1
|
Mohammedi K, Marre M, Alhenc-Gelas F. Genetic predisposition to nephropathy and associated cardiovascular disease in people with type 1 diabetes: role of the angiotensinI-converting enzyme (ACE), and beyond; a narrative review. Cardiovasc Diabetol 2024; 23:453. [PMID: 39709470 DOI: 10.1186/s12933-024-02544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Hypertension, cardiovascular disease and kidney failure are associated with persistent hyperglycaemia and the subsequent development of nephropathy in people with diabetes. Diabetic nephropathy is associated with widespread vascular disease affecting both the kidney and the heart from an early stage. However, the risk of diabetic nephropathy in people with type 1 diabetes is strongly genetically determined, as documented in familial transmission studies. The search for the underlying genes has been extensive, using specific hypotheses, sibling linkage studies and genome-wide association studies (GWAS). The role of the angiotensinI-converting enzyme/kininase II (ACE) gene and genetic variability in ACE levels as a susceptibility and prognostic factor for diabetic nephropathy has been well documented in people with type 1 diabetes. The ACE gene insertion/deletion polymorphism, which is associated with plasma and tissue ACE levels, has been the most studied genomic variant in diabetic nephropathy. Recently, this polymorphism has also been associated with longevity in people with type 1 diabetes. The ACE I/D polymorphism has also been associated with vascular, extra-renal complications including myocardial infarction and lower-limb amputation in this population. Other genes and loci have been identified in linkage studies and GWAS, such as the COL4A3 gene or a region on chromosome 3q with the adiponectin gene. Replication was not always attempted and was rarely achieved, even for GWAS. Overall, effect sizes remain modest and no major gene has been identified, despite the strength of the genetic effect in transmission studies. We searched bibliographic databases for studies reporting genomic variants associated with diabetic nephropathy and meta-analyses of such studies. We selected important relevant studies for further discussion in this narrative review. This brief review attempts to summarise the current knowledge on the genetics of diabetic nephropathy and associated cardiovascular disease in people with type 1 diabetes, and discusses some conceptual and methodological issues relevant to the interpretation of past studies and the design of future ones.
Collapse
Affiliation(s)
- Kamel Mohammedi
- INSERM U1034, Biology of Cardiovascular Diseases, Bordeaux University Hospital, 33000, Bordeaux, France.
- Department of Endocrinology, Diabetes, and Nutrition, Hôpital Haut-Lévêque, Avenue de Magellan, 33604, Pessac Cedex, France.
| | - Michel Marre
- Clinique Ambroise Paré. Diabétologie-Endocrinologie, 92200, Neuilly-Sur-Seine, France
- Immunity and Metabolism in Diabetes, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
| | - François Alhenc-Gelas
- INSERMU1138-Centre de Recherche Des Cordeliers, Paris Cite University, Sorbonne University, 75006, Paris, France
| |
Collapse
|
2
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2024:e15447. [PMID: 39460977 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Laura J Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Imamura M, Maeda S. Genetic studies of type 2 diabetes, and microvascular complications of diabetes. Diabetol Int 2024; 15:699-706. [PMID: 39469559 PMCID: PMC11512959 DOI: 10.1007/s13340-024-00727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 10/30/2024]
Abstract
Genome-wide association studies (GWAS) have significantly advanced the identification of genetic susceptibility variants associated with complex diseases. As of 2023, approximately 800 variants predisposing individuals to the risk of type 2 diabetes (T2D) were identified through GWAS, and the majority of studies were predominantly conducted in European populations. Despite the shared nature of the majority of genetic susceptibility loci across diverse ethnic populations, GWAS in non-European populations, including Japanese and East Asian populations, have revealed population-specific T2D loci. Currently, polygenic risk scores (PRSs), encompassing millions of associated variants, can identify individuals with a higher T2D risk than the general population. However, GWAS focusing on microvascular complications of diabetes have identified a limited number of disease-susceptibility loci. Ongoing efforts are crucial to enhance the applicability of PRS for all ethnic groups and unravel the genetic architecture of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0215 Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Okinawa 930-0215 Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0215 Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Okinawa 930-0215 Japan
| |
Collapse
|
4
|
Ni XY, Feng XJ, Wang ZH, Zhang Y, Little PJ, Cao Y, Xu SW, Tang LQ, Weng JP. Empagliflozin and liraglutide ameliorate HFpEF in mice via augmenting the Erbb4 signaling pathway. Acta Pharmacol Sin 2024; 45:1604-1617. [PMID: 38589689 PMCID: PMC11272793 DOI: 10.1038/s41401-024-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.
Collapse
Affiliation(s)
- Xia-Yun Ni
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230036, China
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Xiao-Jun Feng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230036, China
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Zhi-Hua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230036, China
| | - Yang Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Yang Cao
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230022, China
| | - Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230036, China.
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China.
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230036, China.
| |
Collapse
|
5
|
Herder C, Thorand B, Strom A, Rathmann W, Heier M, Koenig W, Morrison H, Ziegler D, Roden M, Peters A, Bönhof GJ, Maalmi H. Associations between multiple neurological biomarkers and distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes Metab Res Rev 2024; 40:e3807. [PMID: 38872492 DOI: 10.1002/dmrr.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
AIMS The aim of this study was to assess associations between neurological biomarkers and distal sensorimotor polyneuropathy (DSPN). MATERIALS AND METHODS Cross-sectional analyses were based on 1032 participants aged 61-82 years from the population-based KORA F4 survey, 177 of whom had DSPN at baseline. The prevalence of type 2 diabetes was 20%. Prospective analyses used data from 505 participants without DSPN at baseline, of whom 125 had developed DSPN until the KORA FF4 survey. DSPN was defined based on the examination part of the Michigan Neuropathy Screening Instrument. Serum levels of neurological biomarkers were measured using proximity extension assay technology. Associations between 88 biomarkers and prevalent or incident DSPN were estimated using Poisson regression with robust error variance and are expressed as risk ratios (RR) and 95% CI per 1-SD increase. Results were adjusted for multiple confounders and multiple testing using the Benjamini-Hochberg procedure. RESULTS Higher serum levels of CTSC (cathepsin C; RR [95% CI] 1.23 (1.08; 1.39), pB-H = 0.044) and PDGFRα (platelet-derived growth factor receptor A; RR [95% CI] 1.21 (1.08; 1.35), pB-H = 0.044) were associated with prevalent DSPN in the total study sample. CDH3, JAM-B, LAYN, RGMA and SCARA5 were positively associated with DSPN in the diabetes subgroup, whereas GCP5 was positively associated with DSPN in people without diabetes (all pB-H for interaction <0.05). None of the biomarkers showed an association with incident DSPN (all pB-H>0.05). CONCLUSIONS This study identified multiple novel associations between neurological biomarkers and prevalent DSPN, which may be attributable to functions of these proteins in neuroinflammation, neural development and myelination.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Wolfgang Rathmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site München Heart Alliance, Munich, Germany
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| |
Collapse
|
6
|
Cañadas-Garre M, Baños-Jaime B, Maqueda JJ, Smyth LJ, Cappa R, Skelly R, Hill C, Brennan EP, Doyle R, Godson C, Maxwell AP, McKnight AJ. Genetic variants affecting mitochondrial function provide further insights for kidney disease. BMC Genomics 2024; 25:576. [PMID: 38858654 PMCID: PMC11163707 DOI: 10.1186/s12864-024-10449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
- Genomic Oncology Area, Centre for Genomics and Oncological Research: Pfizer, GENYO, University of Granada-Andalusian Regional Government, PTS Granada. Avenida de La Ilustración 114, 18016, Granada, Spain.
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Avenida de Las Fuerzas Armadas 2, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Avda. de Madrid, 15, 18012, Granada, Spain.
