1
|
Liu C, Li Q, Shen Z, Xia R, Chen Q, Li X, Ding Y, Yang S, Serino G, Xie Q, Yu F. The Arabidopsis E3 ubiquitin ligase DOA10A promotes localization of abscisic acid (ABA) receptors to the membrane through mono-ubiquitination in ABA signaling. THE NEW PHYTOLOGIST 2025; 245:169-182. [PMID: 39497276 DOI: 10.1111/nph.20224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/26/2024] [Indexed: 12/06/2024]
Abstract
The endoplasmic reticulum-associated degradation (ERAD) system eliminates misfolded and short-lived proteins to maintain physiological homeostasis in the cell. We have previously reported that ERAD is involved in salt tolerance in Arabidopsis. Given the central role of the phytohormone abscisic acid (ABA) in plant stress responses, we sought to identify potential intersections between the ABA and the ERAD pathways in plant stress response. By screening for the ABA response of a wide array of ERAD mutants, we isolated a gain-of-function mutant, doa10a-1, which conferred ABA hypersensitivity to seedlings. Genetic and biochemical assays showed that DOA10A is a functional E3 ubiquitin ligase which, by acting in concert with specific E2 enzymes, mediates mono-ubiquitination of the ABA receptor, followed by their relocalization to the plasma membrane. This in turn leads to enhanced ABA perception. In summary, we report here the identification of a novel RING-type E3 ligase, DOA10A, which regulates ABA perception by affecting the localization and the activity of ABA receptors through their mono-ubiquitination.
Collapse
Affiliation(s)
- Cuixia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Xiao Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, 00185, Italy
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Qin C, Fan X, Fang Q, Yu H, Ni L, Jiang M. Abscisic acid-induced H 2O 2 production positively regulates the activity of SAPK8/9/10 through oxidation of the type one protein phosphatase OsPP47. THE NEW PHYTOLOGIST 2024; 244:1345-1361. [PMID: 39219038 DOI: 10.1111/nph.20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Subclass III sucrose nonfermenting1-related protein kinase 2s (SnRK2s) are positive regulators of abscisic acid (ABA) signaling and abiotic stress responses. However, the underlying activation mechanisms of osmotic stress/ABA-activated protein kinase 8/9/10 (SAPK8/9/10) of rice (Oryza sativa) subclass III SnRK2s in ABA signaling remain to be elucidated. In this study, we employed biochemical, molecular biology, cell biology, and genetic approaches to identify the molecular mechanism by which OsPP47, a type one protein phosphatase in rice, regulates SAPK8/9/10 activity in ABA signaling. We found that OsPP47 not only physically interacted with SAPK8/9/10 but also interacted with ABA receptors PYLs. OsPP47 negatively regulated ABA sensitivity in seed germination and root growth. In the absence of ABA, OsPP47 directly inactivated SAPK8/9/10 by dephosphorylation. In the presence of ABA, ABA-bound OsPYL2 formed complexes with OsPP47 and inhibited its phosphatase activity, partially releasing the inhibition of SAPK8/9/10. SAPK8/9/10-mediated H2O2 production inhibited OsPP47 activity by oxidizing Cys-116 and Cys-256 to form OsPP47 oligomers, resulting in not only preventing the OsPP47-SAPK8/9/10 interaction but also blocking the inhibition of SAPK8/9/10 activity by OsPP47. Our results reveal novel pathways for the inhibition of SAPK8/9/10 in the basal state and for the activation of SAPK8/9/10 induced by ABA in rice.
Collapse
Affiliation(s)
- Caihua Qin
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Fan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianqian Fang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honghua Yu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Aerts N, Hickman R, Van Dijken AJH, Kaufmann M, Snoek BL, Pieterse CMJ, Van Wees SCM. Architecture and dynamics of the abscisic acid gene regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2538-2563. [PMID: 38949092 DOI: 10.1111/tpj.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.
Collapse
Affiliation(s)
- Niels Aerts
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Michael Kaufmann
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
4
|
Sang T, Chen CW, Lin Z, Ma Y, Du Y, Lin PY, Hadisurya M, Zhu JK, Lang Z, Tao WA, Hsu CC, Wang P. DIA-Based Phosphoproteomics Identifies Early Phosphorylation Events in Response to EGTA and Mannitol in Arabidopsis. Mol Cell Proteomics 2024; 23:100804. [PMID: 38901673 PMCID: PMC11325057 DOI: 10.1016/j.mcpro.2024.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chin-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Zhen Lin
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ma
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanyan Du
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Pei-Yi Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Department of Chemistry, Purdue University, West Lafayette, Indiana, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
6
|
Xu R, Chong L, Zhu Y. Mediator kinase subunit CDK8 phosphorylates transcription factor TCP15 during tomato pollen development. PLANT PHYSIOLOGY 2024; 195:865-878. [PMID: 38365204 DOI: 10.1093/plphys/kiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/18/2024]
Abstract
Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, Hainan 570203, China
| |
Collapse
|
7
|
Shavrukov Y. Pathway to the Molecular Origins of Drought Escape and Early Flowering Illuminated via the Phosphorylation of SnRK2-Substrate 1 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:179-180. [PMID: 38226498 DOI: 10.1093/pcp/pcae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
8
|
Li C, Li X, Deng Z, Song Y, Liu X, Tang XA, Li Z, Zhang Y, Zhang B, Tang W, Shang JX, Sun Y. EGR1 and EGR2 positively regulate plant ABA signaling by modulating the phosphorylation of SnRK2.2. THE NEW PHYTOLOGIST 2024; 241:1492-1509. [PMID: 38095247 DOI: 10.1111/nph.19458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
During abscisic acid (ABA) signaling, reversible phosphorylation controls the activity and accumulation of class III SNF1-RELATED PROTEIN KINASE 2s (SnRK2s). While protein phosphatases that negatively regulate SnRK2s have been identified, those that positively regulate ABA signaling through SnRK2s are less understood. In this study, Arabidopsis thaliana mutants of Clade E Growth-Regulating 1 and 2 (EGR1/2), which belong to the protein phosphatase 2C family, exhibited reduced ABA sensitivity in terms of seed germination, cotyledon greening, and ABI5 accumulation. Conversely, overexpression increased these ABA-induced responses. Transcriptomic data revealed that most ABA-regulated genes in egr1 egr2 plants were expressed at reduced levels compared with those in Col-0 after ABA treatment. Abscisic acid up-regulated EGR1/2, which interact directly with SnRK2.2 through its C-terminal domain I. Genetic analysis demonstrated that EGR1/2 function through SnRK2.2 during ABA response. Furthermore, SnRK2.2 de-phosphorylation by EGR1/2 was identified at serine 31 within the ATP-binding pocket. A phospho-mimic mutation confirmed that phosphorylation at serine 31 inhibited SnRK2.2 activity and reduced ABA responsiveness in plants. Our findings highlight the positive role of EGR1/2 in regulating ABA signaling, they reveal a new mechanism for modulating SnRK2.2 activity, and provide novel insight into how plants fine-tune their responses to ABA.
Collapse
Affiliation(s)
- Chuanling Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Xuetong Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuning Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinye Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaohan Alex Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, China
| | - Ziye Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ya Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Baowen Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jian-Xiu Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
9
|
Son S, Park SR. The rice SnRK family: biological roles and cell signaling modules. FRONTIERS IN PLANT SCIENCE 2023; 14:1285485. [PMID: 38023908 PMCID: PMC10644236 DOI: 10.3389/fpls.2023.1285485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Stimulus-activated signaling pathways orchestrate cellular responses to control plant growth and development and mitigate the effects of adverse environmental conditions. During this process, signaling components are modulated by central regulators of various signal transduction pathways. Protein phosphorylation by kinases is one of the most important events transmitting signals downstream, via the posttranslational modification of signaling components. The plant serine and threonine kinase SNF1-related protein kinase (SnRK) family, which is classified into three subgroups, is highly conserved in plants. SnRKs participate in a wide range of signaling pathways and control cellular processes including plant growth and development and responses to abiotic and biotic stress. Recent notable discoveries have increased our understanding of how SnRKs control these various processes in rice (Oryza sativa). In this review, we summarize current knowledge of the roles of OsSnRK signaling pathways in plant growth, development, and stress responses and discuss recent insights. This review lays the foundation for further studies on SnRK signal transduction and for developing strategies to enhance stress tolerance in plants.
