1
|
Howlett M, Mayfield HJ, McPherson B, Rigby L, Thomsen R, Williams SA, Pilotte N, Hedtke SM, Graves PM, Kearns T, Naseri T, Sheridan S, McLure A, Lau CL. Molecular xenomonitoring as an indicator of microfilaraemia prevalence for lymphatic filariasis in Samoa in 2019. Parasit Vectors 2024; 17:382. [PMID: 39252131 PMCID: PMC11386098 DOI: 10.1186/s13071-024-06463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Lymphatic filariasis (LF) is a globally significant, vector-borne, neglected tropical disease that can result in severe morbidity and disability. As the World Health Organization (WHO) Global Programme to Eliminate Lymphatic Filariasis makes progress towards LF elimination, there is greater need to develop sensitive strategies for post-intervention surveillance. Molecular xenomonitoring (MX), the detection of pathogen DNA in vectors, may provide a sensitive complement to traditional human-based surveillance techniques, including detection of circulating filarial antigen and microfilaraemia (Mf). This study aims to explore the relationship between human Mf prevalence and the prevalence of polymerase chain reaction (PCR)-positive mosquitoes using MX. METHODS This study compared Mf and MX results from a 2019 community-based survey conducted in 35 primary sampling units (PSUs) in Samoa. This study also investigated concordance between presence and absence of PCR-positive mosquitoes and Mf-positive participants at the PSU level, and calculated sensitivity and negative predictive values for each indicator using presence of any Mf-positive infection in humans or PCR-positive mosquitoes as a reference. Correlation between prevalence of filarial DNA in mosquitoes and Mf in humans was estimated at the PSU and household/trap level using mixed-effect Bayesian multilevel regression analysis. RESULTS Mf-positive individuals were identified in less than half of PSUs in which PCR-positive mosquito pools were present (13 of 28 PSUs). Prevalence of PCR-positive mosquitoes (each species separately) was positively correlated with Mf prevalence in humans at the PSU level. Analysed at the species level, only Aedes polynesiensis demonstrated strong evidence of positive correlation (r) with human Mf prevalence at both PSU (r: 0.5, 95% CrI 0.1-0.8) and trap/household levels (r: 0.6, 95% CrI 0.2-0.9). CONCLUSIONS Findings from this study demonstrate that MX can be a sensitive surveillance method for identifying residual infection in low Mf prevalence settings. MX identified more locations with signals of transmission than Mf-testing. Strong correlation between estimated PCR-positive mosquitoes in the primary vector species and Mf in humans at small spatial scales demonstrates the utility of MX as an indicator for LF prevalence in Samoa and similar settings. Further investigation is needed to develop MX guidelines to strengthen the ability of MX to inform operational decisions.
Collapse
Affiliation(s)
- Maddison Howlett
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Helen J Mayfield
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Brady McPherson
- Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, 4051, Australia
| | - Lisa Rigby
- Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, 4051, Australia
| | | | - Steven A Williams
- Department of Biological Sciences, Smith College, Northampton, MA, 01063, USA
| | - Nils Pilotte
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, 06518, USA
| | - Shannon M Hedtke
- Department of Environment and Genetics, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, 4878, Australia
| | - Therese Kearns
- Menzies School of Health Research, Charles Darwin University, Casuarina, NT, 0810, Australia
| | - Take Naseri
- Samoa Ministry of Health, Apia, WS, 1330, Samoa
| | - Sarah Sheridan
- National Centre for Immunisation Research and Surveillance, Westmead, Sydney, Australia
| | - Angus McLure
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.
| | - Colleen L Lau
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4006, Australia
| |
Collapse
|
2
|
Ippoliti C, Bonicelli L, De Ascentis M, Tora S, Di Lorenzo A, d’Alessio SG, Porrello A, Bonanni A, Cioci D, Goffredo M, Calderara S, Conte A. Spotting Culex pipiens from satellite: modeling habitat suitability in central Italy using Sentinel-2 and deep learning techniques. Front Vet Sci 2024; 11:1383320. [PMID: 39027906 PMCID: PMC11256216 DOI: 10.3389/fvets.2024.1383320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Culex pipiens, an important vector of many vector borne diseases, is a species capable to feeding on a wide variety of hosts and adapting to different environments. To predict the potential distribution of Cx. pipiens in central Italy, this study integrated presence/absence data from a four-year entomological survey (2019-2022) carried out in the Abruzzo and Molise regions, with a datacube of spectral bands acquired by Sentinel-2 satellites, as patches of 224 × 224 pixels of 20 meters spatial resolution around each site and for each satellite revisit time. We investigated three scenarios: the baseline model, which considers the environmental conditions at the time of collection; the multitemporal model, focusing on conditions in the 2 months preceding the collection; and the MultiAdjacency Graph Attention Network (MAGAT) model, which accounts for similarities in temperature and nearby sites using a graph architecture. For the baseline scenario, a deep convolutional neural network (DCNN) analyzed a single multi-band Sentinel-2 image. The DCNN in the multitemporal model extracted temporal patterns from a sequence of 10 multispectral images; the MAGAT model incorporated spatial and climatic relationships among sites through a graph neural network aggregation method. For all models, we also evaluated temporal lags between the multi-band Earth Observation datacube date of acquisition and the mosquito collection, from 0 to 50 days. The study encompassed a total of 2,555 entomological collections, and 108,064 images (patches) at 20 meters spatial resolution. The baseline model achieved an F1 score higher than 75.8% for any temporal lag, which increased up to 81.4% with the multitemporal model. The MAGAT model recorded the highest F1 score of 80.9%. The study confirms the widespread presence of Cx. pipiens throughout the majority of the surveyed area. Utilizing only Sentinel-2 spectral bands, the models effectively capture early in advance the temporal patterns of the mosquito population, offering valuable insights for directing surveillance activities during the vector season. The methodology developed in this study can be scaled up to the national territory and extended to other vectors, in order to support the Ministry of Health in the surveillance and control strategies for the vectors and the diseases they transmit.
Collapse
Affiliation(s)
- Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lorenzo Bonicelli
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo De Ascentis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Susanna Tora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alessio Di Lorenzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | | | - Angelo Porrello
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Americo Bonanni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Daniela Cioci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Simone Calderara
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
3
|
Jobe NB, Franz NM, Johnston MA, Malone AB, Ruberto I, Townsend J, Will JB, Yule KM, Paaijmans KP. The Mosquito Fauna of Arizona: Species Composition and Public Health Implications. INSECTS 2024; 15:432. [PMID: 38921147 PMCID: PMC11203593 DOI: 10.3390/insects15060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Arizona is home to many mosquito species, some of which are known vectors of infectious diseases that harm both humans and animals. Here, we provide an overview of the 56 mosquito species that have been identified in the State to date, but also discuss their known feeding preference and the diseases they can (potentially) transmit to humans and animals. This list is unlikely to be complete for several reasons: (i) Arizona's mosquitoes are not systematically surveyed in many areas, (ii) surveillance efforts often target specific species of interest, and (iii) doubts have been raised by one or more scientists about the accuracy of some collection records, which has been noted in this article. There needs to be an integrated and multifaceted surveillance approach that involves entomologists and epidemiologists, but also social scientists, wildlife ecologists, ornithologists, representatives from the agricultural department, and irrigation and drainage districts. This will allow public health officials to (i) monitor changes in current mosquito species diversity and abundance, (ii) monitor the introduction of new or invasive species, (iii) identify locations or specific populations that are more at risk for mosquito-borne diseases, and (iv) effectively guide vector control.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Nico M. Franz
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Murray A. Johnston
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA;
| | - Adele B. Malone
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - Irene Ruberto
- Arizona Department of Health Services, Phoenix, AZ 85007, USA;
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - James B. Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - Kelsey M. Yule
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ 85281, USA;
| | - Krijn P. Paaijmans
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
DeLisi N, Arreola MM, O'Meara S, Dimise M, Caillouet K. Evaluation of ultra-low volume treatments on Culex quinquefasciatus (Diptera: Culicidae) abundance and relative age by parity dissection. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:175-180. [PMID: 37703356 DOI: 10.1093/jme/tjad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
St. Tammany Parish Mosquito Abatement District relies on ultra-low volume (ULV) insecticides to manage adult Culex quinquefasciatus (Say 1823), the primary vector of West Nile virus in Louisiana, but abundance rarely declines post-treatment. Three field ULV applications each of adulticides containing deltamethrin, naled, or resmethrin were conducted from May through October 2022 to measure efficacy against free-flying Cx. quinquefasciatus. Female mosquitoes trapped before and after treatment were identified, counted, and age-graded by parity dissection. No insecticide applications reduced Cx. quinquefasciatus abundance, but trials with deltamethrin and naled significantly lowered average mosquito age in the area post-treatment. No trials with resmethrin reduced mosquito age, which corroborates laboratory susceptibility data indicating local resistance toward the pyrethroid. These trials establish parity dissections and relative age gradation as a means of measuring treatment success against Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Nicholas DeLisi
- St. Tammany Parish Mosquito Abatement District, 62436 Airport Road, Slidell, LA 70460, USA
| | | | - Shannon O'Meara
- St. Tammany Parish Mosquito Abatement District, 62436 Airport Road, Slidell, LA 70460, USA
| | - Mollie Dimise
- St. Tammany Parish Mosquito Abatement District, 62436 Airport Road, Slidell, LA 70460, USA
| | - Kevin Caillouet
- St. Tammany Parish Mosquito Abatement District, 62436 Airport Road, Slidell, LA 70460, USA
| |
Collapse
|
5
|
Lu L, Zhang F, Oude Munnink BB, Munger E, Sikkema RS, Pappa S, Tsioka K, Sinigaglia A, Dal Molin E, Shih BB, Günther A, Pohlmann A, Ziegler U, Beer M, Taylor RA, Bartumeus F, Woolhouse M, Aarestrup FM, Barzon L, Papa A, Lycett S, Koopmans MPG. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog 2024; 20:e1011880. [PMID: 38271294 PMCID: PMC10810478 DOI: 10.1371/journal.ppat.1011880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.