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja (cicCartuja), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Laura J Smyth
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
- Mater Misericordiae University Hospital, Eccles St, Dublin, D07 R2WY, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Level 11Lisburn Road, Belfast, BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| |
Collapse
|
7
|
Roumeliotis S, Divani M, Stamellou E, Liakopoulos V. Genomics in Diabetic Kidney Disease: A 2024 Update. Curr Genomics 2024; 25:153-157. [PMID: 39086997 PMCID: PMC11288163 DOI: 10.2174/0113892029300247240325080421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetic Kidney Disease (DKD) remains the leading cause of Chronic and End Stage Kidney Disease (ESKD) worldwide, with an increasing epidemiological burden. However, still, the disease awareness remains low, early diagnosis is difficult, and therapeutic management is ineffective. These might be attributed to the fact that DKD is a highly heterogeneous disease, with disparities and variability in clinical presentation and progression patterns. Besides environmental risk factors, genetic studies have emerged as a novel and promising tool in the field of DKD. Three decades ago, family studies first reported that inherited genetic factors might confer significant risk to DKD development and progression. During the past decade, genome-wide association studies (GWASs) screening the whole genome in large and multi-ethnic population-based cohorts identified genetic risk variants associated with traits defining DKD in both type 1 and 2 diabetes. Herein, we aim to summarize the existing data regarding the progress in the field of genomics in DKD, present how the revolution of GWAS expanded our understanding of pathophysiologic disease mechanisms and finally, suggest potential future directions.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Second Department of Nephrology, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Stamellou
- Department of Nephrology, Medical School, University Hospital of Ioannina, Ioannina, Greece
| | - Vassilios Liakopoulos
- Second Department of Nephrology, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Wang N, Zhang C. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. Int J Mol Sci 2024; 25:3086. [PMID: 38542060 PMCID: PMC10970506 DOI: 10.3390/ijms25063086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD), and it heightens the risk of cardiovascular incidents. The pathogenesis of DKD is thought to involve hemodynamic, inflammatory, and metabolic factors that converge on the fibrotic pathway. Genetic predisposition and unhealthy lifestyle practices both play a significant role in the development and progression of DKD. In spite of the recent emergence of angiotensin receptors blockers (ARBs)/angiotensin converting enzyme inhibitor (ACEI), sodium-glucose cotransporter 2 (SGLT2) inhibitors, and nonsteroidal mineralocorticoid receptors antagonists (NS-MRAs), current therapies still fail to effectively arrest the progression of DKD. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), a promising class of agents, possess the potential to act as renal protectors, effectively slowing the progression of DKD. Other agents, including pentoxifylline (PTF), selonsertib, and baricitinib hold great promise as potential therapies for DKD due to their anti-inflammatory and antifibrotic properties. Multidisciplinary treatment, encompassing lifestyle modifications and drug therapy, can effectively decelerate the progression of DKD. Based on the treatment of heart failure, it is recommended to use multiple drugs in combination rather than a single-use drug for the treatment of DKD. Unearthing the mechanisms underlying DKD is urgent to optimize the management of DKD. Inflammatory and fibrotic factors (including IL-1, MCP-1, MMP-9, CTGF, TNF-a and TGF-β1), along with lncRNAs, not only serve as diagnostic biomarkers, but also hold promise as therapeutic targets. In this review, we delve into the potential mechanisms and the current therapies of DKD. We also explore the additional value of combing these therapies to develop novel treatment strategies. Drawing from the current understanding of DKD pathogenesis, we propose HIF inhibitors, AGE inhibitors, and epigenetic modifications as promising therapeutic targets for the future.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
9
|
Hu X, Chen S, Ye S, Chen W, Zhou Y. New insights into the role of immunity and inflammation in diabetic kidney disease in the omics era. Front Immunol 2024; 15:1342837. [PMID: 38487541 PMCID: PMC10937589 DOI: 10.3389/fimmu.2024.1342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Diabetic kidney disease (DKD) is becoming the leading cause of chronic kidney disease, especially in the industrialized world. Despite mounting evidence has demonstrated that immunity and inflammation are highly involved in the pathogenesis and progression of DKD, the underlying mechanisms remain incompletely understood. Substantial molecules, signaling pathways, and cell types participate in DKD inflammation, by integrating into a complex regulatory network. Most of the studies have focused on individual components, without presenting their importance in the global or system-based processes, which largely hinders clinical translation. Besides, conventional technologies failed to monitor the different behaviors of resident renal cells and immune cells, making it difficult to understand their contributions to inflammation in DKD. Recently, the advancement of omics technologies including genomics, epigenomics, transcriptomics, proteomics, and metabolomics has revolutionized biomedical research, which allows an unbiased global analysis of changes in DNA, RNA, proteins, and metabolites in disease settings, even at single-cell and spatial resolutions. They help us to identify critical regulators of inflammation processes and provide an overview of cell heterogeneity in DKD. This review aims to summarize the application of multiple omics in the field of DKD and emphasize the latest evidence on the interplay of inflammation and DKD revealed by these technologies, which will provide new insights into the role of inflammation in the pathogenesis of DKD and lead to the development of novel therapeutic approaches and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Eun M, Kim D, Shin SI, Yang HO, Kim KD, Choi SY, Park S, Kim DK, Jeong CW, Moon KC, Lee H, Park J. Chromatin accessibility analysis and architectural profiling of human kidneys reveal key cell types and a regulator of diabetic kidney disease. Kidney Int 2024; 105:150-164. [PMID: 37925023 DOI: 10.1016/j.kint.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023]
Abstract
Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis.
Collapse
Affiliation(s)
- Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Donggun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Oh Yang
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sehoon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
11
|
Li R, Wang Y, Yang L, Zhong P, Huang G, Liang Q, Yu X. Genetic variants of ERBB4 gene and risk of gestational diabetes mellitus: a susceptibility and diagnostic nomogram study. Front Endocrinol (Lausanne) 2023; 14:1283539. [PMID: 38149095 PMCID: PMC10749950 DOI: 10.3389/fendo.2023.1283539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Gestational diabetes (GDM) is one of the common complications of female pregnancy, which seriously affects the health of mothers and their offspring. So far, the etiology has not been fully clarified. Methods A case-control study was conducted to clarify the relationship between Erb-b2 receptor tyrosine kinase 4 (ERBB4) functional tag genetic variants (rs1595064, rs1595065, rs1595066 and rs6719645) and the risk of GDM. Associations between variants and GDM risk were evaluated with the odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Subsequently, the false-positive reporting probability (FPRP), multi-factor dimension reduction (MDR) and bioinformatics analysis were adopted to confirm the significant associations. A nomogram model was constructed to predict the risk of GDM. Results Association analysis demonstrated that rs1595066 TT genotype performed a protective effect on GDM risk among all subjects (TT vs. CC: adjusted OR = 0.60, 95% CI = 0.38 - 0.94, P = 0.026; TT vs. CC/CT: adjusted OR = 0.61, 95% CI = 0.40 - 0.95, P = 0.027). Meanwhile, stratified analysis showed that rs1595066 TT can also reduce the GDM risk in age > 30.09 years old, pre-pregnancy BMI > 22.23 Kg/m2, SBP ≤ 110.08 mmHg, etc subgroups. Interactions between rs1595066 and DBP (P interaction = 0.01), FPG (P interaction < 0.001) and HbA1c (P interaction < 0.001) were detected. The FPRP analysis confirmed that association between rs1595066 and GDM risk in subjects of FPG < 4.79 mmol/L (P = 0.199) is true. The MDR analysis showed that rs1595066 was the best single locus model while the 4-loci model was the best multiple factors model to predict GDM risk. Functional prediction revealed that rs1595066 may disturb the stability of miRNA-mRNA binding. The predictive nomogram model has a well consistence and acceptable discriminative ability with a diagnosed AUC of 0.813. Discussion ERBB4 variants can change an individual's susceptibility to GDM via the interaction of gene-gene, gene-environment and changes in the regulatory effects of miRNAs on ERBB4 expression.
Collapse
Affiliation(s)
- Ruiqi Li
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| | - Yukun Wang
- Scientific Experiment Center, Guilin Medical University, Guilin, China
| | - Lin Yang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| | - Ping Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Gongchen Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| | - Qiulian Liang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| | - Xiangyuan Yu
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| |
Collapse
|
12
|
Brossard M, Paterson AD, Espin-Garcia O, Craiu RV, Bull SB. Characterization of direct and/or indirect genetic associations for multiple traits in longitudinal studies of disease progression. Genetics 2023; 225:iyad119. [PMID: 37369448 DOI: 10.1093/genetics/iyad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
When quantitative longitudinal traits are risk factors for disease progression and subject to random biological variation, joint model analysis of time-to-event and longitudinal traits can effectively identify direct and/or indirect genetic association of single nucleotide polymorphisms (SNPs) with time-to-event. We present a joint model that integrates: (1) a multivariate linear mixed model describing trajectories of multiple longitudinal traits as a function of time, SNP effects, and subject-specific random effects and (2) a frailty Cox survival model that depends on SNPs, longitudinal trajectory effects, and subject-specific frailty accounting for dependence among multiple time-to-event traits. Motivated by complex genetic architecture of type 1 diabetes complications (T1DC) observed in the Diabetes Control and Complications Trial (DCCT), we implement a 2-stage approach to inference with bootstrap joint covariance estimation and develop a hypothesis testing procedure to classify direct and/or indirect SNP association with each time-to-event trait. By realistic simulation study, we show that joint modeling of 2 time-to-T1DC (retinopathy and nephropathy) and 2 longitudinal risk factors (HbA1c and systolic blood pressure) reduces estimation bias in genetic effects and improves classification accuracy of direct and/or indirect SNP associations, compared to methods that ignore within-subject risk factor variability and dependence among longitudinal and time-to-event traits. Through DCCT data analysis, we demonstrate feasibility for candidate SNP modeling and quantify effects of sample size and Winner's curse bias on classification for 2 SNPs identified as having indirect associations with time-to-T1DC traits. Joint analysis of multiple longitudinal and multiple time-to-event traits provides insight into complex traits architecture.
Collapse
Affiliation(s)
- Myriam Brossard
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto M5T 3L9, Ontario, Canada
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto M5G 1X8, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto M5T 3M7, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto M5T 3M7, Ontario, Canada
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto M5G 2C1, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Toronto M5S 3G3, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London N6A 5C1, Ontario, Canada
| | - Radu V Craiu
- Department of Statistical Sciences, University of Toronto, Toronto M5S 3G3, Ontario, Canada
| | - Shelley B Bull
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto M5T 3L9, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto M5T 3M7, Ontario, Canada
| |
Collapse
|
13
|
Kleibert M, Zygmunciak P, Łakomska K, Mila K, Zgliczyński W, Mrozikiewicz-Rakowska B. Insight into the Molecular Mechanism of Diabetic Kidney Disease and the Role of Metformin in Its Pathogenesis. Int J Mol Sci 2023; 24:13038. [PMID: 37685845 PMCID: PMC10487922 DOI: 10.3390/ijms241713038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.