Collapse
Affiliation(s)
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Djemal R, Bradai M, Amor F, Hanin M, Ebel C. Wheat type one protein phosphatase promotes salt and osmotic stress tolerance in arabidopsis via auxin-mediated remodelling of the root system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107832. [PMID: 37327648 DOI: 10.1016/j.plaphy.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The control of optimal root growth and plant stress responses depends largely on a variety of phytohormones among which auxin and brassinosteroids (BRs) are the most influential. We have previously reported that the durum wheat type 1 protein phosphatase TdPP1 participates in the control of root growth by modulating BR signaling. In this study, we pursue our understanding of how TdPP1 fulfills this regulatory function on root growth by evaluating the physiological and molecular responses of Arabidopsis TdPP1 over-expressing lines to abiotic stresses. Our results showed that when exposed to 300 mM Mannitol or 100 mM NaCl, the seedlings of TdPP1 over-expressors exhibit modified root architecture with higher lateral root density, and longer root hairs concomitant with a lower inhibition of the primary root growth. These lines also exhibit faster gravitropic response and a decrease in primary root growth inhibition when exposed to high concentrations of exogenous IAA. On another hand, a cross between TdPP1 overexpressors and DR5:GUS marker line was performed to monitor auxin accumulation in roots. Remarkably, the TdPP1 overexpression resulted in an enhanced auxin gradient under salt stress with a higher accumulation in primary and lateral root tips. Moreover, TdPP1 transgenics exhibit a significant induction of a subset of auxin-responsive genes under salt stress conditions. Therefore, our results reveal a role of PP1 in enhancing auxin signaling to help shape greater root plasticity thus improving plant stress resilience.
Collapse
Affiliation(s)
- Rania Djemal
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Mariem Bradai
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Fatma Amor
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
11
|
Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition. FRONTIERS IN PLANT SCIENCE 2023; 14:1192652. [PMID: 37476171 PMCID: PMC10354442 DOI: 10.3389/fpls.2023.1192652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The timing of seedling emergence is a major agricultural and ecological fitness trait, and seed germination is controlled by a complex molecular network including phytohormone signalling. One such phytohormone, abscisic acid (ABA), controls a large array of stress and developmental processes, and researchers have long known it plays a crucial role in repressing germination. Although the main molecular components of the ABA signalling pathway have now been identified, the molecular mechanisms through which ABA elicits specific responses in distinct organs is still enigmatic. To address the fundamental characteristics of ABA signalling during germination, we performed a meta-analysis focusing on the Arabidopsis dry seed proteome as a reflexion basis. We combined cutting-edge proteome studies, comparative functional analyses, and protein interaction information with genetic and physiological data to redefine the singular composition and operation of the ABA core signalosome from the onset of seed imbibition. In addition, we performed a literature survey to integrate peripheral regulators present in seeds that directly regulate core component function. Although this may only be the tip of the iceberg, this extended model of ABA signalling in seeds already depicts a highly flexible system able to integrate a multitude of information to fine-tune the progression of germination.
Collapse
|
12
|
Wang B, He W, Huang M, Feng J, Li Y, Yu L, Wang Y, Zhou D, Meng C, Cheng D, Tang N, Song B, Chen H. Ralstonia solanacearum type III effector RipAS associates with potato type one protein phosphatase StTOPP6 to promote bacterial wilt. HORTICULTURE RESEARCH 2023; 10:uhad087. [PMID: 37334181 PMCID: PMC10273071 DOI: 10.1093/hr/uhad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 06/20/2023]
Abstract
The bacterial pathogen Ralstonia solanacearum (R. solanacearum) delivered type III secretion effectors to inhibit the immune system and cause bacterial wilt on potato. Protein phosphatases are key regulators in plant immunity, which pathogens can manipulate to alter host processes. Here, we show that a type III effector RipAS can reduce the nucleolar accumulation of a type one protein phosphatase (PP1) StTOPP6 to promote bacterial wilt. StTOPP6 was used as bait in the Yeast two-Hybrid (Y2H) assay and acquired an effector RipAS that interacts with it. RipAS was characterized as a virulence effector to contribute to R. solanacearum infection, and stable expression of RipAS in potato impaired plant resistance against R. solanacearum. Overexpression of StTOPP6 showed enhanced disease symptoms when inoculated with wild strain UW551 but not the ripAS deletion mutant, indicating that the expression of StTOPP6 facilitates the virulence of RipAS. RipAS reduced the nucleolar accumulation of StTOPP6, which occurred during R. solanacearum infection. Moreover, the association also widely existed between other PP1s and RipAS. We argue that RipAS is a virulence effector associated with PP1s to promote bacterial wilt.
Collapse
Affiliation(s)
- Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiachen Feng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Yanping Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengzhen Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | | | | |
Collapse
|
13
|
Liu S, Wang J, Liu Z, Yang Y, Li X. FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat. Curr Issues Mol Biol 2023; 45:3375-3390. [PMID: 37185745 PMCID: PMC10136674 DOI: 10.3390/cimb45040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
As a drought-tolerant crop, Tartary buckwheat survives under adverse environmental conditions, including drought stress. Proanthocyanidins (PAs) and anthocyanins are flavonoid compounds, and they participate in the regulation of resistance to both biotic and abiotic stresses by triggering genes' biosynthesis of flavonoids. In this study, a basic leucine zipper, basic leucine zipper 85 (FtbZIP85), which was predominantly expressed in seeds, was isolated from Tartary buckwheat. Our study shows that the expressions of FtDFR, FtbZIP85 and FtSnRK2.6 were tissue-specific and located in both the nucleus and the cytosol. FtbZIP85 could positively regulate PA biosynthesis by binding to the ABA-responsive element (ABRE) in the promoter of dihydroflavonol 4-reductase (FtDFR), which is a key enzyme in the phenylpropanoid biosynthetic pathway. Additionally, FtbZIP85 was also involved in the regulation of PA biosynthesis via interactions with FtSnRK2.6 but not with FtSnRK2.2/2.3. This study reveals that FtbZIP85 is a positive regulator of PA biosynthesis in TB.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Gangurde SS, Pasupuleti J, Parmar S, Variath MT, Bomireddy D, Manohar SS, Varshney RK, Singam P, Guo B, Pandey MK. Genetic mapping identifies genomic regions and candidate genes for seed weight and shelling percentage in groundnut. Front Genet 2023; 14:1128182. [PMID: 37007937 PMCID: PMC10061104 DOI: 10.3389/fgene.2023.1128182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Janila Pasupuleti
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Murali T. Variath
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Deekshitha Bomireddy
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Baozhu Guo
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- *Correspondence: Manish K. Pandey,
| |
Collapse
|
15
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
16
|
do Nascimento SV, Herrera H, Costa PHDO, Trindade FC, da Costa IRC, Caldeira CF, Gastauer M, Ramos SJ, Oliveira G, Valadares RBDS. Molecular Mechanisms Underlying Mimosa acutistipula Success in Amazonian Rehabilitating Minelands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14441. [PMID: 36361325 PMCID: PMC9654444 DOI: 10.3390/ijerph192114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mimosa acutistipula is endemic to Brazil and grows in ferruginous outcrops (canga) in Serra dos Carajás, eastern Amazon, where one of the largest iron ore deposits in the world is located. Plants that develop in these ecosystems are subject to severe environmental conditions and must have adaptive mechanisms to grow and thrive in cangas. Mimosa acutistipula is a native species used to restore biodiversity in post-mining areas in canga. Understanding the molecular mechanisms involved in the adaptation of M. acutistipula in canga is essential to deduce the ability of native species to adapt to possible stressors in rehabilitating minelands over time. In this study, the root proteomic profiles of M. acutistipula grown in a native canga ecosystem and rehabilitating minelands were compared to identify essential proteins involved in the adaptation of this species in its native environment and that should enable its establishment in rehabilitating minelands. The results showed differentially abundant proteins, where 436 proteins with significant values (p < 0.05) and fold change ≥ 2 were more abundant in canga and 145 in roots from the rehabilitating minelands. Among them, a representative amount and diversity of proteins were related to responses to water deficit, heat, and responses to metal ions. Other identified proteins are involved in biocontrol activity against phytopathogens and symbiosis. This research provides insights into proteins involved in M. acutistipula responses to environmental stimuli, suggesting critical mechanisms to support the establishment of native canga plants in rehabilitating minelands over time.
