1
|
Qin SJ, Zeng QG, Zeng HX, Meng WJ, Wu QZ, Lv Y, Dai J, Dong GH, Zeng XW. Novel perspective on particulate matter and Alzheimer's disease: Insights from adverse outcome pathway framework. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125601. [PMID: 39756567 DOI: 10.1016/j.envpol.2024.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, that accounts for 50-75% of all dementia cases. Evidence demonstrates the link between particulate matter (PM) exposure and AD. However, there are still considerable research gaps. This review aims to clarify the mechanism between PM and AD from different levels (subcellular/cellular/system/population) by using an adverse outcome pathway (AOP) framework. We applied a chemical-phenotype interaction network-based workflow to integrate diverse genes and phenotypes. The interactions among PM, genes, phenotypes, and AD were retrieved from the Comparative Toxicogenomics Database (CTD), DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), which are publicly available databases. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a predictive PM-Gene-Phenotype-AD AOP network. According to the Organization for Economic Co-operation and Development handbook (OECD), a verified AOP network was assessed and applied to determine the effects of PM on AD. PM could increase APP and GSK3B, increase apoptosis, impair cognition and memory, and ultimately lead to AD. Overall, chemical-phenotype interactions are expressed in a formal structured notation using controlled terms for chemicals, phenotypes, taxons, and anatomical descriptors. To our knowledge, this is the first AOP framework focusing on the underlying mechanism of exposure to PM on AD. Our network-based approach not only fills mechanism gaps in PM and AD but sheds light on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lv
- Department of Neurology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jian Dai
- Department of Clinical Psychology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Nazarpour S, Shokati Poursani A, Mousavi M, Ramezani Tehrani F, Behboudi-Gandevani S. Investigation of the relationship between air pollution and gestational diabetes. J OBSTET GYNAECOL 2024; 44:2362962. [PMID: 38853776 DOI: 10.1080/01443615.2024.2362962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) can have negative effects on both the pregnancy and perinatal outcomes, as well as the long-term health of the mother and the child. It has been suggested that exposure to air pollution may increase the risk of developing GDM. This study investigated the relationship between exposure to air pollutants with gestational diabetes. METHODS The present study is a retrospective cohort study. We used data from a randomised community trial conducted between September 2016 and January 2019 in Iran. During this period, data on air pollutant levels of five cities investigated in the original study, including 6090 pregnant women, were available. Concentrations of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 (PM2.5) or <10 μm (PM10) were obtained from air pollution monitoring stations. Exposure to air pollutants during the three months preceding pregnancy and the first, second and third trimesters of pregnancy for each participant was estimated. The odds ratio was calculated based on logistic regression in three adjusted models considering different confounders. Only results that had a p < .05 were considered statistically significant. RESULTS None of the logistic regression models showed any statistically significant relationship between the exposure to any of the pollutants and GDM at different time points (before pregnancy, in the first, second and third trimesters of pregnancy and 12 months in total) (p > .05). Also, none of the adjusted logistic regression models showed any significant association between PM10 exposure and GDM risk at all different time points after adjusting for various confounders (p > .05). CONCLUSIONS This study found no association between GDM risk and exposure to various air pollutants before and during the different trimesters of pregnancy. This result should be interpreted cautiously due to the lack of considering all of the potential confounders.
Collapse
Affiliation(s)
- Sima Nazarpour
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Midwifery, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Shokati Poursani
- Department of Chemical Engineering - Health, Safety & Environment, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Maryam Mousavi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Kang N, Sargsyan S, Chough I, Petrick L, Liao J, Chen W, Pavlovic N, Lurmann FW, Martinez MP, McConnell R, Xiang AH, Chen Z. Dysregulated metabolic pathways associated with air pollution exposure and the risk of autism: Evidence from epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124729. [PMID: 39147228 DOI: 10.1016/j.envpol.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with symptoms that range from social and communication impairments to restricted interests and repetitive behavior and is the 4th most disabling condition for children aged 5-14. Risk factors of ASD are not fully understood. Environmental risk factors are believed to play a significant role in the ASD epidemic. Research focusing on air pollution exposure as an early-life risk factor of autism is growing, with numerous studies finding associations of traffic and industrial emissions with an increased risk of ASD. One of the possible mechanisms linking autism and air pollution exposure is metabolic dysfunction. However, there were no consensus about the key metabolic pathways and corresponding metabolite signatures in mothers and children that are altered by air pollution exposure and cause the ASD. Therefore, we performed a review of published papers examining the metabolomic signatures and metabolic pathways that are associated with either air pollution exposure or ASD risk in human studies. In conclusion, we found that dysregulated lipid, fatty acid, amino acid, neurotransmitter, and microbiome metabolisms are associated with both short-term and long-term air pollution exposure and the risk of ASD. These dysregulated metabolisms may provide insights into ASD etiology related to air pollution exposure, particularly during the perinatal period in which neurodevelopment is highly susceptible to damage from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ni Kang
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Suzan Sargsyan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ino Chough
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Wu Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Li X, Yu B, Li Y, Meng H, Zhou Z, Liu S, Tian Y, Xing X, Lei Y, Yin L. Effect modifications of parents' age at childbirth on association between ambient particulate matter and children obesity. BMC Public Health 2024; 24:3081. [PMID: 39511542 PMCID: PMC11542234 DOI: 10.1186/s12889-024-20598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND There is limited evidence regarding the modifying effects of parents' age at childbirth on the relationship between air pollution and obesity in plateau areas. This study aimed to explore the association between particulate matter (PM) and child obesity, specifically investigating whether parents' age at childbirth could modify this relationship in the Tibetan plateau, China. METHODS Satellite-based random forest models were used to estimate the concentrations of PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 μm), PMc (particulate matter with aerodynamic diameters between 2.5 μm and 10 μm), and PM10 (particulate matter with aerodynamic diameters ≤ 10 μm). Linear and logistic regression models were employed to assess associations between PM exposure and obesity indicators, and effect estimates of PM across different particle sizes were compared. RESULTS The study comprised 2,015 children under five years old. Postnatal exposure to PM was positively associated with overweight and obesity (OWO), waist-to-hip ratio (WHR) and body mass index (BMI). Among these pollutants, PM10 exhibited the strongest association with BMI and OWO, whereas PMc showed the strongest association with WHR. An interquartile range (IQR) increase in PM2.5 (5.67 µg/m3), PMc (5.25 µg/m3), and PM10 (11.06 µg/m3) was positively associated with OWO (odd ratio [OR] for PM2.5 = 1.52, 95% confidence interval [CI] for PM2.5 = 1.24 to 1.85; OR for PMc = 1.50, 95% CI for PMc = 1.19 to 1.88; OR for PM10 = 1.56, 95% CI for PM10 = 1.25 to 1.96), respectively. Stratified analysis by parents' age at childbirth indicated that the effects of PM on obesity indicators were more pronounced in the advanced age group. CONCLUSIONS Long-term exposure to PM was positively associated with OWO, WHR, and BMI. Our findings also underscore the importance of examining the effects of ambient PM exposure on OWO, particularly in parents of advanced age at childbirth.
Collapse
Affiliation(s)
- Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University - Hong Kong Polytechnic University, Chengdu, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Haorong Meng
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Zonglei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Shunjin Liu
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Yunyun Tian
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Xiangyi Xing
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Dali University, Dali, China.
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China.
| | | | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Dali University, Dali, China.
| |
Collapse
|
5
|
Lu M, Murphy M, Kim A, Lingwall M, Barr EA. The relationship between natural environments and obesity: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-21. [PMID: 39445442 DOI: 10.1080/09603123.2024.2406306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
More than 100 million children and 13% of the adult population suffer from obesity globally. People with obesity experience higher risks of chronic illness, poor mental health outcomes, and premature death. Exposure to natural environments, including green spaces, encourages regular physical activity and cardiovascular exercise to combat obesity. This systematic review, based on the health lifestyle theory, explores previous research on the relationship between natural environments and obesity. We reviewed studies (N = 11) published between 2018 and 2023 examining the relationship between participants (N = 1,225,680) across seven countries. Two overarching areas of impact emerged: environmental health factors (air pollution) and social factors (socioeconomic status and food availability). Although many studies suggested that exposure to green spaces correlated with a lower incidence of obesity, few studies identified possible external factors to explain the relationship between green space and obesity. Implications for future policy legislation, clinical interventions, and research are presented.
Collapse
Affiliation(s)
- Melissa Lu
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| | - Mischion Murphy
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| | - Andrew Kim
- Department of Research, Rice University, Houston, TX, USA
| | - Mary Lingwall
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| | - Emily Anne Barr
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
6
|
Fang Q, Qiu T, Ye T, Feng Z, Tian X, Cao Y, Bai J, Liu Y. Prenatal ozone exposure and variations of the gut microbiome: Evidence from a Chinese mother-infant cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116861. [PMID: 39137463 DOI: 10.1016/j.ecoenv.2024.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The gut microbiome is central to human health, but the potential impact of ozone (O3) exposure on its establishment in early life has not been thoroughly examined. Therefore, this study aimed to investigate the relationship between prenatal O3 exposure and the variations of the human gut microbiome during the first two years of life. DESIGN A cohort study design was used. Pregnant women in the third trimester were recruited from an obstetric clinic, and long-term follow-ups were conducted after delivery. The gut microbiome was analyzed using the 16 S rRNA V3-V4 gene regions. Functional pathway analyses of gut microbial communities in neonates were performed using Tax4fun. The average concentrations of ambient O3 and other air pollutants from pregnancy to delivery were calculated using the China High Air Pollutants (CHAP) dataset, based on the permanent residential addresses of participants. Multiple linear regression and mixed linear models were utilized to investigate the associations between prenatal O3 exposure and gut microbiome features. RESULTS Prenatal O3 exposure did not significantly affect the gut microbial alpha diversity of mothers and neonates. However, it was found to be positively associated with the gut microbial alpha diversity in 24-month-old infants. Prenatal O3 exposure explained 13.1 % of the variation in neonatal gut microbial composition. After controlling for potential covariates, prenatal O3 exposure was associated with neonatal-specific gut microbial taxa and functional pathways. Furthermore, the mixed linear models showed that prenatal O3 exposure was negatively associated with variations of Streptococcus (p-value = 0.001, q-value = 0.005), Enterococcus (p-value = 0.001, q-value = 0.005), Escherichia-Shigella (p-value = 0.010, q-value = 0.025), and Bifidobacterium (p-value = 0.003, q-value = 0.010). CONCLUSIONS This study is the first to examine the effects of prenatal O3 exposure on gut microbial homeostasis and variations. It demonstrates that prenatal O3 exposure is associated with variations in certain aspects of the gut microbiome. These findings provide novel insights into the dynamics and establishment of the human microbiome during the first two years of life.