Collapse
Affiliation(s)
- Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemysław Zygmunciak
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Klaudia Łakomska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Klaudia Mila
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| |
Collapse
|
14
|
Takeo M, Toyoshima KE, Fujimoto R, Iga T, Takase M, Ogawa M, Tsuji T. Cyclical dermal micro-niche switching governs the morphological infradian rhythm of mouse zigzag hair. Nat Commun 2023; 14:4478. [PMID: 37542032 PMCID: PMC10403492 DOI: 10.1038/s41467-023-39605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
Biological rhythms are involved in almost all types of biological processes, not only physiological processes but also morphogenesis. Currently, how periodic morphological patterns of tissues/organs in multicellular organisms form is not fully understood. Here, using mouse zigzag hair, which has 3 bends, we found that a change in the combination of hair progenitors and their micro-niche and subsequent bend formation occur every three days. Chimeric loss-of-function and gain-of-function of Ptn and Aff3, which are upregulated immediately before bend formation, resulted in defects in the downward movement of the micro-niche and the rhythm of bend formation in an in vivo hair reconstitution assay. Our study demonstrates the periodic change in the combination between progenitors and micro-niche, which is vital for the unique infradian rhythm.
Collapse
Affiliation(s)
- Makoto Takeo
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Koh-Ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
- OrganTech Inc., Tokyo, 104-0028, Japan
| | - Riho Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan
| | - Tomoyo Iga
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Miki Takase
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | | | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.
- OrganTech Inc., Tokyo, 104-0028, Japan.
| |
Collapse
|
15
|
Fang J, Song K, Zhang D, Liang Y, Zhao H, Jin J, He Q. Coffee intake and risk of diabetic nephropathy: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1169933. [PMID: 37469984 PMCID: PMC10352828 DOI: 10.3389/fendo.2023.1169933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Rationale and objective A causal relationship concerning coffee intake and diabetic nephropathy (DN) is controversial. We conducted a Mendelian randomization study to assess the causal nature of these associations. Methods 40 independent single nucleotide polymorphisms (SNPs) associated with coffee intake were selected from the UK Biobank study. Summary-level data for diabetic nephropathy were obtained from publicly available genome-wide association studies (GWAS) and the FinnGen consortium. Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were used to examine a causal association. Sensitivity analyses included Cochran's Q test, the intercept of MR-Egger, MR-PRESSO, and the Outlier method. Leave-One-Out sensitivity analyses were also conducted to reduce the heterogeneity. Results Our current study demonstrated positive associations of genetically predicted coffee intake with diabetic nephropathy (OR=1.939; P = 0.045 and type 2 diabetes with renal complications (OR = 2.787, P= 0.047). These findings were robust across several sensitivity analyses. Conclusions This study found a positive correlation between coffee consumption and the risk of diabetic nephropathy using genetic data. For a more accurate and trustworthy conclusion, subgroup analysis on coffee intake, including preparing method, variety of coffee, and quantity, is required.
Collapse
Affiliation(s)
- Jiaxi Fang
- Zhejiang Provincial People’s Hospital, Qingdao University, Hangzhou, Zhejiang, China
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kai Song
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Di Zhang
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Liang
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huan Zhao
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Sandholm N, Dahlström EH, Groop PH. Genetic and epigenetic background of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1163001. [PMID: 37324271 PMCID: PMC10262849 DOI: 10.3389/fendo.2023.1163001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Hill C, Duffy S, Kettyle LM, McGlynn L, Sandholm N, Salem RM, Thompson A, Swan EJ, Kilner J, Rossing P, Shiels PG, Lajer M, Groop PH, Maxwell AP, McKnight AJ. Differential Methylation of Telomere-Related Genes Is Associated with Kidney Disease in Individuals with Type 1 Diabetes. Genes (Basel) 2023; 14:genes14051029. [PMID: 37239390 DOI: 10.3390/genes14051029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) represents a major global health problem. Accelerated ageing is a key feature of DKD and, therefore, characteristics of accelerated ageing may provide useful biomarkers or therapeutic targets. Harnessing multi-omics, features affecting telomere biology and any associated methylome dysregulation in DKD were explored. Genotype data for nuclear genome polymorphisms in telomere-related genes were extracted from genome-wide case-control association data (n = 823 DKD/903 controls; n = 247 end-stage kidney disease (ESKD)/1479 controls). Telomere length was established using quantitative polymerase chain reaction. Quantitative methylation values for 1091 CpG sites in telomere-related genes were extracted from epigenome-wide case-control association data (n = 150 DKD/100 controls). Telomere length was significantly shorter in older age groups (p = 7.6 × 10-6). Telomere length was also significantly reduced (p = 6.6 × 10-5) in DKD versus control individuals, with significance remaining after covariate adjustment (p = 0.028). DKD and ESKD were nominally associated with telomere-related genetic variation, with Mendelian randomisation highlighting no significant association between genetically predicted telomere length and kidney disease. A total of 496 CpG sites in 212 genes reached epigenome-wide significance (p ≤ 10-8) for DKD association, and 412 CpG sites in 193 genes for ESKD. Functional prediction revealed differentially methylated genes were enriched for Wnt signalling involvement. Harnessing previously published RNA-sequencing datasets, potential targets where epigenetic dysregulation may result in altered gene expression were revealed, useful as potential diagnostic and therapeutic targets for intervention.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Laura M Kettyle
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast BT9 7AE, UK
| | - Liane McGlynn
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Thompson
- School of Medicine, The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elizabeth J Swan
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Jill Kilner
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Peter Rossing
- Nordsjaellands Hospital, Hilleroed, Denmark and Health, Aarhus University, 8000 Aarhus, Denmark
- Steno Diabetes Center, 2730 Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Paul G Shiels
- School of Molecular Biosciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Lajer
- Steno Diabetes Center, 2730 Gentofte, Denmark
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
18
|
Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J Diabetes Investig 2023; 14:503-515. [PMID: 36639962 PMCID: PMC10034958 DOI: 10.1111/jdi.13970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes results from a complex interaction between genetic and environmental factors. Precision medicine for type 2 diabetes using genetic data is expected to predict the risk of developing diabetes and complications and to predict the effects of medications and life-style intervention more accurately for individuals. Genome-wide association studies (GWAS) have been conducted in European and Asian populations and new genetic loci have been identified that modulate the risk of developing type 2 diabetes. Novel loci were discovered by GWAS in diabetic complications with increasing sample sizes. Large-scale genome-wide association analysis and polygenic risk scores using biobank information is making it possible to predict the development of type 2 diabetes. In the ADVANCE clinical trial of type 2 diabetes, a multi-polygenic risk score was useful to predict diabetic complications and their response to treatment. Proteomics and metabolomics studies have been conducted and have revealed the associations between type 2 diabetes and inflammatory signals and amino acid synthesis. Using multi-omics analysis, comprehensive molecular mechanisms have been elucidated to guide the development of targeted therapy for type 2 diabetes and diabetic complications.
Collapse
Affiliation(s)
- Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023; 133:165654. [PMID: 36787250 PMCID: PMC9927939 DOI: 10.1172/jci165654] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Kidney disease is a major driver of mortality among patients with diabetes and diabetic kidney disease (DKD) is responsible for close to half of all chronic kidney disease cases. DKD usually develops in a genetically susceptible individual as a result of poor metabolic (glycemic) control. Molecular and genetic studies indicate the key role of podocytes and endothelial cells in driving albuminuria and early kidney disease in diabetes. Proximal tubule changes show a strong association with the glomerular filtration rate. Hyperglycemia represents a key cellular stress in the kidney by altering cellular metabolism in endothelial cells and podocytes and by imposing an excess workload requiring energy and oxygen for proximal tubule cells. Changes in metabolism induce early adaptive cellular hypertrophy and reorganization of the actin cytoskeleton. Later, mitochondrial defects contribute to increased oxidative stress and activation of inflammatory pathways, causing progressive kidney function decline and fibrosis. Blockade of the renin-angiotensin system or the sodium-glucose cotransporter is associated with cellular protection and slowing kidney function decline. Newly identified molecular pathways could provide the basis for the development of much-needed novel therapeutics.
Collapse
Affiliation(s)
- Samer Mohandes
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Khurana I, Kaipananickal H, Maxwell S, Birkelund S, Syreeni A, Forsblom C, Okabe J, Ziemann M, Kaspi A, Rafehi H, Jørgensen A, Al-Hasani K, Thomas MC, Jiang G, Luk AO, Lee HM, Huang Y, Thewjitcharoen Y, Nakasatien S, Himathongkam T, Fogarty C, Njeim R, Eid A, Hansen TW, Tofte N, Ottesen EC, Ma RC, Chan JC, Cooper ME, Rossing P, Groop PH, El-Osta A. Reduced methylation correlates with diabetic nephropathy risk in type 1 diabetes. J Clin Invest 2023; 133:160959. [PMID: 36633903 PMCID: PMC9927943 DOI: 10.1172/jci160959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.
Collapse
Affiliation(s)
- Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sørine Birkelund
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haloom Rafehi
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anne Jørgensen
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Merlin C. Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Andrea O.Y. Luk
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | | | | | - Christopher Fogarty
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Nete Tofte
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Ronald C.W. Ma
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mark E. Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per-Henrik Groop
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark.,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Smyth LJ, Dahlström EH, Syreeni A, Kerr K, Kilner J, Doyle R, Brennan E, Nair V, Fermin D, Nelson RG, Looker HC, Wooster C, Andrews D, Anderson K, McKay GJ, Cole JB, Salem RM, Conlon PJ, Kretzler M, Hirschhorn JN, Sadlier D, Godson C, Florez JC, Forsblom C, Maxwell AP, Groop PH, Sandholm N, McKnight AJ. Epigenome-wide meta-analysis identifies DNA methylation biomarkers associated with diabetic kidney disease. Nat Commun 2022; 13:7891. [PMID: 36550108 PMCID: PMC9780337 DOI: 10.1038/s41467-022-34963-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.