Collapse
Affiliation(s)
- Sidney Vasconcelos do Nascimento
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Felipe Costa Trindade
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Isa Rebecca Chagas da Costa
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | | - Markus Gastauer
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | - Silvio Junio Ramos
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | - Guilherme Oliveira
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | | |
Collapse
|
17
|
Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. THE PLANT CELL 2022; 34:4531-4553. [PMID: 35961047 PMCID: PMC9614501 DOI: 10.1093/plcell/koac251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 05/23/2023]
Abstract
Autophagy, a conserved pathway that carries out the bulk degradation of cytoplasmic material in eukaryotic cells, is critical for plant physiology and development. This process is tightly regulated by ATG13, a core component of the ATG1 kinase complex, which initiates autophagy. Although ATG13 is known to be dephosphorylated immediately after nutrient starvation, the phosphatase regulating this process is poorly understood. Here, we determined that the Arabidopsis (Arabidopsis thaliana) septuple mutant (topp-7m) and octuple mutant (topp-8m) of TYPE ONE PROTEIN PHOSPHATASE (TOPP) exhibited significantly reduced tolerance to fixed-carbon (C) starvation due to compromised autophagy activity. Genetic analysis placed TOPP upstream of autophagy. Interestingly, ATG13a was found to be an interactor of TOPP. TOPP directly dephosphorylated ATG13a in vitro and in vivo. We identified 18 phosphorylation sites in ATG13a by LC-MS. Phospho-dead ATG13a at these 18 sites significantly promoted autophagy and increased the tolerance of the atg13ab mutant to fixed-C starvation. The dephosphorylation of ATG13a facilitated ATG1a-ATG13a complex formation. Consistently, the recruitment of ATG13a for ATG1a was markedly inhibited in topp-7m-1. Finally, TOPP-controlled dephosphorylation of ATG13a boosted ATG1a phosphorylation. Taken together, our study reveals the crucial role of TOPP in regulating autophagy by stimulating the formation of the ATG1a-ATG13a complex by dephosphorylating ATG13a in Arabidopsis.
Collapse
Affiliation(s)
- Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Meifei Su
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Na Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yang Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Longfeng Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
18
|
Chong L, Xu R, Ku L, Zhu Y. Beyond stress response: OST1 opening doors for plants to grow. STRESS BIOLOGY 2022; 2:44. [PMID: 37676544 PMCID: PMC10441877 DOI: 10.1007/s44154-022-00069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023]
Abstract
The sucrose non-fermenting 1 (SNF1)-related protein kinase 2 (SnRK2) family members have been discovered to regulate abiotic stress response via the abscisic acid (ABA)-independent and dependent signaling pathways. SnRK2.6, also known as Open Stomata 1 (OST1), is a serine/threonine protein kinase that plays critical roles in linking ABA receptor complexes and downstream components such as transcription factors and anion channels to regulate stress response. Asides from its well-known regulatory roles in stomatal movement and cold stress response, OST1 has also been demonstrated recently to modulate major developmental roles of flowering and growth in plants. In this review, we will discuss about the various roles of OST1 as well as the 'doors' that OST1 can 'open' to help plants perform stress adaptation. Therefore, we will address how OST1 can regulate stomata apertures, cold stress tolerance as well as other aspects of its emerging roles such as balancing flowering and root growth in response to drought.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
19
|
Foley K, Altimimi H, Hou H, Zhang Y, McKee C, Papasergi-Scott MM, Yang H, Mayer A, Ward N, MacLean DM, Nairn AC, Stellwagen D, Xia H. Protein phosphatase-1 inhibitor-2 promotes PP1γ positive regulation of synaptic transmission. Front Synaptic Neurosci 2022; 14:1021832. [PMID: 36276179 PMCID: PMC9582336 DOI: 10.3389/fnsyn.2022.1021832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitor-2 (I-2) is a prototypic inhibitor of protein phosphatase-1 (PP1), a major serine-threonine phosphatase that regulates synaptic plasticity and learning and memory. Although I-2 is a potent inhibitor of PP1 in vitro, our previous work has elucidated that, in vivo, I-2 may act as a positive regulator of PP1. Here we show that I-2 and PP1γ, but not PP1α, positively regulate synaptic transmission in hippocampal neurons. Moreover, we demonstrated that I-2 enhanced PP1γ interaction with its major synaptic scaffold, neurabin, by Förster resonance energy transfer (FRET)/Fluorescence lifetime imaging microscopy (FLIM) studies, while having a limited effect on PP1 auto-inhibitory phosphorylation. Furthermore, our study indicates that the effect of I-2 on PP1 activity in vivo is dictated by I-2 threonine-72 phosphorylation. Our work thus demonstrates a molecular mechanism by which I-2 positively regulates PP1 function in synaptic transmission.
Collapse
|
20
|
Kuzbakova M, Khassanova G, Oshergina I, Ten E, Jatayev S, Yerzhebayeva R, Bulatova K, Khalbayeva S, Schramm C, Anderson P, Sweetman C, Jenkins CLD, Soole KL, Shavrukov Y. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. FRONTIERS IN PLANT SCIENCE 2022; 13:948099. [PMID: 36186054 PMCID: PMC9523450 DOI: 10.3389/fpls.2022.948099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.
Collapse
Affiliation(s)
- Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Irina Oshergina
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
21
|
Cui X, Lv M, Cao Y, Li Z, Liu Y, Ren Z, Zhang H. NUA and ESD4 negatively regulate ABA signaling during seed germination. STRESS BIOLOGY 2022; 2:38. [PMID: 37676575 PMCID: PMC10442006 DOI: 10.1007/s44154-022-00062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 09/08/2023]
Abstract
The phytohormone abscisic acid (ABA) plays important roles in plant growth, development and adaptative responses to abiotic stresses. SNF1-related protein kinase 2s (SnRK2) are key components that activate the ABA core signaling pathway. NUCLEAR PORE ANCHOR (NUA) is a component of the nuclear pore complex (NPC) that involves in deSUMOylation through physically interacting with the EARLY IN SHORT DAYS 4 (ESD4) SUMO protease. However, it is not clear how NUA functions with SnRK2 and ESD4 to regulate ABA signaling. In our study, we found that nua loss-of-function mutants exhibited pleiotropic ABA-hypersensitive phenotype. We also found that ABA-responsive genes remarkably up-regulated in nua by exogenous ABA. The nua snrk2.2 snrk2.3 triple mutant and nua abi5 double mutant partially rescued the ABA-hypersensitive phenotype of nua, thereby suggesting that NUA is epistatic to SnRK2s. Additionally, we observed that esd4-3 mutant was also ABA-hypersensitive. NUA and ESD4 were further demonstrated to physically interact with SnRK2s and negatively regulate ABA signaling by reducing SnRK2s stability. Taken together, our findings uncover a new regulatory mechanism that can modulate ABA signaling.
