1
|
Low JJL, Tan BJW, Yi LX, Zhou ZD, Tan EK. Genetic susceptibility to caffeine intake and metabolism: a systematic review. J Transl Med 2024; 22:961. [PMID: 39438936 PMCID: PMC11515775 DOI: 10.1186/s12967-024-05737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Coffee and tea consumption account for most caffeine intake and 2-3 billion cups are taken daily around the world. Caffeine dependence is a widespread but under recognized problem. OBJECTIVES To conduct a systematic review on the genetic susceptibility factors affecting caffeine metabolism and caffeine reward and their association with caffeine intake. METHODOLOGY We conducted PubMed and Embase searches using the terms "caffeine", "reward", "gene", "polymorphism", "addiction", "dependence" and "habit" from inception till 2024. The demographics, genetic and clinical data from included studies were extracted and analyzed. Only case-control studies on habitual caffeine drinkers with at least 100 in each arm were included. RESULTS A total of 2552 studies were screened and 26 studies involving 1,851,428 individuals were included. Several genes that were involved with caffeine metabolism such as CYP1A2, ADORA2A, AHR, POR, ABCG2, CYP2A6, PDSS2 and HECTD4 rs2074356 (A allele specific to East Asians and monomorphic in Europeans, Africans and Americans) were associated with habitual caffeine consumption with effect size difference of 3% to 32% in number of cups of caffeinated drink per day per effect allele. In addition, ALDH2 was linked to the Japanese population. Genes associated with caffeine reward included BDNF, SLC6A4, GCKR, MLXIPL and dopaminergic genes such as DRD2 and DAT1 which had around 2-5% effect size difference in number of cups of caffeinated drink for each allele per day. CONCLUSION Several genes that were involved in caffeine metabolism and reward were associated with up to 30% effect size difference in number of cups of caffeinated drink per day, and some associations were specific to certain ethnicities. Identification of at-risk caffeine dependence individuals can lead to early diagnosis and stratification of at-risk vulnerable individuals such as pregnant women and children, and can potentially lead to development of drug targets for dependence to caffeine.
Collapse
Affiliation(s)
- Jazreel Ju-Li Low
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
| | - Ling-Xiao Yi
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Zhi-Dong Zhou
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
2
|
Bae JH, Kang H. Identification of Sweetness Preference-Related Single-Nucleotide Polymorphisms for Polygenic Risk Scores Associated with Obesity. Nutrients 2024; 16:2972. [PMID: 39275286 PMCID: PMC11397467 DOI: 10.3390/nu16172972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Our study aimed to identify sweetness preference-associated single-nucleotide polymorphisms (SNPs), characterize the related genetic loci, and develop SNP-based polygenic risk scores (PRS) to analyze their associations with obesity. For genotyping, we utilized a pooled genome-wide association study (GWAS) dataset of 18,499 females and 10,878 males. We conducted genome-wide association analyses, functional annotation, and employed the weighted method to calculate the levels of PRS from 677 sweetness preference-related SNPs. We used Cox proportional hazards modeling with time-varying covariates to estimate age-adjusted and multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for obesity incidence. We also tested the correlation between PRS and environmental factors, including smoking and dietary components, on obesity. Our results showed that in males, the TT genotype of rs4861982 significantly increased obesity risk compared to the GG genotype in the Health Professionals Follow-up Study (HPFS) cohort (HR = 1.565; 95% CI, 1.122-2.184; p = 0.008) and in the pooled analysis (HR = 1.259; 95% CI, 1.030-1.540; p = 0.025). Protein tyrosine phosphatase receptor type O (PTPRO) was identified as strongly associated with sweetness preference, indicating a positive correlation between sweetness preference and obesity risk. Moreover, each 10 pack-year increment in smoking was significantly associated with an increased risk of obesity in the HPFS cohort (HR = 1.024; 95% CI, 1.000-1.048) in males but not in females. In conclusion, significant associations between rs4861982, sweetness preference, and obesity were identified, particularly among males, where environmental factors like smoking are also correlated with obesity risk.
Collapse
Affiliation(s)
- Ji Hyun Bae
- Department of Food Science and Nutrition, Keimyung University, Daegu 42601, Republic of Korea
| | - Hyunju Kang
- Department of Food Science and Nutrition, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Laaboub N, Ranjbar S, Strippoli MPF, Marques-Vidal P, Estoppey-Younes S, Ponte B, Pruijm M, Vogt B, Ansermot N, Crettol S, Vandenberghe F, Vollenweider P, Preisig M, Bochud M, Eap CB. Self-reported caffeine consumption miss-matched consumption measured by plasma levels of caffeine and its metabolites: results from two population-based studies. Eur J Nutr 2024; 63:1555-1564. [PMID: 38703227 PMCID: PMC11329688 DOI: 10.1007/s00394-024-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/09/2024] [Indexed: 05/06/2024]
Abstract
IMPORTANCE AND OBJECTIVE Self-reported caffeine consumption has been widely used in research while it may be subject to bias. We sought to investigate the associations between self-reported caffeine consumption and plasma levels of caffeine and its two main metabolites (paraxanthine and theophylline) in the community. METHODS Data from two population-based studies (SKIPOGH1 and 2 (N = 1246) and CoLaus|PsyCoLaus (N = 4461)) conducted in Switzerland were used. Self-reported caffeine consumption was assessed using questionnaires. Plasma levels of caffeine and its metabolites were quantified by ultra-high performance liquid chromatography coupled to a tandem quadrupole mass spectrometer. RESULTS In both studies, mean log plasma levels of caffeine and its two metabolites were over 6.48 (plasma levels = 652 ng/ml) when no caffeine consumption was reported. Subsequently, nonlinear associations between log plasma levels and self-reported caffeine consumption were observed in SKIPOGH, with a change of the slope at 3-5 cups of espresso per day in SKIPOGH1 but not SKIPOGH2. In CoLaus|PsyCoLaus, increased daily consumption of caffeinated beverages was associated with increased log plasma levels with a change of the slope at 3 cups. In both studies, declared caffeine consumption higher than 3-5 cups per day was not associated with higher plasma levels of caffeine and its metabolites. CONCLUSION Self-reports of no or low caffeine consumption and consumption of more than 3-5 cups of coffee should be interpreted with caution, with possible under- or over-estimation. Quantifying plasma levels of caffeine and its metabolites may contribute to a better estimation of caffeine intake.
Collapse
Affiliation(s)
- Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marie-Pierre F Strippoli
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sandrine Estoppey-Younes
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Belen Ponte
- Division of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Menno Pruijm
- Service of Nephrology and Hypertension, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Séverine Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Murielle Bochud
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Hôpital de Cery, Prilly, Lausanne, 1008, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
4
|
Spineli H, dos Santos M, Almeida D, Gitaí D, Silva-Cavalcante M, Balikian P, Ataide-Silva T, Marinho A, Sousa F, de Araujo G. ACE gene polymorphisms (rs4340) II and DI are more responsive to the ergogenic effect of caffeine than DD on aerobic power, heart rate, and perceived exertion in a homogeneous Brazilian group of adolescent athletes. Braz J Med Biol Res 2024; 57:e13217. [PMID: 38896643 PMCID: PMC11186592 DOI: 10.1590/1414-431x2024e13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
The purpose of this study was to verify the association between angiotensin-converting enzyme (ACE) genotypes DD, DI, and II and caffeine (CAF) ingestion on endurance performance, heart rate, ratio of perceived exertion (RPE), and habitual caffeine intake (HCI) of adolescent athletes. Seventy-four male adolescent athletes (age: DD=16±1.7; DI=16±2.0; II=15±1.7 years) ingested CAF (6 mg/kg) or placebo (PLA) one hour before performing the Yo-Yo Intermittent Recovery level 1 (Yo-Yo IR1) test. No difference was found among groups for HCI. However, CAF increased the maximal distance covered and VO2max in DI and II genotype carriers compared to PLA (DD: Δ=31 m and 0.3 mL·kg-1·min-1; DI: Δ=286 m and 1.1 mL·kg-1·min-1; II: Δ=160 m and 1.4 mL·kg-1·min-1). Heart rate of DI and II genotype carriers increased with CAF compared to PLA, while RPE was higher in the II and lower in the DD genotypes. The correlations between HCI and maximal distance covered or VO2max were significant in the II genotype carriers with CAF. CAF increased endurance capacity, heart rate, and RPE in adolescent athletes with allele I, while endurance performance and aerobic power had a positive correlation to HCI in the II genotype group. These findings suggested that DD genotype were less responsive to CAF and that genetic variations should be taken into account when using CAF supplementation to enhance exercise performance.
Collapse
Affiliation(s)
- H. Spineli
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - M. dos Santos
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - D. Almeida
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - D. Gitaí
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - M. Silva-Cavalcante
- Instituto Federal de Educação Ciência e Tecnologia de Alagoas, Maceió, AL, Brasil
| | - P. Balikian
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - T. Ataide-Silva
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - A. Marinho
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - F. Sousa
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - G. de Araujo
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL, Brasil
| |
Collapse
|
5
|
Kim MJ, Jin HS, Eom YB. Coffee consumption affects kidney function based on GCKR polymorphism in a Korean population. Nutr Res 2024; 122:92-100. [PMID: 38215572 DOI: 10.1016/j.nutres.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Kidney function can be preserved through pharmacological interventions and nonpharmacological strategies, such as lifestyle and dietary adjustments. Among these, coffee has been linked to protective effects on kidney function. However, few studies have investigated the effect of coffee consumption on kidney function according to specific genes. We hypothesized that the impact of coffee consumption on kidney function might vary depending on GCKR polymorphism. GCKR rs1260326 polymorphism was examined using the Korean genome and epidemiology data from 656 chronic kidney disease (CKD) cases and 38,540 individuals without CKD (non-CKD). GCKR polymorphism has been previously associated with both coffee consumption and kidney function in Europeans. We replicated the associations between GCKR rs1260326 and coffee consumption and kidney function in Korean individuals. We also explored the effect of coffee consumption on kidney function by multivariate logistic regression analysis. Individuals with the rs1260326 (TC/CC) genotype did not experience significant changes in CKD risk based on their coffee consumption habits. In contrast, individuals with the TT genotype exhibited a significantly lower risk of CKD based on coffee consumption. Interestingly, in the non-CKD group, a beneficial effect on estimated glomerular filtration rate was observed in individuals with the T allele as coffee consumption increased. Our findings supported the hypothesis and revealed that the impact of coffee consumption habits on kidney function may vary based on the GCKR rs1260326 genotype of Korean individuals.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
6
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
7
|
Kapellou A, King A, Graham CAM, Pilic L, Mavrommatis Y. Genetics of caffeine and brain-related outcomes - a systematic review of observational studies and randomized trials. Nutr Rev 2023; 81:1571-1598. [PMID: 37029915 DOI: 10.1093/nutrit/nuad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
CONTEXT Although the stimulant and anxiogenic properties of caffeine are widely accepted, research on its specific effects on the brain remains controversial. Growing evidence shows that interindividual differences in caffeine response may be partly due to variations in genes such as CYP1A2 and ADORA2A, which have been used to identify individuals as "fast" or "slow" caffeine metabolizers and as having a "high" or "low" caffeine sensitivity, respectively. OBJECTIVE The objective of this review was to identify, evaluate, and discuss current evidence on the associations between common genetic variants, caffeine consumption, and brain-related outcomes in humans. DATA SOURCES PubMed and Embase databases were searched for relevant reports based on a predetermined search strategy. DATA EXTRACTION Reports of observational and experimental studies on healthy adults who underwent (a) genetic analysis for polymorphisms in genes associated with caffeine metabolism and effects and (b) measurements of brain-related effects such as anxiety, insomnia, and cognitive performance associated with the consumption of caffeine (habitual intake or supplementation) were included. DATA ANALYSIS Of the 22 records included, 15 were randomized controlled trials, 6 were cross-sectional studies, and 1 was a genome-wide association study. The main outcomes identified were cognitive performance (n = 9), anxiety (n = 7), and sleep disturbance/insomnia (n = 6). Polymorphisms in the CYP1A2 gene were associated with cognitive function, while variations in the ADORA2A gene were associated with anxiety and sleep disturbance. CONCLUSION The present review has provided evidence that variability in the CYP1A2 and the ADORA2A genes may modulate the association between caffeine and brain-related outcomes. Future studies are warranted to investigate the specific polymorphisms implicated in each brain outcome, which cognitive functions are particularly related to caffeine (simple vs complex), whether there are gender differences in anxiety effects, and how habitual caffeine intake may influence the acute effects of caffeine. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021257556.