Collapse
Affiliation(s)
- Lu Lu
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Feifei Zhang
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bas B. Oude Munnink
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Emmanuelle Munger
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Reina S. Sikkema
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Barbara B. Shih
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Günther
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, United Kingdom
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
- Centre for Research on Ecology and Forestry Applications (CREAF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mark Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Samantha Lycett
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marion P. G. Koopmans
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Arsenault-Benoit A, Fritz ML. Spatiotemporal organization of cryptic North American Culex species along an urbanization gradient. ECOLOGICAL SOLUTIONS AND EVIDENCE 2023; 4:e12282. [PMID: 38898889 PMCID: PMC11185319 DOI: 10.1002/2688-8319.12282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Landscape heterogeneity creates diverse habitat and resources for mosquito vectors of disease. A consequence may be varied distribution and abundance of vector species over space and time dependent on niche requirements.We tested the hypothesis that landscape heterogeneity driven by urbanization influences the distribution and relative abundance of Culex pipiens, Cx. restuans, and Cx. quinquefasciatus, three vectors of West Nile virus (WNv) in the eastern North American landscape. We collected 9,803 cryptic Culex from urban, suburban, and rural sites in metropolitan Washington, District of Columbia, during the months of June-October, 2019-2021. In 2021, we also collected mosquitoes in April and May to measure early-season abundance and distribution. Molecular techniques were used to identify a subset of collected Culex to species (n = 2,461). Ecological correlates of the spatiotemporal distribution of these cryptic Culex were examined using constrained and unconstrained ordination.Seasonality was not associated with Culex community composition in June-October over three years but introducing April and May data revealed seasonal shifts in community composition in the final year of our study. Culex pipiens were dominant across site types, while Cx. quinquefasciatus were associated with urban environments, and Cx. restuans were associated with rural and suburban sites. All three species rarely coexisted.Our work demonstrates that human-mediated land-use changes influence the distribution and relative abundance of Culex vectors of WNv, even on fine geospatial scales. Site classification, percent impervious surface, distance to city center, and longitude predicted Culex community composition. We documented active Culex months before vector surveillance typically commences in this region, with Culex restuans being most abundant during April and May. Active suppression of Cx. restuans in April and May could reduce early enzootic transmission, delay the seasonal spread of WNv, and thereby reduce overall WNv burden. By June, the highest risk of epizootic spillover of WNv to human hosts may be in suburban areas with high human population density and mixed Culex assemblages that can transmit WNv between birds and humans. Focusing management efforts there may further reduce human disease burden.
Collapse
Affiliation(s)
| | - Megan L. Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742
| |
Collapse
|
7
|
Lee DE, Shin J, Kim YH, Choi KS, Choe H, Lee KP, Lee SH, Kim JH. Inference of selection pressures that drive insecticide resistance in Anopheles and Culex mosquitoes in Korea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105520. [PMID: 37532334 DOI: 10.1016/j.pestbp.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pyrethroids are primarily used for mosquito control in Korea. However, high frequencies of mutations conferring resistance to not only pyrethroids but also to other insecticides have been found in mosquito populations. This study aimed to examine the hypothesis that insecticides used outside of public health may play a role in selection. Briefly, the resistance mutation frequencies to three insecticide groups (pyrethroids, organophosphates, and cyclodienes) were estimated in two representative groups of mosquito species (Anopheles Hyrcanus Group and Culex pipiens complex). The relationship between these frequencies and the land-use status of the collection sites was investigated through multiple regression analysis. In the Anopheles Hyrcanus Group, the frequencies of both ace1 (organophosphate resistance) and rdl (cyclodiene resistance) mutations were positively correlated with 'proximity to golf course', possibly be due to the insecticides used for turf maintenance. They also showed positive correlations with field area and rice paddy area, respectively, suggesting the role of agricultural insecticides in the selection of these resistance traits. For the Cx. pipiens complex, the kdr (pyrethroid resistance), ace1, and rdl mutations were positively correlated with the residential area, field, and rice paddy, respectively. Therefore, pyrethroids used for public health could serve as a direct source of resistance selection pressure against kdr, whereas non-public health insecticides may pose primary selection pressure against the ace1 and rdl traits. The current findings suggest that the insecticides used in agriculture and the golf industry play a significant role in mosquito selection, despite variations in the extent of indirect selection pressure according to the mosquito groups and insecticide classes.
Collapse
Affiliation(s)
- Do Eun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeewoo Shin
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Ho Kim
- Department of Entomology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Kwang Shik Choi
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeyeong Choe
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Perrin A, Schaffner F, Christe P, Glaizot O. Relative effects of urbanisation, deforestation, and agricultural development on mosquito communities. LANDSCAPE ECOLOGY 2023; 38:1527-1536. [PMID: 37229481 PMCID: PMC10203030 DOI: 10.1007/s10980-023-01634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/05/2023] [Indexed: 05/27/2023]
Abstract
Context Despite numerous studies that showed negative effects of landscape anthropisation on species abundance and diversity, the relative effects of urbanisation, deforestation, and agricultural development as well as the spatial extent at which they act are much less studied. This is particularly the case for mosquitoes, which are the most important arthropods affecting human health. Objectives We determined the scale of effect of these three landscape anthropisation components on mosquito abundance and diversity. We then assessed which landscape variables had the most effect as well as their independent positive or negative effects. Methods We used mosquito data collected by Schaffner and Mathis (2013) in 16 sampling sites in Switzerland. We measured forest, urban and agricultural amounts in 485 concentric landscapes (from 150 to 5000 m radius) around each sampling site. We then identified the spatial extent at which each landscape metric best predicted abundance and diversity of mosquito species and compared the effect size of each landscape component on each response variable. Results In Switzerland, urbanisation and deforestation have a greater influence on mosquito diversity than agricultural development, and do not act at the same scale. Conversely, the scale of effect on mosquito abundance is relatively similar across the different landscape anthropisation components or across mosquito species, except for Culex pipiens. However, the effect size of each landscape component varies according to mosquito species. Conclusion The scale of management must be selected according to the conservation concern. In addition, a multi-scale approach is recommended for effective mosquito community management. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-023-01634-w.
Collapse
Affiliation(s)
- Antoine Perrin
- Department of Ecology and Evolution, University of Lausanne, UNIL-Sorge, Biophore, 1015 Lausanne, Switzerland
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, 8057 Zurich, Switzerland
- Francis Schaffner Consultancy, 4125 Riehen, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, UNIL-Sorge, Biophore, 1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, UNIL-Sorge, Biophore, 1015 Lausanne, Switzerland
- Museum of Zoology, 1014 Lausanne, Switzerland
| |
Collapse
|
9
|
Johnson HE, Clifton M, Harbison JE, Erkapic A, Barrett-Wilt GA, Paskewitz S, Bartholomay L. Assessment of Truck-Mounted Area-Wide S-methoprene Applications to Manage West Nile Virus Vector Species in the Suburbs of Chicago, IL, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:384-391. [PMID: 36484651 DOI: 10.1093/jme/tjac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 06/17/2023]
Abstract
West Nile virus remains the leading cause of arboviral neuroinvasive disease in the United States, despite extensive efforts to control the mosquito vectors involved in transmission. In this study, we evaluated the effectiveness of Altosid SR-20 (active ingredient, S-methoprene 20%) larvicide applications using truck-mounted ultra-low volume (ULV) dispersal equipment to target Culex pipiens Linnaeus (Diptera: Culicidae) and Cx. restuans (Theobald)larvae. A combination of emergence bioassays, open-field measurements of deposited S-methoprene and spray distribution using gas chromatography-mass spectrometry, and assessments of adult Culex spp. populations in response to applications were conducted over the summer of 2020 within the North Shore Mosquito Abatement District (IL, USA). Open-field applications revealed that dispersed Altosid SR-20 using ULV equipment was effective (75% emergence inhibition in susceptible lab strain Cx. pipiens larvae) up to 53 m. In suburban neighborhood applications, we found that S-methoprene deposition and larval emergence inhibition (EI) in front yards did not differ significantly from backyards. An overall EI of 46% and 28% were observed for laboratory strain Cx. pipiens and wild Cx. restuans larvae respectively, and both had an EI significantly higher than the untreated control group. The EI of exposed wild Cx. pipiens larvae did not differ from the untreated controls, suggesting an increased tolerance to S-methoprene. No difference in abundance of gravid or host-seeking adult Culex spp. post-application was detected between treated and untreated sites. These results document the ability of area-wide application to distribute S-methoprene, but this strategy will need further modifications and evaluation for Culex spp. management.
Collapse
Affiliation(s)
- Haley E Johnson
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Mark Clifton
- North Shore Mosquito Abatement District, 117 Northfield Road, Northfield, IL 60093, USA
| | - Justin E Harbison
- Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Anastazia Erkapic
- North Shore Mosquito Abatement District, 117 Northfield Road, Northfield, IL 60093, USA
| | - Gregory A Barrett-Wilt
- Biotechnology Center, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USAand
| | - Lyric Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
10
|
McMahon A, França CMB, Wimberly MC. Comparing Satellite and Ground-Based Measurements of Environmental Suitability for Vector Mosquitoes in an Urban Landscape. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1936-1946. [PMID: 36189969 PMCID: PMC9667728 DOI: 10.1093/jme/tjac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 06/16/2023]
Abstract
Exposure to mosquito-borne diseases is influenced by landscape patterns and microclimates associated with land cover. These influences can be particularly strong in heterogeneous urban landscapes where human populations are concentrated. We investigated how land cover and climate influenced abundances of Ae. albopictus (Skuse) (Diptera: Culicidae) and Cx. quinquefasciatus (Say) (Diptera: Culicidae) in Norman, Oklahoma (United States). From June-October 2019 and May-October 2020 we sampled mosquitoes along an urban-rural gradient using CO2 baited BG Sentinel traps. Microclimate sensors at these sites measured temperature and humidity. We mapped environmental variables using satellite images from Landsat, Sentinel-2, and VIIRS, and the CHIRPS rainfall dataset. We also obtained meteorological data from the closest weather station. We compared statistical models of mosquito abundance based on microclimate, satellite, weather station, and land cover data. Mosquitoes were more abundant on trap days with higher temperature and relative humidity. Rainfall 2 wk prior to the trap day negatively affected mosquito abundances. Impervious surface cover was positively associated with Cx. quinquefasciatus and tree cover was negatively associated with Ae. albopictus. Among the data sources, models based on satellite variables and land cover data had the best fits for Ae. albopictus (R2 = 0.7) and Cx. quinquefasciatus (R2 = 0.51). Models based on weather station or microclimate data had weaker fits (R2 between 0.09 and 0.17) but were improved by adding land cover variables (R2 between 0.44 and 0.61). These results demonstrate the potential for using satellite remote sensing for mosquito habitat analyses in urban areas.