Collapse
Affiliation(s)
- Xiaona Cui
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyang Lv
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuanyuan Cao
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziwen Li
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Liu
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenzhen Ren
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hairong Zhang
- College of Life sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
22
|
Jadoon S, Qin Q, Shi W, Longfeng Y, Hou S. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3 participate actively in growth and adaptive responses under abscisic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:990575. [PMID: 36186070 PMCID: PMC9521630 DOI: 10.3389/fpls.2022.990575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.), a worldwide staple food crop, is affected by various environmental stressors that ultimately reduce yield. However, diversified physiological and molecular responses enable it to cope with adverse factors. It includes the integration of numerous signaling in which protein phosphatase 1 (PP1) plays a pivotal role. Research on PP1 has been mostly limited to the PP1 catalytic subunit in numerous cellular progressions. Therefore, we focused on the role of PP1 regulatory subunits (PP1r), OsINH2 and OsINH3, homologs of AtINH2 and AtINH3 in Arabidopsis, in rice growth and stress adaptations. Our observations revealed that these are ubiquitously expressed regulatory subunits that interacted and colocalized with their counter partners, type 1 protein phosphatase (OsTOPPs) but could not change their subcellular localization. The mutation in OsINH2 and OsINH3 reduced pollen viability, thereby affected rice fertility. They were involved in abscisic acid (ABA)-mediated inhibition of seed germination, perhaps by interacting with osmotic stress/ABA-activated protein kinases (OsSAPKs). Meanwhile, they positively participated in osmotic adjustment by proline biosynthesis, detoxifying reactive oxygen species (ROS) through peroxidases (POD), reducing malondialdehyde formation (MDA), and regulating stress-responsive genes. Moreover, their co-interaction proposed they might mediate cellular processes together or by co-regulation; however, the special behavior of two different PP1r is needed to explore. In a nutshell, this research enlightened the involvement of OsINH2 and OsINH3 in the reproductive growth of rice and adaptive strategies under stress. Hence, their genetic interaction with ABA components and deep mechanisms underlying osmotic regulation and ROS adjustment would explain their role in complex signaling. This research offers the basis for introducing stress-resistant crops.
Collapse
|
23
|
Wang Z, Liu M, Yao M, Zhang X, Qu C, Du H, Lu K, Li J, Wei L, Liang Y. Rapeseed ( Brassica napus) Mitogen-Activated Protein Kinase 1 Enhances Shading Tolerance by Regulating the Photosynthesis Capability of Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:902989. [PMID: 35720537 PMCID: PMC9201689 DOI: 10.3389/fpls.2022.902989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Rapeseed (Brassica napus) is the third-largest source of vegetable oil in the world with an edible, medicinal, and ornamental value. However, insufficient light or high planting density directly affects its growth, development, yield, and quality. Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that play key roles in regulating the responses to biotic and abiotic stresses in plants. In this study, we found that the promoter of BnaMAPK1 contained several light-responsive elements (including the AT1-motif, G-Box, and TCT-motif), consistent with its shading stress-induced upregulation. Compared with the wild type under shading stress, BnaMAPK1-overexpressing plants showed higher light capture efficiency and carbon assimilation capacity, enhancing their shading tolerance. Using RNA sequencing, we systematically investigated the function of BnaMAPK1 in shading stress on photosynthetic structure, Calvin cycle, and light-driven electron transport. Notably, numerous genes encoding light-harvesting chlorophyll a/b-binding proteins (BnaLHCBs) in photosystem II-light-harvesting complex (LHC) II supercomplex were significantly downregulated in the BnaMAPK1-overexpressing lines relative to the wild type under shading stress. Combining RNA sequencing and yeast library screening, a candidate interaction partner of BnaMAPK1 regulating in shading stress, BnaLHCB3, was obtained. Moreover, yeast two-hybrid and split-luciferase complementation assays confirmed the physical interaction relationship between BnaLHCB3 and BnaMAPK1, suggesting that BnaMAPK1 may involve in stabilizing the photosystem II-LHC II supercomplex. Taken together, our results demonstrate that BnaMAPK1 positively regulates photosynthesis capability to respond to shading stress in rapeseed, possibly by controlling antenna proteins complex in photosystem II, and could provide valuable information for further breeding for rapeseed stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Miao Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering College, Guizhou University, Guiyang, China
| | - Mengnan Yao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Xiaoli Zhang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Hai Du
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Kun Lu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Jiana Li
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Ying Liang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
24
|
Chong L, Xu R, Huang P, Guo P, Zhu M, Du H, Sun X, Ku L, Zhu JK, Zhu Y. The tomato OST1-VOZ1 module regulates drought-mediated flowering. THE PLANT CELL 2022; 34:2001-2018. [PMID: 35099557 PMCID: PMC9048945 DOI: 10.1093/plcell/koac026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 05/08/2023]
Abstract
Flowering is a critical agricultural trait that substantially affects tomato fruit yield. Although drought stress influences flowering time, the molecular mechanism underlying drought-regulated flowering in tomato remains elusive. In this study, we demonstrated that loss of function of tomato OPEN STOMATA 1 (SlOST1), a protein kinase essential for abscisic acid (ABA) signaling and abiotic stress responses, lowers the tolerance of tomato plants to drought stress. slost1 mutants also exhibited a late flowering phenotype under both normal and drought stress conditions. We also established that SlOST1 directly interacts with and phosphorylates the NAC (NAM, ATAF and CUC)-type transcription factor VASCULAR PLANT ONE-ZINC FINGER 1 (SlVOZ1), at residue serine 67, thereby enhancing its stability and nuclear translocation in an ABA-dependent manner. Moreover, we uncovered several SlVOZ1 binding motifs from DNA affinity purification sequencing analyses and revealed that SlVOZ1 can directly bind to the promoter of the major flowering-integrator gene SINGLE FLOWER TRUSS to promote tomato flowering transition in response to drought. Collectively, our data uncover the essential role of the SlOST1-SlVOZ1 module in regulating flowering in response to drought stress in tomato and offer insights into a novel strategy to balance drought stress response and flowering.
Collapse
Affiliation(s)
| | | | | | - Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
25
|
Hu Y, Ding Y, Cai B, Qin X, Wu J, Yuan M, Wan S, Zhao Y, Xin XF. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe 2022; 30:518-529.e6. [PMID: 35247331 DOI: 10.1016/j.chom.2022.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Phytopathogens like Pseudomonas syringae induce "water soaking" in the apoplastic space of plant leaf tissue as a key virulence mechanism. Water soaking is commonly observed in diverse pathosystems, yet the underlying physiological basis remains largely elusive. Here, we show that one of the strong P. syringae water-soaking inducers, AvrE, alters the regulation of abscisic acid (ABA) to induce ABA signaling, stomatal closure, and, thus, water soaking. AvrE binds and inhibits the function of Arabidopsis type one protein phosphatases (TOPPs), which negatively regulate ABA by suppressing SnRK2s, a key node of the ABA signaling pathway. The topp12537 quintuple mutants display significantly enhanced water soaking after P. syringae inoculation, whereas the loss of the ABA pathway dampens P. syringae-induced water soaking and disease. Our study uncovers the hijacking of ABA signaling and stomatal closure by P. syringae effectors as key mechanisms of disease susceptibility.
Collapse
Affiliation(s)
- Yezhou Hu
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Ding
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Boying Cai
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Qin
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingni Wu
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Minhang Yuan
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Wan
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Chinese Academy of Sciences (CAS) and John Innes Centre, Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
26
|
Bradai M, Amorim-Silva V, Belgaroui N, Esteban del Valle A, Chabouté ME, Schmit AC, Lozano-Duran R, Botella MA, Hanin M, Ebel C. Wheat Type One Protein Phosphatase Participates in the Brassinosteroid Control of Root Growth via Activation of BES1. Int J Mol Sci 2021; 22:ijms221910424. [PMID: 34638765 PMCID: PMC8508605 DOI: 10.3390/ijms221910424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) play key roles in diverse plant growth processes through a complex signaling pathway. Components orchestrating the BR signaling pathway include receptors such as kinases, transcription factors, protein kinases and phosphatases. The proper functioning of the receptor kinase BRI1 and the transcription factors BES1/BZR1 depends on their dephosphorylation by type 2A protein phosphatases (PP2A). In this work, we report that an additional phosphatase family, type one protein phosphatases (PP1), contributes to the regulation of the BR signaling pathway. Co-immunoprecipitation and BiFC experiments performed in Arabidopsis plants overexpressing durum wheat TdPP1 showed that TdPP1 interacts with dephosphorylated BES1, but not with the BRI1 receptor. Higher levels of dephosphorylated, active BES1 were observed in these transgenic lines upon BR treatment, indicating that TdPP1 modifies the BR signaling pathway by activating BES1. Moreover, ectopic expression of durum wheat TdPP1 lead to an enhanced growth of primary roots in comparison to wild-type plants in presence of BR. This phenotype corroborates with a down-regulation of the BR-regulated genes CPD and DWF4. These data suggest a role of PP1 in fine-tuning BR-driven responses, most likely via the control of the phosphorylation status of BES1.