Collapse
Affiliation(s)
- Qingbo Fang
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Tianlai Qiu
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Tian Ye
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zijun Feng
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Xuqi Tian
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Yanan Cao
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA 30322, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China; Research Center for Lifespan Health, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
7
|
Yu H, Wang Y, Puthussery JV, Verma V. Sources of acellular oxidative potential of water-soluble fine ambient particulate matter in the midwestern United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134763. [PMID: 38843639 DOI: 10.1016/j.jhazmat.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116th St, Edmonton, AB T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Yixiang Wang
- College of Health, Lehigh University, 124 E Morton St, Bethlehem, PA 18015, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Joseph V Puthussery
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130-4899, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
8
|
Wan Z, Zhang S, Zhuang G, Liu W, Qiu C, Lai H, Liu W. Effect of fine particulate matter exposure on gestational diabetes mellitus risk: a retrospective cohort study. Eur J Public Health 2024; 34:787-793. [PMID: 38783609 PMCID: PMC11293809 DOI: 10.1093/eurpub/ckae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The literature on the association between fine particulate matter (PM2.5) exposure and gestational diabetes mellitus (GDM) risk has focused mainly on exposure during the first and second trimesters, and the research results are inconsistent. Therefore, this study aimed to investigate the associations between PM2.5 exposure during preconception, the first trimester and second trimester and GDM risk in pregnant women in Guangzhou. METHODS A retrospective cohort study of 26 354 pregnant women was conducted, estimating PM2.5, particulate matter with a diameter >10 µm (PM10), sulphur dioxide (SO2), carbon monoxide (CO) and ozone (O3) exposure during preconception and the first and second trimesters. Analyses were performed using Cox proportional hazards models and nonlinear distributed lag models. RESULTS The study found that exposure to PM2.5 or a combination of two pollutants (PM2.5+PM10, PM2.5+SO2, PM2.5+CO and PM2.5+O3) was found to be significantly associated with GDM risk (P < 0.05). In the second trimester, with significant interactions found for occupation and anaemia between PM2.5 and GDM. When the PM2.5 concentrations were ≥19.56, ≥25.69 and ≥23.87 μg/m3 during preconception and the first and second trimesters, respectively, the hazard ratio for GDM started to increase. The critical window for PM2.5 exposure was identified to be from 9 to 11 weeks before conception. CONCLUSIONS Our study results suggest that PM2.5 exposure during preconception and the first and second trimesters increases the risk of GDM, with the preconception period appearing to be the critical window for PM2.5 exposure.
Collapse
Affiliation(s)
- Zhenyan Wan
- Division of Neonatology, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Shandan Zhang
- Division of Neonatology, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Guiying Zhuang
- Division of Neonatology, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Weiqi Liu
- Department of Clinical Laboratory, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Cuiqing Qiu
- Medical Information Office, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Huiqin Lai
- Department of Clinical Laboratory, Guanzhou Yuexiu Liurong Community Health Service Center, Guangzhou, Guangdong, People’s Republic of China
| | - Weiling Liu
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Liu X, Liu X, Jin M, Huang N, Song Z, Li N, Huang T. Association between birth weight/joint exposure to ambient air pollutants and type 2 diabetes: a cohort study in the UK Biobank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2888-2898. [PMID: 37936397 DOI: 10.1080/09603123.2023.2278634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Early life events and environmental factors are associated with type 2 diabetes (T2D) development. We assessed the combined effect of birth weight andambient air pollutants, and effect of their interaction on T2D risk. Totally, 6,474 T2D incidents were recorded over an 8.7-year follow-up period. The adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs) were 1.31 (1.26, 1.36) for each kilogram decrease in birth weight, and 1.08 (1.05, 1.11) for each standard deviation increase in air pollution score (APS). Birth weight<3000 g amplified the T2D risk associated with high APS. A combination of the lowest birth weight (<2500 g) and the highest quintile of APS led to over two-fold increase in T2D risk (aHR: 2.17; 95% CI: 1.79-2.64). There was a significant additive interaction between them. In conclusion, ambient air pollutants increase the risk for T2D, particularly in populations with low birth weight.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Xiaowen Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Ming Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Ninghao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zimin Song
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Ministry of Education, Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| |
Collapse
|
10
|
Peng S, Li Z, Ji JS, Chen B, Yin X, Zhang W, Liu F, Shen H, Xiang H. Interaction between Extreme Temperature Events and Fine Particulate Matter on Cardiometabolic Multimorbidity: Evidence from Four National Cohort Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12379-12389. [PMID: 38961056 PMCID: PMC11256764 DOI: 10.1021/acs.est.4c02080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Accumulating evidence linked extreme temperature events (ETEs) and fine particulate matter (PM2.5) to cardiometabolic multimorbidity (CMM); however, it remained unknown if and how ETEs and PM2.5 interact to trigger CMM occurrence. Merging four Chinese national cohorts with 64,140 free-CMM adults, we provided strong evidence among ETEs, PM2.5 exposure, and CMM occurrence. Performing Cox hazards regression models along with additive interaction analyses, we found that the hazards ratio (HRs) of CMM occurrence associated with heatwave and cold spell were 1.006-1.019 and 1.063-1.091, respectively. Each 10 μg/m3 increment of PM2.5 concentration was associated with 17.9% (95% confidence interval: 13.9-22.0%) increased risk of CMM. Similar adverse effects were also found among PM2.5 constituents of nitrate, organic matter, sulfate, ammonium, and black carbon. We observed a synergetic interaction of heatwave and PM2.5 pollution on CMM occurrence with relative excess risk due to the interaction of 0.999 (0.663-1.334). Our study provides novel evidence that both ETEs and PM2.5 exposure were positively associated with CMM occurrence, and the heatwave interacts synergistically with PM2.5 to trigger CMM.
Collapse
Affiliation(s)
- Shouxin Peng
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| | - Zhaoyuan Li
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| | - John S. Ji
- Vanke
School of Public Health, Tsinghua University, Beijing 100084, China
| | - Bingbing Chen
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaoyi Yin
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Feifei Liu
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| | - Huanfeng Shen
- School
of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Hao Xiang
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
12
|
Zheng XY, Guo SJ, Hu JX, Meng RL, Xu YJ, Lv YH, Wang Y, Xiao N, Li C, Xu XJ, Zhao DJ, Zhou HY, He JH, Tan XM, Wei J, Lin LF, Guan WJ. Long-term associations of PM 1 versus PM 2.5 and PM 10 with asthma and asthma-related respiratory symptoms in the middle-aged and elderly population. ERJ Open Res 2024; 10:00972-2023. [PMID: 38957167 PMCID: PMC11215765 DOI: 10.1183/23120541.00972-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/25/2024] [Indexed: 07/04/2024] Open
Abstract
Background Few studies have compared the associations between long-term exposures to particulate matters (aerodynamic diameter ≤1, ≤2.5 and ≤10 µm: PM1, PM2.5 and PM10, respectively) and asthma and asthma-related respiratory symptoms. The objective of the present study was to compare the strength of the aforementioned associations in middle-aged and elderly adults. Methods We calculated the mean 722-day personal exposure estimates of PM1, PM2.5 and PM10 at 1 km×1 km spatial resolution between 2013 and 2019 at individual levels from China High Air Pollutants (CHAP) datasets. Using logistic regression models, we presented the associations as odds ratios and 95% confidence intervals, for each interquartile range (IQR) increase in PM1/PM2.5/PM10 concentration. Asthma denoted a self-reported history of physician-diagnosed asthma or wheezing in the preceding 12 months. Results We included 7371 participants in COPD surveillance from Guangdong, China. Each IQR increase in PM1, PM2.5 and PM10 was associated with a greater odds (OR (95% CI)) of asthma (PM1: 1.22 (1.02-1.45); PM2.5: 1.24 (1.04-1.48); PM10: 1.30 (1.07-1.57)), wheeze (PM1: 1.27 (1.11-1.44); PM2.5: 1.30 (1.14-1.48); PM10: 1.34 (1.17-1.55)), persistent cough (PM1: 1.33 (1.06-1.66); PM2.5: 1.36 (1.09-1.71); PM10: 1.31 (1.02-1.68)) and dyspnoea (PM1: 2.10 (1.84-2.41); PM2.5: 2.17 (1.90-2.48); PM10: 2.29 (1.96-2.66)). Sensitivity analysis results were robust after excluding individuals with a family history of allergy. Associations of PM1, PM2.5 and PM10 with asthma and asthma-related respiratory symptoms were slightly stronger in males. Conclusion Long-term exposure to PM is associated with increased risks of asthma and asthma-related respiratory symptoms.
Collapse
Affiliation(s)
- Xue-yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Xue-yan Zheng, Shu-jun Guo and Jian-xiong Hu contributed equally to this article as joint first authors
| | - Shu-jun Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Xue-yan Zheng, Shu-jun Guo and Jian-xiong Hu contributed equally to this article as joint first authors
| | - Jian-xiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Xue-yan Zheng, Shu-jun Guo and Jian-xiong Hu contributed equally to this article as joint first authors
| | - Rui-lin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yan-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yun-hong Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ye Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ni Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiao-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - De-jian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hong-ye Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-hui He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-min Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Li-feng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
- Li-feng Lin and Wei-jie Guan contributed equally to this article as lead authors and supervised the work
| | - Wei-jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Li-feng Lin and Wei-jie Guan contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
13
|
Wu TQ, Han X, Liu CY, Zhao N, Ma J. A causal relationship between particulate matter 2.5 and obesity and its related indicators: a Mendelian randomization study of European ancestry. Front Public Health 2024; 12:1366838. [PMID: 38947357 PMCID: PMC11211571 DOI: 10.3389/fpubh.2024.1366838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background In recent years, the prevalence of obesity has continued to increase as a global health concern. Numerous epidemiological studies have confirmed the long-term effects of exposure to ambient air pollutant particulate matter 2.5 (PM2.5) on obesity, but their relationship remains ambiguous. Methods Utilizing large-scale publicly available genome-wide association studies (GWAS), we conducted univariate and multivariate Mendelian randomization (MR) analyses to assess the causal effect of PM2.5 exposure on obesity and its related indicators. The primary outcome given for both univariate MR (UVMR) and multivariate MR (MVMR) is the estimation utilizing the inverse variance weighted (IVW) method. The weighted median, MR-Egger, and maximum likelihood techniques were employed for UVMR, while the MVMR-Lasso method was applied for MVMR in the supplementary analyses. In addition, we conducted a series of thorough sensitivity studies to determine the accuracy of our MR findings. Results The UVMR analysis demonstrated a significant association between PM2.5 exposure and an increased risk of obesity, as indicated by the IVW model (odds ratio [OR]: 6.427; 95% confidence interval [CI]: 1.881-21.968; P FDR = 0.005). Additionally, PM2.5 concentrations were positively associated with fat distribution metrics, including visceral adipose tissue (VAT) (OR: 1.861; 95% CI: 1.244-2.776; P FDR = 0.004), particularly pancreatic fat (OR: 3.499; 95% CI: 2.092-5.855; PFDR =1.28E-05), and abdominal subcutaneous adipose tissue (ASAT) volume (OR: 1.773; 95% CI: 1.106-2.841; P FDR = 0.019). Furthermore, PM2.5 exposure correlated positively with markers of glucose and lipid metabolism, specifically triglycerides (TG) (OR: 19.959; 95% CI: 1.269-3.022; P FDR = 0.004) and glycated hemoglobin (HbA1c) (OR: 2.462; 95% CI: 1.34-4.649; P FDR = 0.007). Finally, a significant negative association was observed between PM2.5 concentrations and levels of the novel obesity-related biomarker fibroblast growth factor 21 (FGF-21) (OR: 0.148; 95% CI: 0.025-0.89; P FDR = 0.037). After adjusting for confounding factors, including external smoke exposure, physical activity, educational attainment (EA), participation in sports clubs or gym leisure activities, and Townsend deprivation index at recruitment (TDI), the MVMR analysis revealed that PM2.5 levels maintained significant associations with pancreatic fat, HbA1c, and FGF-21. Conclusion Our MR study demonstrates conclusively that higher PM2.5 concentrations are associated with an increased risk of obesity-related indicators such as pancreatic fat content, HbA1c, and FGF-21. The potential mechanisms require additional investigation.