Collapse
Affiliation(s)
- Laura J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Katie Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jill Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Viji Nair
- Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Damian Fermin
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Christopher Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kerry Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Gareth J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital and Department of Medicine Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel N Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alexander P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
22
|
Mohammedi K, Marre M, Hadjadj S, Potier L, Velho G. Redox Genetic Risk Score and the Incidence of End-Stage Kidney Disease in People with Type 1 Diabetes. Cells 2022; 11:cells11244131. [PMID: 36552894 PMCID: PMC9777489 DOI: 10.3390/cells11244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
End-stage kidney disease (ESKD) is a multifactorial condition influenced by genetic background, but the extent to which a genetic risk score (GRS) improves ESKD prediction is unknown. We built a redox GRS on the base of previous association studies (six polymorphisms from six redox genes) and tested its relationship with ESKD in three cohorts of people with type 1 diabetes. Among 1012 participants, ESKD (hemodialysis requirement, kidney transplantation, eGFR < 15 mL/min/1.73 m2) occurred in 105 (10.4%) during a 14-year follow-up. High redox GRS was associated with increased ESKD risk (adjusted HR for the upper versus the lowest GRS tertile: 2.60 (95% CI, 1.51-4.48), p = 0.001). Each additional risk-allele was associated with a 20% increased risk of ESKD (95% CI, 8-33, p < 0.0001). High GRS yielded a relevant population attributable fraction (30%), but only a marginal enhancement in c-statistics index (0.928 [0.903-0.954]) over clinical factors 0.921 (0.892-0.950), p = 0.04). This is the first report of an independent association between redox GRS and increased risk of ESKD in type 1 diabetes. Our results do not support the use of this GRS in clinical practice but provide new insights into the involvement of oxidative stress genetic factors in ESKD risk in type 1 diabetes.
Collapse
Affiliation(s)
- Kamel Mohammedi
- Centre Hospitalier de Bordeaux, Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, 33604 Pessac, France
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON L8S 4L8, Canada
- Correspondence:
| | - Michel Marre
- Institut Necker-Enfants Malades, INSERM, Université de Paris, 75013 Paris, France
- Clinique Ambroise Paré, 92200 Neuilly-sur-Seine, France
| | - Samy Hadjadj
- Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, 44109 Nantes, France
| | - Louis Potier
- Institut Necker-Enfants Malades, INSERM, Université de Paris, 75013 Paris, France
- Clinique Ambroise Paré, 92200 Neuilly-sur-Seine, France
- Service d’Endocrinologie Diabétologie Nutrition, Hôpital Bichat, AP-HP, 75013 Paris, France
| | - Gilberto Velho
- Institut Necker-Enfants Malades, INSERM, Université de Paris, 75013 Paris, France
| |
Collapse
|
23
|
Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M, Zhang S, Zhang Y, Bi J, Yao J, He M. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17039-17051. [PMID: 36374530 DOI: 10.1021/acs.est.2c04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is associated with blood lipids in adults, but the underlying mechanisms remain unclear. This pilot study aimed to investigate the associations between PFOA or PFOS and epigenome-wide DNA methylation and assess the mediating effect of DNA methylation on the PFOA/PFOS-blood lipid association. We measured plasma PFOA/PFOS and leukocyte DNA methylation in 98 patients enrolled from the hospital between October 2018 and August 2019. The median plasma PFOA/PFOS levels were 0.85 and 2.29 ng/mL. Plasma PFOA and PFOS levels were significantly associated with elevated total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels. There were 63/87 CpG positions and 8/11 differentially methylated regions (DMRs) associated with plasma PFOA/PFOS levels, respectively. In addition, 5 CpG positions (annotated to AFF3, CREB5, NRG2, USF2, and intergenic region) and one DMR annotated to IRF6 may mediate the association between plasma PFOA/PFOS and LDL levels (mediated proportion from 7.29 to 46.77%); two CpG positions may mediate the association between plasma PFOA/PFOS and TC levels (annotated to CREB5 and USF2, mediated proportion is around 30%). The data suggest that PFOA/PFOS exposure alters DNA methylation. More importantly, the association of PFOA/PFOS with lipid indicators was partly mediated by DNA methylation changes in lipid metabolism-related genes.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Mulatibieke Keerman
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
24
|
Yavuz S, Pucholt P, Sandling JK, Bianchi M, Leonard D, Bolin K, Imgenberg-Kreuz J, Eloranta ML, Kozyrev SV, Lanata CM, Jönsen A, Bengtsson AA, Sjöwall C, Svenungsson E, Gunnarsson I, Rantapää-Dahlqvist S, Nititham J, Criswell LA, Lindblad-Toh K, Rönnblom L. Mer-tyrosine kinase: a novel susceptibility gene for SLE related end-stage renal disease. Lupus Sci Med 2022; 9:e000752. [PMID: 36332927 PMCID: PMC9639142 DOI: 10.1136/lupus-2022-000752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Lupus nephritis (LN) is a common and severe manifestation of SLE. The genetic risk for nephritis and progression to end-stage renal disease (ESRD) in patients with LN remains unclear. Herein, we aimed to identify novel genetic associations with LN, focusing on subphenotypes and ESRD. METHODS We analysed genomic data on 958 patients with SLE (discovery cohort: LN=338) with targeted sequencing data from 1832 immunological pathway genes. We used an independent multiethnic cohort comprising 1226 patients with SLE (LN=603) as a replication dataset. Detailed functional annotation and functional epigenomic enrichment analyses were applied to predict functional effects of the candidate variants. RESULTS A genetic variant (rs56097910) within the MERTK gene was associated with ESRD in both cohorts, meta-analysis OR=5.4 (2.8 to 10.6); p=1.0×10-6. We observed decreased methylation levels in peripheral blood cells from SLE patients with ESRD, compared with patients without renal SLE (p=2.7×10-4), at one CpG site (cg16333401) in close vicinity to the transcription start site of MERTK and located in a DNAse hypersensitivity region in T and B cells. Rs56097910 is linked to altered MERTK expression in kidney tissue in public eQTL databases. Two loci were replicated for association with proliferative LN: PRDM1 (rs6924535, pmeta=1.6×10-5, OR=0.58) and APOA1BP (NAXE) (rs942960, pmeta=1.2×10-5, OR=2.64). CONCLUSION We identified a novel genetic risk locus, MERTK, associated with SLE-ESRD using the data from two large SLE cohorts. Through DNA methylation analysis and functional annotation, we showed that the risk could be mediated through regulation of gene expression. Our results suggest that variants in the MERTK gene are important for the risk of developing SLE-ESRD and suggest a role for PRDM1 and APOA1BP in proliferative LN.
Collapse
Affiliation(s)
- Sule Yavuz
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Bolin
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juliana Imgenberg-Kreuz
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cristina M Lanata
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Lund, Sweden
- Rheumatology, Skåne University Hospital Lund, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Lund, Sweden
- Rheumatology, Skåne University Hospital Lund, Lund, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Östergötland, Sweden
| | - Elisabet Svenungsson
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Department of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Joanne Nititham
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lindsey A Criswell
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute, Cambridge, Massachusetts, USA
| | - Lars Rönnblom
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Sandholm N, Cole JB, Nair V, Sheng X, Liu H, Ahlqvist E, van Zuydam N, Dahlström EH, Fermin D, Smyth LJ, Salem RM, Forsblom C, Valo E, Harjutsalo V, Brennan EP, McKay GJ, Andrews D, Doyle R, Looker HC, Nelson RG, Palmer C, McKnight AJ, Godson C, Maxwell AP, Groop L, McCarthy MI, Kretzler M, Susztak K, Hirschhorn JN, Florez JC, Groop PH. Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia 2022; 65:1495-1509. [PMID: 35763030 PMCID: PMC9345823 DOI: 10.1007/s00125-022-05735-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Viji Nair
- Michigan Medicine, Ann Arbor, MI, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Natalie van Zuydam
- Pat Macpherson Centre for Pharmacogenetics & Pharmacogenomics, Cardiovascular & Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Laura J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Gareth J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Colin Palmer
- Pat Macpherson Centre for Pharmacogenetics & Pharmacogenomics, Cardiovascular & Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University and Skåne University Hospital, Malmö, Sweden
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joel N Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA.
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Massignam ET, Dieter C, Assmann TS, Duarte GCK, Bauer AC, Canani LH, Crispim D. The rs705708 A allele of the ERBB3 gene is associated with lower prevalence of diabetic retinopathy and arterial hypertension and with improved renal function in type 1 diabetic patients. Microvasc Res 2022; 143:104378. [PMID: 35594935 DOI: 10.1016/j.mvr.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The Erb-b2 receptor tyrosine kinase 3 (ERBB3) is involved in autoimmune processes related to type 1 diabetes mellitus (T1DM) pathogenesis. Accordingly, some studies have suggested that single nucleotide polymorphisms (SNPs) in the ERBB3 gene confer risk for T1DM. Proliferation-associated protein 2G4 (PA2G4) is another candidate gene for this disease because it regulates cell proliferation and adaptive immunity. Moreover, PA2G4 regulates ERBB3. To date, no study has evaluated the association of PA2G4 SNPs and T1DM. AIM To evaluate the association of ERBB3 rs705708 (G/A) and PA2G4 rs773120 (C/T) SNPs with T1DM and its clinical and laboratory characteristics. METHODS This case-control study included 976 white subjects from Southern Brazil, categorized into 501 cases with T1DM and 475 non-diabetic controls. The ERBB3 and PA2G4 SNPs were genotyped by allelic discrimination-real-time PCR. RESULTS ERBB3 rs705708 and PA2G4 rs773120 SNPs were not associated with T1DM considering different inheritance models and also when controlling for covariables. However, T1DM patients carrying the ERBB3 rs705708 A allele developed T1DM at an earlier age vs. G/G patients. Interestingly, in the T1DM group, the rs705708 A allele was associated with lower prevalence of diabetic retinopathy and arterial hypertension as well as with improved renal function (higher estimated glomerular filtration rate and lower urinary albumin excretion levels) compared to G/G patients. CONCLUSIONS Although no association was observed between the ERBB3 rs705708 and PA2G4 rs773120 SNPs and T1DM, the rs705708 A allele was associated, for the first time in literature, with lower prevalence of diabetic retinopathy and arterial hypertension. Additionally, this SNP was associated with improved renal function.