Collapse
Affiliation(s)
- Mariem Bradai
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP “1177”, University of Sfax, Sfax 3018, Tunisia;
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, BP “1175”, University of Sfax, Sfax 3038, Tunisia; (N.B.); (M.H.)
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| | - Vitor Amorim-Silva
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, Universidad de Malaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S.); (A.E.d.V.); (M.A.B.)
| | - Nibras Belgaroui
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, BP “1175”, University of Sfax, Sfax 3038, Tunisia; (N.B.); (M.H.)
| | - Alicia Esteban del Valle
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, Universidad de Malaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S.); (A.E.d.V.); (M.A.B.)
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg, France; (M.-E.C.); (A.-C.S.)
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg, France; (M.-E.C.); (A.-C.S.)
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| | - Miguel Angel Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, Universidad de Malaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S.); (A.E.d.V.); (M.A.B.)
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, BP “1175”, University of Sfax, Sfax 3038, Tunisia; (N.B.); (M.H.)
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology of Sfax, BP “1175”, University of Sfax, Sfax 3038, Tunisia; (N.B.); (M.H.)
- Correspondence: ; Tel.:+216-74-871-816
| |
Collapse
|
27
|
Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 2021; 10:cells10092180. [PMID: 34571829 PMCID: PMC8465348 DOI: 10.3390/cells10092180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Katarzyna Patrycja Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Adrian Kasztelan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| |
Collapse
|
28
|
Wang S, Guo J, Zhang Y, Guo Y, Ji W. Genome-wide characterization and expression analysis of TOPP-type protein phosphatases in soybean (Glycine max L.) reveal the role of GmTOPP13 in drought tolerance. Genes Genomics 2021; 43:783-796. [PMID: 33864615 DOI: 10.1007/s13258-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In response to various abiotic stressors such as drought, many plants engage different protein phosphatases linked to several physiological and developmental processes. However, comprehensive analysis of this gene family is lacking for soybean. OBJECTIVE This study was performed to identify the TOPP-type protein phosphatase family in soybean and investigate the gene's role under drought stress. METHODS Soybean genome sequences and transcriptome data were downloaded from the Phytozome v.12, and the microarray data were downloaded from NCBI GEO datasets GSE49537. Expression profiles of GmTOPP13 were obtained based on qRT-PCR results. GmTOPP13 gene was transformed into tobacco plants via Agrobacterium mediated method, and the drought tolerance was analyzed by water deficit assay. RESULTS 15 GmTOPP genes were identified in the soybean genome database (GmTOPP1-15). GmTOPP genes were distributed on 9 of 20 chromosomes, with similar exon-intron structure and motifs arrangement. All GmTOPPs contained Metallophos and STPPase_N domains as well as the core catalytic sites. Cis-regulatory element analysis predicted that GmTOPPs were widely involved in plant development, stress and hormone response in soybean. Expression profiles showed that GmTOPPs expressed in different tissues and exhibited divergent expression patterns in leaf and root in response to drought stimulus. Moreover, GmTOPP13 gene was isolated and expression pattern analysis indicated that this gene was highly expressed in seed, root, leaf and other tissues detected, and intensively induced upon PEG6000 treatment. In addition, overexpression of GmTOPP13 gene enhanced the drought tolerance in tobacco plants. The transgenic tobacco plants showed regulation of stress-responsive genes including CAT, SOD, ERD10B and TIP during drought stress. CONCLUSIONS This study provides valuable information for the study of GmTOPP gene family in soybean, and lays a foundation for further functional studies of GmTOPP13 gene under drought and other abiotic stresses.
Collapse
Affiliation(s)
- Sibo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jingsong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, 550083, China
| | - Wei Ji
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Li L, Li B, Zhu S, Wang L, Song L, Chen J, Ming Z, Liu X, Li X, Yu F. TMK4 receptor kinase negatively modulates ABA signaling by phosphorylating ABI2 and enhancing its activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1161-1178. [PMID: 33811744 DOI: 10.1111/jipb.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 05/22/2023]
Abstract
In plants, clade A type 2C protein phosphatases (PP2CAs) have emerged as major players in abscisic acid (ABA)-regulated stress responses by inhibiting protein kinase activity. However, how different internal and external environmental signals modulate the activity of PP2CAs are not well known. The transmembrane kinase (TMK) protein 4 (TMK4), one member of a previously identified receptor kinase subfamily on the plasma membrane that plays vital roles in plant cell growth, directly interacts with PP2CAs member (ABA-Insensitive 2, ABI2). tmk4 mutant is hypersensitive to ABA in both ABA-inhibited seed germination and primary root growth, indicating that TMK4 is a negative regulator in ABA signaling pathway. Further analyses indicate that TMK4 phosphorylates ABI2 at three conserved Ser residues, thus enhancing the activity of ABI2. The phosphorylation-mimic ABI2S139DS140DS266D can complement but non-phosphorylated form ABI2S139AS140AS266A cannot complement ABA hypersensitive phenotype of the loss-of-function mutant abi1-2abi2-2. This study provides a previously unidentified mechanism for positively regulating ABI2 by a plasma membrane protein kinase.
Collapse
Affiliation(s)
- Lan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Bin Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Sirui Zhu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Limei Song
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Jia Chen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xuanming Liu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xiushan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| |
Collapse
|
30
|
Guo P, Chong L, Wu F, Hsu CC, Li C, Zhu JK, Zhu Y. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:802-815. [PMID: 33369119 DOI: 10.1111/jipb.13062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/19/2020] [Indexed: 05/06/2023]
Abstract
MED25 has been implicated as a negative regulator of the abscisic acid (ABA) signaling pathway. However, it is unclear whether other Mediator subunits could associate with MED25 to participate in the ABA response. Here, we used affinity purification followed by mass spectrometry to uncover Mediator subunits that associate with MED25 in transgenic plants. We found that at least 26 Mediator subunits, belonging to the head, middle, tail, and CDK8 kinase modules, were co-purified with MED25 in vivo. Interestingly, the tail module subunit MED16 was identified to associate with MED25 under both mock and ABA treatments. We further showed that the disruption of MED16 led to reduced ABA sensitivity compared to the wild type. Transcriptomic analysis revealed that the expression of several ABA-responsive genes was significantly lower in med16 than those in wild type. Furthermore, we discovered that MED16 may possibly compete with MED25 to interact with the key transcription factor ABA INSENSITIVE 5 (ABI5) to positively regulate ABA signaling. Consistently, med16 and med25 mutants displayed opposite phenotypes in ABA response, cuticle permeability, and differential ABI5-mediated EM1 and EM6 expression. Together, our data indicate that MED16 and MED25 differentially regulate ABA signaling by antagonistically affecting ABI5-mediated transcription in Arabidopsis.
Collapse
Affiliation(s)
- Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
31
|
Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. Signaling mechanisms in abscisic acid-mediated stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:307-321. [PMID: 33145840 PMCID: PMC7902384 DOI: 10.1111/tpj.15067] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 05/09/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Guillaume Dubeaux
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| |
Collapse
|
32
|
Zhu Y, Huang P, Guo P, Chong L, Yu G, Sun X, Hu T, Li Y, Hsu CC, Tang K, Zhou Y, Zhao C, Gao W, Tao WA, Mengiste T, Zhu JK. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1573-1590. [PMID: 32619295 DOI: 10.1111/nph.16787] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
CDK8 is a key subunit of Mediator complex, a large multiprotein complex that is a fundamental part of the conserved eukaryotic transcriptional machinery. However, the biological functions of CDK8 in plant abiotic stress responses remain largely unexplored. Here, we demonstrated CDK8 as a critical regulator in the abscisic acid (ABA) signaling and drought response pathways in Arabidopsis. Compared to wild-type, cdk8 mutants showed reduced sensitivity to ABA, impaired stomatal apertures and hypersensitivity to drought stress. Transcriptomic and chromatin immunoprecipitation analysis revealed that CDK8 positively regulates the transcription of several ABA-responsive genes, probably through promoting the recruitment of RNA polymerase II to their promoters. We discovered that both CDK8 and SnRK2.6 interact physically with an ERF/AP2 transcription factor RAP2.6, which can directly bind to the promoters of RD29A and COLD-REGULATED 15A (COR15A) with GCC or DRE elements, thereby promoting their expression. Importantly, we also showed that CDK8 is essential for the ABA-induced expression of RAP2.6 and RAP2.6-mediated upregulation of ABA-responsive genes, indicating that CDK8 could link the SnRK2.6-mediated ABA signaling to RNA polymerase II to promote immediate transcriptional response to ABA and drought signals. Overall, our data provide new insights into the roles of CDK8 in modulating ABA signaling and drought responses.