Collapse
Affiliation(s)
- Andrea McMahon
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman OK, USA
| | - Caio M B França
- Department of Biology, Southern Nazarene University, Bethany, OK, USA
- Quetzal Education and Research Center, Southern Nazarene University, San Gerardo de Dota, Costa Rica
| | | |
Collapse
|
11
|
Faiman R, Yaro AS, Dao A, Sanogo ZL, Diallo M, Samake D, Yossi O, Veru LM, Graber LC, Conte AR, Kouam C, Krajacich BJ, Lehmann T. Isotopic evidence that aestivation allows malaria mosquitoes to persist through the dry season in the Sahel. Nat Ecol Evol 2022; 6:1687-1699. [PMID: 36216903 DOI: 10.1038/s41559-022-01886-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA.
| | - Alpha S Yaro
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dao
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Zana L Sanogo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Djibril Samake
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ousmane Yossi
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Laura M Veru
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Leland C Graber
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Abigail R Conte
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Cedric Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | | | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| |
Collapse
|
12
|
SEIR-Metapopulation model of potential spread of West Nile virus. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zettle M, Anderson E, LaDeau SL. Changes in Container-Breeding Mosquito Diversity and Abundance Along an Urbanization Gradient are Associated With Dominance of Arboviral Vectors. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:843-854. [PMID: 35388898 DOI: 10.1093/jme/tjac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Environmental conditions associated with urbanization are likely to influence the composition and abundance of mosquito (Diptera, Culicidae) assemblages through effects on juvenile stages, with important consequences for human disease risk. We present six years (2011-2016) of weekly juvenile mosquito data from distributed standardized ovitraps and evaluate how variation in impervious cover and temperature affect the composition and abundance of container-breeding mosquito species in Maryland, USA. Species richness and evenness were lowest at sites with high impervious cover (>60% in 100-m buffer). However, peak diversity was recorded at sites with intermediate impervious cover (28-35%). Four species were observed at all sites, including two recent invasives (Aedes albopictus Skuse, Ae. japonicus Theobald), an established resident (Culex pipiens L), and one native (Cx. restuans Theobald). All four are viral vectors in zoonotic or human transmission cycles. Temperature was a positive predictor of weekly larval abundance during the growing season for each species, as well as a positive predictor of rapid pupal development. Despite being observed at all sites, each species responded differently to impervious cover. Abundance of Ae. albopictus larvae was positively associated with impervious cover, emphasizing that this medically-important vector not only persists in the warmer, impervious urban landscape but is positively associated with it. Positive temperature effects in our models of larval abundance and pupae occurrence in container habitats suggest that these four vector species are likely to continue to be present and abundant in temperate cities under future temperature scenarios.
Collapse
Affiliation(s)
- MyKenna Zettle
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Elsa Anderson
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | |
Collapse
|
14
|
Russell MC, Herzog CM, Gajewski Z, Ramsay C, El Moustaid F, Evans MV, Desai T, Gottdenker NL, Hermann SL, Power AG, McCall AC. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 2022; 11:e71503. [PMID: 35044908 PMCID: PMC8769645 DOI: 10.7554/elife.71503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of Aedes, Anopheles, and Culex mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, Culex vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.
Collapse
Affiliation(s)
- Marie C Russell
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Catherine M Herzog
- Center for Infectious Disease Dynamics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Chloe Ramsay
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Michelle V Evans
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- MIVEGEC, IRD, CNRS, Université MontpellierMontpellierFrance
| | - Trishna Desai
- Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Nicole L Gottdenker
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- Department of Veterinary Pathology, University of Georgia College of Veterinary MedicineAthensUnited States
| | - Sara L Hermann
- Department of Entomology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - Andrew C McCall
- Biology Department, Denison UniversityGranvilleUnited States
| |
Collapse
|
15
|
Culex Mosquitoes at Stormwater Control Measures and Combined Sewer Overflow Outfalls after Heavy Rainfall. WATER 2021. [DOI: 10.3390/w14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito borne diseases are increasingly problematic as climate change continues to alter patterns of precipitation, flooding, and temperatures that may favor mosquito habitats. Stormwater control measures (SCMs), ecologically sustainable methods of stormwater management, may have varying impacts on Culex mosquitoes, such as in areas with combined sewer overflows (CSOs). We studied spatial and temporal associations of SCMs and Culex mosquito counts surrounding the SCMs, stratifying our examination amongst those that do/do not use pooling and/or vegetation, as well as surrounding CSO outfalls after heavy rainfall (≥95th percentile) during summer 2018. Results indicate Culex mosquito counts after heavy rainfall were not significantly different at SCMs that use vegetation and/or ponding from at those that do not. We also found a 35.5% reduction in the increase of Culex mosquitoes the day of, and 77.0% reduction 7–8 days after, heavy rainfall at CSO outfalls treated with medium SCM density compared to those without SCMs. Our results suggest that SCMs may be associated with a reduction in the increase of Culex mosquitoes at the CSO outfalls after heavy rainfall. More research is needed to study how the impacts of SCMs on mosquito populations may affect human health.
Collapse
|
16
|
McMillan JR, Harden CA, Burtis JC, Breban MI, Shepard JJ, Petruff TA, Misencik MJ, Bransfield AB, Poggi JD, Harrington LC, Andreadis TG, Armstrong PM. The community-wide effectiveness of municipal larval control programs for West Nile virus risk reduction in Connecticut, USA. PEST MANAGEMENT SCIENCE 2021; 77:5186-5201. [PMID: 34272800 PMCID: PMC9291174 DOI: 10.1002/ps.6559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), USA. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and nonbasin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO2 -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with laboratory bioassays of catch basin water samples. RESULTS Declines in 4th instar larvae and pupae were observed in catch basins up to 2-week post-treatment, and we detected a positive relationship between adult female C. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, C. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk.
Collapse
Affiliation(s)
- Joseph R McMillan
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
| | | | - James C Burtis
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
- Division of Vector‐borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | | | - John J Shepard
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Tanya A Petruff
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
| | | | | | - Joseph D Poggi
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
- Cornell UniversityIthacaNYUSA
| | - Laura C Harrington
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
- Cornell UniversityIthacaNYUSA
| | - Theodore G Andreadis
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
17
|
Faiman R, Krajacich BJ, Graber L, Dao A, Yaro AS, Yossi O, Sanogo ZL, Diallo M, Samaké D, Sylla D, Coulibaly M, Kone S, Goita S, Coulibaly MB, Muratova O, McCormack A, Gonçalves BP, Hume J, Duffy P, Lehmann T. A novel fluorescence and DNA combination for versatile, long-term marking of mosquitoes. Methods Ecol Evol 2021; 12:1008-1016. [PMID: 34249305 PMCID: PMC8252004 DOI: 10.1111/2041-210x.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022]
Abstract
Current mark-release-recapture methodologies are limited in their ability to address complex problems in vector biology, such as studying multiple groups overlapping in space and time. Additionally, limited mark retention, reduced post-marking survival and the large effort in marking, collection and recapture all complicate effective insect tracking.We have developed and evaluated a marking method using a fluorescent dye (SmartWater®) combined with synthetic DNA tags to informatively and efficiently mark adult mosquitoes using an airbrush pump and nebulizer. Using a handheld UV flashlight, the fluorescent marking enabled quick and simple initial detection of recaptures in a field-ready and non-destructive approach that when combined with an extraction-free PCR on individual mosquito legs provides potentially unlimited marking information.This marking, first tested in the laboratory with Anopheles gambiae s.l. mosquitoes, did not affect survival (median ages 24-28 days, p-adj > 0.25), oviposition (median eggs/female of 28.8, 32.5, 33.3 for water, green, red dyes, respectively, p-adj > 0.44) or Plasmodium competence (mean oocysts 5.56-10.6, p-adj > 0.95). DNA and fluorescence had 100% retention up to 3 weeks (longest time point tested) with high intensity, indicating marks would persist longer.We describe a novel, simple, no/low-impact and long-lasting marking method that allows separation of multiple insect subpopulations by combining unlimited length and sequence variation in the synthetic DNA tags. This method can be readily deployed in the field for marking multiple groups of mosquitoes or other insects.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector ResearchNIAIDNIHRockvilleMDUSA
| | | | - Leland Graber
- Laboratory of Malaria and Vector ResearchNIAIDNIHRockvilleMDUSA
| | - Adama Dao
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Alpha Seydou Yaro
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Ousmane Yossi
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Zana Lamissa Sanogo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Djibril Samaké
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Daman Sylla
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Moribo Coulibaly
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Salif Kone
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Sekou Goita
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Mamadou B. Coulibaly
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto‐stomatologyUniversity of Sciences, Techniques and TechnologiesBamakoMali
| | - Olga Muratova
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Ashley McCormack
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Bronner P. Gonçalves
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Jennifer Hume
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Patrick Duffy
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector ResearchNIAIDNIHRockvilleMDUSA
| |
Collapse
|
18
|
Spatio-Temporal Distribution of Aedes Albopictus and Culex Pipiens along an Urban-Natural Gradient in the Ventotene Island, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228300. [PMID: 33182683 PMCID: PMC7696970 DOI: 10.3390/ijerph17228300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
The distribution of mosquitos and their corresponding hosts is critical in public health to determine the risk of transmission for vector-borne diseases. In this pilot study conducted in the small Mediterranean island of Ventotene, a known stopover site for migratory birds, the spatio-temporal distribution of two major mosquito vectors is analyzed from the natural to urban environment. The results show that Aedes albopictus aggregates mostly near areas with a human presence and the urban landscape, while Culex pipiens is more spatio-temporally spread, as it can also be found in wilder and less anthropized areas where the availability of human hosts is limited. Culex pipiens is also active earlier in the year. From a microgeographical perspective, our results confirm the anthropophilic spatial distribution of Ae. Albopictus, while suggesting that the circulation of bird zoonosis, such as West Nile, could be favored by the Cx. pipiens distribution. The results highlight the different ecology of the vectors and the interplay with their hosts, even at a small scale. The current evidence may help in forecasting the risk of pathogen transmission and surveillance planning.
Collapse
|
19
|
Porras MF, López-Londoño T, Rost J, Biddinger D, Calvin D, Rajotte EG. A Method for a Long-Term Marking of Spotted Lanternfly (Hemiptera: Fulgoridae) Using a Stable Isotope of Nitrogen. ENVIRONMENTAL ENTOMOLOGY 2020; 49:993-997. [PMID: 32533697 DOI: 10.1093/ee/nvaa067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 06/11/2023]
Abstract
Developing a lifelong marking method for Lycorma delicatula (White, 1845) is crucial to investigate ecological processes. Here we validate a marking method using stable isotope enrichment (15N) of host plants to track spotted lanternfly (SLF), an invasive species causing economic damage on grapes, hardwood forest and landscape tree species. To validate this method, we first determined the isotope dosage to be sprayed on the host plants and subsequently detected in SLF. Second, we examined whether 15N mark remains detectable from the nymphal to adult stage. We demonstrated that two stable isotope dosages applied to the host plants were assimilated by the insect and equally detectable in the exoskeleton, wings, and mature eggs ready to be oviposited. This safe and reliable method can be used to examine fundamental processes of the biology and ecology of SLF that range from dietary resources and resource allocation to food-web structure and dispersal patterns.