Collapse
Affiliation(s)
- Eloísa Toscan Massignam
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taís Silveira Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Coutinho Kullmann Duarte
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea Carla Bauer
- Nephrology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
27
|
Mohamed SA, Fernadez-Tajes J, Franks PW, Bennet L. GWAS in people of Middle Eastern descent reveals a locus protective of kidney function-a cross-sectional study. BMC Med 2022; 20:76. [PMID: 35227251 PMCID: PMC8886846 DOI: 10.1186/s12916-022-02267-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Type 2 diabetes is one of the leading causes of chronic kidney failure, which increases globally and represents a significant threat to public health. People from the Middle East represent one of the largest immigrant groups in Europe today. Despite poor glucose regulation and high risk for early-onset insulin-deficient type 2 diabetes, they have better kidney function and lower rates of all-cause and cardiovascular-specific mortality compared with people of European ancestry. Here, we assessed the genetic basis of estimated glomerular filtration rate (eGFR) and other metabolic traits in people of Iraqi ancestry living in southern Sweden. METHODS Genome-wide association study (GWAS) analyses were performed in 1201 Iraqi-born residents of the city of Malmö for eGFR and ten other metabolic traits using linear mixed-models to account for family structure. RESULTS The strongest association signal was detected for eGFR in CST9 (rs13037490; P value = 2.4 × 10-13), a locus previously associated with cystatin C-based eGFR; importantly, the effect (major) allele here contrasts the effect (minor) allele in other populations, suggesting favorable selection at this locus. Additional novel genome-wide significant loci for eGFR (ERBB4), fasting glucose (CAMTA1, NDUFA10, TRIO, WWC1, TRAPPC9, SH3GL2, ABCC11), quantitative insulin-sensitivity check index (METTL16), and HbA1C (CAMTA1, ME1, PAK1, RORA) were identified. CONCLUSIONS The genetic effects discovered here may help explain why people from the Middle East have better kidney function than those of European descent. Genetic predisposition to preserved kidney function may also underlie the observed survival benefits in Middle Eastern immigrants with type 2 diabetes.
Collapse
Affiliation(s)
- Siham A Mohamed
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Juan Fernadez-Tajes
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden. .,Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Clinical Research and Trial Center, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
28
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Saracyn M, Kisiel B, Franaszczyk M, Brodowska-Kania D, Żmudzki W, Małecki R, Niemczyk L, Dyrla P, Kamiński G, Płoski R, Niemczyk S. Diabetic kidney disease: Are the reported associations with single-nucleotide polymorphisms disease-specific? World J Diabetes 2021; 12:1765-1777. [PMID: 34754377 PMCID: PMC8554375 DOI: 10.4239/wjd.v12.i10.1765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genetic backgrounds of diabetic kidney disease (DKD) and end-stage kidney disease (ESKD) have not been fully elucidated. AIM To examine the individual and cumulative effects of single-nucleotide polymorphisms (SNPs) previously associated with DKD on the risk for ESKD of diabetic etiology and to determine if any associations observed were specific for DKD. METHODS Fourteen SNPs were genotyped in hemodialyzed 136 patients with diabetic ESKD (DKD group) and 121 patients with non-diabetic ESKD (NDKD group). Patients were also re-classified on the basis of the primary cause of chronic kidney disease (CKD). The distribution of alleles was compared between diabetic and non-diabetic groups as well as between different sub-phenotypes. The weighted multilocus genetic risk score (GRS) was calculated to estimate the cumulative risk conferred by all SNPs. The GRS distribution was then compared between the DKD and NDKD groups as well as in the groups according to the primary cause of CKD. RESULTS One SNP (rs841853; SLC2A1) showed a nominal association with DKD (P = 0.048; P > 0.05 after Bonferroni correction). The GRS was higher in the DKD group (0.615 ± 0.260) than in the NDKD group (0.590 ± 0.253), but the difference was not significant (P = 0.46). The analysis of associations between GRS and individual factors did not show any significant correlation. However, the GRS was significantly higher in patients with glomerular disease than in those with tubulointerstitial disease (P = 0.014) and in those with a combined group (tubulointerstitial, vascular, and cystic and congenital disease) (P = 0.018). CONCLUSION Our results suggest that selected SNPs that were previously associated with DKD may not be specific for DKD and may confer risk for CKD of different etiology, particularly those affecting renal glomeruli.
Collapse
Affiliation(s)
- Marek Saracyn
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Bartłomiej Kisiel
- Clinical Research Support Center, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Maria Franaszczyk
- Department of Medical Biology, Molecular Biology Laboratory, Institute of Cardiology, Warsaw 04-628, Poland
| | - Dorota Brodowska-Kania
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Wawrzyniec Żmudzki
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Robert Małecki
- Department of Nephrology, Międzyleski Specialist Hospital in Warsaw, Warsaw 04-749, Poland
| | - Longin Niemczyk
- Department of Nephrology, Dialysis and Internal Diseases, Warsaw Medical University, Warsaw 02-097, Poland
| | - Przemysław Dyrla
- Department of Gastroenterology, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Grzegorz Kamiński
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw 02-106, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
| |
Collapse
|
30
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
31
|
Diabetic nephropathy: A twisted thread to unravel. Life Sci 2021; 278:119635. [PMID: 34015285 DOI: 10.1016/j.lfs.2021.119635] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN), a persistent microvascular problem of diabetes mellitus is described as an elevated level of albumin excretion in urine and impaired renal activity. The morbidity and mortality of type-1 diabetics and type-2 diabetics due to end stage renal disease is also a result of the increased prevalence of DN. DN typically occurs as a consequence of an association among metabolic and hemodynamic variables, activating specific pathways leading to renal injury. According to current interventions, intensive glucose regulation decreases the threat of DN incidence and growth, and also suppressing the renin-angiotensin system (RAS) is a significant goal for hemodynamic and metabolism-related deformities in DN. However, the pathogenesis of DN is multifactorial so novel approaches other than glucose and blood pressure control are required for treatment. This review briefly summarizes the reported pathogenesis of DN, current interventions for its treatment, and possible novel interventions to unweave the thread of DN.
Collapse
|
32
|
Smyth LJ, Kilner J, Nair V, Liu H, Brennan E, Kerr K, Sandholm N, Cole J, Dahlström E, Syreeni A, Salem RM, Nelson RG, Looker HC, Wooster C, Anderson K, McKay GJ, Kee F, Young I, Andrews D, Forsblom C, Hirschhorn JN, Godson C, Groop PH, Maxwell AP, Susztak K, Kretzler M, Florez JC, McKnight AJ. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: an exploratory study. Clin Epigenetics 2021; 13:99. [PMID: 33933144 PMCID: PMC8088646 DOI: 10.1186/s13148-021-01081-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A subset of individuals with type 1 diabetes mellitus (T1DM) are predisposed to developing diabetic kidney disease (DKD), the most common cause globally of end-stage kidney disease (ESKD). Emerging evidence suggests epigenetic changes in DNA methylation may have a causal role in both T1DM and DKD. The aim of this exploratory investigation was to assess differences in blood-derived DNA methylation patterns between individuals with T1DM-ESKD and individuals with long-duration T1DM but no evidence of kidney disease upon repeated testing to identify potential blood-based biomarkers. Blood-derived DNA from individuals (107 cases, 253 controls and 14 experimental controls) were bisulphite treated before DNA methylation patterns from both groups were generated and analysed using Illumina's Infinium MethylationEPIC BeadChip arrays (n = 862,927 sites). Differentially methylated CpG sites (dmCpGs) were identified (false discovery rate adjusted p ≤ × 10-8 and fold change ± 2) by comparing methylation levels between ESKD cases and T1DM controls at single site resolution. Gene annotation and functionality was investigated to enrich and rank methylated regions associated with ESKD in T1DM. RESULTS Top-ranked genes within which several dmCpGs were located and supported by functional data with methylation look-ups in other cohorts include: AFF3, ARID5B, CUX1, ELMO1, FKBP5, HDAC4, ITGAL, LY9, PIM1, RUNX3, SEPTIN9 and UPF3A. Top-ranked enrichment pathways included pathways in cancer, TGF-β signalling and Th17 cell differentiation. CONCLUSIONS Epigenetic alterations provide a dynamic link between an individual's genetic background and their environmental exposures. This robust evaluation of DNA methylation in carefully phenotyped individuals has identified biomarkers associated with ESKD, revealing several genes and implicated key pathways associated with ESKD in individuals with T1DM.