Collapse
Affiliation(s)
- Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Gaobo Yu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Xiaoli Sun
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Tao Hu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
33
|
Zhang J, Qin Q, Nan X, Guo Z, Liu Y, Jadoon S, Chen Y, Zhao L, Yan L, Hou S. Role of Protein Phosphatase1 Regulatory Subunit3 in Mediating the Abscisic Acid Response. PLANT PHYSIOLOGY 2020; 184:1317-1332. [PMID: 32948668 PMCID: PMC7608174 DOI: 10.1104/pp.20.01018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 05/06/2023]
Abstract
Protein phosphatase1 (PP1) plays important roles in eukaryotes, including in plant hormone responses, and functions as a holoenzyme that consists of catalytic and regulatory subunits. Animal genomes encode ∼200 PP1-interacting proteins; by contrast, only a few have been reported in plants. In this study, PP1 Regulatory Subunit3 (PP1R3), a protein that interacts with PP1 in Arabidopsis (Arabidopsis thaliana), was characterized by mass spectrometry. PP1R3 was widely expressed in various plant tissues and PP1R3 colocalized with Type One Protein Phosphatases (TOPPs) in the nucleus and cytoplasm. The pp1r3 mutants were hypersensitive to abscisic acid (ABA), similar to the dominant-negative mutant topp4-1 or the loss-of-function multiple mutants topp1 topp4-3, topp8 topp9, topp6/7/9, topp1/2/4-3/6/7/9, and topp1/4-3/5/6/7/8/9 (topp-7m). About two-thirds of differentially expressed genes in topp-7m showed the same gene expression changes as in pp1r3-2 In response to ABA, the phenotypes of pp1r3 topp1 topp4-3 and pp1r3 topp4-1 were consistent with those of pp1r3, while pp1r3 abi1-1 showed an additive effect of the pp1r3 and abi1-1 (mutation in Abscisic Acid Insensitive1 [ABI1]) single mutants. Moreover, pp1r3 could partially recover the ABA response-related phenotype, gene expression, and plant morphology of topp4-1 PP1R3 inhibited TOPP enzyme activity and facilitated the nuclear localization of TOPP4. By contrast, ABA treatment increased the amounts of TOPP1 and TOPP4 in the cytoplasm. Importantly, nuclear localization of TOPP4 partially restored the ABA-hypersensitive phenotype of topp4-1 Overall, our results suggest that the PP1R3:TOPP holoenzyme functions in parallel with ABI1 in the nucleus to regulate ABA signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Qin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaohui Nan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sawaira Jadoon
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lulu Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Chong L, Guo P, Zhu Y. Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants. Int J Mol Sci 2020; 21:ijms21207755. [PMID: 33092161 PMCID: PMC7588972 DOI: 10.3390/ijms21207755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.
Collapse
|
35
|
Regulation of ABA-Non-Activated SNF1-Related Protein Kinase 2 Signaling Pathways by Phosphatidic Acid. Int J Mol Sci 2020; 21:ijms21144984. [PMID: 32679718 PMCID: PMC7404309 DOI: 10.3390/ijms21144984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Phosphatidic acid (PA) is involved in the regulation of plant growth and development, as well as responses to various environmental stimuli. Several PA targets in plant cells were identified, including two SNF1-related protein kinases 2 (SnRK2s), SnRK2.10 and SnRK2.4, which are not activated by abscisic acid (ABA). Here, we investigated the effects of PA on various elements of ABA-non-activated SnRK2 signaling. PA 16:0/18:1 was found to modulate the SnRK2 structure and the phosphorylation of some SnRK2 targets. Conversely, phosphorylation by the ABA-non-activated SnRK2s, of one of such targets, dehydrin Early Responsive to Dehydration 14 (ERD14), affects its interaction with PA and subcellular localization. Moreover, PA 16:0/18:1 modulates the activity and/or localization of negative regulators of the ABA-non-activated SnRK2s, not only of the ABA insensitive 1 (ABI1) phosphatase, which was identified earlier, but also of another protein phosphatase 2C, PP2CA. The activity of both phosphatases was inhibited by about 50% in the presence of 50 μM PA. PA 16:0/18:1 also impacts the phosphorylation and subcellular localization of SnRK2-interacting calcium sensor, known to inhibit SnRK2 activity in a calcium-dependent manner. Thus, PA was found to regulate ABA-non-activated SnRK2 signaling at several levels: the activity, phosphorylation status and/or localization of SnRK2 cellular partners.
Collapse
|
36
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
37
|
Liu Z, Li H, Gou Z, Zhang Y, Wang X, Ren H, Wen Z, Kang BK, Li Y, Yu L, Gao H, Wang D, Qi X, Qiu L. Genome-wide association study of soybean seed germination under drought stress. Mol Genet Genomics 2020; 295:661-673. [PMID: 32008123 DOI: 10.1007/s00438-020-01646-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Drought stress, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Seed germination is an essential growth phase that ensures the successful establishment and productivity of soybean, which can lose substantial productivity in soils with water deficits. However, only limited genetic information is available about how germinating soybean seeds may exert drought tolerance. In this study, we examined the germinating seed drought-tolerance phenotypes and genotypes of a panel of 259 released Chinese soybean cultivars panel. Based on 4616 Single-Nucleotide Polymorphisms (SNPs), we conducted a mixed-linear model GWAS that identified a total of 15 SNPs associated with at least one drought-tolerance index. Notably, three of these SNPs were commonly associated with two drought-tolerance indices. Two of these SNPs are positioned upstream of genes, and 11 of them are located in or near regions where QTLs have been previously mapped by linkage analysis, five of which are drought-related. The SNPs detected in this study can both drive hypothesis-driven research to deepen our understanding of genetic basis of soybean drought tolerance at the germination stage and provide useful genetic resources that can facilitate the selection of drought stress traits via genomic-assisted selection.
Collapse
Affiliation(s)
- Zhangxiong Liu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huihui Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zuowang Gou
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yanjun Zhang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xingrong Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Honglei Ren
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824, USA
| | - Beom-Kyu Kang
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, 52402, Korea
| | - Yinghui Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lili Yu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huawei Gao
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824, USA
| | - Xusheng Qi
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Liu Y, Yan J, Qin Q, Zhang J, Chen Y, Zhao L, He K, Hou S. Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:360-377. [PMID: 31125159 DOI: 10.1111/jipb.12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 05/27/2023]
Abstract
Plant immunity must be tightly controlled to avoid activation of defense mechanisms in the absence of pathogen attack. Protein phosphorylation is a common mechanism regulating immune signaling. In Arabidopsis thaliana, nine members of the type one protein phosphatase (TOPP) family (also known as protein phosphatase 1, PP1) have been identified. Here, we characterized the autoimmune phenotype of topp4-1, a previously identified dominant-negative mutant of TOPP4. Epistasis analysis showed that defense activation in topp4-1 depended on NON-RACE-SPECIFIC DISEASE RESISTANCE1, PHYTOALEXIN DEFICIENT4, and the salicylic acid pathway. We generated topp1/4/5/6/7/8/9 septuple mutants to investigate the function of TOPPs in plant immunity. Elevated defense gene expression and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 in the septuple mutant indicate that TOPPs function in plant defense responses. Furthermore, TOPPs physically interacted with mitogen-activated protein kinases (MAPKs) and affected the MAPK-mediated downstream defense pathway. Thus, our study reveals that TOPPs are important regulators of plant immunity.