Collapse
Affiliation(s)
- Mitzy F Porras
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - Tomás López-Londoño
- Department of Biology, The Pennsylvania State University, University Park, PA
| | - John Rost
- Department of Entomology, The Pennsylvania State University, University Park, PA
- Department of Horticulture, The Pennsylvania State University, Berks Campus, Reading PA
| | - David Biddinger
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - Dennis Calvin
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - Edwin G Rajotte
- Department of Entomology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
20
|
Alahmadi S, Ibrahim R, Messali M, Ali M. Effect of aminopyridinium-based ionic liquids against larvae of Culex pipiens (Diptera: Culicidae). JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1782601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Reda Ibrahim
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mouslim Messali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Medhat Ali
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Swetnam DM, Stuart JB, Young K, Maharaj PD, Fang Y, Garcia S, Barker CM, Smith K, Godsey MS, Savage HM, Barton V, Bolling BG, Duggal N, Brault AC, Coffey LL. Movement of St. Louis encephalitis virus in the Western United States, 2014- 2018. PLoS Negl Trop Dis 2020; 14:e0008343. [PMID: 32520944 PMCID: PMC7307790 DOI: 10.1371/journal.pntd.0008343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/22/2020] [Accepted: 05/02/2020] [Indexed: 11/22/2022] Open
Abstract
St. Louis encephalitis virus (SLEV) is a flavivirus that circulates in an enzootic cycle between birds and mosquitoes and can also infect humans to cause febrile disease and sometimes encephalitis. Although SLEV is endemic to the United States, no activity was detected in California during the years 2004 through 2014, despite continuous surveillance in mosquitoes and sentinel chickens. In 2015, SLEV-positive mosquito pools were detected in Maricopa County, Arizona, concurrent with an outbreak of human SLEV disease. SLEV-positive mosquito pools were also detected in southeastern California and Nevada in summer 2015. From 2016 to 2018, SLEV was detected in mosquito pools throughout southern and central California, Oregon, Idaho, and Texas. To understand genetic relatedness and geographic dispersal of SLEV in the western United States since 2015, we sequenced four historical genomes (3 from California and 1 from Louisiana) and 26 contemporary SLEV genomes from mosquito pools from locations across the western US. Bayesian phylogeographic approaches were then applied to map the recent spread of SLEV. Three routes of SLEV dispersal in the western United States were identified: Arizona to southern California, Arizona to Central California, and Arizona to all locations east of the Sierra Nevada mountains. Given the topography of the Western United States, these routes may have been limited by mountain ranges that influence the movement of avian reservoirs and mosquito vectors, which probably represents the primary mechanism of SLEV dispersal. Our analysis detected repeated SLEV introductions from Arizona into southern California and limited evidence of year-to-year persistence of genomes of the same ancestry. By contrast, genetic tracing suggests that all SLEV activity since 2015 in central California is the result of a single persistent SLEV introduction. The identification of natural barriers that influence SLEV dispersal enhances our understanding of arbovirus ecology in the western United States and may also support regional public health agencies in implementing more targeted vector mitigation efforts to protect their communities more effectively. Following the detection of West Nile virus in the United States, evidence of the historically endemic and closely related virus, St. Louis encephalitis virus (SLEV), dropped nationwide. However, in 2015, a novel genotype of SLEV, previously restricted to Argentina, was identified as the etiological agent of an outbreak of neurological disease in Arizona, United States. Since that time, the genotype has expanded throughout the Western United States, including into California, Nevada, Texas, Idaho, and Oregon. In this study, samples containing SLEV, provided by public health and mosquito abatement agencies, were sequenced and used in phylogenetic analyses to infer patterns of SLEV movement. Three independent routes of SLEV dispersal were identified: Arizona to Southern California, Arizona to Central California, and Arizona to all locations east of the Sierra Nevada mountains. The Sierra Nevada mountains and the Transverse Ranges appear to separate the three routes of SLEV movement, suggesting that geographic features may act as barriers to virus dispersal. Identification of patterns of SLEV dispersal can support regional public health agencies in improving vector mitigation efforts to protect their communities more effectively.
Collapse
Affiliation(s)
- Daniele M. Swetnam
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Jackson B. Stuart
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Katherine Young
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Payal D. Maharaj
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Ying Fang
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Sandra Garcia
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Kirk Smith
- Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Marvin S. Godsey
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Harry M. Savage
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Vonnita Barton
- Idaho Bureau of Laboratories, Boise, Idaho, United States of America
| | - Bethany G. Bolling
- Laboratory Services Section, Texas Department of State Health Services, Austin, Texas, United States of America
| | - Nisha Duggal
- Department of Molecular Biology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Aaron C. Brault
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Dispersal of female and male Aedes aegypti from discarded container habitats using a stable isotope mark-capture study design in South Texas. Sci Rep 2020; 10:6803. [PMID: 32321946 PMCID: PMC7176680 DOI: 10.1038/s41598-020-63670-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/03/2020] [Indexed: 11/30/2022] Open
Abstract
Aedes aegypti is the main vector of arboviral diseases such as dengue, chikungunya and Zika. A key feature for disease transmission modeling and vector control planning is adult mosquito dispersal. We studied Ae aegypti adult dispersal by conducting a mark-capture study of naturally occurring Ae. aegypti from discarded containers found along a canal that divided two residential communities in Donna, Texas, USA. Stable isotopes were used to enrich containers with either 13C or 15N. Adult mosquitoes were collected outdoors in the yards of households throughout the communities with BG Sentinel 2 traps during a 12-week period. Marked mosquito pools with stable isotopes were used to estimate the mean distance travelled using three different approaches (Net, Strip or Circular) and the probability of detecting an isotopically marked adult at different distances from the larval habitat of origin. We consistently observed, using the three approaches that male (Net: 220 m, Strip: 255 m, Circular: 250 m) Ae. aegypti dispersed further in comparison to gravid (Net: 135 m, Strip: 176 m, Circular: 189 m) and unfed females (Net: 192 m, Strip: 213 m, Circular: 198 m). We also observed that marked male capture probability slightly increased with distance, while, for both unfed and gravid females, such probability decreased with distance. Using a unique study design documenting adult dispersal from natural larval habitat, our results suggest that Ae. aegypti adults disperse longer distances than previously reported. These results may help guide local vector control authorities in their fight against Ae. aegypti and the diseases it transmits, suggesting coverage of 200 m for the use of insecticides and innovative vector control tools.
Collapse
|
23
|
Garcia-Luna SM, Juarez JG, Cabañas S, Tang W, Roark EB, Maupin CR, Badillo-Vargas IE, Hamer GL. Stable Isotope Marking of Laboratory-Reared Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:649-652. [PMID: 31751467 PMCID: PMC7044722 DOI: 10.1093/jme/tjz210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 05/07/2023]
Abstract
The use of stable isotope enrichment to mark mosquitoes has provided a tool to study the biology of vector species. In this study, we evaluated isotopic marking of Aedes aegypti (L.) (Diptera: Culicidae) in a laboratory setting. We determined the optimal dosage for marking adult Ae. aegypti mosquitoes with 13C and 15N. Additionally, Ae. aegypti mosquitoes were single and dually marked with 13C and 15N for up to 60 d postemergence without changes to adult body size or transgenerational marking. This report adds to the growing literature that explores the use of alternative marking methods for ecological and vector biology studies.
Collapse
Affiliation(s)
| | - Jose G Juarez
- Department of Entomology, Texas A&M University, College Station, TX
| | - Sofia Cabañas
- Departamento de Biologia, Universidad del Valle de Guatemala, Guatemala
| | - Wendy Tang
- Department of Entomology, Texas A&M University, College Station, TX
| | - E Brendan Roark
- Stable Isotope Geosciences Facility, Department of Geography, Texas A&M University, College Station, TX
| | - Christopher R Maupin
- Stable Isotope Geosciences Facility, Department of Geography, Texas A&M University, College Station, TX
| | - Ismael E Badillo-Vargas
- Department of Entomology, Texas A&M University, College Station, TX
- Department of Entomology, Texas A&M AgriLife Research, Weslaco, TX
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX
| |
Collapse
|
24
|
Ali M, Ibrahim R, Alahmadi S, Alsharif SM, Mansour F, Elshazly H, Shawer D. Ovicidal, pupicidal and bactericidal effects of aminopyridinium-based ionic liquids on Culex pipiens and certain human pathogenic bacteria. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1836909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Medhat Ali
- Department of Biology, College of Science, Taibah University, Medina, KSA
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Reda Ibrahim
- Department of Biology, College of Science, Taibah University, Medina, KSA
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Sultan M. Alsharif
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Fatimah Mansour
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences & Arts – Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Dalia Shawer
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
25
|
Peprah S, Tenge C, Genga IO, Mumia M, Were PA, Kuremu RT, Wekesa WN, Sumba PO, Kinyera T, Otim I, Legason ID, Biddle J, Reynolds SJ, Talisuna AO, Biggar RJ, Bhatia K, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. A Cross-Sectional Population Study of Geographic, Age-Specific, and Household Risk Factors for Asymptomatic Plasmodium falciparum Malaria Infection in Western Kenya. Am J Trop Med Hyg 2019; 100:54-65. [PMID: 30457091 DOI: 10.4269/ajtmh.18-0481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The burden of Plasmodium falciparum (Pf) malaria in Kenya is decreasing; however, it is still one of the top 10 causes of morbidity, particularly in regions of western Kenya. Between April 2015 and June 2016, we enrolled 965 apparently healthy children aged 0-15 years in former Nyanza and Western Provinces in Kenya to characterize the demographic, geographic, and household risk factors of asymptomatic malaria as part of an epidemiologic study to investigate the risk factors for endemic Burkitt lymphoma. The children were sampled using a stratified, multistage cluster sampling survey design. Malaria was assessed by rapid diagnostic test (RDT) and thick-film microscopy (TFM). Primary analyses of Pf malaria prevalence (pfPR) are based on RDT. Associations between weighted pfPR and potential risk factors were evaluated using logistic regression, accounting for the survey design. Plasmodium falciparum malaria prevalence was 36.0% (27.5%, 44.5%) by RDT and 22.3% (16.0%, 28.6%) by TFM. Plasmodium falciparum malaria prevalence was positively associated with living in the lake-endemic area (adjusted odds ratio [aOR] 3.46; 95% confidence interval [95% CI] 1.63, 7.37), paternal occupation as peasant farmer (aOR 1.87; 1.08, 3.26) or manual laborer (aOR 1.83; 1.00, 3.37), and keeping dogs (aOR 1.62; 0.98-2.69) or cows (aOR 1.52; 0.96-2.40) inside or near the household. Plasmodium falciparum malaria prevalence was inversely associated with indoor residual insecticide spraying (IRS) (aOR 0.44; 0.19, 1.01), having a household connected to electricity (aOR 0.47; 0.22, 0.98), and a household with two (aOR 0.45; 0.22, 0.93) or ≥ three rooms (aOR 0.41; 0.18, 0.93). We report high but geographically heterogeneous pfPR in children in western Kenya and significant associations with IRS and household-level socioeconomic factors.