Collapse
Affiliation(s)
- Angeliki Kapellou
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Alexandra King
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Catherine A M Graham
- Center for Interdisciplinary Research (CEFIR), Cereneo Foundation, Vitznau, Switzerland
| | - Leta Pilic
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Yiannis Mavrommatis
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| |
Collapse
|
8
|
Giontella A, de La Harpe R, Cronje HT, Zagkos L, Woolf B, Larsson SC, Gill D. Caffeine Intake, Plasma Caffeine Level, and Kidney Function: A Mendelian Randomization Study. Nutrients 2023; 15:4422. [PMID: 37892497 PMCID: PMC10609900 DOI: 10.3390/nu15204422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Caffeine is a psychoactive substance widely consumed worldwide, mainly via sources such as coffee and tea. The effects of caffeine on kidney function remain unclear. We leveraged the genetic variants in the CYP1A2 and AHR genes via the two-sample Mendelian randomization (MR) framework to estimate the association of genetically predicted plasma caffeine and caffeine intake on kidney traits. Genetic association summary statistics on plasma caffeine levels and caffeine intake were taken from genome-wide association study (GWAS) meta-analyses of 9876 and of >47,000 European ancestry individuals, respectively. Genetically predicted plasma caffeine levels were associated with a decrease in estimated glomerular filtration rate (eGFR) measured using either creatinine or cystatin C. In contrast, genetically predicted caffeine intake was associated with an increase in eGFR and a low risk of chronic kidney disease. The discrepancy is likely attributable to faster metabolizers of caffeine consuming more caffeine-containing beverages to achieve the same pharmacological effect. Further research is needed to distinguish whether the observed effects on kidney function are driven by the harmful effects of higher plasma caffeine levels or the protective effects of greater intake of caffeine-containing beverages, particularly given the widespread use of drinks containing caffeine and the increasing burden of kidney disease.
Collapse
Affiliation(s)
- Alice Giontella
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35 Malmö, 214 28 Malmo, Sweden;
| | - Roxane de La Harpe
- Unit of Internal Medicine, Department of Medicine, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland;
| | - Héléne T. Cronje
- Department of Public Health, Section of Epidemiology, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK;
| | - Benjamin Woolf
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK;
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Department of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Susanna C. Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden;
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK;
| |
Collapse
|
9
|
Khil J, Kim S, Lee M, Gil H, Kang SS, Lee DH, Kwon Y, Keum N. AHR rs4410790 genotype and IgG levels: Effect modification by lifestyle factors. PLoS One 2023; 18:e0290700. [PMID: 37782632 PMCID: PMC10545101 DOI: 10.1371/journal.pone.0290700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Inflammation is a multifaceted marker resulting from complex interactions between genetic and lifestyle factors. Emerging evidence suggests Aryl hydrocarbon receptor (AHR) protein may be implicated in the regulation of immune system and inflammatory responses. To investigate whether rs4410790 genotype (TT, TC, CC) near AHR gene is related to serum IgG levels, a marker of chronic inflammation, and whether lifestyle factors modifies the relationship, we conducted a cross-sectional study by recruiting 168 Korean adults. Participants responded to a lifestyle questionnaire and provided oral epithelial cells and blood samples for biomarker assessment. Among these participants, C allele was the minor allele, with the minor allele frequency of 40%. The rs4410790 TT genotype was significantly associated with elevated IgG levels compared with TC/CC genotypes, after adjusting for potential confounders (p = 0.04). The relationship varied significantly by levels of alcohol consumption (P interaction = 0.046) and overweight/obese status (P interaction = 0.02), but not by smoking status (P interaction = 0.64) and coffee consumption (P interaction = 0.55). Specifically, higher IgG levels associated with the TT genotype were evident in frequent drinkers and individuals with BMI≥23kg/m2, but not in their counterparts. Thus, rs4410790 genotype may be associated with IgG levels and the genetic predisposition to higher IgG levels may be mitigated by healthy lifestyle factors like infrequent drinking and healthy weight.
Collapse
Affiliation(s)
- Jaewon Khil
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - Minhyeong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - Hyeonmin Gil
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Dong Hoon Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Sport Industry Studies, Yonsei University, Seoul, Republic of Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - NaNa Keum
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Marcus GM, Rosenthal DG, Nah G, Vittinghoff E, Fang C, Ogomori K, Joyce S, Yilmaz D, Yang V, Kessedjian T, Wilson E, Yang M, Chang K, Wall G, Olgin JE. Acute Effects of Coffee Consumption on Health among Ambulatory Adults. N Engl J Med 2023; 388:1092-1100. [PMID: 36947466 PMCID: PMC10167887 DOI: 10.1056/nejmoa2204737] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Coffee is one of the most commonly consumed beverages in the world, but the acute health effects of coffee consumption remain uncertain. METHODS We conducted a prospective, randomized, case-crossover trial to examine the effects of caffeinated coffee on cardiac ectopy and arrhythmias, daily step counts, sleep minutes, and serum glucose levels. A total of 100 adults were fitted with a continuously recording electrocardiogram device, a wrist-worn accelerometer, and a continuous glucose monitor. Participants downloaded a smartphone application to collect geolocation data. We used daily text messages, sent over a period of 14 days, to randomly instruct participants to consume caffeinated coffee or avoid caffeine. The primary outcome was the mean number of daily premature atrial contractions. Adherence to the randomization assignment was assessed with the use of real-time indicators recorded by the participants, daily surveys, reimbursements for date-stamped receipts for coffee purchases, and virtual monitoring (geofencing) of coffee-shop visits. RESULTS The mean (±SD) age of the participants was 39±13 years; 51% were women, and 51% were non-Hispanic White. Adherence to the random assignments was assessed to be high. The consumption of caffeinated coffee was associated with 58 daily premature atrial contractions as compared with 53 daily events on days when caffeine was avoided (rate ratio, 1.09; 95% confidence interval [CI], 0.98 to 1.20; P = 0.10). The consumption of caffeinated coffee as compared with no caffeine consumption was associated with 154 and 102 daily premature ventricular contractions, respectively (rate ratio, 1.51; 95% CI, 1.18 to 1.94); 10,646 and 9665 daily steps (mean difference, 1058; 95% CI, 441 to 1675); 397 and 432 minutes of nightly sleep (mean difference, 36; 95% CI, 25 to 47); and serum glucose levels of 95 mg per deciliter and 96 mg per deciliter (mean difference, -0.41; 95% CI, -5.42 to 4.60). CONCLUSIONS In this randomized trial, the consumption of caffeinated coffee did not result in significantly more daily premature atrial contractions than the avoidance of caffeine. (Funded by the University of California, San Francisco, and the National Institutes of Health; CRAVE ClinicalTrials.gov number, NCT03671759.).
Collapse
Affiliation(s)
- Gregory M Marcus
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - David G Rosenthal
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Gregory Nah
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Eric Vittinghoff
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Christina Fang
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Kelsey Ogomori
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Sean Joyce
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Defne Yilmaz
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Vivian Yang
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Tara Kessedjian
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Emily Wilson
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Michelle Yang
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Kathleen Chang
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Grace Wall
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| | - Jeffrey E Olgin
- From the Division of Cardiology (G.M.M., G.N., E.W., M.Y., K.C., G.W., J.E.O.), the Department of Epidemiology and Biostatistics (E.V.), and the School of Medicine (K.O., S.J., V.Y.), University of California, San Francisco, San Francisco, the University of California, Irvine, School of Medicine, Irvine (C.F.); and the University of California, Berkeley, Berkeley (D.Y., T.J.)
| |
Collapse
|
11
|
Anti-Inflammatory Effect of Caffeine on Muscle under Lipopolysaccharide-Induced Inflammation. Antioxidants (Basel) 2023; 12:antiox12030554. [PMID: 36978802 PMCID: PMC10045054 DOI: 10.3390/antiox12030554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Evidence has shown that caffeine administration reduces pro-inflammatory biomarkers, delaying fatigue and improving endurance performance. This study examined the effects of caffeine administration on the expression of inflammatory-, adenosine receptor- (the targets of caffeine), epigenetic-, and oxidative metabolism-linked genes in the vastus lateralis muscle of mice submitted to lipopolysaccharide (LPS)-induced inflammation. We showed that caffeine pre-treatment before LPS administration reduced the expression of Il1b, Il6, and Tnfa, and increased Il10 and Il13. The negative modulation of the inflammatory response induced by caffeine involved the reduction of inflammasome components, Asc and Casp1, promoting an anti-inflammatory scenario. Caffeine treatment per se promoted the upregulation of adenosinergic receptors, Adora1 and Adora2A, an effect that was counterbalanced by LPS. Moreover, there was observed a marked Adora2A promoter hypermethylation, which could represent a compensatory response towards the increased Adora2A expression. Though caffeine administration did not alter DNA methylation patterns, the expression of DNA demethylating enzymes, Tet1 and Tet2, was increased in mice receiving Caffeine+LPS, when compared with the basal condition. Finally, caffeine administration attenuated the LPS-induced catabolic state, by rescuing basal levels of Ampk expression. Altogether, the anti-inflammatory effects of caffeine in the muscle can be mediated by modifications on the epigenetic landscape.
