelens
- Unit Air, Flemish Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Tara Vandermarken
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Kersten Van Langenhove
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Michael S Denison
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA
| | - Martine Leermakers
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Marc Elskens
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
23
|
Brennan JC, He G, Tsutsumi T, Zhao J, Wirth E, Fulton MH, Denison MS. Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Enhanced Responsiveness and Improved Detection Limits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11903-12. [PMID: 26366531 PMCID: PMC4772899 DOI: 10.1021/acs.est.5b02906] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Ah receptor (AhR)-responsive CALUX (chemically activated luciferase expression) cell bioassay is commonly used for rapid screening of samples for the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), dioxin-like compounds, and AhR agonists/antagonists. By increasing the number of AhR DNA recognition sites (dioxin responsive elements), we previously generated a novel third generation (G3) recombinant AhR-responsive mouse CALUX cell line (H1L7.5c3) with a significantly enhanced response to DLCs compared to existing AhR-CALUX cell bioassays. However, the elevated background luciferase activity of these cells and the absence of comparable G3 cell lines derived from other species have limited their utility for screening purposes. Here, we describe the development and characterization of species-specific G3 recombinant AhR-responsive CALUX cell lines (rat, human, and guinea pig) that exhibit significantly improved limit of detection and dramatically increased TCDD induction response. The low background luciferase activity, low minimal detection limit (0.1 pM TCDD) and enhanced induction response of the rat G3 cell line (H4L7.5c2) over the H1L7.5c3 mouse G3 cells, identifies them as a more optimal cell line for screening purposes. The utility of the new G3 CALUX cell lines were demonstrated by screening sediment extracts and a small chemical compound library for the presence of AhR agonists. The improved limit of detection and increased response of these new G3 CALUX cell lines will facilitate species-specific analysis of DLCs and AhR agonists in samples with low levels of contamination and/or in small sample volumes.
Collapse
Affiliation(s)
- Jennifer C. Brennan
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis California 95616, United States
| | - Guochun He
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis California 95616, United States
| | - Tomoaki Tsutsumi
- Division of Foods, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Jing Zhao
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis California 95616, United States
| | - Ed Wirth
- Center for Coastal Environmental Health and Biomolecular Research, USDOC/NOAA/NOS/NCCOS, Charleston, South Carolina 29412, United States
| | - Michael H. Fulton
- Center for Coastal Environmental Health and Biomolecular Research, USDOC/NOAA/NOS/NCCOS, Charleston, South Carolina 29412, United States
| | - Michael S. Denison
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis California 95616, United States
- Corresponding Author: To whom correspondence should be addressed at Department of Environmental Toxicology, Meyer Hall, University of California, Davis, CA 95616, USA. Tel: 530-752-3879; Fax: 530-752-3394;
| |
Collapse
|
24
|
Wei C, Han Y, Bandowe BAM, Cao J, Huang RJ, Ni H, Tian J, Wilcke W. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:814-822. [PMID: 25461084 DOI: 10.1016/j.scitotenv.2014.10.054] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/11/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
29 parent- and alkyl-polycyclic aromatic hydrocarbons (PAHs), 15 oxygenated-PAHs (OPAHs), 11 nitrated-PAHs (NPAHs) and 4 azaarenes (AZAs) in both the gaseous and particulate phases, as well as the particulate-bound carbon fractions (organic carbon, elemental carbon, char, and soot) in ambient air sampled in March and September 2012 from an urban site in Xi'an, central China were extracted and analyzed. The average concentrations (gaseous+particulate) of ∑29PAHs, ∑15OPAHs, ∑11NPAHs and ∑4AZAs were 1267.0 ± 307.5, 113.8 ± 46.1, 11.8 ± 4.8 and 26.5 ± 11.8 ng m(-3) in March and 784.7 ± 165.1, 67.2 ± 9.8, 9.0 ± 1.5 and 21.6 ± 5.1 ng m(-3) in September, respectively. Concentrations of ∑29PAHs, ∑15OPAHs and ∑11NPAHs in particulates were significantly correlated with those of the carbon fractions (OC, EC, char and soot). Both absorption into organic matter in particles and adsorption onto the surface of particles were important for PAHs and OPAHs in both sampling periods, with more absorption occurring in September, while absorption was always the most important process for NPAHs. The total carcinogenic risk of PAHs plus the NPAHs was higher in March. Gaseous compounds, which were not considered in most previous studies, contributed 29 to 44% of the total health risk in March and September, respectively.