Collapse
Affiliation(s)
- Tian qiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chun yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Na Zhao
- Department of Endocrinology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian Ma
- Department of Endocrinology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:347-362. [PMID: 38983383 PMCID: PMC11229557 DOI: 10.1016/j.jaccao.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024] Open
Abstract
Although recent advancements in cancer therapies have extended the lifespan of patients with cancer, they have also introduced new challenges, including chronic health issues such as cardiovascular disease arising from pre-existing risk factors or cancer therapies. Consequently, cardiovascular disease has become a leading cause of non-cancer-related death among cancer patients, driving the rapid evolution of the cardio-oncology field. Environmental factors, particularly air pollution, significantly contribute to deaths associated with cardiovascular disease and specific cancers, such as lung cancer. Despite these statistics, the health impact of air pollution in the context of cardio-oncology has been largely overlooked in patient care and research. Notably, the impact of air pollution varies widely across geographic areas and among individuals, leading to diverse exposure consequences. This review aims to consolidate epidemiologic and preclinical evidence linking air pollution to cardio-oncology while also exploring associated health disparities and environmental justice issues.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sadeer G Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Cao R, Jiang H, Zhang Y, Guo Y, Zhang W. Causal relationship between air pollution, lung function, gastroesophageal reflux disease, and non-alcoholic fatty liver disease: univariate and multivariate Mendelian randomization study. Front Public Health 2024; 12:1368483. [PMID: 38746002 PMCID: PMC11092889 DOI: 10.3389/fpubh.2024.1368483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Background The association between air pollution, lung function, gastroesophageal reflux disease, and Non-alcoholic fatty liver disease (NAFLD) remains inconclusive. Previous studies were not convincing due to confounding factors and reverse causality. We aim to investigate the causal relationship between air pollution, lung function, gastroesophageal reflux disease, and NAFLD using Mendelian randomization analysis. Methods In this study, univariate Mendelian randomization analysis was conducted first. Subsequently, Steiger testing was performed to exclude the possibility of reverse association. Finally, significant risk factors identified from the univariate Mendelian analysis, as well as important factors affecting NAFLD from previous observational studies (type 2 diabetes and body mass index), were included in the multivariable Mendelian randomization analysis. Results The results of the univariable Mendelian randomization analysis showed a positive correlation between particulate matter 2.5, gastroesophageal reflux disease, and NAFLD. There was a negative correlation between forced expiratory volume in 1 s, forced vital capacity, and NAFLD. The multivariable Mendelian randomization analysis indicated a direct causal relationship between gastroesophageal reflux disease (OR = 1.537, p = 0.011), type 2 diabetes (OR = 1.261, p < 0.001), and NAFLD. Conclusion This Mendelian randomization study confirmed the causal relationships between air pollution, lung function, gastroesophageal reflux, and NAFLD. Furthermore, gastroesophageal reflux and type 2 diabetes were identified as independent risk factors for NAFLD, having a direct causal connection with the occurrence of NAFLD.
Collapse
Affiliation(s)
- Runmin Cao
- Jinzhou Medical University Postgraduate Training Base (Jinzhou Central Hospital), Jinzhou, Liaoning, China
| | - Honghe Jiang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Yurun Zhang
- Rehabilitation Therapy, Shandong Xiandai University, Jinan, Shandong, China
| | - Ying Guo
- General Surgery, Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Weibin Zhang
- Jinzhou Medical University Postgraduate Training Base (Jinzhou Central Hospital), Jinzhou, Liaoning, China
| |
Collapse
|
16
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
17
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Shen W, Chen H, Shih C, Samet J, Tong H. Modulatory effects of dietary saturated fatty acids on platelet mitochondrial function following short-term exposure to ambient Particulate Matter (PM 2.5). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:215-226. [PMID: 38111233 DOI: 10.1080/15287394.2023.2292709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) was found to produce vascular injury, possibly by activating platelets within days after exposure. The aim of this study was to investigate the modulatory effects of dietary saturated fatty acids on platelet mitochondrial respiratory parameters following short-term inhalational exposure to PM2.5. A total of 22 healthy male volunteers were recruited from the Research Triangle area of North Carolina. Platelets were isolated from fresh whole blood samples and mitochondrial respiratory parameters were measured using an extracellular flux analyzer. Intake of saturated fat was averaged from multiple 24-hr dietary recalls. Daily ambient PM2.5 concentrations were obtained from ambient air quality monitoring stations. Correlation and ANOVA were used in data analyses, along with the pick-a-point method and the Johnson-Neyman technique for probing moderation. After controlling for age and omega-3 index, the intake of dietary saturated fatty acids after reaching 9.3% or higher of the total caloric intake significantly moderated the associations between PM2.5 exposure and several platelet mitochondrial respiratory parameters. In conclusion, dietary saturated fatty acids above 9.3% of total caloric intake influenced the relationship between short-term PM2.5 exposure and platelet mitochondrial respiration. Further research is needed to understand these associations and their implications for cardiovascular health.
Collapse
Affiliation(s)
- Wan Shen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Food and Nutrition Program, Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH USA
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Chiahao Shih
- Department of Emergency Medicine, University of Toledo, Toledo, OH, USA
| | - James Samet
- Public Health and Integrated Toxicology Division, US Environmental Protection Agency, Chapel Hill, WA, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, US Environmental Protection Agency, Chapel Hill, WA, USA
| |
Collapse
|
19
|
Zhu K, Mendola P, Barnabei VM, Wang M, Hageman Blair R, Schwartz J, Shelton J, Lei L, Mu L. Association of prenatal exposure to PM 2.5 and NO 2 with gestational diabetes in Western New York. ENVIRONMENTAL RESEARCH 2024; 244:117873. [PMID: 38072106 DOI: 10.1016/j.envres.2023.117873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Although many studies have examined the association between prenatal air pollution exposure and gestational diabetes (GDM), the relevant exposure windows remain inconclusive. We aim to examine the association between preconception and trimester-specific exposure to PM2.5 and NO2 and GDM risk and explore modifying effects of maternal age, pre-pregnancy body mass index (BMI), smoking, exercise during pregnancy, race and ethnicity, and neighborhood disadvantage. METHODS Analyses included 192,508 birth records of singletons born to women without pre-existing diabetes in Western New York, 2004-2016. Daily PM2.5 and NO2 at 1-km2 grids were estimated from ensemble-based models. We assigned each birth with exposures averaged in preconception and each trimester based on residential zip-codes. We used logistic regression to examine the associations and distributed lag models (DLMs) to explore the sensitive windows by month. Relative excess risk due to interaction (RERI) and multiplicative interaction terms were calculated. RESULTS GDM was associated with PM2.5 averaged in the first two trimesters (per 2.5 μg/m3: OR = 1.08, 95% CI: 1.01, 1.14) or from preconception to the second trimester (per 2.5 μg/m3: OR = 1.10, 95% CI: 1.03, 1.18). NO2 exposure during each averaging period was associated with GDM risk (per 10 ppb, preconception: OR = 1.10, 95% CI: 1.06, 1.14; first trimester: OR = 1.12, 95% CI: 1.08, 1.16; second trimester: OR = 1.10, 95% CI: 1.06, 1.14). In DLMs, sensitive windows were identified in the 5th and 6th gestational months for PM2.5 and one month before and three months after conception for NO2. Evidence of interaction was identified for pre-pregnancy BMI with PM2.5 (P-for-interaction = 0.023; RERI = 0.21, 95% CI: 0.10, 0.33) and with NO2 (P-for-interaction = 0.164; RERI = 0.16, 95% CI: 0.04, 0.27). CONCLUSION PM2.5 and NO2 exposure may increase GDM risk, and sensitive windows may be the late second trimester for PM2.5 and periconception for NO2. Women with higher pre-pregnancy BMI may be more susceptible to exposure effects.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Vanessa M Barnabei
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James Shelton
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
20
|
Liu W, Wang Z, Gu Y, So HS, Kook SH, Park Y, Kim SH. Effects of short-term exercise and endurance training on skeletal muscle mitochondria damage induced by particular matter, atmospherically relevant artificial PM2.5. Front Public Health 2024; 12:1302175. [PMID: 38481847 PMCID: PMC10933037 DOI: 10.3389/fpubh.2024.1302175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/19/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction This study aimed to investigate the potential of short-term aerobic exercise to mitigate skeletal muscle mitochondrial damage following ambient PM2.5 exposure, and how 12 weeks of endurance training can enhance aerobic fitness to protect against such damage. Methods Twenty-four male C57BL/6 J mice were split into sedentary (SED, n = 12) and endurance training (ETR, n = 12) groups. The ETR group underwent 12 weeks of training (10-15 m/min, 60 min/day, 4 times/week), confirmed by an Endurance Exercise Capacity (EEC) test. Post-initial training, the SED group was further divided into SSED (SED and sedentary, n = 6) and SPE (SED and PM2.5 + Exercise, n = 6). Similarly, the ETR group was divided into EEX (ETR and Exercise, n = 6) and EPE (ETR and PM2.5 + Exercise, n = 6). These groups underwent 1 week of atmospherically relevant artificial PM2.5 exposure and treadmill running (3 times/week). Following treatments, an EEC test was conducted, and mice were sacrificed for blood and skeletal muscle extraction. Blood samples were analyzed for oxidative stress indicators, while skeletal muscles were assessed for mitochondrial oxidative metabolism, antioxidant capacity, and mitochondrial damage using western blot and transmission electron microscopy (TEM). Results After 12 weeks of endurance training, the EEC significantly increased (p < 0.000) in the ETR group compared to the SED group. Following a one-week comparison among the four groups with atmospherically relevant artificial PM2.5 exposure and exercise treatment post-endurance training, the EEX group showed improvements in EEC, oxidative metabolism, mitochondrial dynamics, and antioxidant functions. Conversely, these factors decreased in the EPE group compared to the EEX. Additionally, within the SPE group, exercise effects were evident in HK2, LDH, SOD2, and GPX4, while no impact of short-term exercise was observed in all other factors. TEM images revealed no evidence of mitochondrial damage in both the SED and EEX groups, while the majority of mitochondria were damaged in the SPE group. The EPE group also exhibited damaged mitochondria, although significantly less than the SPE group. Conclusion Atmospherically relevant artificial PM2.5 exposure can elevate oxidative stress, potentially disrupting the benefits of short-term endurance exercise and leading to mitochondrial damage. Nonetheless, increased aerobic fitness through endurance training can mitigate PM2.5-induced mitochondrial damage.
Collapse
Affiliation(s)
- Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yu Gu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
21
|
Gong X, Wang S, Wang X, Zhong S, Yuan J, Zhong Y, Jiang Q. Long-term exposure to air pollution and risk of insulin resistance: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115909. [PMID: 38199220 DOI: 10.1016/j.ecoenv.2023.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The effects of air pollution on metabolism have become a popular research topic, and a large number of studies had confirmed that air pollution exposure could induce insulin resistance (IR) to varying degrees, but the results were inconsistent, especially for the long-term exposures. The aim of the current study was to further investigate the potential effects of air pollution on IR. METHODS A systematic review and meta-analysis of four electronic databases, including PubMed, Embase, Web of Science and Cochrane were conducted, searching for relevant studies published before June 10, 2023, in order to explore the potential relationships between long-term exposure to air pollution and IR. A total of 10 studies were included for data analysis, including seven cohort studies and three cross-sectional studies. Four major components of air pollution, including PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less), PM10 (particulate matter with an aerodynamic diameter of 10 µm or less), NO2, and SO2 were selected, and each analyzed for the potential impacts on insulin resistance, in the form of adjusted percentage changes in the homeostasis assessment model of insulin resistance (HOMA-IR). RESULTS This systematic review and meta-analysis showed that for every 1 μg/m³ increase in the concentration of selected air pollutants, PM2.5 induced a 0.40% change in HOMA-IR (95%CI: -0.03, 0.84; I2 =67.4%, p = 0.009), while PM10 induced a 1.61% change (95%CI: 0.243, 2.968; I2 =49.1%, p = 0.001). Meanwhile, the change in HOMA-IR due to increased NO2 or SO2 exposure concentration was only 0.09% (95%CI: -0.01, 0.19; I2 =83.2%, p = 0.002) or 0.01% (95%CI: -0.04, 0.06; I2 =0.0%, p = 0.638), respectively. CONCLUSIONS Long-term exposures to PM2.5, PM10, NO2 or SO2 are indeed associated with the odds of IR. Among the analyzed pollutants, inhalable particulate matters appear to exert greater impacts on IR.