Collapse
|
12
|
Hirbo JB, Pasutto F, Gamazon ER, Evans P, Pawar P, Berner D, Sealock J, Tao R, Straub PS, Konkashbaev AI, Breyer MA, Schlötzer-Schrehardt U, Reis A, Brantley MA, Khor CC, Joos KM, Cox NJ. Analysis of genetically determined gene expression suggests role of inflammatory processes in exfoliation syndrome. BMC Genomics 2023; 24:75. [PMID: 36797672 PMCID: PMC9936777 DOI: 10.1186/s12864-023-09179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Exfoliation syndrome (XFS) is an age-related systemic disorder characterized by excessive production and progressive accumulation of abnormal extracellular material, with pathognomonic ocular manifestations. It is the most common cause of secondary glaucoma, resulting in widespread global blindness. The largest global meta-analysis of XFS in 123,457 multi-ethnic individuals from 24 countries identified seven loci with the strongest association signal in chr15q22-25 region near LOXL1. Expression analysis have so far correlated coding and a few non-coding variants in the region with LOXL1 expression levels, but functional effects of these variants is unclear. We hypothesize that analysis of the contribution of the genetically determined component of gene expression to XFS risk can provide a powerful method to elucidate potential roles of additional genes and clarify biology that underlie XFS. RESULTS Transcriptomic Wide Association Studies (TWAS) using PrediXcan models trained in 48 GTEx tissues leveraging on results from the multi-ethnic and European ancestry GWAS were performed. To eliminate the possibility of false-positive results due to Linkage Disequilibrium (LD) contamination, we i) performed PrediXcan analysis in reduced models removing variants in LD with LOXL1 missense variants associated with XFS, and variants in LOXL1 models in both multiethnic and European ancestry individuals, ii) conducted conditional analysis of the significant signals in European ancestry individuals, and iii) filtered signals based on correlated gene expression, LD and shared eQTLs, iv) conducted expression validation analysis in human iris tissues. We observed twenty-eight genes in chr15q22-25 region that showed statistically significant associations, which were whittled down to ten genes after statistical validations. In experimental analysis, mRNA transcript levels for ARID3B, CD276, LOXL1, NEO1, SCAMP2, and UBL7 were significantly decreased in iris tissues from XFS patients compared to control samples. TWAS genes for XFS were significantly enriched for genes associated with inflammatory conditions. We also observed a higher incidence of XFS comorbidity with inflammatory and connective tissue diseases. CONCLUSION Our results implicate a role for connective tissues and inflammation pathways in the etiology of XFS. Targeting the inflammatory pathway may be a potential therapeutic option to reduce progression in XFS.
Collapse
Affiliation(s)
- Jibril B Hirbo
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA.
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Eric R Gamazon
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Patrick Evans
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel Berner
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Julia Sealock
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ran Tao
- Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Peter S Straub
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Anuar I Konkashbaev
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Max A Breyer
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Milam A Brantley
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Chiea C Khor
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
| | - Karen M Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| |
Collapse
|
13
|
Tallis J, Guimaraes-Ferreira L, Clarke ND. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022; 14:4696. [PMID: 36364958 PMCID: PMC9658326 DOI: 10.3390/nu14214696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The performance-enhancing potential of acute caffeine consumption is firmly established with benefits for many aspects of physical performance and cognitive function summarised in a number of meta-analyses. Despite this, there remains near exponential growth in research articles examining the ergogenic effects of caffeine. Many such studies are confirmatory of well-established ideas, and with a wealth of convincing evidence available, the value of further investigation may be questioned. However, several important knowledge gaps remain. As such, the purpose of this review is to summarise key knowledge gaps regarding the current understanding of the performance-enhancing effect of caffeine and justify their value for future investigation. The review will provide a particular focus on ten research priorities that will aid in the translation of caffeine's ergogenic potential to real-world sporting scenarios. The discussion presented here is therefore essential in guiding the design of future work that will aid in progressing the current understanding of the effects of caffeine as a performance enhancer.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | | | | |
Collapse
|
14
|
Whole Exome Sequencing Study Identifies Novel Rare Risk Variants for Habitual Coffee Consumption Involved in Olfactory Receptor and Hyperphagia. Nutrients 2022; 14:nu14204330. [PMID: 36297015 PMCID: PMC9607528 DOI: 10.3390/nu14204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Habitual coffee consumption is an addictive behavior with unknown genetic variations and has raised public health issues about its potential health-related outcomes. We performed exome-wide association studies to identify rare risk variants contributing to habitual coffee consumption utilizing the newly released UK Biobank exome dataset (n = 200,643). A total of 34,761 qualifying variants were imported into SKAT to conduct gene-based burden and robust tests with minor allele frequency <0.01, adjusting the polygenic risk scores (PRS) of coffee intake to exclude the effect of common coffee-related polygenic risk. The gene-based burden and robust test of the exonic variants found seven exome-wide significant associations, such as OR2G2 (PSKAT = 1.88 × 10−9, PSKAT-Robust = 2.91 × 10−17), VEZT1 (PSKAT = 3.72 × 10−7, PSKAT-Robust = 1.41 × 10−7), and IRGC (PSKAT = 2.92 × 10−5, PSKAT-Robust = 1.07 × 10−7). These candidate genes were verified in the GWAS summary data of coffee intake, such as rs12737801 (p = 0.002) in OR2G2, and rs34439296 (p = 0.008) in IRGC. This study could help to extend genetic insights into the pathogenesis of coffee addiction, and may point to molecular mechanisms underlying health effects of habitual coffee consumption.
Collapse
|
15
|
Apostolidis A, Mougios V, Smilios I, Hadjicharalambous M. Higher and lower caffeine consumers: exercise performance and biological responses during a simulated soccer-game protocol following caffeine ingestion. Eur J Nutr 2022; 61:4135-4143. [PMID: 35857131 DOI: 10.1007/s00394-022-02955-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Research on whether caffeine habituation reduces its ergogenicity is scarce and conflicting. The purpose of the present study was to examine the influence of habitual caffeine consumption on exercise performance and biological responses during a simulated soccer-game protocol following acute caffeine ingestion. METHODS Twenty professional male soccer players were categorized as higher (n = 9) or lower caffeine consumers (n = 11) after answering a validated questionnaire. Participants performed a simulated treadmill soccer-game protocol on treadmill following either caffeine (6 mg kg-1) or placebo ingestion, during which several variables were evaluated. RESULTS Time to exhaustion, countermovement jump height, mean arterial pressure, heart rate, plasma glucose, and lactate were higher (P ≤ 0.001), while rating of perceived exertion (RPE) was lower (P = 0.002), following caffeine compared to placebo ingestion, with no differences between groups (P > 0.05). Plasma non-esterified fatty acids exhibited a higher response to caffeine in the higher vs lower caffeine consumers. Reaction time, plasma glycerol and epinephrine, carbohydrate and fat oxidation, and energy expenditure were not affected by caffeine (P > 0.05). CONCLUSION Caffeine ingestion largely improved cardiovascular and neuromuscular performance, while reducing RPE, in both higher and lower caffeine consuming athletes during prolonged intermitted exercise to exhaustion.
Collapse
Affiliation(s)
- Andreas Apostolidis
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 2417, Nicosia, Cyprus
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Smilios
- School of Physical Education & Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Marios Hadjicharalambous
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 2417, Nicosia, Cyprus.
| |
Collapse
|
16
|
Nikrandt G, Mikolajczyk-Stecyna J, Mlodzik-Czyzewska M, Chmurzynska A. Functional single nucleotide polymorphism (rs762551) in CYP1A2 gene affects white coffee intake in healthy 20–40 years old adults. Nutr Res 2022; 105:77-81. [DOI: 10.1016/j.nutres.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
|
17
|
Abaj F, Mirzababaei A, Hosseininasab D, Bahrampour N, Clark CCT, Mirzaei K. Interactions between Caveolin-1 polymorphism and Plant-based dietary index on metabolic and inflammatory markers among women with obesity. Sci Rep 2022; 12:9088. [PMID: 35641515 PMCID: PMC9156773 DOI: 10.1038/s41598-022-12913-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
A series of recent studies have indicated that the Caveolin-1 (CAV-1) gene variant may be associated with metabolic and inflammatory markers and anthropometric measures. Furthermore, it has been shown that a plant-based dietary index (PDI) can elicit a positive impact on these metabolic markers. Therefore, we sought to examine whether PDI intakes may affect the relationship between CAV-1 (rs3807992) and metabolic factors, as well as serum inflammatory markers and anthropometric measures, in women with obesity. This current study consisted of 400 women with overweight and obesity, with a mean (SD) age of 36.67 ± 9.10 years. PDI was calculated by a food frequency questionnaire (FFQ). The anthropometric measurements and serum profiles were measured by standard protocols. Genotyping of the CAV-1(rs3807992) was conducted by the PCR–RFLP method. The following genotypic frequencies were found among the participants: GG (47.8%), AG (22.3%), and AA (2.3%). In comparison to GG homozygotes, risk-allele carriers (AA + AG) with higher PDI intake had lower ALT (P: 0.03), hs-CRP (P: 0.008), insulin (P: 0.01) and MCP-1 (P: 0.04). Furthermore, A-allele carriers were characterized by lower serum ALT (P: 0.04), AST (P: 0.02), insulin (P: 0.03), and TGF-β (P: 0.001) when had the higher following a healthful PDI compared to GG homozygote. Besides, risk-allele carriers who consumed higher unhealthful PDI had higher WC (P: 0.04), TC/HDL (P: 0.04), MCP-1 (P: 0.03), and galactin-3 (P: 0.04). Our study revealed that A-allele carriers might be more sensitive to PDI composition compared to GG homozygotes. Following a healthful PDI in A-allele carriers may be associated with improvements in metabolic and inflammatory markers and anthropometric measures.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Dorsa Hosseininasab
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niki Bahrampour
- Department of Nutrition, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
18
|
Kang J, Jia T, Jiao Z, Shen C, Xie C, Cheng W, Sahakian BJ, Waxman D, Feng J. Increased brain volume from higher cereal and lower coffee intake: shared genetic determinants and impacts on cognition and metabolism. Cereb Cortex 2022; 32:5163-5174. [PMID: 35136970 PMCID: PMC9383440 DOI: 10.1093/cercor/bhac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022] Open
Abstract
It is unclear how different diets may affect human brain development and if genetic and environmental factors play a part. We investigated diet effects in the UK Biobank data from 18,879 healthy adults and discovered anticorrelated brain-wide gray matter volume (GMV)-association patterns between coffee and cereal intake, coincidence with their anticorrelated genetic constructs. The Mendelian randomization approach further indicated a causal effect of higher coffee intake on reduced total GMV, which is likely through regulating the expression of genes responsible for synaptic development in the brain. The identified genetic factors may further affect people's lifestyle habits and body/blood fat levels through the mediation of cereal/coffee intake, and the brain-wide expression pattern of gene CPLX3, a dedicated marker of subplate neurons that regulate cortical development and plasticity, may underlie the shared GMV-association patterns among the coffee/cereal intake and cognitive functions. All the main findings were successfully replicated. Our findings thus revealed that high-cereal and low-coffee diets shared similar brain and genetic constructs, leading to long-term beneficial associations regarding cognitive, body mass index (BMI), and other metabolic measures. This study has important implications for public health, especially during the pandemic, given the poorer outcomes of COVID-19 patients with greater BMIs.