Collapse
Affiliation(s)
- Chong Wei
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Geographic Institute, University of Berne, Hallerstrasse 12, 3012 Berne, Switzerland; State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Han
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China.
| | | | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Haiyan Ni
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Tian
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wolfgang Wilcke
- Geographic Institute, University of Berne, Hallerstrasse 12, 3012 Berne, Switzerland; Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Eichbaum K, Brinkmann M, Buchinger S, Reifferscheid G, Hecker M, Giesy JP, Engwall M, van Bavel B, Hollert H. In vitro bioassays for detecting dioxin-like activity--application potentials and limits of detection, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:37-48. [PMID: 24762647 DOI: 10.1016/j.scitotenv.2014.03.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 05/05/2023]
Abstract
Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples.
Collapse
Affiliation(s)
- Kathrin Eichbaum
- Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Markus Brinkmann
- Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Markus Hecker
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, SK S7N 5B3 Saskatoon, Canada
| | - John P Giesy
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, SK S7N 5B3 Saskatoon, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, SK S7N 5B3 Saskatoon, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Magnus Engwall
- Man-Technology-Environment Research Centre, Deptartment of Natural Sciences, Örebro University, 70182 Örebro, Sweden
| | - Bert van Bavel
- Man-Technology-Environment Research Centre, Deptartment of Natural Sciences, Örebro University, 70182 Örebro, Sweden
| | - Henner Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai, China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China; School of Environment, Nanjing University, China.
| |
Collapse
|
26
|
Érseková A, Hilscherová K, Klánová J, Giesy JP, Novák J. Effect-based assessment of passive air samples from four countries in Eastern Europe. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:3905-16. [PMID: 24532343 DOI: 10.1007/s10661-014-3667-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/28/2014] [Indexed: 05/07/2023]
Abstract
Although passive sampling has been previously used for the monitoring of volatile and semi-volatile contaminants in air, there are limited data on the use of this technique coupled with bioassays based on specific biological responses. Biological responses including those mediated by the aryl hydrocarbon (AhR) receptor as well as (anti-)estrogenicity and (anti-)androgenicity of samples from four Eastern European countries (Lithuania, Slovakia, Romania, and Serbia) were determined. To address the potential differences of specific toxic potencies of pollutant mixtures in ambient air in Eastern Europe, each country was characterized by a single more remote location that served to determine regional background conditions and one location in more urbanized and industrialized locations, which were defined as "impacted" areas. Besides samples from Lithuania, a significant gradient in concentrations of AhR-mediated potency from background and impacted localities was observed. Greatest potencies were measured in samples from impacted locations in Romania and Slovakia. Concentrations of polycyclic aromatic hydrocarbons (PAHs) that were quantified accounted for 3-33 % of the 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents determined by use of the bioassay. No significant estrogenic potency was detected but anti-estrogenic effects were produced by air from two background locations (Lithuania, Slovakia) and three impacted locations (Lithuania, Romania, and Serbia). Anti-androgenic potency was observed in all samples. The greatest anti-estrogenic potency was observed at the background location in Slovakia. Anti-estrogenic and anti-androgenic potencies of studied air samples were probably associated with compounds that are not routinely monitored. The study documents suitability of passive air sampling for the assessment of specific toxic potencies of ambient air pollutants.
Collapse
Affiliation(s)
- Anita Érseková
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
27
|
Novák J, Hilscherová K, Landlová L, Čupr P, Kohút L, Giesy JP, Klánová J. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part II. In vitro biological potencies. ENVIRONMENT INTERNATIONAL 2014; 63:64-70. [PMID: 24263139 DOI: 10.1016/j.envint.2013.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 05/20/2023]
Abstract
Exposure to particulate matter (PM) in ambient air has been shown to lead to adverse health consequences. Six size fractions of PM with aerodynamic diameter smaller than 10μm (PM10) and gas phase were collected at six localities with different major pollution sources. Extracts of samples were assessed for AhR-mediated toxicity, (anti-)estrogenicity, (anti-)androgenicity and genotoxicity. The biological responses were interpreted relative to chemical characterization. Historically, for regulatory purposes, evaluation of air pollution was based mainly on assessment of the sum of PM10. In the case of AhR-mediated activity, PM1 was responsible for more than 75% of the activity of the particulate fraction from all localities. The assessed effects were correlated with concentrations of polycyclic aromatic hydrocarbons (PAH), organic carbon content and specific surface area of the PM. A significant proportion of biologically active chemicals seems to be present in the gas phase of air. The results suggest that an average daily exposure based just on the concentrations of contaminants contained in PM10, as regulated in EU legislation so far, is not a sufficient indicator of contaminants in air particulates and adoption of standards more similar to other countries and inclusion of other parameters besides mass should be considered.