Collapse
Affiliation(s)
- Sally Peprah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | | | - Isaiah O Genga
- EMBLEM Study, Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | | | | | | | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Joshua Biddle
- Stanford Hospitals and Clinics, University of Stanford, Pao Alto, California
| | - Steven J Reynolds
- National Institutes of Health/Uganda Project Entebbe, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Ambrose O Talisuna
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Robert J Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
26
|
Gorsich EE, Beechler BR, van Bodegom PM, Govender D, Guarido MM, Venter M, Schrama M. A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa. Parasit Vectors 2019; 12:462. [PMID: 31578155 PMCID: PMC6775653 DOI: 10.1186/s13071-019-3733-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background Assessing adult mosquito populations is an important component of disease surveillance programs and ecosystem health assessments. Inference from adult trapping datasets involves comparing populations across space and time, but comparisons based on different trapping methods may be biased if traps have different efficiencies or sample different subsets of the mosquito community. Methods We compared four widely-used trapping methods for adult mosquito data collection in Kruger National Park (KNP), South Africa: Centers for Disease Control miniature light trap (CDC), Biogents Sentinel trap (BG), Biogents gravid Aedes trap (GAT) and a net trap. We quantified how trap choice and sampling effort influence inferences on the regional distribution of mosquito abundance, richness and community composition. Results The CDC and net traps together collected 96% (47% and 49% individually) of the 955 female mosquitoes sampled and 100% (85% and 78% individually) of the 40 species or species complexes identified. The CDC and net trap also identified similar regional patterns of community composition. However, inference on the regional patterns of abundance differed between these traps because mosquito abundance in the net trap was influenced by variation in weather conditions. The BG and GAT traps collected significantly fewer mosquitoes, limiting regional comparisons of abundance and community composition. Conclusions This study represents the first systematic assessment of trapping methods in natural savanna ecosystems in southern Africa. We recommend the CDC trap or the net trap for future monitoring and surveillance programs.
Collapse
Affiliation(s)
- Erin E Gorsich
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. .,School of Life Sciences, University of Warwick, Coventry, UK. .,The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK.
| | - Brianna R Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | | | - Milehna M Guarido
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marietjie Venter
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
27
|
Field EN, Tokarz RE, Smith RC. Satellite Imaging and Long-Term Mosquito Surveillance Implicate the Influence of Rapid Urbanization on Culex Vector Populations. INSECTS 2019; 10:E269. [PMID: 31450570 PMCID: PMC6780205 DOI: 10.3390/insects10090269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
The ecology and environmental conditions of a habitat have profound influences on mosquito population abundance. As a result, mosquito species vary in their associations with particular habitat types, yet long-term studies showing how mosquito populations shift in a changing ecological landscape are lacking. To better understand how land use changes influence mosquito populations, we examined mosquito surveillance data over a thirty-four-year period for two contrasting sites in central Iowa. One site displayed increasing levels of urbanization over time and a dramatic decline in Culex pipiens group (an informal grouping of Culex restuans, Culex pipiens, and Culex salinarius, referred to as CPG), the primary vectors of West Nile virus in central Iowa. Similar effects were also shown for other mosquito vector populations, yet the abundance of Aedes vexans remained constant during the study period. This is in contrast to a second site, which reflected an established urban landscape. At this location, there were no significant changes in land use and CPG populations remained constant. Climate data (temperature, total precipitation) were compiled for each location to see if these changes could account for altered population dynamics, but neither significantly influence CPG abundance at the respective site locations. Taken together, our data suggest that increased landscape development can have negative impacts on Culex vector populations, and we argue that long-term surveillance paired with satellite imagery analysis are useful methods for measuring the impacts of rapid human development on mosquito vector communities. As a result, we believe that land use changes can have important implications for mosquito management practices, population modeling, and disease transmission dynamics.
Collapse
Affiliation(s)
- Eleanor N Field
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Ryan E Tokarz
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
28
|
Faiman R, Dao A, YARO AS, Diallo M, Djibril S, Sanogo ZL, Ousmane Y, Sullivan M, Veru L, Krajacich BJ, Krishna A, Matthews J, France CAM, Hamer G, Hobson KA, Lehmann T. Marking mosquitoes in their natural larval sites using 2H-enriched water: a promising approach for tracking over extended temporal and spatial scales. Methods Ecol Evol 2019; 10:1274-1285. [PMID: 32855783 PMCID: PMC7449266 DOI: 10.1111/2041-210x.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND 1.Tracking mosquitoes using current methods of mark-release-recapture are limited to small spatial and temporal scales exposing major gaps in understanding long-range movements and extended survival. Novel approaches to track mosquitoes may yield fresh insights into their biology which improves intervention activities to reduce disease transmission.Stable isotope enrichment of natural mosquito breeding sites allows large-scale marking of wild mosquitoes absent human handling. Mosquito larvae that develop in 2H-enriched water are expected to be detectable for over four months using tissue mass-fraction 2H measurements, providing opportunities for long-term mark-capture studies on a large scale. APPROACH 2.A laboratory study followed by a field experiment of mosquito larval habitat 2H-enrichment was conducted in Mali, to evaluate potential labeling of wild mosquitoes. Twelve natural larval sites were enriched using [2H]-Deuterium-oxide (D2O, 99%). Enrichment level was maintained by supplementation following dilution by rains. Availability of 2H to mosquito larvae was enhanced by locally collected and cultured microorganisms (i.e. protozoa, algae and bacteria) reared in deuterated water, and provided as larval diet. Putative natural predators were removed from the larval sites and first instar larvae Anopheles gambiae s.l. larvae were added every other day. Emergence traps enabled collection of eclosing adults. Adult mosquitoes were kept at laboratory conditions for analysis of label attrition with age. RESULTS 3.Deuterium enrichment of wild mosquitoes above background levels (maximum = 143.1 ppm) became apparent 5-6 days after initial exposure, after which 2H values increased steadily until ~24 days later (to a mean of approx. 220 ppm). Anopheles and Culex mosquitoes showed significantly different 2H values (211 and 194.2 ppm respectively). Both genera exhibited exponential label attrition (e (-x)) amounting to 21.6% by day 30 post emergence, after which attrition rate continuously decreased. Males of both taxa exhibited a higher mean 2H value compared to females. CONCLUSIONS 4.Deuterium-oxide proved useful in marking mosquitoes in their natural larval sites and although costly, may prove valuable for studies of mosquitoes and other aquatic insects. Based on our field study, we provide a protocol for marking mosquito larval sites using deuterium-oxide.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector Research, National Institute of Allergies and Infectious Diseases, the National Institutes of Health. Rockville, MD, USA
| | - Adama Dao
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology. Bamako, Mali
| | - Alpha Seydou YARO
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology. Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology. Bamako, Mali
| | - Samake Djibril
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology. Bamako, Mali
| | - Zana Lamissa Sanogo
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology. Bamako, Mali
| | - Yossi Ousmane
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology. Bamako, Mali
| | - Margery Sullivan
- Laboratory of Malaria and Vector Research, National Institute of Allergies and Infectious Diseases, the National Institutes of Health. Rockville, MD, USA
| | - Laura Veru
- Laboratory of Malaria and Vector Research, National Institute of Allergies and Infectious Diseases, the National Institutes of Health. Rockville, MD, USA
| | - Benjamin J. Krajacich
- Laboratory of Malaria and Vector Research, National Institute of Allergies and Infectious Diseases, the National Institutes of Health. Rockville, MD, USA
| | - Asha Krishna
- Laboratory of Malaria and Vector Research, National Institute of Allergies and Infectious Diseases, the National Institutes of Health. Rockville, MD, USA
| | - Joy Matthews
- Department of Plant Sciences, University of California Stable Isotope Facility. Davis, CA, USA
| | | | - Gabriel Hamer
- Department of Entomology, Texas A&M University. College Station, TX, USA
| | - Keith A. Hobson
- Department of Biology and Environment and Climate Change Canada, University of Western Ontario. London, Ontario, Canada
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institute of Allergies and Infectious Diseases, the National Institutes of Health. Rockville, MD, USA
| |
Collapse
|
29
|
Marcantonio M, Winokur OC, Barker CM. Revisiting Alkali Metals As a Tool to Characterize Patterns of Mosquito Dispersal and Oviposition. INSECTS 2019; 10:insects10080220. [PMID: 31344901 PMCID: PMC6723755 DOI: 10.3390/insects10080220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Mark-recapture methods constitute a set of classical ecological tools that are used to collect information on species dispersal and population size. These methods have advanced knowledge in disparate scientific fields, from conservation biology to pest control. Gathering information on the dispersal of mosquito species, such as Aedes aegypti, has become critical since the recognition of their role as vectors of pathogens. Here, we evaluate a method to mark mosquitoes that exploits the rare alkali metals rubidium (Rb) and caesium (Cs), which have been used previously to mark adult insects through feeding. We revised this method by adding Rb and Cs directly to water in which the immature stages of Ae. aegypti were allowed to develop. We then assessed the effect of Rb- and Cs-enriched water on fitness, survival and bioaccumulation in both adult females and their eggs. Results indicated that Cs had adverse effects on Ae. aegypti, even at low concentrations, whereas Rb at low concentrations had no measured effects on exposed individuals and accumulated at detectable levels in adult females. The method described here relies on passive uptake of Rb during immature stages, which has the benefit of avoiding handling or manipulation of the dispersive adults, which enables purer measurement of movement. Moreover, we demonstrated that Rb was transferred efficiently from the marked females to their eggs. To our knowledge, Rb is the only marker used for mosquitoes that has been shown to transfer vertically from females to eggs. The application of Rb rather than more traditional markers may therefore increase the quality (no impact on released individuals) and quantity (both adults and eggs are marked) of data collected during MR studies. The method we propose here can be used in combination with other markers, such as stable isotopes, in order to maximize the information collected during MR experiments.
Collapse
Affiliation(s)
- Matteo Marcantonio
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Olivia C Winokur
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Can urban greening increase vector abundance in cities? The impact of mowing, local vegetation, and landscape composition on adult mosquito populations. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00857-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Ewing DA, Purse BV, Cobbold CA, Schäfer SM, White SM. Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK. Parasit Vectors 2019; 12:74. [PMID: 30732629 PMCID: PMC6367758 DOI: 10.1186/s13071-019-3321-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/28/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Many mosquito-borne diseases exhibit substantial seasonality, due to strong links between environmental variables and vector and pathogen life-cycles. Further, a range of density-dependent and density-independent biotic and abiotic processes affect the phenology of mosquito populations, with potentially large knock-on effects for vector dynamics and disease transmission. Whilst it is understood that density-independent and density-dependent processes affect seasonal population levels, it is not clear how these interact temporally to shape the population peaks and troughs. Due to this, the paucity of high-resolution data for validation, and the difficulty of parameterizing density-dependent processes, models of vector dynamics may poorly estimate abundances, which has knock-on effects for our ability predict vector-borne disease outbreaks. RESULTS We present a rich dataset describing seasonal abundance patterns of each life stage of Culex pipiens, a widespread vector of West Nile virus, at a field site in southern England in 2015. Abundance of immature stages was measured three times per week, whilst adult traps were run four nights each week. This dataset is integrated with an existing delay-differential equation model predicting Cx. pipiens seasonal abundance to improve understanding of observed seasonal abundance patterns. At our field site, the outcome of our model fitting suggests interspecific predation on mosquito larvae and temperature-dependent larval mortality combine to act as the main sources of population regulation throughout the active season, whilst competition for resources is a relatively small source of larval mortality. CONCLUSIONS The model suggests that density-independent mortality and interspecific predation interact to shape patterns of mosquito seasonal abundance in a permanent aquatic habitat and we propose that competition for resources is likely to be important where periods of high rainfall create transient habitats. Further, we highlight the importance of challenging population abundance models with data from across all life stages of the species of interest if reliable inferences are to be drawn from these models, particularly when considering mosquito control and vector-borne disease transmission.