Collapse
Affiliation(s)
| | - Tianye Jia
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | - Zeyu Jiao
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Barbara J Sahakian
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | - David Waxman
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Jianfeng Feng
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| |
Collapse
|
19
|
Cornelis MC, van Dam RM. Genetic determinants of liking and intake of coffee and other bitter foods and beverages. Sci Rep 2021; 11:23845. [PMID: 34903748 PMCID: PMC8669025 DOI: 10.1038/s41598-021-03153-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Coffee is a widely consumed beverage that is naturally bitter and contains caffeine. Genome-wide association studies (GWAS) of coffee drinking have identified genetic variants involved in caffeine-related pathways but not in taste perception. The taste of coffee can be altered by addition of milk/sweetener, which has not been accounted for in GWAS. Using UK and US cohorts, we test the hypotheses that genetic variants related to taste are more strongly associated with consumption of black coffee than with consumption of coffee with milk or sweetener and that genetic variants related to caffeine pathways are not differentially associated with the type of coffee consumed independent of caffeine content. Contrary to our hypotheses, genetically inferred caffeine sensitivity was more strongly associated with coffee taste preferences than with genetically inferred bitter taste perception. These findings extended to tea and dark chocolate. Taste preferences and physiological caffeine effects intertwine in a way that is difficult to distinguish for individuals which may represent conditioned taste preferences.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| | - Rob M van Dam
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Karhunen V, Bakker MK, Ruigrok YM, Gill D, Larsson SC. Modifiable Risk Factors for Intracranial Aneurysm and Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study. J Am Heart Assoc 2021; 10:e022277. [PMID: 34729997 PMCID: PMC8751955 DOI: 10.1161/jaha.121.022277] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The aim of this study was to assess the associations of modifiable lifestyle factors (smoking, coffee consumption, sleep, and physical activity) and cardiometabolic factors (body mass index, glycemic traits, type 2 diabetes, systolic and diastolic blood pressure, lipids, and inflammation and kidney function markers) with risks of any (ruptured or unruptured) intracranial aneurysm and aneurysmal subarachnoid hemorrhage using Mendelian randomization. Methods and Results Summary statistical data for the genetic associations with the modifiable risk factors and the outcomes were obtained from meta‐analyses of genome‐wide association studies. The inverse‐variance weighted method was used as the main Mendelian randomization analysis, with additional sensitivity analyses conducted using methods more robust to horizontal pleiotropy. Genetic predisposition to smoking, insomnia, and higher blood pressure was associated with an increased risk of both intracranial aneurysm and aneurysmal subarachnoid hemorrhage. For intracranial aneurysm, the odds ratios were 3.20 (95% CI, 1.93–5.29) per SD increase in smoking index, 1.24 (95% CI, 1.10–1.40) per unit increase in log‐odds of insomnia, and 2.92 (95% CI, 2.49–3.43) per 10 mm Hg increase in diastolic blood pressure. In addition, there was weak evidence for associations of genetically predicted decreased physical activity, higher triglyceride levels, higher body mass index, and lower low‐density lipoprotein cholesterol levels with higher risk of intracranial aneurysm and aneurysmal subarachnoid hemorrhage, with 95% CI overlapping the null for at least 1 of the outcomes. All results were consistent in sensitivity analyses. Conclusions This Mendelian randomization study suggests that smoking, insomnia, and high blood pressure are major risk factors for intracranial aneurysm and aneurysmal subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Ville Karhunen
- Department of Epidemiology and Biostatistics School of Public Health Imperial College London London United Kingdom.,Research Unit of Mathematical Sciences University of Oulu Finland.,Center for Life Course Health Research University of Oulu Finland
| | - Mark K Bakker
- Department of Neurology and Neurosurgery University Medical Center Utrecht Brain CenterUtrecht University Utrecht the Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery University Medical Center Utrecht Brain CenterUtrecht University Utrecht the Netherlands
| | - Dipender Gill
- Department of Epidemiology and Biostatistics School of Public Health Imperial College London London United Kingdom.,Clinical Pharmacology and Therapeutics Section Institute of Medical and Biomedical Education and Institute for Infection and Immunity St George's, University of London London United Kingdom.,Clinical Pharmacology Group, Pharmacy and Medicines Directorate St George's University Hospitals NHS Foundation Trust London United Kingdom.,Novo Nordisk Research Centre Oxford Oxford United Kingdom
| | - Susanna C Larsson
- Unit of Medical Epidemiology Department of Surgical Sciences Uppsala University Uppsala Sweden.,Unit of Cardiovascular and Nutritional Epidemiology Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
21
|
Yuan S, Larsson SC. Coffee and Caffeine Consumption and Risk of Kidney Stones: A Mendelian Randomization Study. Am J Kidney Dis 2021; 79:9-14.e1. [PMID: 34690004 DOI: 10.1053/j.ajkd.2021.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
RATIONALE & OBJECTIVE Coffee and caffeine consumption have been associated with a lower risk of kidney stones in observational studies. We conducted a Mendelian randomization study to assess the causal nature of these associations. STUDY DESIGN Mendelian randomization analysis. SETTING & PARTICIPANTS Independent genetic variants associated with coffee and caffeine consumption at the genome-wide significance level were selected from previously published meta-analyses as instrumental variables. Summary-level data for kidney stones were obtained from the UK Biobank study (6,536 cases and 388,508 noncases) and the FinnGen consortium (3,856 cases and 172,757 noncases). EXPOSURE Genetically predicted coffee and caffeine consumption. OUTCOME Clinically diagnosed kidney stones. ANALYTICAL APPROACH Mendelian randomization methods were used to calculate causal estimates. Estimates from the 2 sources were combined using the fixed-effects meta-analysis methods. RESULTS Genetically predicted coffee and caffeine consumption was associated with a lower risk of kidney stones in the UK Biobank study, and the associations were directionally similar in the FinnGen consortium. The combined odds ratio of kidney stones was 0.60 (95% CI, 0.46-0.79; P < 0.001) per a genetically predicted 50% increase in coffee consumption and 0.81 (95% CI, 0.69-0.94; P = 0.005) per a genetically predicted 80-mg increase in caffeine consumption. LIMITATIONS Genetic influence on kidney stone risk via pathways not involving coffee or caffeine. CONCLUSIONS Using genetic data, this study provides evidence that higher coffee and caffeine consumption may cause a reduction in kidney stones.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Andac-Ozturk S, Koc G, Soyocak A. Association of aryl hydrocarbon receptor (AhR) serum level and gene rs10247158 polymorphism with anthropometric, biochemical parameters and food consumption in overweight/obese patients. Int J Clin Pract 2021; 75:e14436. [PMID: 34091989 DOI: 10.1111/ijcp.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Aryl hydrocarbon receptor (AhR) plays a role in xenobiotic metabolism, which can be also activated by dietary patterns and components. AhR ligands in circulation are reported to induce weight gain, glucose intolerance and suggested to contribute to the development of obesity. In this study, we aimed to examine the relationship of the AhR gene and its polymorphisms with obesity and food consumption. METHODS The study was conducted with 117 individuals of whom 52 had a body mass index (BMI) of <25 (normal weight) and 65 had a BMI of ≥25 (overweight/obese). The distribution of the serum level and polymorphism (rs10247158) of the participants were determined in venous blood samples using the ELISA and PCR method. Body composition and skinfold thickness of the individuals were measured and their food consumption records were analysed in the BeBiS program. RESULTS The serum AhR, HOMA-IR, fasting blood glucose and basal insulin levels were found to be significantly higher (P < .001); however, no relationship was found between AhR polymorphisms in the overweight/obese individuals. In the overweight/obese group, the serum AhR level had a negative correlation with potassium, coffee and alcohol consumption and a positive correlation with suprailiac skinfold thickness. Dietary patterns expected to be related with increased serum AhR levels, such as fat and derivatives, were not observed in overweight/obese group; on the other hand, there was a negative correlation in normal group. CONCLUSION In our study, the serum AhR levels of the overweight/obese individuals were found to be significantly higher. Some dietary patterns were determined to be correlated with serum AhR levels in overweight/obese group. However, the results need to be confirmed for ethnic differences and larger samples.
Collapse
Affiliation(s)
- Serap Andac-Ozturk
- Department of Nutrition and Dietetic, Health Science Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Gulsah Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
23
|
Kim EJ, Hoffmann TJ, Nah G, Vittinghoff E, Delling F, Marcus GM. Coffee Consumption and Incident Tachyarrhythmias: Reported Behavior, Mendelian Randomization, and Their Interactions. JAMA Intern Med 2021; 181:1185-1193. [PMID: 34279564 PMCID: PMC8290332 DOI: 10.1001/jamainternmed.2021.3616] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/23/2021] [Indexed: 12/27/2022]
Abstract
Importance The notion that caffeine increases the risk of cardiac arrhythmias is common. However, evidence that the consumption of caffeinated products increases the risk of arrhythmias remains poorly substantiated. Objective To assess the association between consumption of common caffeinated products and the risk of arrhythmias. Design, Setting, and Participants This prospective cohort study analyzed longitudinal data from the UK Biobank between January 1, 2006, and December 31, 2018. After exclusion criteria were applied, 386 258 individuals were available for analyses. Exposures Daily coffee intake and genetic polymorphisms that affect caffeine metabolism. Main Outcomes and Measures Any cardiac arrhythmia, including atrial fibrillation or flutter, supraventricular tachycardia, ventricular tachycardia, premature atrial complexes, and premature ventricular complexes. Results A total of 386 258 individuals (mean [SD] age, 56 [8] years; 52.3% female) were assessed. During a mean (SD) follow-up of 4.5 (3.1) years, 16 979 participants developed an incident arrhythmia. After adjustment for demographic characteristics, comorbid conditions, and lifestyle habits, each additional cup of habitual coffee consumed was associated with a 3% lower risk of incident arrhythmia (hazard ratio [HR], 0.97; 95% CI, 0.96-0.98; P < .001). In analyses of each arrhythmia alone, statistically significant associations exhibiting a similar magnitude were observed for atrial fibrillation and/or flutter (HR, 0.97; 95% CI, 0.96-0.98; P < .001) and supraventricular tachycardia (HR, 0.96; 95% CI, 0.94-0.99; P = .002). Two distinct interaction analyses, one using a caffeine metabolism-related polygenic score of 7 genetic polymorphisms and another restricted to CYP1A2 rs762551 alone, did not reveal any evidence of effect modification. A mendelian randomization study that used these same genetic variants revealed no significant association between underlying propensities to differing caffeine metabolism and the risk of incident arrhythmia. Conclusions and Relevance In this prospective cohort study, greater amounts of habitual coffee consumption were associated with a lower risk of arrhythmia, with no evidence that genetically mediated caffeine metabolism affected that association. Mendelian randomization failed to provide evidence that caffeine consumption was associated with arrhythmias.