Collapse
Affiliation(s)
- Jiří Novák
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Klára Hilscherová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Linda Landlová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lukáš Kohút
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - John P Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, E. Lansing, MI 48823, United States; Biology and Chemistry Department, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jana Klánová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
28
|
Novák J, Giesy JP, Klánová J, Hilscherová K. In vitro effects of pollutants from particulate and volatile fractions of air samples-day and night variability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6620-6627. [PMID: 23613208 DOI: 10.1007/s11356-013-1726-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Chemicals in air were characterized for potential interference with signaling of estrogen, androgen, and arylhydrocarbon (AhR) receptors, which are known to play an important role in endocrine-disruptive changes in vivo. Previously, effects of this type have been studied mainly in particulate matter in the ambient air from various localities. In this study, both volatile and particulate fractions of air from three sites in Banja Luka region (Bosnia and Herzegovina) were investigated to describe the distribution of endocrine-disrupting contaminants on a small spatial scale. Circadian variability of air pollution was investigated by collecting samples during both day and night. Air samples collected from urban localities at night were more potent in producing the AhR-mediated effects than those collected during daytime. This trend was not observed at the reference rural location. None of the samples showed significant estrogenic or androgenic activity. On the other hand, anti-androgenicity was detected in both particulate and vapor phases, while anti-estrogenicity was detected only in the particulate fraction of air from all localities. The AhR-mediated potencies of samples were associated primarily with non-persistent compounds. Based on the concentrations of 28 individual compounds, PAHs accounted for approximately 30 % of the AhR-mediated potency determined by the bioassay. The results show that there can be a significant difference between levels of bioactive compounds in air between daytime and nighttime.
Collapse
Affiliation(s)
- Jiří Novák
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Fucic A, Gamulin M, Ferencic Z, Katic J, Krayer von Krauss M, Bartonova A, Merlo DF. Environmental exposure to xenoestrogens and oestrogen related cancers: reproductive system, breast, lung, kidney, pancreas, and brain. Environ Health 2012; 11 Suppl 1:S8. [PMID: 22759508 PMCID: PMC3388472 DOI: 10.1186/1476-069x-11-s1-s8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The role of steroids in carcinogenesis has become a major concern in environmental protection, biomonitoring, and clinical research. Although historically oestrogen has been related to development of reproductive system, research over the last decade has confirmed its crucial role in the development and homeostasis of other organ systems. As a number of anthropogenic agents are xenoestrogens, environmental health research has focused on oestrogen receptor level disturbances and of aromatase polymorphisms. Oestrogen and xenoestrogens mediate critical points in carcinogenesis by binding to oestrogen receptors, whose distribution is age-, gender-, and tissue-specific. This review brings data about cancer types whose eatiology may be found in environmental exposure to xenoestrogens. Cancer types that have been well documented in literature to be related with environmental exposure include the reproductive system, breast, lung, kidney, pancreas, and brain. The results of our data mining show (a) a significant correlation between exposure to xenoestrogens and increased, gender-related, cancer risk and (b) a need to re-evaluate agents so far defined as endocrine disruptors, as they are also key molecules in carcinogenesis. This revision may be used to further research of cancer aetiology and to improvement of related legislation. Investigation of cancers caused by xenoestrogens may elucidate yet unknown mechanisms also valuable for oncology and the development of new therapies.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Ksaverska c 2, Croatia
| | - Marija Gamulin
- University Hospital “Zagreb”, Zagreb, Kispaticeva 12, Croatia
| | - Zeljko Ferencic