Collapse
Affiliation(s)
- Xinxian Gong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Siyi Wang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Xiaokang Wang
- Department of Cardiac Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, China.
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
22
|
Tsai HH, Tantoh DM, Lu WY, Chen CY, Liaw YP. Cigarette smoking and PM 2.5 might jointly exacerbate the risk of metabolic syndrome. Front Public Health 2024; 11:1234799. [PMID: 38288423 PMCID: PMC10822970 DOI: 10.3389/fpubh.2023.1234799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Cigarette smoking and particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5) are major preventable cardiovascular mortality and morbidity promoters. Their joint role in metabolic syndrome (MS) pathogenesis is unknown. We determined the risk of MS based on PM2.5 and cigarette smoking in Taiwanese adults. Methods The study included 126,366 Taiwanese between 30 and 70 years old with no personal history of cancer. The Taiwan Biobank (TWB) contained information on MS, cigarette smoking, and covariates, while the Environmental Protection Administration (EPA), Taiwan, contained the PM2.5 information. Individuals were categorized as current, former, and nonsmokers. PM2.5 levels were categorized into quartiles: PM2.5 ≤ Q1, Q1 < PM2.5 ≤ Q2, Q2 < PM2.5 ≤ Q3, and PM2.5 > Q3, corresponding to PM2.5 ≤ 27.137, 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3. Results The prevalence of MS was significantly different according to PM2.5 exposure (p-value = 0.0280) and cigarette smoking (p-value < 0.0001). Higher PM2.5 levels were significantly associated with a higher risk of MS: odds ratio (OR); 95% confidence interval (CI) = 1.058; 1.014-1.104, 1.185; 1.134-1.238, and 1.149; 1.101-1.200 for 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3, respectively. The risk of MS was significantly higher among former and current smokers with OR; 95% CI = 1.062; 1.008-1.118 and 1.531; 1.450-1.616, respectively, and a dose-dependent p-value < 0.0001. The interaction between both exposures regarding MS was significant (p-value = 0.0157). Stratification by cigarette smoking revealed a significant risk of MS due to PM2.5 exposure among nonsmokers: OR (95% CI) = 1.074 (1.022-1.128), 1.226 (1.166-1.290), and 1.187 (1.129-1.247) for 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3, respectively. According to PM2.5 quartiles, current smokers had a higher risk of MS, regardless of PM2.5 levels (OR); 95% CI = 1.605; 1.444-1.785, 1.561; 1.409-1.728, 1.359; 1.211-1.524, and 1.585; 1.418-1.772 for PM2.5 ≤ 27.137, 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3, respectively. After combining both exposures, the group, current smokers; PM2.5 > 38.205 μg/m3 had the highest odds (1.801; 95% CI =1.625-1.995). Conclusion PM2.5 and cigarette smoking were independently and jointly associated with a higher risk of MS. Stratified analyses revealed that cigarette smoking might have a much higher effect on MS than PM2.5. Nonetheless, exposure to both PM2.5 and cigarette smoking could compound the risk of MS.
Collapse
Affiliation(s)
- Hao-Hung Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- College of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Medical Imaging, School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Wen Yu Lu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| |
Collapse
|
23
|
Zeng X, Zhan Y, Zhou W, Qiu Z, Wang T, Chen Q, Qu D, Huang Q, Cao J, Zhou N. The Influence of Airborne Particulate Matter on the Risk of Gestational Diabetes Mellitus: A Large Retrospective Study in Chongqing, China. TOXICS 2023; 12:19. [PMID: 38250975 PMCID: PMC10818620 DOI: 10.3390/toxics12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Emerging research findings suggest that airborne particulate matter might be a risk factor for gestational diabetes mellitus (GDM). However, the concentration-response relationships and the susceptible time windows for different types of particulate matter may vary. In this retrospective analysis, we employ a novel robust approach to assess the crucial time windows regarding the prevalence of GDM and to distinguish the susceptibility of three GDM subtypes to air pollution exposure. This study included 16,303 pregnant women who received routine antenatal care in 2018-2021 at the Maternal and Child Health Hospital in Chongqing, China. In total, 2482 women (15.2%) were diagnosed with GDM. We assessed the individual daily average exposure to air pollution, including PM2.5, PM10, O3, NO2, SO2, and CO based on the volunteers' addresses. We used high-accuracy gridded air pollution data generated by machine learning models to assess particulate matter per maternal exposure levels. We further analyzed the association of pre-pregnancy, early, and mid-pregnancy exposure to environmental pollutants using a generalized additive model (GAM) and distributed lag nonlinear models (DLNMs) to analyze the association between exposure at specific gestational weeks and the risk of GDM. We observed that, during the first trimester, per IQR increases for PM10 and PM2.5 exposure were associated with increased GDM risk (PM10: OR = 1.19, 95%CI: 1.07~1.33; PM2.5: OR = 1.32, 95%CI: 1.15~1.50) and isolated post-load hyperglycemia (GDM-IPH) risk (PM10: OR = 1.23, 95%CI: 1.09~1.39; PM2.5: OR = 1.38, 95%CI: 1.18~1.61). Second-trimester O3 exposure was positively correlated with the associated risk of GDM, while pre-pregnancy and first-trimester exposure was negatively associated with the risk of GDM-IPH. Exposure to SO2 in the second trimester was negatively associated with the risk of GDM-IPH. However, there were no observed associations between NO2 and CO exposure and the risk of GDM and its subgroups. Our results suggest that maternal exposure to particulate matter during early pregnancy and exposure to O3 in the second trimester might increase the risk of GDM, and GDM-IPH is the susceptible GDM subtype to airborne particulate matter exposure.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Wei Zhou
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Tong Wang
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Qing Chen
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Dandan Qu
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiao Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Jia Cao
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Niya Zhou
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
24
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Zhang Y, Shi J, Ma Y, Yu N, Zheng P, Chen Z, Wang T, Jia G. Association between Air Pollution and Lipid Profiles. TOXICS 2023; 11:894. [PMID: 37999546 PMCID: PMC10675150 DOI: 10.3390/toxics11110894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Dyslipidemia is a critical factor in the development of atherosclerosis and consequent cardiovascular disease. Numerous pieces of evidence demonstrate the association between air pollution and abnormal blood lipids. Although the results of epidemiological studies on the link between air pollution and blood lipids are unsettled due to different research methods and conditions, most of them corroborate the harmful effects of air pollution on blood lipids. Mechanism studies have revealed that air pollution may affect blood lipids via oxidative stress, inflammation, insulin resistance, mitochondrial dysfunction, and hypothalamic hormone and epigenetic changes. Moreover, there is a risk of metabolic diseases associated with air pollution, including fatty liver disease, diabetes mellitus, and obesity, which are often accompanied by dyslipidemia. Therefore, it is biologically plausible that air pollution affects blood lipids. The overall evidence supports that air pollution has a deleterious effect on blood lipid health. However, further research into susceptibility, indoor air pollution, and gaseous pollutants is required, and the issue of assessing the effects of mixtures of air pollutants remains an obstacle for the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
27
|
Rojas GA, Saavedra N, Morales C, Saavedra K, Lanas F, Salazar LA. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. TOXICS 2023; 11:844. [PMID: 37888695 PMCID: PMC10610936 DOI: 10.3390/toxics11100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) present in air pollution increases cardiovascular risk. On the contrary, physical exercise is a widely used therapeutic approach to mitigate cardiovascular risk, but its efficacy in an environment of air pollution, particularly with PAHs, remains unclear. This study investigates the effects of exercise on inflammation, endothelial dysfunction, and REDOX imbalance due to PAH exposure using a mouse model. Twenty male BALB/c mice were subjected to a mixture of PAHs (phenanthrene, fluoranthene, pyrene) in conjunction with aerobic exercise. The investigation evaluated serum levels of inflammatory cytokines, gene expression linked to inflammatory markers, endothelial dysfunction, and REDOX imbalance in aortic tissues. Furthermore, the study evaluated the expression of the ICAM-1 and VCAM-1 proteins. Exercise led to notable changes in serum inflammatory cytokines, as well as the modulation of genes associated with endothelial dysfunction and REDOX imbalance in aortic tissue. In turn, exercise produced a modulation in the protein expression of ICAM-1 and VCAM-1. The findings implicate the potential of exercise to counter PAH-induced damage, as demonstrated by changes in markers. In conclusion, exercise could mitigate the adverse effects related to exposure to PAHs present in air pollution, as evidenced by changes in inflammatory markers, endothelial dysfunction, and REDOX imbalance.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| |
Collapse
|
28
|
Sun N, Bursac Z, Dryden I, Lucchini R, Dabo-Niang S, Ibrahimou B. Bayesian spatiotemporal modelling for disease mapping: an application to preeclampsia and gestational diabetes in Florida, United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109283-109298. [PMID: 37770738 PMCID: PMC10726673 DOI: 10.1007/s11356-023-29953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Morbidities generally show patterns of concentration that vary by space and time. Disease mapping models are useful in estimating the spatiotemporal patterns of disease risks and are therefore pivotal for effective disease surveillance, resource allocation, and the development of prevention strategies. This study considers six spatiotemporal Bayesian hierarchical models based on two spatial conditional autoregressive priors. It could serve as a guideline on the development and application of Bayesian hierarchical models to assess the emerging risk trends, risk clustering, and spatial inequality trends, with estimation of covariables' effects on the interested disease risk. The method is applied to the Florida Birth Record data between 2006 and 2015 to study two cardiovascular risk factors: preeclampsia and gestational diabetes. High-risk clusters were detected in North Central Florida for preeclampsia and in Central Florida for gestational diabetes. While the adjusted disease trend was stable, spatial inequality peaked in 2011-2012 for both diseases. Exposure to PM2.5 at first or/and second trimester increased the risk of preeclampsia and gestational diabetes, but the magnitude is less severe compared to previous studies. In conclusion, this study underscores the significance of selecting appropriate disease mapping models in estimating the intricate spatiotemporal patterns of disease risk and suggests the importance of localized interventions to reduce health disparities. The result also identified an opportunity to study potential risk factors of preeclampsia, as the spike of risk in North Central Florida cannot be explained by current covariables.