Collapse
Affiliation(s)
- Eun-jeong Kim
- Division of Cardiology, University of California, San Francisco, San Francisco
| | - Thomas J. Hoffmann
- Institute for Human Genetics, University of California, San Francisco, San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Gregory Nah
- Division of Cardiology, University of California, San Francisco, San Francisco
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Francesca Delling
- Division of Cardiology, University of California, San Francisco, San Francisco
| | - Gregory M. Marcus
- Division of Cardiology, University of California, San Francisco, San Francisco
| |
Collapse
|
24
|
Cornelis MC. Recent consumption of a caffeine-containing beverage and serum biomarkers of cardiometabolic function in the UK Biobank. Br J Nutr 2021; 126:582-590. [PMID: 33143770 PMCID: PMC8093320 DOI: 10.1017/s0007114520004377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the impact of recent caffeine drinking on glucose and other biomarkers of cardiometabolic function under free-living conditions while also accounting for lifestyle and genetic factors that alter caffeine metabolism and drinking behaviour. Up to 447 794 UK Biobank participants aged 37-73 years in 2006-2010 provided a non-fasting blood sample, for genetic and biomarker measures, and completed questionnaires regarding sociodemographics, medical history and lifestyle. Caffeine drinking (yes/no) about 1 h before blood collection was also recorded. Multivariable regressions were used to examine the association between recent caffeine drinking and serum levels of glycated Hb, glucose, lipids, apo, lipoprotein(a) and C-reactive protein. Men and women reporting recent caffeine drinking had clinically and significantly higher glucose levels than those not recently drinking caffeine (P < 0·0001). Larger effect sizes were observed among those 55+ years of age and with higher adiposity and longer fasting times (P ≤ 0·02 for interactions). Significant CYP1A2 rs2472297×caffeine and MLXIPL rs7800944 × caffeine interactions on glucose levels were observed among women (P = 0·004), with similar but non-significant interactions in men. Larger effect sizes were observed among women with rs2472297 CC or rs7800944 CC genotypes than among rs2472297 T or rs7800944 T carriers, respectively. In summary, men and women drinking caffeine within about 1 h of blood draw had higher glucose levels than those not drinking caffeine. Findings were modified by age, adiposity, fasting time and genetic factors related to caffeine metabolism and drinking behaviour. Implications for clinical and population studies of caffeine-containing beverages and cardiometabolic health are discussed.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Lajin B, Schweighofer N, Goessler W, Obermayer-Pietsch B. The determination of the Paraxanthine/Caffeine ratio as a metabolic biomarker for CYP1A2 activity in various human matrices by UHPLC-ESIMS/MS. Talanta 2021; 234:122658. [PMID: 34364467 DOI: 10.1016/j.talanta.2021.122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
The Cytochrome P450 CYP1A2 is a central enzyme in the metabolism of drugs and xenobiotics. The overall activity of this enzyme is influenced by a complex array of biochemical, dietary, and genetic factors. One of the simplest ways to probe the overall output of CYP1A2 is to measure the ratio between the concentration of a precursor and a product of its activity. With the growing interest in the Paraxanthine/Caffeine ratio, the need arises to develop improved analytical methods specifically optimized for the rapid and sensitive determination of paraxanthine and caffeine in biological samples. We report a new optimized method for the determination of caffeine and paraxanthine in various human matrices. The method involved direct determination following protein precipitation based on ultra high performance liquid chromatographic separation with tandem mass spectrometric detection (UHPLC-ESIMS/MS). The method offers an improvement in the detection limit over previously published methods by at least 10-fold (0.1 pg), rapid chromatographic separation (ca. 5 min), the utilization of a green chromatographic solvent (5% v/v ethanol), direct determination with little sample preparation, and the employment of isotopically labeled internal standards and qualifier ions to ensure accuracy. Method validation in urine, saliva, and plasma was performed by spiking at various concentration levels where the recovery and repeatability were within ±15% and ±10%, respectively. The method was applied to investigate the levels of caffeine and paraxanthine in volunteers following controlled caffeine administration and to investigate the inter- and intra-individual variability in the paraxanthine/caffeine ratio in volunteers following an unrestricted caffeine diet. In conclusion, the developed UHPLC-ESIMS/MS method is optimized specifically for the simultaneous determination of the paraxanthine/caffeine ratio in multiple biological matrices, offers several advantages over the current methods, and is well suitable for application in large clinical studies.
Collapse
Affiliation(s)
- Bassam Lajin
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Natascha Schweighofer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria; CBmed, Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| |
Collapse
|
26
|
Abstract
The purine alkaloid caffeine is the most widely consumed psychostimulant drug in the world and has multiple beneficial pharmacological activities, for example, in neurodegenerative diseases. However, despite being an extensively studied bioactive natural product, the mechanistic understanding of caffeine's pharmacological effects is incomplete. While several molecular targets of caffeine such as adenosine receptors and phosphodiesterases have been known for decades and inspired numerous medicinal chemistry programs, new protein interactions of the xanthine are continuously discovered providing potentially improved pharmacological understanding and a molecular basis for future medicinal chemistry. In this Perspective, we gather knowledge on the confirmed protein interactions, structure activity relationship, and chemical biology of caffeine on well-known and upcoming targets. The diversity of caffeine's molecular activities on receptors and enzymes, many of which are abundant in the CNS, indicates a complex interplay of several mechanisms contributing to neuroprotective effects and highlights new targets as attractive subjects for drug discovery.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
27
|
Kolb H, Martin S, Kempf K. Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients 2021; 13:nu13041144. [PMID: 33807132 PMCID: PMC8066601 DOI: 10.3390/nu13041144] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Prospective epidemiological studies concur in an association between habitual coffee consumption and a lower risk of type 2 diabetes. Several aspects of these studies support a cause–effect relationship. There is a dependency on daily coffee dose. Study outcomes are similar in different regions of the world, show no differences between sexes, between obese versus lean, young versus old, smokers versus nonsmokers, regardless of the number of confounders adjusted for. Randomized controlled intervention trials did not find a consistent impact of drinking coffee on acute metabolic control, except for effects of caffeine. Therefore, lowering of diabetes risk by coffee consumption does not involve an acute effect on the post-meal course of blood glucose, insulin or insulin resistance. Several studies in animals and humans find that the ingestion of coffee phytochemicals induces an adaptive cellular response characterized by upregulation and de novo synthesis of enzymes involved in cell defense and repair. A key regulator is the nuclear factor erythroid 2-related factor 2 (Nrf2) in association with the aryl hydrocarbon receptor, AMP-activated kinase and sirtuins. One major site of coffee actions appears to be the liver, causing improved fat oxidation and lower risk of steatosis. Another major effect of coffee intake is preservation of functional beta cell mass via enhanced mitochondrial function, lower endoplasmic reticulum stress and prevention or clearance of aggregates of misfolded proinsulin or amylin. Long-term preservation of proper liver and beta cell function may account for the association of habitual coffee drinking with a lower risk of type 2 diabetes, rather than acute improvement of metabolic control.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-566036016
| |
Collapse
|
28
|
Sivalokanathan S, Małek ŁA, Malhotra A. The Cardiac Effects of Performance-Enhancing Medications: Caffeine vs. Anabolic Androgenic Steroids. Diagnostics (Basel) 2021; 11:diagnostics11020324. [PMID: 33671206 PMCID: PMC7922604 DOI: 10.3390/diagnostics11020324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Several performance-enhancing or ergogenic drugs have been linked to both significant adverse cardiovascular effects and increased cardiovascular risk. Even with increased scrutiny on the governance of performance-enhancing drugs (PEDs) in professional sport and heightened awareness of the associated cardiovascular risk, there are some who are prepared to risk their use to gain competitive advantage. Caffeine is the most commonly consumed drug in the world and its ergogenic properties have been reported for decades. Thus, the removal of caffeine from the World Anti-Doping Agency (WADA) list of banned substances, in 2004, has naturally led to an exponential rise in its use amongst athletes. The response to caffeine is complex and influenced by both genetic and environmental factors. Whilst the evidence may be equivocal, the ability of an athlete to train longer or at a greater power output cannot be overlooked. Furthermore, its impact on the myocardium remains unanswered. In contrast, anabolic androgenic steroids are recognised PEDs that improve athletic performance, increase muscle growth and suppress fatigue. Their use, however, comes at a cost, afflicting the individual with several side effects, including those that are detrimental to the cardiovascular system. This review addresses the effects of the two commonest PEDs, one legal, the other prohibited, and their respective effects on the heart, as well as the challenge in defining its long-term implications.
Collapse
Affiliation(s)
- Sanjay Sivalokanathan
- Cardiovascular Clinical Academic Group, St. George’s University of London and St. George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK;
| | - Łukasz A. Małek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Aneil Malhotra
- Cardiovascular Clinical Academic Group, St. George’s University of London and St. George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK;
- Division of Cardiovascular Sciences, University of Manchester and Manchester University NHS Foundation Trust, Manchester Institute of Health and Performance, Manchester M11 3BS, UK
- Correspondence:
| |
Collapse
|
29
|
Ellingjord-Dale M, Papadimitriou N, Katsoulis M, Yee C, Dimou N, Gill D, Aune D, Ong JS, MacGregor S, Elsworth B, Lewis SJ, Martin RM, Riboli E, Tsilidis KK. Coffee consumption and risk of breast cancer: A Mendelian randomization study. PLoS One 2021; 16:e0236904. [PMID: 33465101 PMCID: PMC7815134 DOI: 10.1371/journal.pone.0236904] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Observational studies have reported either null or weak protective associations for coffee consumption and risk of breast cancer. METHODS We conducted a two-sample Mendelian randomization (MR) analysis to evaluate the relationship between coffee consumption and breast cancer risk using 33 single-nucleotide polymorphisms (SNPs) associated with coffee consumption from a genome-wide association (GWA) study on 212,119 female UK Biobank participants of White British ancestry. Risk estimates for breast cancer were retrieved from publicly available GWA summary statistics from the Breast Cancer Association Consortium (BCAC) on 122,977 cases (of which 69,501 were estrogen receptor (ER)-positive, 21,468 ER-negative) and 105,974 controls of European ancestry. Random-effects inverse variance weighted (IVW) MR analyses were performed along with several sensitivity analyses to assess the impact of potential MR assumption violations. RESULTS One cup per day increase in genetically predicted coffee consumption in women was not associated with risk of total (IVW random-effects; odds ratio (OR): 0.91, 95% confidence intervals (CI): 0.80-1.02, P: 0.12, P for instrument heterogeneity: 7.17e-13), ER-positive (OR = 0.90, 95% CI: 0.79-1.02, P: 0.09) and ER-negative breast cancer (OR: 0.88, 95% CI: 0.75-1.03, P: 0.12). Null associations were also found in the sensitivity analyses using MR-Egger (total breast cancer; OR: 1.00, 95% CI: 0.80-1.25), weighted median (OR: 0.97, 95% CI: 0.89-1.05) and weighted mode (OR: 1.00, CI: 0.93-1.07). CONCLUSIONS The results of this large MR study do not support an association of genetically predicted coffee consumption on breast cancer risk, but we cannot rule out existence of a weak association.
Collapse
Affiliation(s)
- Merete Ellingjord-Dale
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Michail Katsoulis
- Institute of Health Informatics Research, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Chew Yee
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jue-Sheng Ong
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Sarah J. Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
30
|
Reed DR, Alhadeff AL, Beauchamp GK, Chaudhari N, Duffy VB, Dus M, Fontanini A, Glendinning JI, Green BG, Joseph PV, Kyriazis GA, Lyte M, Maruvada P, McGann JP, McLaughlin JT, Moran TH, Murphy C, Noble EE, Pepino MY, Pluznick JL, Rother KI, Saez E, Spector AC, Sternini C, Mattes RD. NIH Workshop Report: sensory nutrition and disease. Am J Clin Nutr 2021; 113:232-245. [PMID: 33300030 PMCID: PMC7779223 DOI: 10.1093/ajcn/nqaa302] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
In November 2019, the NIH held the "Sensory Nutrition and Disease" workshop to challenge multidisciplinary researchers working at the interface of sensory science, food science, psychology, neuroscience, nutrition, and health sciences to explore how chemosensation influences dietary choice and health. This report summarizes deliberations of the workshop, as well as follow-up discussion in the wake of the current pandemic. Three topics were addressed: A) the need to optimize human chemosensory testing and assessment, B) the plasticity of chemosensory systems, and C) the interplay of chemosensory signals, cognitive signals, dietary intake, and metabolism. Several ways to advance sensory nutrition research emerged from the workshop: 1) refining methods to measure chemosensation in large cohort studies and validating measures that reflect perception of complex chemosensations relevant to dietary choice; 2) characterizing interindividual differences in chemosensory function and how they affect ingestive behaviors, health, and disease risk; 3) defining circuit-level organization and function that link and interact with gustatory, olfactory, homeostatic, visceral, and cognitive systems; and 4) discovering new ligands for chemosensory receptors (e.g., those produced by the microbiome) and cataloging cell types expressing these receptors. Several of these priorities were made more urgent by the current pandemic because infection with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease of 2019 has direct short- and perhaps long-term effects on flavor perception. There is increasing evidence of functional interactions between the chemosensory and nutritional sciences. Better characterization of this interface is expected to yield insights to promote health, mitigate disease risk, and guide nutrition policy.