- Children’s Hospital “Srebrnjak”, Zagreb, Srebrnjak 100, Croatia
| | - Jelena Katic
- Institute for Medical Research and Occupational Health, Zagreb, Ksaverska c 2, Croatia
| | | | - Alena Bartonova
- NILU – Norwegian Institute for Air Research, Kjeller, Norway
| | - Domenico F Merlo
- National Institute for Cancer Research, Genoa, Largo R. Benzi 10, Italy
| |
Collapse
|
30
|
Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, Reyes M, Quinn J, Camann D, Perera F, Whyatt R. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 2012; 175:1163-72. [PMID: 22505764 DOI: 10.1093/aje/kwr455] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are concerns that prenatal exposure to endocrine-disrupting chemicals increases children's risk of obesity. African-American and Hispanic children born in the Bronx or Northern Manhattan, New York (1998-2006), whose mothers underwent personal air monitoring for polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy, were followed up to ages 5 (n = 422) and 7 (n = 341) years. At age 5 years, 21% of the children were obese, as were 25% of those followed to age 7 years. After adjustment for child's sex, age at measurement, ethnicity, and birth weight and maternal receipt of public assistance and prepregnancy obesity, higher prenatal PAH exposures were significantly associated with higher childhood body size. In adjusted analyses, compared with children of mothers in the lowest tertile of PAH exposure, children of mothers in the highest exposure tertile had a 0.39-unit higher body mass index z score (95% confidence interval (CI): 0.08, 0.70) and a relative risk of 1.79 (95% CI: 1.09, 2.96) for obesity at age 5 years, and they had a 0.30-unit higher body mass index z score (95% CI: 0.01, 0.59), a 1.93-unit higher percentage of body fat (95% CI: 0.33, 3.54), and a relative risk of 2.26 (95% CI: 1.28, 4.00) for obesity at age 7 years. The data indicate that prenatal exposure to PAHs is associated with obesity in childhood.
Collapse
Affiliation(s)
- Andrew Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mattingly KA, Klinge CM. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Arch Toxicol 2011; 86:633-42. [PMID: 22105178 DOI: 10.1007/s00204-011-0778-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 01/05/2023]
Abstract
Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17β-estradiol (E(2)), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E(2), 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E(2) increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects.
Collapse
Affiliation(s)
- Kathleen A Mattingly
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
32
|
Kennedy K, Macova M, Bartkow ME, Hawker DW, Zhao B, Denison MS, Mueller JF. Effect based monitoring of seasonal ambient air exposures in Australia sampled by PUF passive air samplers. ATMOSPHERIC POLLUTION RESEARCH 2010; 1:50-58. [PMID: 21552507 PMCID: PMC3087176 DOI: 10.5094/apr.2010.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
There has been relatively little bioanalytical effect based monitoring conducted using samples derived from polyurethane foam (PUF) passive air samplers. Combining these techniques may provide a more convenient and cost effective means of monitoring the potential for biological effects resulting from exposure to complex mixtures in a range of scenarios. Seasonal polycyclic aromatic hydrocarbon (PAH) levels were monitored at sites around Australia using direct chemical analysis. In addition, both indirect acting genotoxicity (umuC assay) and aryl hydrocarbon receptor (AhR) activity (chemically activated fluorescent gene expression [CAFLUX assay]), which are effects potentially relevant to subsequent carcinogenesis for these compounds, were measured. The levels of PAHs as well as genotoxicity and AhR activity were all higher in winter compared to summer and for sites in urban capital cities compared to other locations. Statistically significant relationships were found between the levels of PAHs and both genotoxicity and AhR activity. The dominant contributors to the total AhR activity, were found to be for compounds which are not resistant to H(2)SO(4)/silica gel treatment and were relatively rapidly metabolised that is consistent with a PAH type response. Relative potency estimates for individual PAHs determined for the first time on the CAFLUX assay were used to estimate the proportion of total AhR activity (≤ 3.0%) accounted by PAHs monitored. Observed responses are thus largely due to non-quantified AhR active compounds.