Collapse
Affiliation(s)
- L J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| | - J Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - V Nair
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - H Liu
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - K Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Cole
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - E Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - A Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R M Salem
- Department of Family Medicine and Public Health, UC San Diego, San Diego, CA, USA
| | - R G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - H C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - C Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - K Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - G J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - F Kee
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - I Young
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - D Andrews
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - C Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J N Hirschhorn
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - C Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - P H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - K Susztak
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - J C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - A J McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
33
|
Gorski M, Jung B, Li Y, Matias-Garcia PR, Wuttke M, Coassin S, Thio CHL, Kleber ME, Winkler TW, Wanner V, Chai JF, Chu AY, Cocca M, Feitosa MF, Ghasemi S, Hoppmann A, Horn K, Li M, Nutile T, Scholz M, Sieber KB, Teumer A, Tin A, Wang J, Tayo BO, Ahluwalia TS, Almgren P, Bakker SJL, Banas B, Bansal N, Biggs ML, Boerwinkle E, Bottinger EP, Brenner H, Carroll RJ, Chalmers J, Chee ML, Chee ML, Cheng CY, Coresh J, de Borst MH, Degenhardt F, Eckardt KU, Endlich K, Franke A, Freitag-Wolf S, Gampawar P, Gansevoort RT, Ghanbari M, Gieger C, Hamet P, Ho K, Hofer E, Holleczek B, Xian Foo VH, Hutri-Kähönen N, Hwang SJ, Ikram MA, Josyula NS, Kähönen M, Khor CC, Koenig W, Kramer H, Krämer BK, Kühnel B, Lange LA, Lehtimäki T, Lieb W, Loos RJF, Lukas MA, Lyytikäinen LP, Meisinger C, Meitinger T, Melander O, Milaneschi Y, Mishra PP, Mononen N, Mychaleckyj JC, Nadkarni GN, Nauck M, Nikus K, Ning B, Nolte IM, O'Donoghue ML, Orho-Melander M, Pendergrass SA, Penninx BWJH, Preuss MH, Psaty BM, Raffield LM, Raitakari OT, Rettig R, Rheinberger M, Rice KM, Rosenkranz AR, Rossing P, Rotter JI, Sabanayagam C, Schmidt H, Schmidt R, Schöttker B, Schulz CA, Sedaghat S, Shaffer CM, Strauch K, Szymczak S, Taylor KD, Tremblay J, Chaker L, van der Harst P, van der Most PJ, Verweij N, Völker U, Waldenberger M, Wallentin L, Waterworth DM, White HD, Wilson JG, Wong TY, Woodward M, Yang Q, Yasuda M, Yerges-Armstrong LM, Zhang Y, Snieder H, Wanner C, Böger CA, Köttgen A, Kronenberg F, Pattaro C, Heid IM. Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney Int 2021; 99:926-939. [PMID: 33137338 PMCID: PMC8010357 DOI: 10.1016/j.kint.2020.09.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
Collapse
Affiliation(s)
- Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany; Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Pamela R Matias-Garcia
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Stefan Coassin
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Veronika Wanner
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Audrey Y Chu
- Genetics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo," Trieste, Italy
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sahar Ghasemi
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Man Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Teresa Nutile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Karsten B Sieber
- Human Genetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA; Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Judy Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Peter Almgren
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Nisha Bansal
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Digital Health Center, Hasso Plattner Institute and University of Potsdam, Potsdam, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Chalmers
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; The George Institute for Global Health, University of Oxford, Oxford, UK; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Miao-Ling Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Martin H de Borst
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-AlbrechtsUniversity of Kiel, Kiel, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karlhans Endlich
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-AlbrechtsUniversity of Kiel, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Piyush Gampawar
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Pavel Hamet
- Montreal University Hospital Research Center, CHUM, Montreal, Quebec, Canada; Medpharmgene, Montreal, Quebec, Canada; CRCHUM, Montreal, Canada
| | - Kevin Ho
- Kidney Health Research Institute (KHRI), Geisinger, Danville, Pennsylvania, USA; Department of Nephrology, Geisinger, Danville, Pennsylvania, USA
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valencia Hui Xian Foo
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland; Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Shih-Jen Hwang
- NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA; The Center for Population Studies, NHLBI, Framingham, Massachusetts, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Navya Shilpa Josyula
- Geisinger Research, Biomedical and Translational Informatics Institute, Rockville, Maryland, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland; Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Holly Kramer
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, USA; Division of Nephrology and Hypertension, Loyola University Chicago, Chicago, Illinois, USA
| | - Bernhard K Krämer
- Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Ann Lukas
- Target Sciences-Genetics, GlaxoSmithKline, Albuquerque, New Mexico, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Epidemiology, Ludwig-Maximilians-Universität München at UNIKA-T Augsburg, Augsburg, Germany
| | - Thomas Meitinger
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, the Netherlands
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Charlottesville, Virginia, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland; Department of Cardiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Boting Ning
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle L O'Donoghue
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA; TIMI Study Group, Boston, Massachusetts, USA
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sarah A Pendergrass
- Geisinger Research, Biomedical and Translational Informatics Institute, Danville, Pennsylvania, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, the Netherlands
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Department of Epidemiology, Department of Health Services, University of Washington, Seattle, Washington, USA; Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland; Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Rainer Rettig
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Myriam Rheinberger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology and Rheumatology, Kliniken Südostbayern, Regensburg, Germany
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Alexander R Rosenkranz
- Department of Internal Medicine, Division of Nephrology, Medical University Graz, Graz, Austria
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Christina-Alexandra Schulz
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christian M Shaffer
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Silke Szymczak
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Johanne Tremblay
- Montreal University Hospital Research Center, CHUM, Montreal, Quebec, Canada; CRCHUM, Montreal, Canada; Medpharmgene, Montreal, Quebec, Canada
| | - Layal Chaker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Durrer Center for Cardiovascular Research, The Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lars Wallentin
- Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | | | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Mark Woodward
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; The George Institute for Global Health, University of Oxford, Oxford, UK; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Masayuki Yasuda
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christoph Wanner
- Division of Nephrology, University Clinic, University of Würzburg, Würzburg, Germany
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology and Rheumatology, Kliniken Südostbayern, Regensburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
34
|
Jung SY. Multi-Omics Data Analysis Uncovers Molecular Networks and Gene Regulators for Metabolic Biomarkers. Biomolecules 2021; 11:biom11030406. [PMID: 33801830 PMCID: PMC8001935 DOI: 10.3390/biom11030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 12/04/2022] Open
Abstract
The insulin-like growth factors (IGFs)/insulin resistance (IR) axis is the major metabolic hormonal pathway mediating the biologic mechanism of several complex human diseases, including type 2 diabetes (T2DM) and cancers. The genomewide association study (GWAS)-based approach has neither fully characterized the phenotype variation nor provided a comprehensive understanding of the regulatory biologic mechanisms. We applied systematic genomics to integrate our previous GWAS data for IGF-I and IR with multi-omics datasets, e.g., whole-blood expression quantitative loci, molecular pathways, and gene network, to capture the full range of genetic functionalities associated with IGF-I/IR and key drivers (KDs) in gene-regulatory networks. We identified both shared (e.g., T2DM, lipid metabolism, and estimated glomerular filtration signaling) and IR-specific (e.g., mechanistic target of rapamycin, phosphoinositide 3-kinases, and erb-b2 receptor tyrosine kinase 4 signaling) molecular biologic processes of IGF-I/IR axis regulation. Next, by using tissue-specific gene–gene interaction networks, we identified both well-established (e.g., IRS1 and IGF1R) and novel (e.g., AKT1, HRAS, and JAK1) KDs in the IGF-I/IR-associated subnetworks. Our results, if validated in additional genomic studies, may provide robust, comprehensive insights into the mechanisms of IGF-I/IR regulation and highlight potential novel genetic targets as preventive and therapeutic strategies for the associated diseases, e.g., T2DM and cancers.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Effect of metabolic genetic variants on long-term disease comorbidity in patients with type 2 diabetes. Sci Rep 2021; 11:2794. [PMID: 33531528 PMCID: PMC7854581 DOI: 10.1038/s41598-021-82276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
Underlying genetic determinants contribute to developing type 2 diabetes (T2D) future diseases. The present study aimed to identify which genetic variants are associated with the incident of the major T2D co-morbid disease. First, we conducted a discovery study by investigating the genetic associations of comorbid diseases within the framework of the Utrecht Cardiovascular Pharmacogenetic studies by turning information of > 25 years follow-up data of 1237 subjects whom were genotyped and included in the discovery study. We performed Cox proportional-hazards regression to examine associations between genetic variants and comorbid diseases including cardiovascular diseases (CVD), chronic eye disease, cancer, neurologic diseases and chronic kidney disease. Secondly, we replicated our findings in two independent cohorts consisting of 1041 subjects. Finally, we performed a meta-analysis by combining the discovery and two replication cohorts. We ascertained 390 (39.7%) incident cases of CVD, 182 (16.2%) of chronic eye disease, 155 (13.8%) of cancer, 31 (2.7%) of neurologic disease and 13 (1.1%) of chronic kidney disease during a median follow-up of 10.2 years. In the discovery study, we identified a total of 39 Single Nucleotide Polymorphisms (SNPs) associated with comorbid diseases. The replication study, confirmed that rs1870849 and rs8051326 may play a role in the incidence of chronic eye disease in T2D patients. Half of patients developed at least one comorbid disease, with CVD occurring most often and earliest followed by chronic eye disease. Further research is needed to confirm the associations of two associated SNPs with chronic eye disease in T2D.