Collapse
Affiliation(s)
| | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nirupa Chaudhari
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valerie B Duffy
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, Columbia University, New York, NY, USA
| | - Barry G Green
- The John B Pierce Laboratory, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Paule V Joseph
- National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- National Institute of Nursing, NIH, Bethesda, MD, USA
| | - George A Kyriazis
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark Lyte
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - John P McGann
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - John T McLaughlin
- Division of Diabetes, Endocrinology, & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
- Department of Gastroenterology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claire Murphy
- Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - M Yanina Pepino
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristina I Rother
- Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Alan C Spector
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Catia Sternini
- Digestive Disease Division, Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
31
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
32
|
Laaboub N, Gholam M, Sibailly G, Sjaarda J, Delacrétaz A, Dubath C, Grosu C, Piras M, Ansermot N, Crettol S, Vandenberghe F, Grandjean C, Gamma F, Bochud M, von Gunten A, Plessen KJ, Conus P, Eap CB. Associations Between High Plasma Methylxanthine Levels, Sleep Disorders and Polygenic Risk Scores of Caffeine Consumption or Sleep Duration in a Swiss Psychiatric Cohort. Front Psychiatry 2021; 12:756403. [PMID: 34987426 PMCID: PMC8721597 DOI: 10.3389/fpsyt.2021.756403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We first sought to examine the relationship between plasma levels of methylxanthines (caffeine and its metabolites) and sleep disorders, and secondarily between polygenic risk scores (PRS) of caffeine consumption or sleep duration with methylxanthine plasma levels and/or sleep disorders in a psychiatric cohort. Methods: Plasma levels of methylxanthines were quantified by ultra-high performance liquid chromatography/tandem mass spectrometry. In inpatients, sleep disorder diagnosis was defined using ICD-10 "F51.0," sedative drug intake before bedtime, or hospital discharge letters, while a subgroup of sedative drugs was used for outpatients. The PRS of coffee consumption and sleep duration were constructed using publicly available GWAS results from the UKBiobank. Results: 1,747 observations (1,060 patients) were included (50.3% of observations with sleep disorders). Multivariate analyses adjusted for age, sex, body mass index, setting of care and psychiatric diagnoses showed that patients in the highest decile of plasma levels of methylxanthines had more than double the risk for sleep disorders compared to the lowest decile (OR = 2.13, p = 0.004). PRS of caffeine consumption was associated with plasma levels of caffeine, paraxanthine, theophylline and with their sum (β = 0.1; 0.11; 0.09; and 0.1, pcorrected = 0.01; 0.02; 0.02; and 0.01, respectively) but not with sleep disorders. A trend was found between the PRS of sleep duration and paraxanthine levels (β = 0.13, pcorrected = 0.09). Discussion: Very high caffeine consumption is associated with sleep disorders in psychiatric in- and outpatients. Future prospective studies should aim to determine the benefit of reducing caffeine consumption in high caffeine-consuming patients suffering from sleep disorders.
Collapse
Affiliation(s)
- Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Mehdi Gholam
- Center of Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Guibet Sibailly
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Jennifer Sjaarda
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Aurélie Delacrétaz
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.,Les Toises Psychiatry and Psychotherapy Center, Lausanne, Switzerland
| | - Céline Dubath
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Nicolas Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Severine Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Carole Grandjean
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Center, Lausanne, Switzerland
| | - Murielle Bochud
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
33
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C, Okbay A, Turley P, Rietveld CA, Fontana MA, Ghanbari M, Imamura F, McMahon G, van der Most PJ, Voortman T, Wade KH, Anderson EL, Braun KVE, Emmett PM, Esko T, Gonzalez JR, Kiefte-de Jong JC, Langenberg C, Luan J, Muka T, Ring S, Rivadeneira F, Snieder H, van Rooij FJA, Wolffenbuttel BHR, Smith GD, Franco OH, Forouhi NG, Ikram MA, Uitterlinden AG, van Vliet-Ostaptchouk JV, Wareham NJ, Cesarini D, Harden KP, Lee JJ, Benjamin DJ, Chow CC, Koellinger PD. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol Psychiatry 2021; 26:2056-2069. [PMID: 32393786 PMCID: PMC7767645 DOI: 10.1038/s41380-020-0697-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
Collapse
Affiliation(s)
- S. Fleur W. Meddens
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands ,grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Ronald de Vlaming
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Peter Bowers
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Casper A. P. Burik
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Richard Karlsson Linnér
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Chanwook Lee
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Aysu Okbay
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Patrick Turley
- grid.32224.350000 0004 0386 9924Analytical and Translational Genetics Unit, Massachusetts General Hospital, Richard B. Simches Research building, 185 Cambridge St, CPZN-6818, Boston, MA 02114 USA ,grid.66859.34Stanley Center for Psychiatric Genomics, The Broad Institute at Harvard and MIT, 75 Ames St, Cambridge, MA 02142 USA ,grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Cornelius A. Rietveld
- grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.6906.90000000092621349Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus, University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Mark Alan Fontana
- grid.239915.50000 0001 2285 8823Center for the Advancement of Value in Musculoskeletal Care, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, 402 East 67th Street, New York, NY 10065 USA
| | - Mohsen Ghanbari
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.411583.a0000 0001 2198 6209Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, University Campus, 9177948564 Mashhad, Iran
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - George McMahon
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Peter J. van der Most
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Trudy Voortman
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Kaitlin H. Wade
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Emma L. Anderson
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Kim V. E. Braun
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Pauline M. Emmett
- grid.5337.20000 0004 1936 7603Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8, 2BN, Bristol, UK
| | - Tonũ Esko
- grid.10939.320000 0001 0943 7661Estonian Genome Center, University of Tartu, Riia 23b, Tartu, 51010 Estonia
| | - Juan R. Gonzalez
- grid.434607.20000 0004 1763 3517Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, Barcelona, 8003 Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Ramon Trias Fargas 25-27, Barcelona, 8005 Spain ,grid.413448.e0000 0000 9314 1427CIBER Epidemiología y Salud Pública (CIBERESP), Pabellón 11, Calle Monforte de Lemos, 3-5, Madrid, 280229 Spain
| | - Jessica C. Kiefte-de Jong
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.5132.50000 0001 2312 1970Leiden University College, Anna van Buerenplein 301, 2595 DG Den Haag, The Netherlands
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Taulant Muka
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Susan Ring
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Fernando Rivadeneira
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Harold Snieder
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frank J. A. van Rooij
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | - George Davey Smith
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Oscar H. Franco
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - M. Arfan Ikram
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Jana V. van Vliet-Ostaptchouk
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - David Cesarini
- grid.137628.90000 0004 1936 8753Department of Economics, New York University, 19 W. 4th Street, New York, NY 10012 USA
| | - K. Paige Harden
- grid.89336.370000 0004 1936 9924Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop #A8000, Austin, TX 78704 USA
| | - James J. Lee
- grid.17635.360000000419368657Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455 USA
| | - Daniel J. Benjamin
- grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA ,grid.250279.b0000 0001 0940 3170National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138 USA ,grid.42505.360000 0001 2156 6853Department of Economics, University of Southern California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Carson C. Chow
- grid.94365.3d0000 0001 2297 5165Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National, Institutes of Health, Bethesda, MD 20892 USA
| | - Philipp D. Koellinger
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
35
|
Said MA, van de Vegte YJ, Verweij N, van der Harst P. Associations of Observational and Genetically Determined Caffeine Intake With Coronary Artery Disease and Diabetes Mellitus. J Am Heart Assoc 2020; 9:e016808. [PMID: 33287642 PMCID: PMC7955399 DOI: 10.1161/jaha.120.016808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Caffeine is the most widely consumed psychostimulant and is associated with lower risk of coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). However, whether these associations are causal remains unknown. This study aimed to identify genetic variants associated with caffeine intake, and to investigate evidence for causal links with CAD or T2DM. In addition, we aimed to replicate previous observational findings. Methods and Results Observational associations were tested within UK Biobank using Cox regression analyses. Moderate observational caffeine intakes from coffee or tea were associated with lower risks of CAD or T2DM, with the lowest risks at intakes of 121 to 180 mg/day from coffee for CAD (hazard ratio [HR], 0.77 [95% CI, 0.73–0.82; P<1×10−16]), and 301 to 360 mg/day for T2DM (HR, 0.76 [95% CI, 0.67–0.86]; P=1.57×10−5). Next, genome‐wide association studies were performed on self‐reported caffeine intake from coffee, tea, or both in 407 072 UK Biobank participants. These analyses identified 51 novel genetic variants associated with caffeine intake at P<1.67×10−8. These loci were enriched for central nervous system genes. However, in contrast to the observational analyses, 2‐sample Mendelian randomization analyses using the identified loci in independent disease‐specific cohorts yielded no evidence for causal links between genetically determined caffeine intake and the development of CAD or T2DM. Conclusions Mendelian randomization analyses indicate genetically determined higher caffeine intake might not protect against CAD or T2DM, despite protective associations in observational analyses.
Collapse
Affiliation(s)
- M Abdullah Said
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands
| | - Niek Verweij
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands
| | - Pim van der Harst
- Department of Cardiology University Medical Center GroningenUniversity of Groningen Groningen the Netherlands.,Division of Heart and Lungs Department of Cardiology University Medical Center Utrecht Utrecht the Netherlands
| |
Collapse
|
36
|
Tennent R, Ali A, Wham C, Rutherfurd-Markwick K. Narrative Review: Impact of Genetic Variability of CYP1A2, ADORA2A, and AHR on Caffeine Consumption and Response. J Caffeine Adenosine Res 2020. [DOI: 10.1089/caff.2020.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Rebecca Tennent
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
| | - Carol Wham
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
| | - Kay Rutherfurd-Markwick
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
- School of Health Sciences, Massey University, North Shore City, New Zealand
| |
Collapse
|
37
|
Czumaj A, Szrok-Jurga S, Hebanowska A, Turyn J, Swierczynski J, Sledzinski T, Stelmanska E. The Pathophysiological Role of CoA. Int J Mol Sci 2020; 21:ijms21239057. [PMID: 33260564 PMCID: PMC7731229 DOI: 10.3390/ijms21239057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Julian Swierczynski
- State School of Higher Vocational Education in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| |
Collapse
|
38
|
Pharmacogenetic interactions between antiretroviral drugs and vaginally administered hormonal contraceptives. Pharmacogenet Genomics 2020; 30:45-53. [PMID: 32106141 DOI: 10.1097/fpc.0000000000000396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In AIDS Clinical Trials Group study A5316, efavirenz lowered plasma concentrations of etonogestrel and ethinyl estradiol, given as a vaginal ring, while atazanavir/ritonavir increased etonogestrel and lowered ethinyl estradiol concentrations. We characterized the pharmacogenetics of these interactions. METHODS In A5316, women with HIV enrolled into control (no antiretrovirals), efavirenz [600 mg daily with nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs)], and atazanavir/ritonavir (300/100 mg daily with NRTIs) groups. On day 0, a vaginal ring was inserted, releasing etonogestrel/ethinyl estradiol 120/15 μg/day. Intensive plasma sampling for antiretrovirals was obtained on days 0 and 21, and single samples for etonogestrel and ethinyl estradiol on days 7, 14, and 21. Seventeen genetic polymorphisms were analyzed. RESULTS The 72 participants in this analysis included 25, 24 and 23 in the control, efavirenz, and atazanavir/ritonavir groups, respectively. At day 21 in the efavirenz group, CYP2B6 genotype was associated with increased plasma efavirenz exposure (P = 3.2 × 10), decreased plasma concentrations of etonogestrel (P = 1.7 × 10), and decreased ethinyl estradiol (P = 6.7 × 10). Compared to controls, efavirenz reduced median etonogestrel concentrations by at least 93% in CYP2B6 slow metabolizers versus approximately 75% in normal and intermediate metabolizers. Efavirenz reduced median ethinyl estradiol concentrations by 75% in CYP2B6 slow metabolizers versus approximately 41% in normal and intermediate metabolizers. CONCLUSION CYP2B6 slow metabolizer genotype worsens the pharmacokinetic interaction of efavirenz with hormonal contraceptives administered by vaginal ring. Efavirenz dose reduction in CYP2B6 slow metabolizers may reduce, but will likely not eliminate, this interaction.