Collapse
Affiliation(s)
- David A. Ewing
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB UK
- Department of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ UK
- Present address: Biomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tate Road, The King’s Buildings, Edinburgh, EH9 3FD UK
| | - Bethan V. Purse
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB UK
| | - Christina A. Cobbold
- Department of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - Stefanie M. Schäfer
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB UK
| | - Steven M. White
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB UK
- The Wolfson Centre for Mathematical Biology, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG UK
| |
Collapse
|
32
|
Development of an urban molecular xenomonitoring system for lymphatic filariasis in the Recife Metropolitan Region, Brazil. PLoS Negl Trop Dis 2018; 12:e0006816. [PMID: 30325933 PMCID: PMC6203399 DOI: 10.1371/journal.pntd.0006816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/26/2018] [Accepted: 09/05/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction Molecular xenomonitoring (MX)—pathogen detection in the mosquito rather than human—is a promising tool for lymphatic filariasis (LF) surveillance. In the Recife Metropolitan Region (RMR), the last LF focus in Brazil, Culex quinquefasciatus mosquitoes have been implicated in transmitting Wuchereria bancrofti parasites. This paper presents findings on the ideal mosquito collection method, mosquito dispersion, W. bancrofti infection in mosquitoes and W. bancrofti antigen in humans to aid MX development. Methods Experiments occurred within two densely populated urban areas of Olinda, RMR, in July and August 2015. U.S. Centers for Disease Control and Prevention (CDC) light traps were compared to battery-powered aspirators as collection methods, and mosquito dispersion was measured by mosquito mark release recapture (MMRR). Female Cx. quinquefasciatus were tested by PCR for W. bancrofti infection, and study area residents were screened by rapid tests for W. bancrofti antigen. Results Aspirators caught 2.6 times more total Cx. quinquefasciatus, including 38 times more blood-fed and 5 times more gravid stages, than CDC light traps. They also collected 123 times more Aedes aegypti. Of the 9,644 marked mosquitoes released, only ten (0.01%) were recaptured, nine of which were < 50m (34.8m median, 85.4m maximum) from the release point. Of 9,169 unmarked mosquitoes captured in the MMR, 38.3% were unfed, 48.8% blood-fed, 5.5% semi-gravid, and 7.3% gravid. PCR on 182 pools (1,556 mosquitoes) found no evidence of W. bancrofti infection in Cx. quinquefasciatus. Rapid tests on 110 of 111 eligible residents were all negative for W. bancrofti antigen. Conclusions Aspirators were more effective than CDC light traps at capturing Ae. aegypti and all but unfed stages of Cx. quinquefasciatus. Female Cx. quinquefasciatus traveled short (< 86m) distances in this urban area. Lack of evidence for W. bancrofti infection in mosquitoes and antigen in humans in these fine-scale studies does not indicate that LF transmission has ceased in the RMR. A MX surveillance system should consider vector-specific collection methods, mosquito dispersion, and spatial scale but also local context, environmental factors such as sanitation, and host factors such as infection prevalence and treatment history. Lymphatic filariasis (LF) is a parasitic disease transmitted by mosquitoes, and can cause elephantiasis. It is the world’s leading cause of disability due to infectious diseases, affects over 120 million people globally, and is scheduled for global elimination via mass drug administration (MDA) and mosquito control. Molecular xenomonitoring (MX) is a process of screening mosquitoes—not humans—for parasites to estimate whether they are circulating in human populations. MX is especially useful during and following MDA, when new case detection becomes difficult, but is challenging to design and conduct in cities. Using two study sites in the Recife Metropolitan Region, Brazil, we investigated two crucial questions for urban MX development—“What is the best operationally feasible tool to catch adult mosquitoes?” and “How far do mosquitoes disperse in cities?”—in order to determine placement of future surveillance sites. We also screened a proportion of mosquitoes and all eligible residents from the study sites for LF infection. We determined that handheld battery powered aspirators were the best mosquito collection tool; that mosquitoes flew no more than about 85m; and—in this small sample of mosquitoes and very small sample of humans—there was no evidence of LF infection in mosquitoes or study area residents.
Collapse
|
33
|
Healy K. A Method to Evaluate Isotopic and Energy Turnover Rates in Larval Culex quinquefasciatus (Diptera: Culicidae) Using Stable Isotope Labeled Compounds. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:817-824. [PMID: 29548036 DOI: 10.1093/jme/tjy025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 06/08/2023]
Abstract
The goal of this study was to evaluate the use of stable isotope labeled compounds to better understand factors influencing energy turnover in larval Culex quinquefasciatus (Say; Diptera: Culicidae). Three isotope labeled compounds were evaluated in this study, including 15N-labeled potassium nitrate, 13C-labeled glucose, and 13C-labeled leucine. Conditions were first optimized in the laboratory to determine the most appropriate concentration of isotope, as well as the half-life of enrichment. Once optimum conditions were established we used standard equations to predict and determine temperature and density-dependent energy turnover rates. Our results showed that higher concentrations of isotope had an impact on mosquito survivability, overall enrichment, and adult wing length. We predicted the half-life of to be around 0.614 to 0.971 d, and our observed half-lives were determined to be 0.72 to 1.44 d depending on temperature, larval density, and isotope compound. Both density and temperature had a strong influence on isotopic turnover rates in all isotopes evaluated. Our results suggest that stable isotopes can provide a useful tool in understanding how different stress factors influence energy turnover in larval Cx. quinquefasciatus. These data can also help lay a foundation on ways to improve larvicide efficacy under different biotic and abiotic conditions.
Collapse
|
34
|
Poh KC, Martin E, Walker ED, Kitron U, Ruiz MO, Goldberg TL, Hamer GL. Co-circulation of Flanders Virus and West Nile Virus in Culex Mosquitoes (Diptera: Culicidae) from Chicago, Illinois. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1062-1066. [PMID: 29659921 PMCID: PMC6025230 DOI: 10.1093/jme/tjy051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 06/08/2023]
Abstract
West Nile virus (WNV) and Flanders virus (FLAV) co-occur in regions of North America. Because both viruses are maintained in a transmission cycle involving Culex mosquitoes and birds, screening mosquitoes for FLAV has been suggested as an enhancement to WNV surveillance and epidemic prediction. Using samples collected in 2010 and 2012 in Chicago, IL, USA, we demonstrate the presence of FLAV in four out of 287 (1.4%) Culex pools. We estimated minimum infection rates for WNV and FLAV to be 5.66 and 1.22 in 2010 and 8.74 and 0.61 in 2012, respectively. FLAV occurred 1 and 3 wk prior to the peak of WNV transmission in 2010 and 2012, respectively. FLAV sequences from Chicago were genetically diverse and phylogenetically representative of lineage A viruses from across the United States.
Collapse
Affiliation(s)
- Karen C Poh
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Estelle Martin
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Linden Drive, Madison, WI
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| |
Collapse
|
35
|
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative Analysis of Gut Microbiota of Culex restuans (Diptera: Culicidae) Females From Different Parents. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:163-171. [PMID: 29045737 DOI: 10.1093/jme/tjx199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The potential for gut microbiota to impede or enhance pathogen transmission is well-documented but the factors that shape this microbiota in mosquito vectors are poorly understood. We characterized and compared the gut microbiota of adult females of Culex restuans (Theobald; Diptera: Culicidae) from different parents. Cx. restuans larvae from nine field-collected egg rafts were reared on a common diet and gut microbiota of newly emerged adult females characterized by MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Bacterial diversity and evenness in individuals from one egg raft were significantly lower compared to those of three of the other eight egg rafts. The gut microbiota of adult females reared from seven of the nine egg rafts clustered together suggesting that individuals from most egg rafts had similar profiles of gut microbiota. These findings suggest that the microbiota of adult females from the same parents do not differ appreciably from the microbiota of adult females from different parents. However, additional studies using mosquitoes separated by geographic distances greater than those studied here and estimating the genetic distances between populations from different egg rafts are needed to provide further insights into the influence of host genetics on gut microbiota. Also worthwhile are studies evaluating how individuals from different egg rafts and harboring different gut microbiota compare in relation to vector competence for different pathogens.
Collapse
Affiliation(s)
- Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Jose L Ramirez
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
| |
Collapse
|
36
|
Napp S, Chevalier V, Busquets N, Calistri P, Casal J, Attia M, Elbassal R, Hosni H, Farrag H, Hassan N, Tawfik R, Abd Elkader S, Bayomy S. Understanding the legal trade of cattle and camels and the derived risk of Rift Valley Fever introduction into and transmission within Egypt. PLoS Negl Trop Dis 2018; 12:e0006143. [PMID: 29351273 PMCID: PMC5792020 DOI: 10.1371/journal.pntd.0006143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/31/2018] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonosis, which may cause significant losses for the livestock sector and have serious public health implications. Egypt has been repeatedly affected by RVF epidemics, mainly associated to the importation of animals from sub-Saharan countries, where the disease is endemic. The objective of our study was the improvement of the surveillance and control strategies implemented in Egypt. In order to do that, first we evaluated the legal trade of live animals into and within Egypt. Then, we assessed the risk of Rift Valley Fever virus (RVFV) transmission within the country using a multi-criteria evaluation approach. Finally, we combined the animal trade and the risk of RVFV transmission data to identify those areas and periods in which the introduction of RVFV is more likely. Our results indicate that the main risk of RVFV introduction is posed by the continuous flow of large number of camels coming from Sudan. The risk of RVFV transmission by vectors is restricted to the areas surrounding the Nile river, and does not vary significantly throughout the year. Imported camels are taken to quarantines, where the risk of RVFV transmission by vectors is generally low. Then, they are taken to animal markets or slaughterhouses, many located in populated areas, where the risk of RVFV transmission to animals or humans is much higher. The measures currently implemented (quarantines, vaccination or testing) seem to have a limited effect in reducing the risk of RVFV introduction, and therefore other (risk-based) surveillance strategies are proposed.