Collapse
Affiliation(s)
- Ning Sun
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Zoran Bursac
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Ian Dryden
- Department of Mathematics and Statistics, College of Arts, Science and Education, Florida International University, Miami, FL, USA
| | - Roberto Lucchini
- Environmental Health Science Department, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Sophie Dabo-Niang
- Laboratory PAINLEVE UMR 8524, Inria-MODAL, University of Lille, BP 60149, 59653, Villeneuve d'ascq cedex, France
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
29
|
Li J, Dai L, Deng X, Zhang J, Song C, Xu J, Wang A, Xiong Z, Shan Y, Huang X. Association between long-term exposure to low level air pollutants and incident end-stage kidney disease in the UK Biobank: A prospective cohort. CHEMOSPHERE 2023; 338:139470. [PMID: 37437622 DOI: 10.1016/j.chemosphere.2023.139470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Previous studies suggest that air pollution can increase the risk of incident chronic kidney disease (CKD). However, the association between end-stage kidney disease (ESKD) and co-exposure to relatively low-level air pollutants remains unclear. METHODS A prospective cohort was designed based on UK Biobank. From 1 January 2010 to 12 November 2021, 453,347 participants were followed up over a median of 11.87 years. Principal component analysis was used to identify major patterns of five air pollutants, including PM2.5, PM2.5-10, PM10, NO2, and NOx. Sub-distribution hazards models were used to estimate the associations between air pollution, individually or jointly, and incident ESKD, CKD, and all-cause death, respectively. RESULTS Principal component analysis identified two principal components, namely RC1 (PM2.5, NO2, and NOx) and RC2 (PM2.5-10 and PM10). An elevated risk of incident ESKD was associated with an interquartile range (IQR) increase in PM2.5 (hazard ratio: 1.11, 95% confidence interval: 1.02-1.22), NO2 (1.16, 1.04-1.30), NOx (1.08, 1.00-1.17), and RC1 (1.12, 1.02-1.23). An elevated risk of incident CKD was associated with an IQR increase in PM2.5 (1.05, 1.03-1.07), NO2 (1.04, 1.02-1.06), NOx (1.03, 1.02-1.05), and RC1 (1.04, 1.02-1.06). An increased risk of all-cause mortality was associated with an IQR increase in PM2.5 (1.02, 1.00-1.04). Restricted cubic spline analyses indicated a monotonic elevating association of PM2.5, NO2, NOx, and RC1 with ESKD incidence. CONCLUSIONS Long-term exposure to PM2.5, NO2, NOx, and their complex was associated with elevated ESKD incidence, even at relatively lower levels of air pollution.
Collapse
Affiliation(s)
- Jing Li
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China; Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Dai
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China
| | - Xiaowei Deng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jingwen Zhang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China
| | - Congying Song
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China
| | - Junjie Xu
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zuying Xiong
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China.
| | - Xiaoyan Huang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China; Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China.
| |
Collapse
|
30
|
Zhang C, Ma T, Liu C, Ma D, Wang J, Liu M, Ran J, Wang X, Deng X. PM 2.5 induced liver lipid metabolic disorders in C57BL/6J mice. Front Endocrinol (Lausanne) 2023; 14:1212291. [PMID: 37780625 PMCID: PMC10539470 DOI: 10.3389/fendo.2023.1212291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
PM2.5 can cause adverse health effects via several pathways, such as inducing pulmonary and systemic inflammation, penetration into circulation, and activation of the autonomic nervous system. In particular, the impact of PM2.5 exposure on the liver, which plays an important role in metabolism and detoxification to maintain internal environment homeostasis, is getting more attention in recent years. In the present study, C57BL/6J mice were randomly assigned and treated with PM2.5 suspension and PBS solution for 8 weeks. Then, hepatic tissue was prepared and identified by metabolomics analysis and transcriptomics analysis. PM2.5 exposure can cause extensive metabolic disturbances, particularly in lipid and amino acids metabolic dysregulation.128 differential expression metabolites (DEMs) and 502 differently expressed genes (DEGs) between the PM2.5 exposure group and control group were detected. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DEGs were significantly enriched in two disease pathways, non-alcoholic fatty liver disease (NAFLD) and type II diabetes mellitus (T2DM), and three signaling pathways, which are TGF-beta signaling, AMPK signaling, and mTOR signaling. Besides, further detection of acylcarnitine levels revealed accumulation in liver tissue, which caused restricted lipid consumption. Furthermore, lipid droplet accumulation in the liver was confirmed by Oil Red O staining, suggesting hepatic steatosis. Moreover, the aberrant expression of three key transcription factors revealed the potential regulatory effects in lipid metabolic disorders, the peroxisomal proliferative agent-activated receptors (PPARs) including PPARα and PPARγ is inhibited, and the activated sterol regulator-binding protein 1 (SREBP1) is overexpressed. Our results provide a novel molecular and genetic basis for a better understanding of the mechanisms of PM2.5 exposure-induced hepatic metabolic diseases, especially in lipid metabolism.
Collapse
Affiliation(s)
- Chenxiao Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Ma
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Ma
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Liu
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueting Wang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Niu Z, Habre R, Yang T, Grubbs BH, Eckel SP, Toledo-Corral CM, Johnston J, Dunton GF, Lurvey N, Al-Marayati L, Lurmann F, Pavlovic N, Bastain TM, Breton CV, Farzan SF. Preconceptional and prenatal exposure to air pollutants and risk of gestational diabetes in the MADRES prospective pregnancy cohort study. LANCET REGIONAL HEALTH. AMERICAS 2023; 25:100575. [PMID: 37727593 PMCID: PMC10505827 DOI: 10.1016/j.lana.2023.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023]
Abstract
Background Air pollution has been associated with gestational diabetes mellitus (GDM). We aim to investigate susceptible windows of air pollution exposure and factors determining population vulnerability. Methods We ascertained GDM status in the prospective Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) pregnancy cohort from Los Angeles, California, USA. We calculated the relative risk of GDM by exposure to ambient particulate matter (PM10; PM2.5), nitrogen dioxide (NO2), and ozone (O3) in each week from 12 weeks before to 24 weeks after conception, adjusting for potential confounders, with distributed lag models to identify susceptible exposure windows. We examined effect modification by prenatal depression, median-split pre-pregnancy BMI (ppBMI) and age. Findings Sixty (9.7%) participants were diagnosed with GDM among 617 participants (mean age: 28.2 years, SD: 5.9; 78.6% Hispanic, 11.8% non-Hispanic Black). GDM risk increased with exposure to PM2.5, PM10, and NO2 in a periconceptional window ranging from 5 weeks before to 5 weeks after conception: interquartile-range increases in PM2.5, PM10, and NO2 during this window were associated with increased GDM risk by 5.7% (95% CI: 4.6-6.8), 8.9% (8.1-9.6), and 15.0% (13.9-16.2), respectively. These sensitive windows generally widened, with greater effects, among those with prenatal depression, with age ≥28 years, or with ppBMI ≥27.5 kg/m2, than their counterparts. Interpretation Preconception and early-pregnancy are susceptible windows of air pollutants exposure that increased GDM risk. Prenatal depression, higher age, or higher ppBMI may increase one's vulnerability to air pollution-associated GDM risk. Funding National Institutes of Health, Environmental Protection Agency.
Collapse
Affiliation(s)
- Zhongzheng Niu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia M. Toledo-Corral
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Health Sciences, California State University, Northridge, Northridge, CA, USA
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F. Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Zhong J, Zhao G, Edwards S, Tran J, Rajagopalan S, Rao X. Particulate air pollution exaggerates diet-induced insulin resistance through NLRP3 inflammasome in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121603. [PMID: 37062408 PMCID: PMC10164710 DOI: 10.1016/j.envpol.2023.121603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Air particulate matter 2.5 (PM2.5) has been demonstrated to exaggerate insulin resistance in both human and animal studies. However, the exact molecular mechanisms remain elusive. This study sought to assess the role of NLRP3 inflammasome in PM2.5 exposure-induced insulin resistance and explore the underlying mechanisms. Wild-type (WT), Nlrp3-/-, Tlr4Lps-d, or Nrf2-/- mice, on a normal diet or high-fat diet (HFD), were exposed to PM2.5 or filtered air (FA) in a whole-body exposure facility. Priming (first signal) and assembly (second signal) of NLRP3 inflammasome activation were assessed by measuring the transcription of Nlrp3/Il-1β and detecting the activity of caspase-1 and secretion of IL-1β. We found PM2.5 exposure exaggerated insulin resistance and increased IL-1β production in the HFD-fed WT mice, but not Nlrp3-/- mice. Gene expressions of Nlrp3 and Il-1β in the lungs and peritoneal macrophages were upregulated in WT mice exposed to PM2.5. When stimulated with LPS (first signal) or monosodium urate (second signal), PM2.5 exposure was able to enhance the activity of caspase-1 and IL-1β secretion, suggesting that PM2.5 may serve as a stimulus of either the first or second signal for NLRP3 inflammasome activation. Effects of PM2.5 on caspase-1 activation and IL-1β secretion were partially blocked in Tlr4Lps-d mice. Reactive oxygen species (ROS), co-localization of NLRP3 and mitochondria, and secondary lysosomes in macrophages were increased after PM2.5 exposure, while deficiency of antioxidant gene Nrf2 in mice significantly enhanced PM2.5-induced secretion of IL-1β. Imaging flow cytometry and transmission electron microscopy demonstrated an engulfment of PM2.5 particles by macrophages, while suppression of phagocytosis by cytochalasin D abolished PM2.5-induced transcription of Nlrp3/Il-1β. Our results demonstrated a critical role of NLRP3 inflammasome in PM2.5 exaggerated insulin resistance, and multiple pathways in the first and second signals of NLRP3 inflammasome activation may be involved.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Gang Zhao
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Sabrina Edwards
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Joanne Tran
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Pacific Northwest University of Health Science, Yakima, WA, 98901, United States
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
33
|
Ribble A, Hellmann J, Conklin DJ, Bhatnagar A, Haberzettl P. Fine particulate matter (PM 2.5)-induced pulmonary oxidative stress contributes to increases in glucose intolerance and insulin resistance in a mouse model of circadian dyssynchrony. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162934. [PMID: 36934930 PMCID: PMC10164116 DOI: 10.1016/j.scitotenv.2023.162934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Results of human and animal studies independently suggest that either ambient fine particulate matter (PM2.5) air pollution exposure or a disturbed circadian rhythm (circadian dyssynchrony) are important contributing factors to the rapidly evolving type-2-diabetes (T2D) epidemic. The objective of this study is to investigate whether circadian dyssynchrony increases the susceptibility to PM2.5 and how PM2.5 affects metabolic health in circadian dyssynchrony. We examined systemic and organ-specific changes in glucose homeostasis and insulin sensitivity in mice maintained on a regular (12/12 h light/dark) or disrupted (18/6 h light/dark, light-induced circadian dyssynchrony, LICD) light cycle exposed to air or concentrated PM2.5 (CAP, 6 h/day, 30 days). Exposures during Zeitgeber ZT3-9 or ZT11-17 (Zeitgeber in circadian time, ZT0 = begin of light cycle) tested for time-of-day PM2.5 sensitivity (chronotoxicity). Mice transgenic for lung-specific overexpression of extracellular superoxide dismutase (ecSOD-Tg) were used to assess the contribution of CAP-induced pulmonary oxidative stress. Both, CAP exposure from ZT3-9 or ZT11-17, decreased glucose tolerance and insulin sensitivity in male mice with LICD, but not in female mice or in mice kept on a regular light cycle. Although changes in glucose homeostasis in CAP-exposed male mice with LICD were not associated with obesity, they were accompanied by white adipose tissue (WAT) inflammation, impaired insulin signaling in skeletal muscle and liver, and systemic and pulmonary oxidative stress. Preventing CAP-induced oxidative stress in the lungs mitigated the CAP-induced decrease in glucose tolerance and insulin sensitivity in LICD. Our results demonstrate that circadian dyssynchrony is a novel susceptibility state for PM2.5 and suggest that PM2.5 by inducing pulmonary oxidative stress increases glucose intolerance and insulin resistance in circadian dyssynchrony.