Collapse
|
39
|
Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. Impact of Gene-Environment Interactions on Cancer Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8089. [PMID: 33153024 PMCID: PMC7662361 DOI: 10.3390/ijerph17218089] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Several epidemiological and experimental studies have demonstrated that many human diseases are not only caused by specific genetic and environmental factors but also by gene-environment interactions. Although it has been widely reported that genetic polymorphisms play a critical role in human susceptibility to cancer and other chronic disease conditions, many single nucleotide polymorphisms (SNPs) are caused by somatic mutations resulting from human exposure to environmental stressors. Scientific evidence suggests that the etiology of many chronic illnesses is caused by the joint effect between genetics and the environment. Research has also pointed out that the interactions of environmental factors with specific allelic variants highly modulate the susceptibility to diseases. Hence, many scientific discoveries on gene-environment interactions have elucidated the impact of their combined effect on the incidence and/or prevalence rate of human diseases. In this review, we provide an overview of the nature of gene-environment interactions, and discuss their role in human cancers, with special emphases on lung, colorectal, bladder, breast, ovarian, and prostate cancers.
Collapse
Affiliation(s)
- Ariane Mbemi
- NIH/NIMHD RCMI-Center for Health Disparities Research, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA; (A.M.); (S.N.)
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| | - Sunali Khanna
- Department of Oral Medicine and Radiology, Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai 400 008, India;
| | - Sylvianne Njiki
- NIH/NIMHD RCMI-Center for Health Disparities Research, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA; (A.M.); (S.N.)
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd., Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- NIH/NIMHD RCMI-Center for Health Disparities Research, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA; (A.M.); (S.N.)
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| |
Collapse
|
40
|
Furukawa K, Igarashi M, Jia H, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Saito K, Kato H. A Genome-Wide Association Study Identifies the Association between the 12q24 Locus and Black Tea Consumption in Japanese Populations. Nutrients 2020; 12:nu12103182. [PMID: 33080986 PMCID: PMC7603176 DOI: 10.3390/nu12103182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
Several genome-wide association studies (GWASs) have reported the association between genetic variants and the habitual consumption of foods and drinks; however, no association data are available regarding the consumption of black tea. The present study aimed to identify genetic variants associated with black tea consumption in 12,258 Japanese participants. Data on black tea consumption were collected by a self-administered questionnaire, and genotype data were obtained from a single nucleotide polymorphism array. In the discovery GWAS, two loci met suggestive significance (p < 1.0 × 10-6). Three genetic variants (rs2074356, rs144504271, and rs12231737) at 12q24 locus were also significantly associated with black tea consumption in the replication stage (p < 0.05) and during the meta-analysis (p < 5.0 × 10-8). The association of rs2074356 with black tea consumption was slightly attenuated by the additional adjustment for alcohol drinking frequency. In conclusion, genetic variants at the 12q24 locus were associated with black tea consumption in Japanese populations, and the association is at least partly mediated by alcohol drinking frequency.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
| | - Maki Igarashi
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Correspondence: (H.J.); (H.K.); Tel./Fax: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| | - Shun Nogawa
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Kaoru Kawafune
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Tsuyoshi Hachiya
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
- Department of Genomic Data Analysis Service, Genome Analytics Japan Inc., 15-1-3205 Toyoshima-cho, Shinjuku-ku, Tokyo 162-0067, Japan
| | - Shoko Takahashi
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Correspondence: (H.J.); (H.K.); Tel./Fax: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| |
Collapse
|
41
|
Heianza Y, Zhou T, Yuhang C, Huang T, Willett WC, Hu FB, Bray GA, Sacks FM, Qi L. Starch Digestion-Related Amylase Genetic Variants, Diet, and Changes in Adiposity: Analyses in Prospective Cohort Studies and a Randomized Dietary Intervention. Diabetes 2020; 69:1917-1926. [PMID: 32493715 PMCID: PMC7458037 DOI: 10.2337/db19-1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
Salivary amylase, encoded by the AMY1 gene, is responsible for the digestion of carbohydrates. We investigated associations of AMY1 genetic variations with general and central adiposity changes considering dietary carbohydrate intake among 32,054 adults from four prospective cohort studies. A genetic risk score (GRS) was calculated based on nine AMY1 single-nucleotide polymorphisms, with higher AMY1-GRS indicating higher activity of salivary amylase. We meta-analyzed interactions between AMY1-GRS and dietary intake for changes in general and central adiposity over 5.5-10 years. We found that carbohydrate food intake significantly altered associations of AMY1-GRS with changes in BMI (P interaction = 0.001) and waist circumference (P interaction < 0.001). Results were consistent and significant in female cohorts rather than in male cohorts. Among women, higher AMY1-GRS was associated with more increases in adiposity if dietary carbohydrate food intake was high, while higher AMY1-GRS was associated with less gains in adiposity when the dietary intake was low. Also, in a 2-year randomized dietary intervention trial, associations of AMY1-GRS with changes in weight (P interaction = 0.023) and waist circumference (P interaction = 0.037) were significantly modified by carbohydrate intake. Our results suggest the importance of precision nutrition strategies considering participants' genetic adaptation to carbohydrate-rich diets in regulating general and central adiposity.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Chen Yuhang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Tao Huang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Cornelis MC, van Dam RM. Habitual Coffee and Tea Consumption and Cardiometabolic Biomarkers in the UK Biobank: The Role of Beverage Types and Genetic Variation. J Nutr 2020; 150:2772-2788. [PMID: 32805014 PMCID: PMC7549305 DOI: 10.1093/jn/nxaa212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mechanisms linking habitual consumption of coffee and tea to the development of type 2 diabetes and cardiovascular diseases remain unclear. OBJECTIVES We leveraged dietary, genetic, and biomarker data collected from the UK Biobank to investigate the role of different varieties of coffee and tea in cardiometabolic health. METHODS We included data from ≤447,794 participants aged 37-73 y in 2006-2010 who provided a blood sample and completed questionnaires regarding sociodemographic factors, medical history, diet, and lifestyle. Multivariable linear regression was used to examine the association between coffee or tea consumption and blood concentrations of glycated hemoglobin, fasting glucose, total cholesterol, HDL cholesterol, LDL cholesterol, fasting triglycerides (TGs), apoA-1, apoB, lipoprotein-a, and C-reactive protein (CRP). Lifestyle and genetic factors affecting caffeine metabolism, responses, or intake were tested for interactions with beverage intake in relation to biomarker concentrations. RESULTS Compared with coffee nonconsumers, each additional cup of coffee was significantly associated with higher total cholesterol, HDL-cholesterol, and LDL-cholesterol concentrations and lower TG and CRP concentrations in both men and women (P-trend < 0.002). Higher consumption of espresso coffee (≥2 compared with 0 cups/d) was associated with higher LDL cholesterol in men (β: 0.110 mmol/L; 95% CI: 0.058, 0.163 mmol/L) and women (β: 0.161 mmol/L; 95% CI: 0.088, 0.234 mmol/L), whereas no substantial association was observed for instant coffee. Compared with tea nonconsumers, higher tea consumption was associated with lower total and LDL cholesterol and apoB and higher HDL cholesterol (P-trend < 0.002); these associations were similar for black and green tea. Associations were not modified by genetics. CONCLUSIONS In the UK Biobank, consumption of certain coffee brews such as espresso had unfavorable associations with blood lipids, whereas consumption of tea had favorable associations. Findings were not modified by genetic variants affecting caffeine metabolism, suggesting a role of noncaffeine constituents of these beverages in cardiometabolic health.
Collapse
Affiliation(s)
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
43
|
Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients 2020; 12:nu12082228. [PMID: 32722627 PMCID: PMC7468962 DOI: 10.3390/nu12082228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 01/15/2023] Open
Abstract
Habitual coffee consumption and its association with health outcomes may be modified by genetic variation. Adults aged 40 to 69 years who participated in the Korea Association Resource (KARE) study were included in this study. We conducted a genome-wide association study (GWAS) on coffee consumption in 7868 Korean adults, and examined whether the association between coffee consumption and the risk of prediabetes and type 2 diabetes combined was modified by the genetic variations in 4054 adults. In the GWAS for coffee consumption, a total of five single nucleotide polymorphisms (SNPs) located in 12q24.11-13 (rs2074356, rs11066015, rs12229654, rs11065828, and rs79105258) were selected and used to calculate weighted genetic risk scores. Individuals who had a larger number of minor alleles for these five SNPs had higher genetic risk scores. Multivariate logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs) to examine the association. During the 12 years of follow-up, a total of 2468 (60.9%) and 480 (11.8%) participants were diagnosed as prediabetes or type 2 diabetes, respectively. Compared with non-black-coffee consumers, the OR (95% CI) for ≥2 cups/day by black-coffee consumers was 0.61 (0.38–0.95; p for trend = 0.023). Similarly, sugared coffee showed an inverse association. We found a potential interaction by the genetic variations related to black-coffee consumption, suggesting a stronger association among individuals with higher genetic risk scores compared to those with lower scores; the ORs (95% CIs) were 0.36 (0.15–0.88) for individuals with 5 to 10 points and 0.87 (0.46–1.66) for those with 0 points. Our study suggests that habitual coffee consumption was related to genetic polymorphisms and modified the risk of prediabetes and type 2 diabetes combined in a sample of the Korean population. The mechanisms between coffee-related genetic variation and the risk of prediabetes and type 2 diabetes combined warrant further investigation.