Collapse
Affiliation(s)
| | | | | | - Paolo Calistri
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
- IZSAM, Teramo, Italy
| | - Jordi Casal
- CReSA-IRTA, Barcelona, Spain
- UAB, Barcelona, Spain
| | - Mohamed Attia
- Central Administration of Preventive Medicine. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Rehab Elbassal
- Department of Epidemiology. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Heba Hosni
- Department of Epidemiology. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Hatem Farrag
- Quarantine & Inspection Department. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Noura Hassan
- Quarantine & Inspection Department. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Rasha Tawfik
- Quarantine & Inspection Department. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Sohair Abd Elkader
- Central Administration of Preventive Medicine. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Shahin Bayomy
- Department of Epidemiology. Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| |
Collapse
|
37
|
Bisanzio D, McMillan JR, Barreto JG, Blitvich BJ, Mead DG, O'Connor J, Kitron U. Evidence for West Nile virus spillover into the squirrel population in Atlanta, Georgia. Vector Borne Zoonotic Dis 2017; 15:303-10. [PMID: 25988439 DOI: 10.1089/vbz.2014.1734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the United States, spillover of West Nile virus (WNV) into wild mammal populations has been reported since the introduction of the virus into the New World in 1999. Eastern gray squirrels (Sciurus carolinensis) exhibit a high seroprevalence for WNV in urban settings where high virus circulation and human spillover have been reported. In Atlanta, Georgia, human cases of WNV are uncommon despite high infection rates in birds and mosquitoes. In this study, we evaluated WNV exposure of eastern gray squirrels in a WNV hot spot in Atlanta. MATERIALS AND METHODS Gray squirrels were live-trapped in Grant Park, Atlanta, during July-October, 2012, and a census was conducted to estimate squirrel density in the study site. Sera from trapped animals were tested for circulating virus-by-virus isolation in cell culture and for WNV-specific antibodies by enzyme-linked immunosorbent assay and plaque reduction neutralization test. Mosquitoes were collected at the same location and tested for virus isolation. RESULTS Among the 69 collected squirrels, 25 (36.2%) tested positive for WNV antibodies, although none were viremic. Seroprevalence was lower in juveniles (18.8%) than in adults (37.5%), but this difference was not statistically significant. Gender and squirrel density had no effect on seroprevalence. Seasonality of squirrel seroprevalence and of mosquito infection were significantly associated, both peaking in August. No difference in squirrel exposure was detected across the collection sites. CONCLUSIONS We report a high degree of WNV exposure in squirrels in Grant Park that was correlated with seasonality of mosquito infection. The detection of antibodies in juveniles suggests that circulation of WNV in the surveyed population is ongoing. Eastern gray squirrels may be suitable indicators for virus amplification and for risk of human spillover on a local scale in urban settings.
Collapse
Affiliation(s)
- Donal Bisanzio
- 1Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Joseph R McMillan
- 1Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Josafá Gonçalves Barreto
- 2Laboratório de Dermato-Imunologia UEPA/UFPA/Marcello Candia, Marituba, Pará, Brasil.,3Universidade Federal do Pará, Campus Castanhal, Pará, Brasil
| | - Bradley J Blitvich
- 4Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Daniel G Mead
- 5University of Georgia, College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, Athens, Georgia
| | - Josh O'Connor
- 6Fire Management Division, US Fish and Wildlife Service, Atlanta, Georgia
| | - Uriel Kitron
- 1Department of Environmental Sciences, Emory University, Atlanta, Georgia
| |
Collapse
|
38
|
Reiskind MH, Griffin RH, Janairo MS, Hopperstad KA. Mosquitoes of field and forest: the scale of habitat segregation in a diverse mosquito assemblage. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:44-54. [PMID: 27759165 DOI: 10.1111/mve.12193] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Knowledge of the distribution of arthropod vectors across a landscape is important in determining the risk for vector-borne disease. This has been well explored for ticks, but not for mosquitoes, despite their importance in the transmission of a variety of pathogens. This study examined the importance of habitat, habitat edges, and the scale at which mosquito abundance and diversity vary in a rural landscape by trapping along transects from grassland areas into forest patches. Significant patterns of vector diversity and distinct mosquito assemblages across habitats were found. The scale of individual species' responses to habitat edges was often dramatic, with several species rarely straying even 10 m from the edge. The present results suggest blood-seeking mosquito species are faithful to certain habitats, which has consequences for patterns of vector diversity and risk for pathogen transmission. This implies that analysts of risk for pathogen transmission and foci of control, and developers of land management strategies should assess habitat at a finer scale than previously considered.
Collapse
Affiliation(s)
- M H Reiskind
- Department of Entomology, North Carolina State University, Raleigh, NC, U.S.A
| | - R H Griffin
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
| | - M S Janairo
- Department of Entomology, North Carolina State University, Raleigh, NC, U.S.A
| | - K A Hopperstad
- Department of Entomology, North Carolina State University, Raleigh, NC, U.S.A
| |
Collapse
|
39
|
Chaves LF. Mosquito Species (Diptera: Culicidae) Persistence and Synchrony Across an Urban Altitudinal Gradient. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:329-339. [PMID: 28025246 DOI: 10.1093/jme/tjw184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Patterns of mosquito spatial persistence and temporal presence, as well as synchrony, i.e., the degree of concerted fluctuations in abundance, have been scarcely studied at finely grained spatial scales and over altitudinal gradients. Here, we present a spatial persistence, temporal presence, and synchrony analysis of four common mosquito species across the altitudinal gradient of Mt. Konpira in Nagasaki, Japan. We found that Aedes albopictus (Skuse) was more frequently found at the mountain base. In contrast, Aedes japonicus (Theobald) and Aedes flavopictus Yamada were common higher in the mountain, while Armigeres subalbatus (Coquillet) was uniformly present across the mountain, yet less frequently than the other species during the studied period. Our analysis showed that these spatial heterogeneities were associated with differences in landscape and microclimatic elements of Mt. Konpira. Temporally we found that presence across sampling locations was mainly synchronous across the four species and positively associated with rainfall and temperature. With the exception of Ae albopictus, where no significant synchrony was observed, mosquito species mainly showed flat synchrony profiles in Mt. Konpira when looking at the geographic (2-D) distance between their sampling locations. By contrast, when synchrony was studied across altitude, it was observed that Ae. flavopictus tracked the temperature synchrony pattern, decreasing its synchrony with the separation in altitude between sampling locations. Finally, our results suggest that differences in mosquito species persistence, temporal presence, and synchrony might be useful to understand the entomological risk of vector-borne disease transmission in urban landscapes.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Apartado Postal 304-3000, Heredia, Costa Rica
- Nagasaki University Institute of Tropical Medicine (NEKKEN), Sakamoto 1-12-4, Nagasaki, Japan
| |
Collapse
|
40
|
Dispersal of male and female Culex quinquefasciatus and Aedes albopictus mosquitoes using stable isotope enrichment. PLoS Negl Trop Dis 2017; 11:e0005347. [PMID: 28135281 PMCID: PMC5300284 DOI: 10.1371/journal.pntd.0005347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/09/2017] [Accepted: 01/22/2017] [Indexed: 11/19/2022] Open
Abstract
The dispersal patterns of mosquito vectors are important drivers of vector-borne infectious disease dynamics and understanding movement patterns is pivotal to devise successful intervention strategies. Here, we investigate the dispersal patterns of two globally important mosquito vectors, Aedes albopictus and Culex quinquefasciatus, by marking naturally-occurring larvae with stable isotopes (13C or 15N). Marked individuals were captured with 32 CDC light trap, 32 gravid trap, and 16 BG Sentinel at different locations within two-kilometer radii of six larval habitats enriched with either 13C or 15N. In total, 720 trap nights from July to August 2013 yielded a total of 32,140 Cx. quinquefasciatus and 7,722 Ae. albopictus. Overall, 69 marked female mosquitoes and 24 marked male mosquitoes were captured throughout the study period. The distance that Cx. quinquefasciatus females traveled differed for host-seeking and oviposition-seeking traps, with females seeking oviposition sites traveling further than those seeking hosts. Our analysis suggests that 41% of Cx. quinquefasciatus females that were host-seeking occurred 1–2 kilometer from their respective natal site, while 59% remained within a kilometer of their natal site. In contrast, 59% of Cx. quinquefasciatus females that were seeking oviposition sites occurred between 1–2 kilometer away from their larval habitat, while 15% occurred > 2 kilometer away from their natal site. Our analysis estimated that approximately 100% of Ae. albopictus females remained within 1 km of their respective natal site, with 79% occurring within 250m. In addition, we found that male Ae. albopictus dispersed farther than females, suggesting male-biased dispersal in this Ae. albopictus population. This study provides important insights on the dispersal patterns of two globally relevant vector species, and will be important in planning next generation vector control strategies that mitigate mosquito-borne disease through sterile insect techniques, novel Wolbachia infection, and gene drive strategies. Resolving patterns of mosquito dispersal across landscapes is a critical step toward the development of effective control strategies that mitigate vector-borne disease transmission and its public health burden. Here, we used a recently developed technique involving the enrichment of aquatic larval habitat with stable isotopes to mark male and female mosquitoes of two important vector species, Aedes albopictus and Culex quinquefasciatus. We show that the patterns of dispersal were fundamentally different between these urban vectors. Culex quinquefasciatus dispersed much further than Aedes albopictus. In addition, male Aedes albopictus dispersed further than female mosquitoes. Our study suggests that infectious disease agents transmitted by Culex quinquefasciatus will be more difficult to control locally than those transmitted by Aedes albopictus. Our results on sex-biased dispersal in Aedes albopictus have implications for next-generation vector control strategies that rely on the release of sterile or sterilizing males to control mosquito populations. Finally, our study continues to show the utility of the stable-isotope marking technique to study mosquito movement.
Collapse
|
41
|
Ziegler U, Jöst H, Müller K, Fischer D, Rinder M, Tietze DT, Danner KJ, Becker N, Skuballa J, Hamann HP, Bosch S, Fast C, Eiden M, Schmidt-Chanasit J, Groschup MH. Epidemic Spread of Usutu Virus in Southwest Germany in 2011 to 2013 and Monitoring of Wild Birds for Usutu and West Nile Viruses. Vector Borne Zoonotic Dis 2016; 15:481-8. [PMID: 26273809 DOI: 10.1089/vbz.2014.1746] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mosquito-borne viruses are becoming an increasing threat for Europe. One of these viruses is Usutu virus (USUV), a single-stranded RNA virus belonging to the Japanese encephalitis virus group within the family Flaviviridae. Since the occurrence of USUV among wild birds in June, 2011, infected Blackbirds (Turdus merula) have frequently been found dead in southwest Germany, cumulating in a massive die-off. Moreover, other bird species (Strigiformes) in this region have been affected. In a first study, 209 of over 600 dead birds (wild birds and birds kept in aviaries) collected from 2011 to 2013 carried USUV, more than 88% of them Blackbirds. USUV had already been detected in 2010, one year before the epizooty, in a mosquito-based surveillance program in Germany. The main epidemic area of the USUV outbreak in wild birds in southwest Germany has been similar for the last three years. In a second study during 2011 to 2013, 902 live migratory and resident birds (representing 87 bird species belonging to 14 bird orders) from four different sampling sites were bled and tested serologically and by qPCR for West Nile virus (WNV) and USUV infections. No USUV or WNV genomes were detected. Some migratory birds (mainly long-distance migrants and some partial migrants) carried neutralizing antibodies against WNV as discriminated by USUV and WNV cross-neutralization tests. Only few resident birds showed relevant USUV-specific neutralizing antibodies. The occurrence of USUV in the Upper Rhine valley area of southwest Germany is a proof of principle for the incursion and spread of other arthropod-borne (arbo)-viruses along these routes. Therefore, monitoring studies in birds and mosquitoes for the presence of arboviruses in these areas are indispensable.