Collapse
Affiliation(s)
- Karen Kennedy
- The University of Queensland, Entox (The National Research Centre for Environmental Toxicology), Brisbane QLD 4108, Australia
| | - Miroslava Macova
- The University of Queensland, Entox (The National Research Centre for Environmental Toxicology), Brisbane QLD 4108, Australia
| | - Michael E. Bartkow
- The University of Queensland, Entox (The National Research Centre for Environmental Toxicology), Brisbane QLD 4108, Australia
| | - Darryl W. Hawker
- School of Environment, Griffith University, Nathan QLD 4111, Australia
| | - Bin Zhao
- Department of Environmental Toxicology, University of California, Davis CA 95616, USA
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, China
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis CA 95616, USA
| | - Jochen F. Mueller
- The University of Queensland, Entox (The National Research Centre for Environmental Toxicology), Brisbane QLD 4108, Australia
| |
Collapse
|
33
|
Sources and Distributions of Polycyclic Aromatic Hydrocarbons and Toxicity of Polluted Atmosphere Aerosols. URBAN AIRBORNE PARTICULATE MATTER 2010. [DOI: 10.1007/978-3-642-12278-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Sídlová T, Novák J, Janosek J, Andel P, Giesy JP, Hilscherová K. Dioxin-like and endocrine disruptive activity of traffic-contaminated soil samples. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:639-650. [PMID: 19488800 DOI: 10.1007/s00244-009-9345-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 05/11/2009] [Indexed: 05/27/2023]
Abstract
Pollution of surface soils by traffic, especially along major highways, can be a significant issue. Numerous studies have demonstrated traffic to be an important source of particulate matter and gas-phase organic air pollutants that produce many types of deleterious effects. This article brings original information about the presence of contaminants with specific mechanisms of action in traffic-influenced soils as determined by bioanalytical approaches and instrumental analyses. The initial phase of the study aimed to compare contamination of soils near highways with those from reference localities, whereas the second phase of the study investigated the influence of traffic pollution in soils at various distances from highways. For the reference areas, forest soils contained greater concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs; 483 to 2094 pg/g) than did arable soils (96 to 478 pg/g), which represent the relevant reference for the studied soils along highways. The total concentration of TCDD-EQs determined in the in vitro transactivation assay ranged from 225 to 27,700 pg/g in traffic-affected soils. The greatest concentration of TCDD-EQs among the studied sites was observed in soils collected near highway D1, which is the primary thoroughfare in the Czech Republic. The concentrations of TCDD-EQs in roadside soils were the greatest and decreased with increased distance from highways, and this spatial distribution corresponded with the levels of polycyclic aromatic hydrocarbons (PAHs). Soils collected 100 m away from highways in most cases contained concentrations of TCDD-EQs similar to background values. Most TCDD-EQ presence was caused by nonpersistent compounds in soils, with a significant contribution from PAHs as well as other unknown nonpersistent chemicals. Extracts from most soils collected near highways exhibited antiestrogenic and in some cases antiandrogenic activities; for several sites the activity was also detected in soils farther from highways. The presence of TCDD-EQs and antihormonal activity in highway-affected soils points to traffic as a source of polluting compounds having specific effects.
Collapse
Affiliation(s)
- T Sídlová
- RECETOX, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
Kennedy K, Macova M, Leusch F, Bartkow ME, Hawker DW, Zhao B, Denison MS, Mueller JF. Assessing indoor air exposures using passive sampling with bioanalytical methods for estrogenicity and aryl hydrocarbon receptor activity. Anal Bioanal Chem 2009; 394:1413-21. [PMID: 19430962 PMCID: PMC2864012 DOI: 10.1007/s00216-009-2825-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 04/13/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
Passive air sampling was undertaken using polyurethane foam passive air samplers at three types of locations, including indoors (six offices) at buildings in the central business district (CBD) and at a private suburban home (indoor and outdoor) located 9 km from the CBD in Brisbane, Queensland, Australia. Estrogenic (E-SCREEN--MCF7-BOS) and aryl hydrocarbon receptor (AhR) (CAFLUX--H4G1.1c2) activity were assessed for samples collected from each of these locations. The samples were tested either as crude extracts ("untreated") or were subjected to H2SO4 silica gel ("treated") for each location in order to determine whether chemicals, which are not resistant to this treatment like polycyclic aromatic hydrocarbons, potentially account for the observed activity. In most cases, H2SO4 treatment resulted in a statistically significant reduction of potency for both endpoints, suggesting that chemicals less resistant to treatment may be responsible for much of the detected biological activity in these locations. Estrogenic potency measurements (<0.22-185 pg m(-3)) were highest in the indoor offices, followed by the indoor suburban home and finally the outdoor suburban home (which was not estrogenic). Total AhR activity for crude extracts (1.3-10 pg m(-3)) however was highest for the outdoor suburban home site. Levels of polycyclic aromatic hydrocarbons were monitored indoors and outdoors at the suburban home. At that location, polycyclic aromatic hydrocarbon air concentrations were on average approximately two times higher outdoor than indoor, while AhR potency was five times higher outdoor than indoor. No significant correlation was found between the estrogenic and AhR activity (P = 0.88) for the sites in this study.