Collapse
|
36
|
Wang J, Xiao M, Wang J, Wang S, Zhang J, Guo Y, Tang Y, Gu J. NRF2-Related Epigenetic Modifications in Cardiac and Vascular Complications of Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:598005. [PMID: 34248833 PMCID: PMC8269153 DOI: 10.3389/fendo.2021.598005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent chronic disease that is accompanied with serious complications, especially cardiac and vascular complications. Thus, there is an urgent need to identify new strategies to treat diabetic cardiac and vascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) has been verified as a crucial target for the prevention and treatment of diabetic complications. The function of NRF2 in the treatment of diabetic complications has been widely reported, but the role of NRF2-related epigenetic modifications remains unclear. The purpose of this review is to summarize the recent advances in targeting NRF2-related epigenetic modifications in the treatment of cardiac and vascular complications associated with DM. We also discuss agonists that could potentially regulate NRF2-associated epigenetic mechanisms. This review provides a better understanding of strategies to target NRF2 to protect against DM-related cardiac and vascular complications.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Zhang
- Department of Cardiology, The First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
37
|
Stone RC, Chen V, Burgess J, Pannu S, Tomic-Canic M. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. Int J Mol Sci 2020; 21:ijms21228590. [PMID: 33202590 PMCID: PMC7698326 DOI: 10.3390/ijms21228590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue, with the shared goal of utilizing genomics to identify the transcriptional networks and biological pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately, successful bench-to-bedside translation of observations from genomic studies will result in the development of novel anti-fibrotic therapeutics that improve functional quality of life for patients and decrease mortality from fibrotic diseases.
Collapse
Affiliation(s)
- Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Correspondence: (R.C.S.); (M.T.-C.)
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
| | - Jamie Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Medical Scientist Training Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sukhmani Pannu
- Department of Dermatology, Tufts Medical Center, Boston, MA 02116, USA;
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (R.C.S.); (M.T.-C.)
| |
Collapse
|
38
|
Smyth LJ, Patterson CC, Swan EJ, Maxwell AP, McKnight AJ. DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA. Front Cell Dev Biol 2020; 8:561907. [PMID: 33178681 PMCID: PMC7593403 DOI: 10.3389/fcell.2020.561907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10–8), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease.
Collapse
Affiliation(s)
- Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | | | - Elizabeth J Swan
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
39
|
Fan L, Gao W, Nguyen BV, Jefferson JR, Liu Y, Fan F, Roman RJ. Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury. Am J Physiol Renal Physiol 2020; 319:F624-F635. [PMID: 32830539 DOI: 10.1152/ajprenal.00239.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported a mutation in γ-adducin (ADD3) was associated with an impaired myogenic response of the afferent arteriole and hypertension-induced chronic kidney disease (CKD) in fawn hooded hypertensive (FHH) rats. However, the mechanisms by which altered renal blood flow (RBF) autoregulation promotes hypertension-induced renal injury remain to be determined. The present study compared the time course of changes in renal hemodynamics and the progression of CKD during the development of DOCA-salt hypertension in FHH 1BN congenic rats [wild-type (WT)] with an intact myogenic response versus FHH 1BN Add3KO (Add3KO) rats, which have impaired myogenic response. RBF was well autoregulated in WT rats but not in Add3KO rats. Glomerular capillary pressure rose by 6 versus 14 mmHg in WT versus Add3KO rats when blood pressure increased from 100 to 150 mmHg. After 1 wk of hypertension, glomerular filtration rate increased by 38% and glomerular nephrin expression decreased by 20% in Add3KO rats. Neither were altered in WT rats. Proteinuria doubled in WT rats versus a sixfold increase in Add3KO rats. The degree of renal injury was greater in Add3KO than WT rats after 3 wk of hypertension. RBF, glomerular filtration rate, and glomerular capillary pressure were lower by 20%, 28%, and 19% in Add3KO rats than in WT rats, which was associated with glomerular matrix expansion and loss of capillary filtration area. The results indicated that impaired RBF autoregulation and eutrophic remodeling of preglomerular arterioles increase the transmission of pressure to glomeruli, which induces podocyte loss and accelerates the progression of CKD in hypertensive Add3KO rats.
Collapse
Affiliation(s)
- Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bond V Nguyen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
40
|
Tziastoudi M, Stefanidis I, Zintzaras E. The genetic map of diabetic nephropathy: evidence from a systematic review and meta-analysis of genetic association studies. Clin Kidney J 2020; 13:768-781. [PMID: 33123356 PMCID: PMC7577775 DOI: 10.1093/ckj/sfaa077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the extensive efforts of scientists, the genetic background of diabetic nephropathy (DN) has not yet been clarified. To elucidate the genetic variants that predispose to the development of DN, we conducted a systematic review and meta-analysis of all available genetic association studies (GAS) of DN. We searched in the Human Genome Epidemiology Navigator (HuGE Navigator) and PubMed for available GAS of DN. The threshold for meta-analysis was three studies per genetic variant. The association between genotype distribution and DN was examined using the generalized linear odds ratio (ORG). For variants with available allele frequencies, the examined model was the allele contrast. The pooled OR was estimated using the DerSimonian and Laird random effects model. The publication bias was assessed with Egger’s test. We performed pathway analysis of significant genes with DAVID 6.7. Genetic data of 606 variants located in 228 genes were retrieved from 360 GASs and were synthesized with meta-analytic methods. ACACB, angiotensin I-converting enzyme (ACE), ADIPOQ, AGT, AGTR1, AKR1B1, APOC1, APOE, ATP1B2, ATP2A3, CARS, CCR5, CGNL1, Carnosine dipeptidase 1 (CNDP1), CYGB-PRCD, EDN1, Engulfment and cell motility 1 (ELMO1), ENPP1, EPO, FLT4, FTO, GLO1, HMGA2, IGF2/INS/TH cluster, interleukin 1B (IL1B), IL8, IL10, KCNQ1, KNG, LOC101927627, Methylenetetrahydrofolate reductase, nitric oxide synthase 3 (NOS3), SET domain containing seven, histone lysine methyltransferase (SETD7), Sirtuin 1 (SIRT1), SLC2A1, SLC2A2, SLC12A3, SLC19A3, TCF7L2, TGFB1, TIMP1, TTC39C, UNC13B, VEGFA, WTAPP1, WWC1 as well as XYLT1 and three intergenic polymorphisms showed significant association with DN. Pathway analysis revealed the overrepresentation of six signalling pathways. The significant findings provide further evidence for genetic factors implication in DN offering new perspectives in discovery of new therapies.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Biomathematics, University of Thessaly, School of Medicine, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, University of Thessaly, School of Medicine, Larissa, Greece.,The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Reckoning the Dearth of Bioinformatics in the Arena of Diabetic Nephropathy (DN)—Need to Improvise. Processes (Basel) 2020. [DOI: 10.3390/pr8070808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diabetic nephropathy (DN) is a recent rising concern amongst diabetics and diabetologist. Characterized by abnormal renal function and ending in total loss of kidney function, this is becoming a lurking danger for the ever increasing population of diabetics. This review touches upon the intensity of this complication and briefly reviews the role of bioinformatics in the area of diabetes. The advances made in the area of DN using proteomic approaches are presented. Compared to the enumerable inputs observed through the use of bioinformatics resources in the area of proteomics and even diabetes, the existing scenario of skeletal application of bioinformatics advances to DN is highlighted and the reasons behind this discussed. As this review highlights, almost none of the well-established tools that have brought breakthroughs in proteomic research have been applied into DN. Laborious, voluminous, cost expensive and time-consuming methodologies and advances in diagnostics and biomarker discovery promised through beckoning bioinformatics mechanistic approaches to improvise DN research and achieve breakthroughs. This review is expected to sensitize the researchers to fill in this gap, exploiting the available inputs from bioinformatics resources.
Collapse
|
42
|
Abstract
Diabetes is one of the fastest growing diseases worldwide, projected to affect 693 million adults by 2045. Devastating macrovascular complications (cardiovascular disease) and microvascular complications (such as diabetic kidney disease, diabetic retinopathy and neuropathy) lead to increased mortality, blindness, kidney failure and an overall decreased quality of life in individuals with diabetes. Clinical risk factors and glycaemic control alone cannot predict the development of vascular complications; numerous genetic studies have demonstrated a clear genetic component to both diabetes and its complications. Early research aimed at identifying genetic determinants of diabetes complications relied on familial linkage analysis suited to strong-effect loci, candidate gene studies prone to false positives, and underpowered genome-wide association studies limited by sample size. The explosion of new genomic datasets, both in terms of biobanks and aggregation of worldwide cohorts, has more than doubled the number of genetic discoveries for both diabetes and diabetes complications. We focus herein on genetic discoveries for diabetes and diabetes complications, empowered primarily through genome-wide association studies, and emphasize the gaps in research for taking genomic discovery to the next level.
Collapse
Affiliation(s)
- Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Epigenetic Regulation of Neuregulin-1 Tunes White Adipose Stem Cell Differentiation. Cells 2020; 9:cells9051148. [PMID: 32392729 PMCID: PMC7290571 DOI: 10.3390/cells9051148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Expansion of subcutaneous adipose tissue by differentiation of new adipocytes has been linked to improvements in metabolic health. However, an expandability limit has been observed wherein new adipocytes cannot be produced, the existing adipocytes become enlarged (hypertrophic) and lipids spill over into ectopic sites. Inappropriate ectopic storage of these surplus lipids in liver, muscle, and visceral depots has been linked with metabolic dysfunction. Here we show that Neuregulin-1 (NRG1) serves as a regulator of adipogenic differentiation in subcutaneous primary human stem cells. We further demonstrate that DNA methylation modulates NRG1 expression in these cells, and a 3-day exposure of stem cells to a recombinant NRG1 peptide fragment is sufficient to reprogram adipogenic cellular differentiation to higher levels. These results define a novel molecular adipogenic rheostat with potential implications for the expansion of adipose tissue in vivo.