Collapse
Affiliation(s)
- Yaqiong Liu
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yan
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Qin
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing Zhang
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
39
|
Tarnowski K, Klimecka M, Ciesielski A, Goch G, Kulik A, Fedak H, Poznański J, Lichocka M, Pierechod M, Engh RA, Dadlez M, Dobrowolska G, Bucholc M. Two SnRK2-Interacting Calcium Sensor Isoforms Negatively Regulate SnRK2 Activity by Different Mechanisms. PLANT PHYSIOLOGY 2020; 182:1142-1160. [PMID: 31699848 PMCID: PMC6997710 DOI: 10.1104/pp.19.00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 05/07/2023]
Abstract
SNF1-related protein kinases 2 (SnRK2s) are key signaling elements regulating abscisic acid-dependent plant development and responses to environmental stresses. Our previous data showed that the SnRK2-interacting Calcium Sensor (SCS) inhibits SnRK2 activity. Use of alternative transcription start sites located within the Arabidopsis (Arabidopsis thaliana) AtSCS gene results in two in-frame transcripts and subsequently two proteins, that differ only by the sequence position of the N terminus. We previously described the longer AtSCS-A, and now describe the shorter AtSCS-B and compare the two isoforms. The two isoforms differ substantially in their expression profiles in plant organs and in response to environmental stresses, in their calcium binding properties, and in their conformational dynamics in the presence and absence of Ca2+ Only AtSCS-A has the features of a calcium sensor. Both forms inhibit SnRK2 activity, but while AtSCS-A requires calcium for inhibition, AtSCS-B does not. Analysis of Arabidopsis plants stably expressing 35S::AtSCS-A-c-myc or 35S::AtSCS-B-c-myc in the scs-1 knockout mutant background revealed that, in planta, both forms are negative regulators of abscisic acid-induced SnRK2 activity and regulate plant resistance against water deficit. Moreover, the data highlight biochemical, biophysical, and functional properties of EF-hand-like motifs in plant proteins.
Collapse
Affiliation(s)
- Krzysztof Tarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Maria Klimecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Warsaw University, Department of Chemistry, 02-093 Warsaw, Poland
| | - Grażyna Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Halina Fedak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Pierechod
- The Norwegian Center for Structure Biology, Institute of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Richard A Engh
- The Norwegian Center for Structure Biology, Institute of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- University of Warsaw, Institute of Genetics and Biotechnology, 02-106 Warsaw, Poland
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
40
|
Mao X, Li Y, Rehman SU, Miao L, Zhang Y, Chen X, Yu C, Wang J, Li C, Jing R. The Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) Genes Are Multifaceted Players in Plant Growth, Development and Response to Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2020; 61:225-242. [PMID: 31834400 DOI: 10.1093/pcp/pcz230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 05/28/2023]
Abstract
Reversible protein phosphorylation orchestrated by protein kinases and phosphatases is a major regulatory event in plants and animals. The SnRK2 subfamily consists of plant-specific protein kinases in the Ser/Thr protein kinase superfamily. Early observations indicated that SnRK2s are mainly involved in response to abiotic stress. Recent evidence shows that SnRK2s are multifarious players in a variety of biological processes. Here, we summarize the considerable knowledge of SnRK2s, including evolution, classification, biological functions and regulatory mechanisms at the epigenetic, post-transcriptional and post-translation levels.
Collapse
Affiliation(s)
- Xinguo Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Yuying Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou 450016, P. R. China
| | - Shoaib Ur Rehman
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Lili Miao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yanfei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou 450016, P. R. China
| | - Xin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chunmei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jingyi Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chaonan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Ruilian Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
41
|
Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou YJ, Wan Y, Liu W, Xie S, Lu T, Xue L, Liu Y, Macho AP, Tao WA, Bressan RA, Zhu JK. Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Rep 2019; 23:3340-3351.e5. [PMID: 29898403 PMCID: PMC6085104 DOI: 10.1016/j.celrep.2018.05.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/02/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023] Open
Abstract
Abscisic acid (ABA) is an important phytohormone controlling responses to abiotic stresses and is sensed by proteins from the PYR/PYL/RCAR family. To explore the genetic contribution of PYLs toward ABA-dependent and ABA-independent processes, we generated and characterized high-order Arabidopsis mutants with mutations in the PYL family. We obtained a pyl quattuordecuple mutant and found that it was severely impaired in growth and failed to produce seeds. Thus, we carried out a detailed characterization of a pyl duodecuple mutant, pyr1pyl1/2/3/4/5/7/8/9/10/11/12. The duo-decuple mutant was extremely insensitive to ABA effects on seed germination, seedling growth, stomatal closure, leaf senescence, and gene expression. The activation of SnRK2 protein kinases by ABA was blocked in the duodecuple mutant, but, unexpectedly, osmotic stress activation of SnRK2s was enhanced. Our results demonstrate an important role of basal ABA signaling in growth, senescence, and abscission and reveal that PYLs antagonize ABA-independent activation of SnRK2s by osmotic stress.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghui Gao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaan'xi 712100, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Tao Hu
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, China
| | - Zegang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yueh-Ju Hou
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yizhen Wan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Wenshan Liu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Shaojun Xie
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Tianjiao Lu
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Xue
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yajie Liu
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
42
|
Fang Y, Deng X, Lu X, Zheng J, Jiang H, Rao Y, Zeng D, Hu J, Zhang X, Xue D. Differential phosphoproteome study of the response to cadmium stress in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:780-788. [PMID: 31154203 DOI: 10.1016/j.ecoenv.2019.05.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals, and its accumulation in plants will seriously affect growth and yield. In this study, Cd-sensitive line D69 and Cd-tolerant line D28 were selected, which the Cd content of D28 was higher than D69 in both above and underground parts after Cd treatment. Using a combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS, the differential expression changes of phosphorylated proteins between D69 and D28 in leaves were classified and analyzed after Cd treatment. A total of 53 differentially expressed phosphoproteins were identified, which mainly involved in metabolism, signal transduction, gene expression regulation, material transport, and membrane fusion. The phosphorylated proteins of Cd-tolerant and Cd-sensitive lines were all analyzed, and found that some proteins associated with carbon metabolism, proteolytic enzymes, F-box containing transcription factors, RNA helicases, DNA replication/transcription/repair enzymes and ankyrins were detected in Cd-tolerant line D28, which might alleviate the abiotic stress caused by Cd treatment. These results will clarify the phosphorylated pathways in response and resistance to Cd stress in rice.
Collapse
Affiliation(s)
- Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China
| | - Xiangxiong Deng
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China
| | - Xueli Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, 310006, Hangzhou, China
| | - Junjun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China
| | - Hua Jiang
- Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, 310021, Hangzhou, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, 310006, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, 310006, Hangzhou, China.
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China.
| |
Collapse
|
43
|
Zhao JL, Zhang LQ, Liu N, Xu SL, Yue ZL, Zhang LL, Deng ZP, Burlingame AL, Sun DY, Wang ZY, Sun Y, Zhang SW. Mutual Regulation of Receptor-Like Kinase SIT1 and B'κ-PP2A Shapes the Early Response of Rice to Salt Stress. THE PLANT CELL 2019; 31:2131-2151. [PMID: 31221736 PMCID: PMC6751134 DOI: 10.1105/tpc.18.00706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
The receptor-like kinase SIT1 acts as a sensor in rice (Oryza sativa) roots, relaying salt stress signals via elevated kinase activity to enhance salt sensitivity. Here, we demonstrate that Protein Phosphatase 2A (PP2A) regulatory subunit B'κ constrains SIT1 activity under salt stress. B'κ-PP2A deactivates SIT1 directly by dephosphorylating the kinase at Thr515/516, a salt-induced phosphorylation site in the activation loop that is essential for SIT1 activity. B'κ overexpression suppresses the salt sensitivity of rice plants expressing high levels of SIT1, thereby contributing to salt tolerance. B'κ functions in a SIT1 kinase-dependent manner. During early salt stress, activated SIT1 phosphorylates B'κ; this not only enhances its binding with SIT1, it also promotes B'κ protein accumulation via Ser502 phosphorylation. Consequently, by blocking SIT1 phosphorylation, B'κ inhibits and fine-tunes SIT1 activity to balance plant growth and stress adaptation.