Collapse
|
44
|
Kolb H, Kempf K, Martin S. Health Effects of Coffee: Mechanism Unraveled? Nutrients 2020; 12:E1842. [PMID: 32575704 PMCID: PMC7353358 DOI: 10.3390/nu12061842] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
The association of habitual coffee consumption with a lower risk of diseases, like type 2 diabetes mellitus, chronic liver disease, certain cancer types, or with reduced all-cause mortality, has been confirmed in prospective cohort studies in many regions of the world. The molecular mechanism is still unresolved. The radical-scavenging and anti-inflammatory activity of coffee constituents is too weak to account for such effects. We argue here that coffee as a plant food has similar beneficial properties to many vegetables and fruits. Recent studies have identified a health promoting mechanism common to coffee, vegetables and fruits, i.e., the activation of an adaptive cellular response characterized by the upregulation of proteins involved in cell protection, notably antioxidant, detoxifying and repair enzymes. Key to this response is the activation of the Nrf2 (Nuclear factor erythroid 2-related factor-2) system by phenolic phytochemicals, which induces the expression of cell defense genes. Coffee plays a dominant role in that regard because it is the major dietary source of phenolic acids and polyphenols in the developed world. A possible supportive action may be the modulation of the gut microbiota by non-digested prebiotic constituents of coffee, but the available data are still scarce. We conclude that coffee employs similar pathways of promoting health as assumed for other vegetables and fruits. Coffee beans may be viewed as healthy vegetable food and a main supplier of dietary phenolic phytochemicals.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| |
Collapse
|
45
|
Abstract
Nervous systems allow animals to acutely respond and behaviorally adapt to changes and recurring patterns in their environment at multiple timescales-from milliseconds to years. Behavior is further shaped at intergenerational timescales by genetic variation, drift, and selection. This sophistication and flexibility of behavior makes it challenging to measure behavior consistently in individual subjects and to compare it across individuals. In spite of these challenges, careful behavioral observations in nature and controlled measurements in the laboratory, combined with modern technologies and powerful genetic approaches, have led to important discoveries about the way genetic variation shapes behavior. A critical mass of genes whose variation is known to modulate behavior in nature is finally accumulating, allowing us to recognize emerging patterns. In this review, we first discuss genetic mapping approaches useful for studying behavior. We then survey how variation acts at different levels-in environmental sensation, in internal neuronal circuits, and outside the nervous system altogether-and then discuss the sources and types of molecular variation linked to behavior and the mechanisms that shape such variation. We end by discussing remaining questions in the field.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
46
|
Abstract
Caffeine is a well-established ergogenic aid, demonstrated to enhance performance across a wide range of capacities through a variety of mechanisms. As such, it is frequently used by both athletes and non-athletes alike. As a result, caffeine ingestion is ubiquitous in modern society, with athletes typically being exposed to regular non-supplemental caffeine through a variety of sources. Previously, it has been suggested that regular caffeine use may lead to habituation and subsequently a reduction in the expected ergogenic effects, thereby blunting caffeine’s performance-enhancing impact during critical training and performance events. In order to mitigate this expected performance loss, some practitioners recommended a pre-competition withdrawal period to restore the optimal performance benefits of caffeine supplementation. However, at present the evidence base exploring both caffeine habituation and withdrawal strategies in athletes is surprisingly small. Accordingly, despite the prevalence of caffeine use within athletic populations, formulating evidence-led guidelines is difficult. Here, we review the available research regarding habitual caffeine use in athletes and seek to derive rational interpretations of what is currently known—and what else we need to know—regarding habitual caffeine use in athletes, and how athletes and performance staff may pragmatically approach these important, complex, and yet under-explored phenomena.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK.
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK.
| | - John Kiely
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
47
|
Ishii M, Ishii Y, Nakayama T, Takahashi Y, Asai S. 13C-caffeine breath test identifies single nucleotide polymorphisms associated with caffeine metabolism. Drug Metab Pharmacokinet 2020; 35:321-328. [PMID: 32303460 DOI: 10.1016/j.dmpk.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
Abstract
We performed a caffeine (N-3-methyl-13C) breath test (CafeBT) to determine whether it can be employed to identify caffeine metabolism-associated single nucleotide polymorphisms. The study included 130 healthy adults (mean age: 21.9 years). Saliva was collected using an Oragene®•DNA saliva collection kit. Breath samples were collected from the subjects. The subjects orally ingested 100 mg 13C-caffeine dissolved in distilled water. Subsequently, breath samples were collected in bags every 10 min for a total of 90 min. An analysis of 13CO2 in the expired breath was performed by infrared spectroscopy, and the sum of Δ13CO2 over 90 min (S90m) was calculated. DNA from saliva samples was genotyped using TaqMan® SNP Genotyping for the following genes: cytochrome P4501A2: rs762551, rs2472297, aryl-hydrocarbon receptor (rs4410790), and adenosine A2A receptor (rs5751876). All subjects had the genotype CC in rs2472297 alleles. No significant difference was observed in S90m among the genotypes of rs762551 and rs5751876; however, a significant difference was found in S90m among the genotypes of rs4410790 (C > T). Our findings suggest that the N-3 demethylation of caffeine is dependent on the rs4410790 allele and that CafeBT may be used to determine rs4410790 genotypes.
Collapse
Affiliation(s)
- Michiko Ishii
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Japan; Division of Research Planning and Development, Medical Research Support Center, Nihon University School of Medicine, Japan.
| | - Yukimoto Ishii
- Division of Research Planning and Development, Medical Research Support Center, Nihon University School of Medicine, Japan.
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology of Microbiology, Nihon University School of Medicine, Japan.
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Japan.
| | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Japan.
| |
Collapse
|
48
|
Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, Ikegawa S, Ikeda M, Iwata N, Hirata M, Matsuda K, Murakami Y, Kubo M, Kamatani Y, Okada Y. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav 2020; 4:308-316. [PMID: 31959922 DOI: 10.1038/s41562-019-0805-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2019] [Indexed: 01/02/2023]
Abstract
Dietary habits are important factors in our lifestyle, and confer both susceptibility to and protection from a variety of human diseases. We performed genome-wide association studies for 13 dietary habits including consumption of alcohol (ever versus never drinkers and drinks per week), beverages (coffee, green tea and milk) and foods (yoghurt, cheese, natto, tofu, fish, small whole fish, vegetables and meat) in Japanese individuals (n = 58,610-165,084) collected by BioBank Japan, the nationwide hospital-based genome cohort. Significant associations were found in nine genetic loci (MCL1-ENSA, GCKR, AGR3-AHR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, CYP1A2-CSK and ADORA2A-AS1) for 13 dietary traits (P < 3.8 × 10-9). Of these, ten associations between five loci and eight traits were new findings. Furthermore, a phenome-wide association study revealed that five of the dietary trait-associated loci have pleiotropic effects on multiple human complex diseases and clinical measurements. Our findings provide new insight into the genetics of habitual consumption.
Collapse
Affiliation(s)
- Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genetics, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, the Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
49
|
Erblang M, Drogou C, Gomez-Merino D, Metlaine A, Boland A, Deleuze JF, Thomas C, Sauvet F, Chennaoui M. The Impact of Genetic Variations in ADORA2A in the Association between Caffeine Consumption and Sleep. Genes (Basel) 2019; 10:E1021. [PMID: 31817803 PMCID: PMC6947650 DOI: 10.3390/genes10121021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
ADORA2A has been shown to be responsible for the wakefulness-promoting effect of caffeine and the 1976T>C genotype (SNP rs5751876, formerly 1083T>C) to contribute to individual sensitivity to caffeine effects on sleep. We investigate the association between six single nucleotide polymorphisms (SNP) from ADORA2A and self-reported sleep characteristics and caffeine consumption in 1023 active workers of European ancestry aged 18-60 years. Three groups of caffeine consumers were delineated: low (0-50 mg/day, less than one expresso per day), moderate (51-300 mg/day), and high (>300 mg/day). We found that at caffeine levels higher than 300 mg/day, total sleep time (TST) decreased (F = 13.9, p < 0.01), with an increase of insomnia (ORa [95%CI] = 1.5 [1.1-1.9]) and sleep complaints (ORa [95%CI] = 1.9 [1.1-3.3]), whatever the ADORA2A polymorphism. Odds ratios were adjusted (ORa) for sex, age, and tobacco. However, in low caffeine consumers, lower TST was observed in the T allele compared to homozygote rs5751876 and rs3761422 C carriers. Conversely, higher TST was observed in rs2298383 T allele compared to C and in rs4822492G allele compared to the homozygote C (p < 0.05). These 4 SNPs are in strong linkage disequilibrium. Haplotype analysis confirmed the influence of multiple ADORA2a SNPs on TST. In addition, the rs2298383 T and rs4822492 G alleles were associated with higher risk of sleep complaints (Ora = 1.9 [1.2-3.1] and Ora = 1.5 [1.1-2.1]) and insomnia (Ora = 1.5 [1.3-2.5] and Ora = 1.9 [1.3-3.2). The rs5751876 T allele was associated with a decreased risk of sleep complaints (Ora = 0.7 [0.3-0.9]) and insomnia (Ora = 0.5 [0.3-0.9]). Our results identified ADORA2A polymorphism influences in the less-than-300-mg-per-day caffeine consumers. This opens perspectives on the diagnosis and pharmacology of sleep complaints and caffeine chronic consumption.
Collapse
Affiliation(s)
- Mégane Erblang
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Catherine Drogou
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Danielle Gomez-Merino
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Arnaud Metlaine
- EA 7330 VIFASOM, Université de Paris, APHP, Hôtel Dieu, Centre du Sommeil et de la Vigilance, 75004 Paris, France;
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France; (A.B.)
| | - Jean François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France; (A.B.)
| | - Claire Thomas
- Unité de Biologie Intégrative des Adaptations à l’Exercice, Université Evry, Université, Paris-Saclay, 91025 Evry, France;
| | - Fabien Sauvet
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| | - Mounir Chennaoui
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), EA 7330 VIFASOM, Université de Paris, 75004 Paris, France; (M.E.); (C.D.); (D.G.-M.); (F.S.)
| |
Collapse
|
50
|
Ross LM, Slentz CA, Kraus WE. Evaluating Individual Level Responses to Exercise for Health Outcomes in Overweight or Obese Adults. Front Physiol 2019; 10:1401. [PMID: 31798463 PMCID: PMC6867965 DOI: 10.3389/fphys.2019.01401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Understanding group responses to a given exercise exposure is becoming better developed; however, understanding of individual responses to specific exercise exposures is significantly underdeveloped and must advance before personalized exercise medicine can become a functional reality. Herein, utilizing data from the STRRIDE studies, we address some of the key issues surrounding our efforts to develop better understanding of individual exercise responsiveness. Methods We assessed individual cardiometabolic and cardiorespiratory fitness responses in subjects successfully completing STRRIDE I (n = 227) and STRRIDE II (n = 155). Subjects were previously sedentary, overweight or obese men and women with mild-to-moderate dyslipidemia. Subjects were randomized to either an inactive control group or to an exercise training program. Training groups varied to test the differential effects of exercise amount, intensity, and mode on cardiometabolic health outcomes. Measures included fasting plasma glucose, insulin, and lipids; blood pressure, minimal waist circumference, visceral adipose tissue, and peak VO2. Absolute change scores were calculated for each subject as post-intervention minus pre-intervention values in order to evaluate the heterogeneity of health factor responsiveness to exercise training. Results For subjects completing one of the aerobic training programs, change in peak VO2 ranged from a loss of 37% to a gain of 77%. When ranked by magnitude of change, we observed discordant responses among changes in peak VO2 with changes in visceral adipose tissue, HDL-C, triglycerides, and fasting plasma insulin. There was also not a clear, direct relationship observed between magnitudes of individual response in the aforementioned variables with aerobic training adherence levels. This same pattern of highly variable and discordant responses was displayed even when considering subjects with adherence levels greater than 70%. Conclusion Our findings illustrate the unclear relationship between magnitude of individual response for a given outcome with training adherence and specific exercise exposure. These discordant and heterogeneous responses highlight the difficult nature of developing understanding for how individuals will respond to any given exposure. Further investigation into the biological, physiological, and genetics factors affecting individual responsiveness is vital to making personalized exercise medicine a reality.
Collapse
Affiliation(s)
- Leanna M Ross
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, United States
| | - Cris A Slentz
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, United States.,Division of Cardiology, School of Medicine, Duke University, Durham, NC, United States
| | - William E Kraus
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, United States.,Division of Cardiology, School of Medicine, Duke University, Durham, NC, United States.,Urbaniak Sports Sciences Institute, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|