Collapse
Affiliation(s)
- Amanda Ribble
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jason Hellmann
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Petra Haberzettl
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
34
|
Yang X, Zhang Q, Sun Y, Li C, Zhou H, Jiang C, Li J, Zhang L, Chen X, Tang N. Joint effect of ambient PM 2.5 exposure and vitamin B 12 during pregnancy on the risk of gestational diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162514. [PMID: 36868273 DOI: 10.1016/j.scitotenv.2023.162514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Evidence has indicated that the risk of gestational diabetes mellitus (GDM) was linked to PM2.5 exposure during pregnancy, but findings on susceptible exposure windows are inconsistent. Further, previous studies have not paid attention to B12 intake in the relationship between PM2.5 exposure and GDM. The study is aimed to identify the strength and exposure periods for associations of PM2.5 exposure with GDM, followed by exploring the potential interplay of gestational B12 levels and PM2.5 exposure on the risk of GDM. METHODS The participants were recruited in a birth cohort between 2017 and 2018, and 1396 eligible pregnant women who completed a 75-g oral glucose tolerance test (OGTT) were included. Prenatal PM2.5 concentrations were estimated using an established spatiotemporal model. Logistic and linear regression analyses were used to test associations of gestational PM2.5 exposure with GDM and OGTT-glucose levels, respectively. The joint associations of gestational PM2.5 exposure and B12 level on GDM were examined under crossed exposure combinations of PM2.5 (high versus low) and B12 (insufficient versus sufficient). RESULTS In the 1396 pregnant women, the median levels of PM2.5 exposure during the 12 weeks before pregnancy, the 1st trimester, and the 2nd trimesters were 59.33 μg/m3, 63.44 μg/m3, and 64.39 μg/m3, respectively. The risk of GDM was significantly associated with a 10 μg/m3 increase of PM2.5 during the 2nd trimester (RR = 1.44, 95 % CI: 1.01, 2.04). The percentage change in fasting glucose was also associated with PM2.5 exposure during the 2nd trimester. A higher risk of GDM was observed among women with high PM2.5 exposure and insufficient B12 levels than those with low PM2.5 and sufficient B12. CONCLUSION The study supported higher PM2.5 exposure during the 2nd trimester is significantly associated with GDM risk. It first highlighted insufficient B12 status might enhance adverse effects of air pollution on GDM.
Collapse
Affiliation(s)
- Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yao Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
35
|
Jiang N, Bao WW, Gui ZH, Chen YC, Zhao Y, Huang S, Zhang YS, Liang JH, Pu XY, Huang SY, Dong GH, Chen YJ. Findings of indoor air pollution and childhood obesity in a cross-sectional study of Chinese schoolchildren. ENVIRONMENTAL RESEARCH 2023; 225:115611. [PMID: 36878271 DOI: 10.1016/j.envres.2023.115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Air pollution exposures are increasingly suspected to influence the development of childhood adiposity, especially focusing on outdoor exposure, but few studies investigated indoor exposure and childhood obesity. OBJECTIVES We aimed to examine the association between exposure to multiple indoor air pollutants and childhood obesity in Chinese schoolchildren. METHODS In 2019, we recruited 6499 children aged 6-12 years from five Chinese elementary schools in Guangzhou, China. We measured age-sex-specific body mass index z score (z-BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) on standard procedures. Four different indoor air pollution (IAP) exposures, including cooking oil fumes (COFs), home decoration, secondhand smoke (SHS), and incense burning, were collected by questionnaire and then converted into an IAP exposure index with four categories. Association between indoor air pollutants and childhood overweight/obesity as well as four obese anthropometric indices were assessed by logistic regression models and multivariable linear regression models, respectively. RESULTS Children exposed to ≥3 types of indoor air pollutants had higher z-BMI (coefficient [β]:0.142, 95% confidence interval [CI]:0.011-0.274) and higher risk of overweight/obesity (odd ratio [OR]:1.27, 95%CI:1.01-1.60). And a dose-response relationship was discovered between the IAP exposure index and z-BMI as well as overweight/obesity (pfor trend<0.05). We also found that exposure to SHS and COFs was positively associated with z-BMI and overweight/obesity (p < 0.05). Moreover, there was a significant interaction between SHS exposure and COFs on the higher risk of overweight/obesity among schoolchildren. Boys appear more susceptible to multiple indoor air pollutants than girls. CONCLUSIONS Indoor air pollution exposures were positively associated with higher obese anthropometric indices and increased odds of overweight/obesity in Chinese schoolchildren. More well-designed cohort studies are needed to verify our results.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Wen Bao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhao-Huan Gui
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi-Can Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Zhao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shan Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Shan Zhang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Hong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xue-Ya Pu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Yi Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Jun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
36
|
Jiménez-Chávez A, Morales-Rubio R, Sánchez-Gasca E, Rivera-Rosas M, Uribe-Ramírez M, Amador-Muñoz O, Martínez-Domínguez YM, Rosas-Pérez I, Choy EH, Herman DA, Kleinman MT, De Vizcaya-Ruiz A. Subchronic co-exposure to particulate matter and fructose-rich-diet induces insulin resistance in male Sprague Dawley rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104115. [PMID: 37075874 DOI: 10.1016/j.etap.2023.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Insulin resistance (IR) and metabolic disorders are non-pulmonary adverse effects induced by fine particulate matter (PM2.5) exposure. The worldwide pandemic of high fructose sweeteners and fat rich modern diets, also contribute to IR development. We investigated some of the underlying effects of IR, altered biochemical insulin action and Insulin/AKT pathway biomarkers. Male Sprague Dawley rats were subchronically exposed to filtered air, PM2.5, a fructose rich diet (FRD), or PM2.5 + FRD. Exposure to PM2.5 or FRD alone did not induce metabolic changes. However, PM2.5 + FRD induced leptin release, systemic hyperinsulinemia, and Insulin/AKT dysregulation in insulin-sensitive tissues preceded by altered AT1R levels. Histological damage and increased HOMA-IR were also observed from PM2.5 + FRD co-exposure. Our results indicate that the concomitant exposure to a ubiquitous environmental pollutant, such as PM2.5, and a metabolic disease risk factor, a FRD, can contribute to the metabolic disorder pandemic occurring in highly polluted locations.
Collapse
Affiliation(s)
- Arturo Jiménez-Chávez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México
| | - Russell Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México
| | - Eliu Sánchez-Gasca
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México
| | - Mónica Rivera-Rosas
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Y Margarita Martínez-Domínguez
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Irma Rosas-Pérez
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Elizabeth H Choy
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA
| | - David A Herman
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México; Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
37
|
Chen S, Li M, Zhang R, Ye L, Jiang Y, Jiang X, Peng H, Wang Z, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM 2.5-induced lung injury: a comparative study. Part Fibre Toxicol 2023; 20:10. [PMID: 37069663 PMCID: PMC10108512 DOI: 10.1186/s12989-023-00526-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanyu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Della Guardia L, Wang L. Fine particulate matter induces adipose tissue expansion and weight gain: Pathophysiology. Obes Rev 2023; 24:e13552. [PMID: 36700515 DOI: 10.1111/obr.13552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/25/2022] [Accepted: 01/08/2023] [Indexed: 01/27/2023]
Abstract
Dysregulations in energy balance represent a major driver of obesity. Recent evidence suggests that environmental factors also play a pivotal role in inducing weight gain. Chronic exposure to fine particulate matter (PM2.5 ) is associated with white adipose tissue (WAT) expansion in animals and higher rates of obesity in humans. This review discusses metabolic adaptions in central and peripheral tissues that promote energy storage and WAT accumulation in PM2.5 -exposed animals and humans. Chronic PM2.5 exposure produces inflammation and leptin resistance in the hypothalamus, decreasing energy expenditure and increasing food intake. PM2.5 promotes the conversion of brown adipocytes toward the white phenotype, resulting in decreased energy expenditure. The development of inflammation in WAT can stimulate adipogenesis and hampers catecholamine-induced lipolysis. PM2.5 exposure affects the thyroid, reducing the release of thyroxine and tetraiodothyronine. In addition, PM2.5 exposure compromises skeletal muscle fitness by inhibiting Nitric oxide (NO)-dependent microvessel dilation and impairing mitochondrial oxidative capacity, with negative effects on energy expenditure. This evidence suggests that pathological alterations in the hypothalamus, brown adipose tissue, WAT, thyroid, and skeletal muscle can alter energy homeostasis, increasing lipid storage and weight gain in PM2.5 -exposed animals and humans. Further studies will enrich this pathophysiological model.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, China
| |
Collapse
|
39
|
Wang L, Zhou Z, Li D, Wu M, Yang Y, Hu Y, Wang Y, Sun Y, Tian Y. The modifiable effect of vitamin D in the association between long-term exposure to ambient air pollution and glycosylated hemoglobin in patients with hypertension. Nutrition 2023; 107:111920. [PMID: 36535189 DOI: 10.1016/j.nut.2022.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
OBJECTIVES Evidence on the association between long-term exposure to ambient air pollution and serum glycosylated hemoglobin A1c (HbA1c) is limited and inconclusive. In addition, whether vitamin D can modify the association between air pollution exposure and glucose metabolism has not been previously investigated. We aimed to evaluate the effects of various air pollutants on serum HbA1c levels in patients with hypertension and, further, to explore the modification effect of individual serum vitamin D levels. METHODS This study was derived from UK Biobank study, and 246 027 participants with hypertension were included in our analysis. Individual exposures to particulate matters (PMs) and nitrogen oxides were estimated using the land use regression model. The associations between air pollutants and HbA1c were assessed using the multivariable linear regression model. Among the 222 845 participants with a measurement of serum vitamin D, we explored the associations in subgroups stratified by vitamin D levels. RESULTS Long-term air pollutant exposures were significantly associated with higher HbA1c levels. After adjusting for potential confounders, 10-μg/m3 (or 1-m-1) increases in concentrations of PM with diameters ≤2.5 µm (PM2.5), PM with diameters ≤10 µm, PM with diameters from 2.5 µm to 10 µm, PM2.5 absorbance, nitrogen oxides, and nitrogen dioxide were significantly associated with 0.59 (95% confidence interval, 0.28-0.89), 0.49 (0.33-0.65), 0.81 (0.48-1.14), 0.56 (0.44-0.69), 0.06 (0.04-0.09), and 0.16 (0.12-0.21) mmol/mol increase in serum HbA1c levels, respectively. The associations were weakened but remained significant after additional adjustment of vitamin D. In addition, the associations of air pollutants with HbA1c were more evident in participants with low serum vitamin D levels (all P values for interaction <0.001). CONCLUSIONS Long-term exposures to ambient air pollutants were associated with higher levels of HbA1c in a dose-response fashion in a large UK cohort. Serum vitamin D status significantly modified these associations, and high serum vitamin D levels may attenuate the relationships between air pollution exposures and HbA1c levels.
Collapse
Affiliation(s)
- Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Zhou
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingping Yang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Jiang J, Gu Y, Ding S, Zhang G, Ding J. Resveratrol reversed ambient particulate matter exposure-perturbed oscillations of hepatic glucose metabolism by regulating SIRT1 in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31821-31834. [PMID: 36459324 DOI: 10.1007/s11356-022-24434-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Much evidence has shown that ambient particulate matter (PM) exposure is associated with abnormal glucose metabolism, but the underlying mechanism has not yet been fully characterized. Circadian disruption has adverse effects on glucose metabolism. In this study, we investigated the effects of long-term ambient PM exposure on the hepatic circadian clock and the expression rhythm of genes associated with hepatic glucose metabolism in mice. C57BL/6 mice were exposed to filtered air (FA), ambient PM, or ambient PM plus resveratrol (RES). After 15 weeks (12 h per day, 7 days per week) of exposure, glucose homeostasis, the rhythmic expression of clock genes, and genes associated with hepatic glucose metabolism were determined. Our results found that PM exposure induced glucose metabolism disorder and perturbed the rhythmic mRNA expression of core clock genes and their target genes involved in hepatic glucose metabolism. Mechanistic investigations demonstrated that ambient PM exposure markedly altered the expression patterns of BMAL1, clock, and SIRT1 in vivo. Simultaneously, we demonstrated that RES (an activator of SIRT1) changed the expression pattern of SIRT1, thereby reversing the rhythm misalignment of BMAL1 and clock and hepatic glucose metabolism disorder induced by ambient PM exposure. In addition, PM2.5 exposure perturbed the rhythmic protein expression of BMAL1, clock, and SIRT1 in L-02 cells. Simultaneously, we demonstrated that RES restored the SIRT1 circadian rhythm, which reversed the rhythm misalignment of BMAL1 and clock in L-02 cells induced by PM2.5 exposure. Taken together, our results suggested that long-term ambient PM exposure perturbed the hepatic core circadian clock rhythm and caused glucose metabolism disorder, which could be reversed by RES supplementation. Our study offers a potential application of RES for combating circadian misalignment-related metabolic diseases.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Yaqin Gu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China.