Collapse
Affiliation(s)
- Ji-Long Zhao
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Li-Qing Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Ning Liu
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Zhi-Liang Yue
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Lu-Lu Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Ping Deng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Da-Ye Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ying Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Sheng-Wei Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
44
|
Ruggiero A, Landi S, Punzo P, Possenti M, Van Oosten MJ, Costa A, Morelli G, Maggio A, Grillo S, Batelli G. Salinity and ABA Seed Responses in Pepper: Expression and Interaction of ABA Core Signaling Components. FRONTIERS IN PLANT SCIENCE 2019; 10:304. [PMID: 30941154 PMCID: PMC6433719 DOI: 10.3389/fpls.2019.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA) plays an important role in various aspects of plant growth and development, including adaptation to stresses, fruit development and ripening. In seeds, ABA participates through its core signaling components in dormancy instauration, longevity determination, and inhibition of germination in unfavorable environmental conditions such as high soil salinity. Here, we show that seed germination in pepper was delayed but only marginally reduced by ABA or NaCl with respect to control treatments. Through a similarity search, pepper orthologs of ABA core signaling components PYL (PYRABACTIN RESISTANCE1-LIKE), PP2C (PROTEIN PHOSPHATASE2C), and SnRK2 (SUCROSE NONFERMENTING1 (SNF1)-RELATED PROTEIN KINASE2) genes were identified. Gene expression analyses of selected members showed a low abundance of PYL and SnRK2 transcripts in dry seeds compared to other tissues, and an up-regulation at high concentrations of ABA and/or NaCl for both positive and negative regulators of ABA signaling. As expected, in hydroponically-grown seedlings exposed to NaCl, only PP2C encoding genes were up-regulated. Yeast two hybrid assays performed among putative pepper core components and with Arabidopsis thaliana orthologs confirmed the ability of the identified proteins to function in ABA signaling cascade, with the exception of a CaABI isoform cloned from seeds. BiFC assay in planta confirmed some of the interactions obtained in yeast. Altogether, our results indicate that a low expression of perception and signaling components in pepper seeds might contribute to explain the observed high percentages of seed germination in the presence of ABA. These results might have direct implications on the improvement of seed longevity and vigor, a bottleneck in pepper breeding.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Simone Landi
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | | | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | - Albino Maggio
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| |
Collapse
|
45
|
Nagatoshi Y, Fujita Y. Protein kinase CK2α subunits constitutively activate ABA signaling in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1525998. [PMID: 30335565 PMCID: PMC6279320 DOI: 10.1080/15592324.2018.1525998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Protein kinase CK2 (formerly known as casein kinase II), a Ser/Thr protein kinase highly conserved in eukaryotes, is essential for cell survival by regulating a wide range of plant growth, development, and stress responses. A growing body of evidence has shown a link between CK2 and abscisic acid (ABA) signaling in response to abiotic stress. However, the roles of CK2 subunits in ABA signaling remain unclear in plants. Our recent work in Arabidopsis thaliana has revealed that CK2α and CK2β subunits inversely modulate ABA signal output. Here, we examine the roles of CK2αs, by assessing how CK2αs affect ABA signaling. Together with the previous findings, our mutant and transient expression analyses demonstrate that CK2αs positively modulate ABA signaling through the core ABA signaling pathway in the presence of ABA, though the positive effect of CK2αs are much smaller than that of core ABA signaling components in ABA response. In addtion, our current and previous findings also suggest that CK2αs play a role in maintaining constitutively active ABA signaling even in the absence of ABA independently of the core ABA signaling pathway. Thus, we found that CK2αs constitutively activate ABA signaling in the presence or absence of ABA in a different manner in Arabidopsis plants.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
46
|
Franck CM, Westermann J, Bürssner S, Lentz R, Lituiev DS, Boisson-Dernier A. The Protein Phosphatases ATUNIS1 and ATUNIS2 Regulate Cell Wall Integrity in Tip-Growing Cells. THE PLANT CELL 2018; 30:1906-1923. [PMID: 29991535 PMCID: PMC6139677 DOI: 10.1105/tpc.18.00284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 05/10/2023]
Abstract
Fast tip-growing plant cells such as pollen tubes (PTs) and root hairs (RHs) require a robust coordination between their internal growth machinery and modifications of their extracellular rigid, yet extensible, cell wall (CW). Part of this essential coordination is governed by members of the Catharanthus roseus receptor-like kinase1-like (CrRLK1L) subfamily of RLKs with FERONIA (FER) and its closest homologs, ANXUR1 (ANX1) and ANX2, controlling CW integrity during RH and PT growth, respectively. Recently, Leucine-Rich Repeat Extensin 8 (LRX8) to LRX11 were also shown to be important for CW integrity in PTs. We previously reported an anx1 anx2 suppressor screen in Arabidopsis thaliana that revealed MARIS (MRI) as a positive regulator of both FER- and ANX1/2-dependent CW integrity pathways. Here, we characterize a suppressor that exhibits a weak rescue of the anx1 anx2 PT bursting phenotype and a short RH phenotype. The corresponding suppressor mutation causes a D94N substitution in a Type One Protein Phosphatase we named ATUNIS1 (AUN1). We show that AUN1 and its closest homolog, AUN2, are nucleocytoplasmic negative regulators of tip growth. Moreover, we demonstrate that AUN1D94N and AUN1H127A harboring mutations in key amino acids of the conserved catalytic site of phosphoprotein phosphatases function as dominant amorphic variants that repress PT growth. Finally, genetic interaction studies using the hypermorph MRIR240C and amorph AUN1D94N dominant variants indicate that LRX8-11 and ANX1/2 function in distinct but converging pathways to fine-tune CW integrity during tip growth.
Collapse
Affiliation(s)
| | | | - Simon Bürssner
- University of Cologne, Biocenter, 50674 Cologne, Germany
| | - Roswitha Lentz
- University of Cologne, Biocenter, 50674 Cologne, Germany
| | - Dmytro Sergiiovych Lituiev
- Institute for Computational Health Sciences, University of California, San Francisco, California 94158
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| | - Aurélien Boisson-Dernier
- University of Cologne, Biocenter, 50674 Cologne, Germany
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
47
|
Genome wide identification of wheat and Brachypodium type one protein phosphatases and functional characterization of durum wheat TdPP1a. PLoS One 2018; 13:e0191272. [PMID: 29338035 PMCID: PMC5770040 DOI: 10.1371/journal.pone.0191272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Reversible phosphorylation is an essential mechanism regulating signal transduction during development and environmental stress responses. An important number of dephosphorylation events in the cell are catalyzed by type one protein phosphatases (PP1), which catalytic activity is driven by the binding of regulatory proteins that control their substrate specificity or subcellular localization. Plants harbor several PP1 isoforms accounting for large functional redundancies. While animal PP1s were reported to play relevant roles in controlling multiple cellular processes, plant orthologs remain poorly studied. To decipher the role of plant PP1s, we compared PP1 genes from three monocot species, Brachypodium, common wheat and rice at the genomic and transcriptomic levels. To gain more insight into the wheat PP1 proteins, we identified and characterized TdPP1a, the first wheat type one protein phosphatase from a Tunisian durum wheat variety Oum Rabiaa3. TdPP1a is highly conserved in sequence and structure when compared to mammalian, yeast and other plant PP1s. We demonstrate that TdPP1a is an active, metallo-dependent phosphatase in vitro and is able to interact with AtI2, a typical regulator of PP1 functions. Also, TdPP1a is capable to complement the heat stress sensitivity of the yeast mutant indicating that TdPP1a is functional also in vivo. Moreover, transient expression of TdPP1a::GFP in tobacco leaves revealed that it is ubiquitously distributed within the cell, with a strong accumulation in the nucleus. Finally, transcriptional analyses showed similar expression levels in roots and leaves of durum wheat seedlings. Interestingly, the expression in leaves is significantly induced following salinity stress, suggesting a potential role of TdPP1a in wheat salt stress response.
Collapse
|
48
|
Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Mol Cell 2017; 69:100-112.e6. [PMID: 29290610 DOI: 10.1016/j.molcel.2017.12.002] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.
Collapse
|
49
|
Ahsan N, Chen M, Salvato F, Wilson RS, Shyama Prasad Rao R, Thelen JJ. Comparative proteomic analysis provides insight into the biological role of protein phosphatase inhibitor-2 from Arabidopsis. J Proteomics 2017; 165:51-60. [DOI: 10.1016/j.jprot.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 01/21/2023]
|
50
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|