Collapse
Affiliation(s)
- Karen Kennedy
- EnTox (The National Research Centre for Environmental Toxicology), The University of Queensland, Brisbane, QLD 4108, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wenger D, Gerecke AC, Heeb NV, Schmid P, Hueglin C, Naegeli H, Zenobi R. In vitroestrogenicity of ambient particulate matter: contribution of hydroxylated polycyclic aromatic hydrocarbons. J Appl Toxicol 2009; 29:223-32. [DOI: 10.1002/jat.1400] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Novák J, Jálová V, Giesy JP, Hilscherová K. Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro. ENVIRONMENT INTERNATIONAL 2009; 35:43-9. [PMID: 18678411 DOI: 10.1016/j.envint.2008.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 05/20/2023]
Abstract
Traditionally, contamination of air has been evaluated primarily by chemical analyses of indicator contaminants and these studies have focused mainly on compounds associated with particulates. Some reports have shown that air contaminants can produce specific biological effects such as toxicity mediated by the aryl hydrocarbon receptor (AhR) or modulation of the endocrine system. This study assessed the dioxin-like toxicity, anti-/estrogenicity, anti-/androgenicity and anti-/retinoic activity of both the particulate and gas phase fractions of air in two regions with different types of pollution sources and a background locality situated in an agricultural area of Central Europe. The first region (A) is known to be significantly contaminated by organochlorine pesticides and chemical industry. The other region (B) has been polluted by historical releases of PCBs, but the major current sources of contamination are probably combustion sources from local traffic and heating. Samples of both particle and gas fractions produced dioxin-like (AhR-mediated) activity, anti-estrogenic and antiandrogenic effects, but none had any effect on retinoid signaling. AhR-mediated activities were observed in all samples and the TEQ values were comparable in both fractions in region A, but significantly greater in the particulate fraction in region B. The greater AhR-mediated activity corresponded to a greater coincident antiestrogenicity of both phases in region B. Our study is the first report of antiestrogenicity and antiandrogenicity in ambient air. Anti-androgenicity was observed in the gas phase of all regions, while in the particulate phase only in one region due to the specific type of pollution in that area. Even though based on concentrations of individual compounds, except for the OCPs, the level of contamination of the two regions was similar, there were strong differences in responses in the bioassays between the two regions. Moreover, AhR-mediated activity and antiestrogenic potencies were greater in region B, where the pollution level according to the chemical analysis was similar or less than in the other region, which indicates the presence of other atmospheric pollutants with specific effects. The results document the advantage and utility of the simultaneous use of bioassays and chemical analysis in risk assessment of complex environmental samples.
Collapse
Affiliation(s)
- Jirí Novák
- Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
38
|
Holdren J, Tao S, Carpenter DO. Environment and health in the twenty-first century. Ann N Y Acad Sci 2008; 1140:1-21. [PMID: 18991897 DOI: 10.1196/annals.1454.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There are major challenges facing the countries in the Pacific Basin. These include issues of hazardous waste management and the consequent adverse effects of hazardous wastes on human health, the potential disruption of our whole way of life as a consequence of global climate change, and the increasing problem on human health of air pollution and the effects of breathing polluted air. These issues and others were the focus of the 12th meeting of the Pacific Basin Consortium for Environment and Health Sciences, held in Beijing in late 2007. This volume is a collection of papers presented at that meeting, and this introductory chapter provides some perspective on three of the major issues that are of concern in all of the countries in this region. This meeting provided an opportunity for Chinese scientists and those from other countries in the Pacific Basin to share perspectives and possible solutions with others from the international community, and these various approaches are reflected in these proceedings.
Collapse
Affiliation(s)
- Jill Holdren
- Pacific Basin Consortium for Environment and Health, East-West Center, Honolulu, Hawaii, USA
| | | | | |
Collapse
|