Collapse
|
44
|
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2020; 15:327-345. [PMID: 30894700 DOI: 10.1038/s41581-019-0135-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
45
|
Fan F, Geurts AM, Pabbidi MR, Ge Y, Zhang C, Wang S, Liu Y, Gao W, Guo Y, Li L, He X, Lv W, Muroya Y, Hirata T, Prokop J, Booz GW, Jacob HJ, Roman RJ. A Mutation in γ-Adducin Impairs Autoregulation of Renal Blood Flow and Promotes the Development of Kidney Disease. J Am Soc Nephrol 2020; 31:687-700. [PMID: 32029431 DOI: 10.1681/asn.2019080784] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The genes and mechanisms involved in the association between diabetes or hypertension and CKD risk are unclear. Previous studies have implicated a role for γ-adducin (ADD3), a cytoskeletal protein encoded by Add3. METHODS We investigated renal vascular function in vitro and in vivo and the susceptibility to CKD in rats with wild-type or mutated Add3 and in genetically modified rats with overexpression or knockout of ADD3. We also studied glomeruli and primary renal vascular smooth muscle cells isolated from these rats. RESULTS This study identified a K572Q mutation in ADD3 in fawn-hooded hypertensive (FHH) rats-a mutation previously reported in Milan normotensive (MNS) rats that also develop kidney disease. Using molecular dynamic simulations, we found that this mutation destabilizes a critical ADD3-ACTIN binding site. A reduction of ADD3 expression in membrane fractions prepared from the kidney and renal vascular smooth muscle cells of FHH rats was associated with the disruption of the F-actin cytoskeleton. Compared with renal vascular smooth muscle cells from Add3 transgenic rats, those from FHH rats had elevated membrane expression of BKα and BK channel current. FHH and Add3 knockout rats exhibited impairments in the myogenic response of afferent arterioles and in renal blood flow autoregulation, which were rescued in Add3 transgenic rats. We confirmed these findings in a genetic complementation study that involved crossing FHH and MNS rats that share the ADD3 mutation. Add3 transgenic rats showed attenuation of proteinuria, glomerular injury, and kidney fibrosis with aging and mineralocorticoid-induced hypertension. CONCLUSIONS This is the first report that a mutation in ADD3 that alters ACTIN binding causes renal vascular dysfunction and promotes the susceptibility to kidney disease.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Chao Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jeremy Prokop
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Howard J Jacob
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi;
| |
Collapse
|
46
|
Tutunchi H, Ostadrahimi A, Hosseinzadeh-Attar MJ, Miryan M, Mobasseri M, Ebrahimi-Mameghani M. A systematic review of the association of neuregulin 4, a brown fat-enriched secreted factor, with obesity and related metabolic disturbances. Obes Rev 2020; 21:e12952. [PMID: 31782243 DOI: 10.1111/obr.12952] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Neuregulin 4 (Nrg4), a novel brown fat-enriched hormone, plays a key role in the modulation of glucose and lipid metabolism and energy balance. Recent data have demonstrated that the expression of Nrg4 is substantially down-regulated in mouse and human obesity, making its regulatory aspect intriguing. Because of the close relationship between Nrg4, obesity, and associated metabolic diseases, this systematic review aimed to assess the association of Nrg4 with obesity and related metabolic disturbances, emphasizing its possible mechanisms of action in these disorders. We searched PubMed/Medline, ScienceDirect, Scopus, EMBASE, ProQuest, and Google Scholar up until June 2019. The evidence reviewed here indicates that Nrg4 may contribute to the prevention of obesity and related metabolic complications by elevating brown adipose tissue activity, increasing the expression of thermogenic markers, decreasing the expression of lipogenic/adipogenic genes, exacerbating white adipose tissue browning, increasing the number of brite/beige adipocytes, promoting hepatic fat oxidation and ketogenesis, inducing neurite outgrowth, enhancing blood vessels in adipose tissue, increasing the circulatory levels of healthy adipokines, and improving glucose homeostasis. Thus, Nrg4 appears to be a novel therapeutic strategy for the treatment of obesity and associated metabolic complications. However, prospective cohort studies are warranted to confirm these outcomes.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Social Determinants of Health Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, Egido J. The Coming Age of Flavonoids in the Treatment of Diabetic Complications. J Clin Med 2020; 9:jcm9020346. [PMID: 32012726 PMCID: PMC7074336 DOI: 10.3390/jcm9020346] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM), and its micro and macrovascular complications, is one of the biggest challenges for world public health. Despite overall improvement in prevention, diagnosis and treatment, its incidence is expected to continue increasing over the next years. Nowadays, finding therapies to prevent or retard the progression of diabetic complications remains an unmet need due to the complexity of mechanisms involved, which include inflammation, oxidative stress and angiogenesis, among others. Flavonoids are natural antioxidant compounds that have been shown to possess anti-diabetic properties. Moreover, increasing scientific evidence has demonstrated their potential anti-inflammatory and anti-oxidant effects. Consequently, the use of these compounds as anti-diabetic drugs has generated growing interest, as is reflected in the numerous in vitro and in vivo studies related to this field. Therefore, the aim of this review is to assess the recent pre-clinical and clinical research about the potential effect of flavonoids in the amelioration of diabetic complications. In brief, we provide updated information concerning the discrepancy between the numerous experimental studies supporting the efficacy of flavonoids on diabetic complications and the lack of appropriate and well-designed clinical trials. Due to the well-described beneficial effects on different mechanisms involved in diabetic complications, the excellent tolerability and low cost, future randomized controlled studies with compounds that have adequate bioavailability should be evaluated as add-on therapy on well-established anti-diabetic drugs.
Collapse
Affiliation(s)
- Teresa Caro-Ordieres
- Research Discovery and Innovation Department, FAES FARMA, S.A, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa (Bizkaia), Spain;
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
- Correspondence:
| |
Collapse
|
48
|
Guo J, Rackham OJL, Sandholm N, He B, Österholm AM, Valo E, Harjutsalo V, Forsblom C, Toppila I, Parkkonen M, Li Q, Zhu W, Harmston N, Chothani S, Öhman MK, Eng E, Sun Y, Petretto E, Groop PH, Tryggvason K. Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants associated with Diabetic Nephropathy. J Am Soc Nephrol 2020; 31:309-323. [PMID: 31919106 DOI: 10.1681/asn.2019030289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.
Collapse
Affiliation(s)
- Jing Guo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Owen J L Rackham
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bing He
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anne-May Österholm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iiro Toppila
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Qibin Li
- Complex Disease Research Center, BGI Genomics, Shenzhen, China
| | - Wenjuan Zhu
- Complex Disease Research Center, BGI Genomics, Shenzhen, China
| | - Nathan Harmston
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore.,Science Division, Yale-National University of Singapore College, National University of Singapore, Singapore
| | - Sonia Chothani
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Miina K Öhman
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Eudora Eng
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Yang Sun
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore; .,MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland; .,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; .,Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore.,Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
49
|
Canadas-Garre M, Smyth LJ, Anderson K, Kerr K, McKnight AJ. Genetic Strategies to Understand Human Diabetic Nephropathy: In Silico Strategies for Molecular Data-Association Studies. Methods Mol Biol 2020; 2067:241-275. [PMID: 31701456 DOI: 10.1007/978-1-4939-9841-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiple genetic strategies are available to help improve understanding of diabetic nephropathy. This chapter provides detailed methodology for a single-nucleotide polymorphism association study and meta-analysis, using a protocol suitable for targeted SNP or genome-wide association studies, to identify genetic risk factors for diabetic nephropathy.
Collapse
Affiliation(s)
| | - Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Kerry Anderson
- Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Katie Kerr
- Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
50
|
Adam KM, Mohammed AM, Elamin AA. Non-diabetic end-stage renal disease in Saudis associated with polymorphism of MYH9 gene but not UMOD gene. Medicine (Baltimore) 2020; 99:e18722. [PMID: 32011449 PMCID: PMC7220318 DOI: 10.1097/md.0000000000018722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prevalence of risk factors of chronic kidney disease in Saudi Arabia has augmented an already serious public health problem, therefore, determination of genetic variants associated with the risk of the disease presents potential screening tools that help reducing the incidence rates and promote effective disease management.The aim of the present study is to determine the association of UMOD and MYH9 genetic variants with the risk of non-diabetic end-stage renal disease (ESRD) in the Saudi population.Two single nucleotide polymorphisms (SNP), rs12917707 in gene UMOD and rs4821480 in gene MYH9 were genotyped in 154 non-diabetic ESRD Saudi patients and 123 age-matched healthy controls using Primers and Polymerase chain reaction conditions (PCR), Sanger sequencing, and TaqMan Pre-designed SNP Genotyping Assay. The association of these genetic variants with the risk of the disease and other renal function determinants was assessed using statistical tools such as logistic regression and One-way Analysis of Variance tests.The genotypic frequency of the two SNPs showed no deviation from Hardy-Weinberg equilibrium, the minor allele frequency of UMOD SNP was 0.13 and MYH9 SNP was 0.08. rs4821480 in MYH9 was significantly associated with the risk of non-diabetic ESRD (OR = 3.86; 95%CI: 1.38-10.82, P value .010), while, rs12917707 showed lack of significant association with the disease, P value .380. and neither of the 2 SNPs showed any association with the renal function determinants, serum albumin, and alkaline phosphatase enzyme.
Collapse
|