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jinfeng Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| |
Collapse
|
41
|
Kurlawala Z, Singh P, Hill BG, Haberzettl P. Fine Particulate Matter (PM2.5)-Induced Pulmonary Oxidative Stress Contributes to Changes in the Plasma Lipidome and Liver Transcriptome in Mice. Toxicol Sci 2023; 192:kfad020. [PMID: 36857595 PMCID: PMC10109534 DOI: 10.1093/toxsci/kfad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Fine particulate matter (PM2.5) air pollution exposure increases the cardiovascular disease risk. Although the specific mechanisms remain elusive, it is thought that PM2.5-induced oxidative stress and endothelial dysfunction contribute to this pathogenesis. Our previous findings indicate that PM2.5 impairs vascular health via a circulating factor and that plasma lipid changes contribute to the observed vascular effects. In the current study, we extend on these findings by further characterizing PM2.5-induced changes in circulating lipids and examining whether the observed changes were accompanied by related alterations in the liver transcriptome. To address the role of pulmonary oxidative stress, we exposed wild-type (WT) mice and mice that overexpress extracellular superoxide dismutase (ecSOD-Tg) in the lungs to concentrated ambient PM2.5 (CAP, 9 days). We found that CAP decreased circulating complex lipids and increased free fatty acids and acylcarnitines in WT, but not ecSOD-Tg mice. These plasma lipid changes were accompanied by transcriptional changes in genes that regulate lipid metabolism (e.g., upregulation of lipid biosynthesis, downregulation of mitochondrial/peroxisomal FA metabolism) in the liver. The CAP-induced changes in lipid homeostasis and liver transcriptome were accompanied by pulmonary but not hepatic oxidative stress and were largely absent in ecSOD-Tg mice. Our results suggest that PM2.5 impacts hepatic lipid metabolism; however, it remains unclear whether the transcriptional changes in the liver contribute to PM2.5-induced changes in plasma lipids. Regardless, PM2.5-induced changes in the plasma lipidome and hepatic transcriptome are, at least in part, mediated by pulmonary oxidative stress.
Collapse
Affiliation(s)
- Zimple Kurlawala
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Parul Singh
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Petra Haberzettl
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
42
|
Zhu Z, Yang Z, Zhang X, Yu L, Yang D, Guo F, Meng L, Xu L, Wu Y, Li T, Lin Y, Shen P, Lin H, Shui L, Tang M, Jin M, Wang J, Chen K. Association of walkability and NO 2 with metabolic syndrome: A cohort study in China. ENVIRONMENT INTERNATIONAL 2023; 171:107731. [PMID: 36610356 DOI: 10.1016/j.envint.2023.107731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Epidemiological studies have reported an association between traffic-related pollution with risk of metabolic syndrome (MetS). However, evidence from prospective studies on the association of walkability and nitrogen dioxide (NO2) with MetS is still scarce. We, therefore, aimed to evaluate the association of long-term exposure to NO2 and walkability with hazards of incident MetS. METHODS A total of 17,965 participants without MetS diagnosed within one year at baseline were included in our study from a population-based prospective cohort in Yinzhou District, Ningbo, Zhejiang Province, China. Participants were followed up by the regional Health Information System (HIS) until December 15, 2021. MetS was defined based on the criteria of Chinese Diabetes Society (CDS2004). We used walkscore tools, calculating with amenity categories and decay functions, and spatial-temporal land-use regression (LUR) models to estimate walkability and NO2 concentrations. We used Cox proportional hazards regression models to examine the association of walkability and NO2 with hazards of MetS incidence reporting with hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Overall, we followed up 77,303 person-years and identified 4040 incident cases of MetS in the entire cohort. Higher walkability was inversely associated with incident MetS (HR = 0.94, 95 % CI: 0.91-0.99), whereas NO2 was positively associated with MetS incidence (HR = 1.07, 95 %CI: 1.00-1.15) per interquartile range increment in two-exposure models. Furthermore, we found a significant multiplicative interaction between walkability and NO2. Stronger associations were observed for NO2 and incident MetS among men, smokers, drinkers and participants who aged < 60 years and had higher levels of income. CONCLUSION In summary, we found living in areas with lower walkability and higher concentrations of NO2 were associated with increased incidence of MetS. The beneficial effect of higher walkability may be attenuated by exposure to NO2.
Collapse
Affiliation(s)
- Zhanghang Zhu
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinhan Zhang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Luhua Yu
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dandan Yang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fanjia Guo
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Meng
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lisha Xu
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tiezheng Li
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yaoyao Lin
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peng Shen
- Yinzhou District Health Bureau of Ningbo, Ningbo 315040, China
| | - Hongbo Lin
- Yinzhou District Health Bureau of Ningbo, Ningbo 315040, China
| | - Liming Shui
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
43
|
Zheng Y, Bian J, Hart J, Laden F, Soo-Tung Wen T, Zhao J, Qin H, Hu H. PM 2.5 Constituents and Onset of Gestational Diabetes Mellitus: Identifying Susceptible Exposure Windows. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 291:119409. [PMID: 37151750 PMCID: PMC10162772 DOI: 10.1016/j.atmosenv.2022.119409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fine particulate matter (PM2.5) has been linked to gestational diabetes mellitus (GDM). However, PM2.5 is a complex mixture with large spatiotemporal heterogeneities, and women with early-onset GDM (i.e., diagnosed before 24th gestation week) have distinct maternal characteristics and a higher risk of worse health outcomes compared with those with late-onset GDM (i.e., diagnosed in or after 24th gestation week). We aimed to examine differential impacts of PM2.5 and its constituents on early- vs. late-onset GDM, and to identify corresponding susceptible exposure windows. We leveraged statewide linked electronic health records and birth records data in Florida in 2012-2017. Exposures to PM2.5 and its constituents (i.e., sulfate [SO4 2-], ammonium [NH4 +], nitrate [NO3 -], organic matter [OM], black carbon [BC], mineral dust [DUST], and sea-salt [SS]) were spatiotemporally linked to pregnant women based on their residential histories. Cox proportional hazards models and multinomial logistic regression were used to examine the associations of PM2.5 and its constituents with GDM and its onsets. Distributed non-linear lag models were implemented to identify susceptible exposure windows. Exposures to PM2.5, SO4 2-, NH4 +, and BC were statistically significantly associated with higher hazards of GDM. Exposures to PM2.5 during weeks 1-12 of gestation were positively associated with GDM. Associations of early-onset GDM with PM2.5 in the 1st and 2nd trimesters, SO4 2- in the 1st and 2nd trimesters, and NO3 - in the preconception and 1st trimester were considerably stronger than observations for late-onset GDM. Our findings suggest there are differential associations of PM2.5 and its constituents with early- vs. late-onset GDM, with different susceptible exposure windows. This study helps better understand the impacts of air pollution on GDM accounting for its physiological heterogeneity.
Collapse
Affiliation(s)
- Yi Zheng
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jaime Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tony Soo-Tung Wen
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Huaizhen Qin
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hui Hu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Liu F, Zhang K, Chen G, He J, Pan M, Zhou F, Wang X, Tong J, Guo Y, Li S, Xiang H. Sustained air pollution exposures, fasting plasma glucose, glycated haemoglobin, prevalence and incidence of diabetes: a nationwide study in China. Int J Epidemiol 2022; 51:1862-1873. [PMID: 35947763 DOI: 10.1093/ije/dyac162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Evidence remains limited and inconsistent for the associations between sustained air pollution exposures and diabetes development. This study aimed to determine the potential effects of particulate matter with a diameter of ≤10 micrometres (PM10), particulate matter with a diameter of ≤2.5 micrometres (PM2.5) and nitrogen dioxide (NO2) on alterations of fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), in particular, on prevalence and incidence of diabetes. METHODS Cross-sectional analyses were conducted based on 9628 participants aged ≥45 years from the baseline survey (2011) of the China Health and Retirement Longitudinal Study (CHARLS), whereas cohort analyses were based on 3510 individuals without diabetes at baseline in the third survey (2015). Residences of participants were geocoded and the air pollution exposures were estimated using a satellite-based spatiotemporal model. Linear, logistic and modified Poisson regression models, adjusting for multiple confounders, were applied to assess the associations between air pollution and FPG, HbA1c, prevalence and incidence of diabetes, respectively. RESULTS Associations between PM10, PM2.5 and increased levels of FPG and HbA1c were identified. The levels of FPG and HbA1c increased by 0.025 mmol/L (95% CI: 0.007, 0.044) and 0.011 mmol/L (95% CI: 0.002, 0.019), respectively, for a 10-μg/m3 increase in PM10, and the levels of FPG and HbA1c increased by 0.061 mmol/L (95% CI: 0.028, 0.096) and 0.016 mmol/L (95% CI: 0.000, 0.031), respectively, for a 10-μg/m3 increase in PM2.5. There were also positive associations between diabetes prevalence and PM2.5 and PM10. In the cohort analyses, PM10, PM2.5 and NO2 were associated with a higher incidence of diabetes. CONCLUSION Air pollution was allied to diabetes development in elderly Chinese populations. Considering the impact of the dramatic increase in the incidence and prevalence of diabetes in China, interventions to improve air quality are urgently needed.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Ke Zhang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie He
- Department of Environmental Health Sciences, School of Public Health, University of Michigan-Ann Arbor, Ann Arbor, USA
| | - Mengnan Pan
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Feng Zhou
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Xiangxiang Wang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Jiahui Tong
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Zong Z, Zhao M, Zhang M, Xu K, Zhang Y, Zhang X, Hu C. Association between PM 1 Exposure and Lung Function in Children and Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15888. [PMID: 36497960 PMCID: PMC9740616 DOI: 10.3390/ijerph192315888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The detrimental effects of PM2.5 and PM10 (particulate matter less than 2.5 or 10 μm) on human respiratory system, including lung function, have been widely assessed. However, the associations between PM1 (particulate matter of less than 1 μm) and lung function in children and adolescents are less explored, and current evidence is inconsistent. We conducted a meta-analysis of the literature on the association between PM1 and lung function in children and adolescents to fill this gap. With no date or language constraints, we used a combination of MeSH (Medical Subject Headings) terms and free text to search PubMed, EMBASE and Web of Science databases through, 1 October 2022 for "PM1 exposure" and "lung function". A total of 6420 relevant studies were identified through our initial search, and seven studies were included in our study. In this meta-analysis, the fixed effect and random effects statistical models were used to estimate the synthesized effects of the seven included studies. For every 10 μg/m3 increase in short-term PM1 exposure, forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), peak expiratory flow (PEF) and maximal mid-expiratory flow (MMEF) decreased by 31.82 mL (95% CI: 20.18, 43.45), 32.28 mL (95% CI: 16.73, 48.91), 36.85 mL/s (95% CI: 15.33, 58.38) and 34.51 mL/s (95% CI: 19.61, 49.41), respectively. For each 10 μg/m3 increase in long-term PM1 exposure, FVC, FEV1, PEF and MMEF decreased by 102.34 mL (95% CI: 49.30, 155.38), 75.17 mL (95% CI: 39.61, 110.73), 119.01 mL/s (95% CI: 72.14, 165.88) and 44.94 mL/s (95% CI: 4.70, 85.18), respectively. Our study provides further scientific evidence for the harmful effects of PM1 exposure on lung function in children and adolescents, indicating that exposure to PM1 is detrimental to pulmonary health. To reduce the adverse health effects of air pollution on children and adolescents, effective preventive measures should be taken.
Collapse
Affiliation(s)
- Zhiqiang Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Mengjie Zhao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Mengyue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Kexin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
46
|
Guo Q, Zhao Y, Xue T, Zhang J, Duan X. Association of PM 2.5 and Its Chemical Compositions with Metabolic Syndrome: A Nationwide Study in Middle-Aged and Older Chinese Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214671. [PMID: 36429390 PMCID: PMC9690751 DOI: 10.3390/ijerph192214671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 05/28/2023]
Abstract
Studies on the association of PM2.5 and its compositions with metabolic syndrome (MetS) were limited, and it was unclear which was the most hazardous composition. In this study, we aimed to investigate the association between PM2.5 and its compositions with MetS and identified the most hazardous composition. In this study, we included 13,418 adults over 45 years across 446 communities from 150 counties of 28 provinces in nationwide China in 2015. MetS was defined based on the five indicators of the Joint Interim Societies, including: blood pressure (SBP (systolic blood pressure) and DBP (diastolic blood pressure)); fasting blood glucose (FBG); fasting triglyceride (FTG); high density lipoprotein cholesterol (HDL-C); and waist circumference (WC). We used chemical transport models to estimate the concentration of PM2.5 and its compositions, including black carbon, ammonium, nitrate, organic matter, and sulfate. We used a generalized linear regression model to examine the association of PM2.5 and its compositions with MetS. In this study, we observed that the average age was 61.40 (standard deviation (SD): 9.59). Each IQR (29.76 μg/m3) increase in PM2.5 was associated with a 1.27 (95% CI: 1.17, 1.37) increase in the odds for MetS. We indicated that black carbon showed stronger associations than other compositions. The higher associations were observed among women, participants aged less than 60 years, who lived in urban areas and in the Northeast, smokers, drinkers, and the obese populations. In conclusion, our findings identified the most harmful composition and sensitive populations and regions that required attention, which would be helpful for policymakers.
Collapse
Affiliation(s)
- Qian Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100083, China
| | - Junfeng Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, USA
- Duke Kunshan University, Kunshan 215316, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
47
|
Liu R, Zhang J, Chu L, Zhang J, Guo Y, Qiao L, Niu Z, Wang M, Farhat Z, Grippo A, Zhang Y, Ma C, Zhang Y, Zhu K, Mu L, Lei L. Association of ambient fine particulate matter exposure with gestational diabetes mellitus and blood glucose levels during pregnancy. ENVIRONMENTAL RESEARCH 2022; 214:114008. [PMID: 35931192 DOI: 10.1016/j.envres.2022.114008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have examined the associations between ambient fine particulate matter (PM2.5) exposure and gestational diabetes mellitus (GDM). However, limited studies explored the relationships between PM2.5 exposure and blood glucose levels during pregnancy, especially in highly polluted areas. OBJECTIVES To examine the associations of prenatal ambient PM2.5 exposure with GDM and blood glucose levels, and to identify the sensitive exposure windows in a highly air-polluted area. METHODS From July 2016 to October 2017, a birth cohort study was conducted in Beijing, China. Participants were interviewed in each trimester regarding demographics, lifestyle, living and working environment, and medical conditions. Participant's daily ambient PM2.5 levels from 3 m before last menstrual period (LMP) to the third trimester was estimated by a hybrid spatiotemporal model. Indoor air quality index was calculated based on environmental tobacco smoke, ventilation, cooking, painting, pesticide, and herbicide use. Distributed lag non-linear model was applied to explore the sensitive weeks of PM2.5 exposure. RESULTS Of 165 pregnant women, 23 (13.94%) developed GDM. After adjusting for potential confounders, PM2.5 exposure during the 1st trimester was associated with higher odds of GDM (10 μg/m3 increase: OR = 1.89, 95% CI: 1.04-3.49). Each 10 μg/m3 increase in PM2.5 during the 2nd trimester was associated with 17.70% (2.21-33.20), 15.99% (2.96-29.01), 18.82% (4.11-33.52), and 17.10% (3.28-30.92) increase in 1-h, 2-h, Δ1h-fasting (1-h minus fasting), and Δ2h-fasting (2-h minus fasting) blood glucose levels, respectively. PM2.5 exposure at 24th-27th weeks after LMP was associated with increased GDM risk. We identified sensitive exposure windows of 21st-24th weeks for higher 1-h and 2-h blood glucose levels and of 20th-22nd weeks for increased Δ1h-fasting and Δ2h-fasting. CONCLUSIONS Ambient PM2.5 exposure during the second trimester was associated with higher odds of GDM and higher blood glucose levels. Avoiding exposure to high air pollution levels during the sensitive windows might prevent women from developing GDM.
Collapse
Affiliation(s)
- Rujie Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Zhang
- Research Center for Public Health, Tsinghua University, Beijing, China
| | - Li Chu
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanjun Guo
- Department of Obstetrics and Gynecology, Aerospace Center Hospital, Beijing, China
| | - Lihua Qiao
- Research Center for Public Health, Tsinghua University, Beijing, China
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Alexandra Grippo
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yifan Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Changxing Ma
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yingying Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA.
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
48
|
Wu Y, Zhang S, Qian SE, Cai M, Li H, Wang C, Zou H, Chen L, Vaughn MG, McMillin SE, Lin H. Ambient air pollution associated with incidence and dynamic progression of type 2 diabetes: a trajectory analysis of a population-based cohort. BMC Med 2022; 20:375. [PMID: 36310158 PMCID: PMC9620670 DOI: 10.1186/s12916-022-02573-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Though the association between air pollution and incident type 2 diabetes (T2D) has been well documented, evidence on the association with development of subsequent diabetes complications and post-diabetes mortality is scarce. We investigate whether air pollution is associated with different progressions and outcomes of T2D. METHODS Based on the UK Biobank, 398,993 participants free of diabetes and diabetes-related events at recruitment were included in this analysis. Exposures to particulate matter with a diameter ≤ 10 μm (PM10), PM2.5, nitrogen oxides (NOx), and NO2 for each transition stage were estimated at each participant's residential addresses using data from the UK's Department for Environment, Food and Rural Affairs. The outcomes were incident T2D, diabetes complications (diabetic kidney disease, diabetic eye disease, diabetic neuropathy disease, peripheral vascular disease, cardiovascular events, and metabolic events), all-cause mortality, and cause-specific mortality. Multi-state model was used to analyze the impact of air pollution on different progressions of T2D. Cumulative transition probabilities of different stages of T2D under different air pollution levels were estimated. RESULTS During the 12-year follow-up, 13,393 incident T2D patients were identified, of whom, 3791 developed diabetes complications and 1335 died. We observed that air pollution was associated with different progression stages of T2D with different magnitudes. In a multivariate model, the hazard ratios [95% confidence interval (CI)] per interquartile range elevation in PM2.5 were 1.63 (1.59, 1.67) and 1.08 (1.03, 1.13) for transitions from healthy to T2D and from T2D to complications, and 1.50 (1.47, 1.53), 1.49 (1.36, 1.64), and 1.54 (1.35, 1.76) for mortality risk from baseline, T2D, and diabetes complications, respectively. Generally, we observed stronger estimates of four air pollutants on transition from baseline to incident T2D than those on other transitions. Moreover, we found significant associations between four air pollutants and mortality risk due to cancer and cardiovascular diseases from T2D or diabetes complications. The cumulative transition probability was generally higher among those with higher levels of air pollution exposure. CONCLUSIONS This study indicates that ambient air pollution exposure may contribute to increased risk of incidence and progressions of T2D, but to diverse extents for different progressions.
Collapse
Affiliation(s)
- Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Samantha E Qian
- College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongtao Zou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
49
|
The macrophage senescence hypothesis: the role of poor heat shock response in pulmonary inflammation and endothelial dysfunction following chronic exposure to air pollution. Inflamm Res 2022; 71:1433-1448. [PMID: 36264363 DOI: 10.1007/s00011-022-01647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
Collapse
|
50
|
Zhou P, Mo S, Peng M, Yang Z, Wang F, Hu K, Zhang Y. Long-term exposure to PM 2.5 constituents in relation to glucose levels and diabetes in middle-aged and older Chinese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114096. [PMID: 36162351 DOI: 10.1016/j.ecoenv.2022.114096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have indicated the associations between fine particulate matter (PM2.5) exposure and diabetes or glucose levels. However, evidence linking PM2.5 constituents and diabetes or glucose levels was extensively scarce, particularly in developing countries. This study aimed to investigate the associations of exposure to PM2.5 and its five constituents (black carbon [BC], organic matter [OM], nitrate [NO3-], sulfate [SO42-], and ammonium [NH4+]) with diabetes and glucose levels among the middle-aged and elderly Chinese populations. METHODS A national cross-sectional sample of participants aged 45+ years was enrolled from 28 provinces across China's mainland. Health examination and questionnaire survey for each respondent were performed during 2011-2012. Diabetes was determined by alternative definitions, and the main definition (MD) was self-report diabetes or antidiabetic medicine use or HbA1c ≥6.5 or fasting glucose ≥7 mmol/L or random glucose ≥11.1 mmol/L. Monthly exposure to PM2.5 mass and its five constituents (BC, OM, NO3-, SO42-, and NH4+) for each participant at residence were estimated using satellite-based spatiotemporal prediction models. Generalized linear models and linear mixed-effects models were used to assess the effects of exposure to PM2.5 and its constituents on diabetes or glucose levels, respectively. Stratification analyses were done by sex and age. RESULTS We included a total of 17,326 adults over 45 years in this study. The 3-year mean (interquartile range [IQR]) concentrations of PM2.5, BC, OM, NO3-, SO42-, and NH4+ were 47.9 (27.4) µg/m3, 2.9 (2.2) µg/m3, 9.2 (6.6) µg/m3, 10.2 (9.4) µg/m3, 11.0 (5.2) µg/m3, and 7.1 (4.4) µg/m3, respectively. Per IQR rise in exposure to PM2.5 was significantly associated with an increase of 0.133 mmol/L (95% confidence interval, 0.048-0.219) in glucose concentrations. Similar positive associations were observed for BC (0.097 mmol/L [0.012-0.181]), OM (0.160 mmol/L [0.065-0.256]), NO3- (0.145 mmol/L [0.039-0.251]), SO42- (0.111 mmol/L [0.026-0.196]), and NH4+ (0.135 mmol/L [0.041-0.230]). Under different diabetes definitions, PM2.5 mass and selected constituents with the exception of SO42- were all associated with a higher risk of prevalent diabetes. In MD-based analysis, similar positive associations were observed for four constituents, with corresponding odds ratios of 1.180 (1.097-1.270) for PM2.5, 1.154 (1.079-1.235) for BC, 1.170 (1.079-1.270) for OM, 1.200 (1.098-1.312) for NO3-, and 1.123 (1.037-1.215) for NH4+. Stratified analyses showed a significantly higher risk of diabetes in males (1.225 [1.064-1.411]) than females (1.024 [0.923-1.136]) when exposed to PM2.5. Participants under 65 years were generally more vulnerable to diabetes hazards related to PM2.5 constituents exposure. CONCLUSIONS Exposures to PM2.5 and its constituents (i.e., BC, OM, NO3-, and NH4+) were positively associated with increased risks of prevalent diabetes and elevated glucose levels in middle-aged and older adults.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Infection Control, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|