Collapse
Affiliation(s)
- Ute Ziegler
- 1 Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases , Greifswald-Insel Riems, Germany
| | - Hanna Jöst
- 2 German Mosquito Control Association (KABS) Speyer , Germany
| | - Kerstin Müller
- 3 Department of Veterinary Medicine, Small Animal Clinic, Freie Universität Berlin , Berlin, Germany
| | - Dominik Fischer
- 4 Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen , Giessen, Germany
| | - Monika Rinder
- 5 Clinic for Birds, Reptiles, Amphibians and ornamental Fish, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University Munich , Oberschleißheim, Germany
| | - Dieter Thomas Tietze
- 6 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University , Heidelberg, Germany
| | - Klaus-Jürgen Danner
- 7 State Institute for Chemical and Veterinary Analysis (CVUA) , Freiburg, Germany
| | - Norbert Becker
- 2 German Mosquito Control Association (KABS) Speyer , Germany
| | - Jasmin Skuballa
- 8 State Institute for Chemical and Veterinary Analysis (CVUA) , Karlsruhe, Germany
| | - Hans-Peter Hamann
- 9 Landesbetrieb Hessisches Landeslabor, Veterinary virology and molecular biology , Giessen, Germany
| | - Stefan Bosch
- 10 Nature and Biodiversity Conservation Union (NABU) Baden-Württemberg , Stuttgart, Germany
| | - Christine Fast
- 1 Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases , Greifswald-Insel Riems, Germany
| | - Martin Eiden
- 1 Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases , Greifswald-Insel Riems, Germany
| | - Jonas Schmidt-Chanasit
- 11 Bernhard-Nocht-Institute for Tropical Medicine (BNITM) , Department of Virology, Hamburg, Germany
| | - Martin H Groschup
- 1 Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases , Greifswald-Insel Riems, Germany
| |
Collapse
|
42
|
Opiyo MA, Hamer GL, Lwetoijera DW, Auckland LD, Majambere S, Okumu FO. Using Stable Isotopes of Carbon and Nitrogen to Mark Wild Populations of Anopheles and Aedes Mosquitoes in South-Eastern Tanzania. PLoS One 2016; 11:e0159067. [PMID: 27392083 PMCID: PMC4938253 DOI: 10.1371/journal.pone.0159067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/27/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Marking wild mosquitoes is important for understanding their ecology, behaviours and role in disease transmission. Traditional insect marking techniques include using fluorescent dyes, protein labels, radioactive labels and tags, but such techniques have various limitations; notably low marker retention and inability to mark wild mosquitoes at source. Stable isotopes are gaining wide spread use for non-invasive marking of arthropods, permitting greater understanding of mosquito dispersal and responses to interventions. We describe here a simple technique for marking naturally-breeding malaria and dengue vectors using stable isotopes of nitrogen (15N) and carbon (13C), and describe potential field applications. METHODS We created man-made aquatic mosquito habitats and added either 15N-labelled potassium nitrate or 13C-labelled glucose, leaving non-adulterated habitats as controls. We then allowed wild mosquitoes to lay eggs in these habitats and monitored their development in situ. Pupae were collected promptly as they appeared and kept in netting cages. Emergent adults (in pools of ~4 mosquitoes/pool) and individually stored pupae were desiccated and analysed using Isotope Ratio Mass Spectrometry (IRMS). FINDINGS Anopheles gambiae s.l and Aedes spp. from enriched 13C and enriched 15N larval habitats had significantly higher isotopic levels than controls (P = 0.005), and both isotopes produced sufficient distinction between marked and unmarked mosquitoes. Mean δ15N for enriched females and males were 275.6±65.1 and 248.0±54.6, while mean δ15N in controls were 2.1±0.1 and 3.9±1.7 respectively. Similarly, mean δ13C for enriched females and males were 36.08±5.28 and 38.5±6.86, compared to -4.3±0.2 and -7.9±3.6 in controls respectively. Mean δ15N and δ13C was significantly higher in any pool containing at least one enriched mosquito compared to pools with all unenriched mosquitoes, P<0.001. In all cases, there were variations in standardized isotopic ratios between mosquito species. CONCLUSION Enrichment of semi-natural mosquito larval habitats with stable isotopes of nitrogen and carbon resulted in effective marking of Anopheles and Aedes mosquitoes colonizing these habitats. This approach can significantly enhance studies on mosquito eco-physiology, dispersal, pathogen transmission and responses to control measures.
Collapse
Affiliation(s)
- Mercy A. Opiyo
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Dickson W. Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Lisa D. Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Silas Majambere
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Innovative Vector Control Consortium, Liverpool, United Kingdom
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
| |
Collapse
|
43
|
Karki S, Hamer GL, Anderson TK, Goldberg TL, Kitron UD, Krebs BL, Walker ED, Ruiz MO. Effect of Trapping Methods, Weather, and Landscape on Estimates of the Culex Vector Mosquito Abundance. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:93-103. [PMID: 27375359 PMCID: PMC4918690 DOI: 10.4137/ehi.s33384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 05/27/2023]
Abstract
The local abundance of Culex mosquitoes is a central factor adding to the risk of West Nile virus transmission, and vector abundance data influence public health decisions. This study evaluated differences in abundance estimates from mosquitoes trapped using two common methods: CO2-baited CDC light traps and infusion-baited gravid traps in suburban, Chicago, Illinois. On a weekly basis, the two methods were modestly correlated (r = 0.219) across 71 weeks over 4 years. Lagged weather conditions of up to four weeks were associated with the number of mosquitoes collected in light and gravid traps. Collections in light traps were higher with higher temperature in the same week, higher precipitation one, two, and four weeks before the week of trapping, and lower maximum average wind speed. Collections in gravid traps were higher with higher temperature in the same week and one week earlier, lower temperature four weeks earlier, and with higher precipitation two and four weeks earlier. Culex abundance estimates from light traps were significantly higher in semi-natural areas compared to residential areas, but abundance estimates from gravid traps did not vary by the landscape type. These results highlight the importance of the surveillance methods used in the assessment of local Culex abundance estimates. Measures of risk of exposure to West Nile virus should assess carefully how mosquito abundance has been estimated and integrated into assessments of transmission risk.
Collapse
Affiliation(s)
- Surendra Karki
- Department of Pathobiology, University of Illinois, Urbana-Champaign, IL, USA
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
| | - Uriel D. Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA, USA
| | - Bethany L. Krebs
- Wellness and Animal Behavior Department, San Francisco Zoo, San Francisco, CA, USA
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, USA
| | - Marilyn O. Ruiz
- Department of Pathobiology, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
44
|
Ahmadnejad F, Otarod V, Fathnia A, Ahmadabadi A, Fallah MH, Zavareh A, Miandehi N, Durand B, Sabatier P. Impact of Climate and Environmental Factors on West Nile Virus Circulation in Iran. J Arthropod Borne Dis 2016; 10:315-27. [PMID: 27308290 PMCID: PMC4906738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 12/17/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Geographic distribution of West Nile virus (WNV) is heterogeneous in Iran by a high circulation in the southern-western areas. The objective of our study was to determine environmental and climatic factors associated with the risk of WNV equine seropositivity in Iran. METHODS Serological data were obtained from a serosurvey conducted in equine population in 260 districts in Iran. The climate and environmental parameters included in the models were distance to the nearest wetland area, type of stable, Normalized Difference Vegetation Index (NDVI), annual mean temperature, humidity and precipitation. RESULTS The important risk factors included annual mean temperature, distance to wetlands, local and seasonal NDVI differences. The effect of local NDVI differences in spring was particularly notable. This was a normalized difference of average NDVI between two areas: a 5 km radius area centered on the stable and the 5-10 km surrounding area. CONCLUSION The model indicated that local NDVI's contrast during spring is a major risk factor of the transmission of West-Nile virus in Iran. This so-called oasis effect consistent with the seasonal production of vegetation in spring, and is associated to the attractiveness of the local NDVI environment for WNV vectors and hosts.
Collapse
Affiliation(s)
- Farzaneh Ahmadnejad
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran,TIMC-IMAG Team EPSP, VetAgroSup, Campus Vétérinaire de Lyon, France,Corresponding authors: Dr Farzaneh Ahmadnejad, E-mail:
| | - Vahid Otarod
- Quarantine and Biosafety Directorate General, Iran Veterinary Organization, Tehran, Iran
| | | | | | - Mohammad H. Fallah
- Department of Poultry Viral Diseases, Razi Vaccine and Serum Research Institute, Alborz, Iran
| | - Alireza Zavareh
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran
| | - Nargess Miandehi
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran
| | - Benoit Durand
- University Paris Est, Anses, Laboratory of Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | | |
Collapse
|
45
|
Miller N, Mettelman RC, Baker SC, Harbison JE. Use of Centers for Disease Control and Prevention Gravid Trap in Catch Basins: Proof-Of-Concept Trials. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2015; 31:196-199. [PMID: 26181700 DOI: 10.2987/14-6470r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gravid traps are commonly used by mosquito control agencies to collect local populations of Culex pipiens, which are then tested for the presence of West Nile virus. Culex pipiens adults disperse a relatively short distance (~2.5 km) from their breeding site, so it can be challenging to position a sufficient number of gravid traps to accurately monitor these mosquitoes in large urban areas. As placement of these traps is often limited to locations out of public?view, the potential for placing these traps belowground in commonly found storm-water catch basins was investigated. We compared the numbers of mosquitoes isolated in the Centers for Disease Control and Prevention (CDC) gravid traps placed aboveground with various types of CDC gravid traps placed in nearby catch basins. We found that the gravid traps placed in catch basins collected significantly fewer Culex pipiens females as compared to the aboveground traps. However, the 2 types of catch basin traps continued to function and collect mosquitoes despite heavy rainfall and runoff, demonstrating their utility for sample collection in an urban setting. The potential advantages and disadvantages of using catch basins for the placement of CDC gravid traps are discussed.
Collapse
Affiliation(s)
- Nicholas Miller
- 1 Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S First Avenue, Maywood, IL 60153
| | - Robert C Mettelman
- 1 Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S First Avenue, Maywood, IL 60153
| | - Susan C Baker
- 1 Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S First Avenue, Maywood, IL 60153
| | - Justin E Harbison
- 1 Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S First Avenue, Maywood, IL 60153
| |
Collapse
|
46
|
Seroprevalence screening for the West Nile virus in Malaysia's Orang Asli population. Parasit Vectors 2014; 7:597. [PMID: 25515627 PMCID: PMC4311511 DOI: 10.1186/s13071-014-0597-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background West Nile virus (WNV) infection is an emerging zoonotic disease caused by an RNA virus of the genus Flavivirus. WNV is preserved in the environment through cyclic transmission, with mosquitoes, particularly Culex species, serving as a vector, birds as an amplifying host and humans and other mammals as dead-end hosts. To date, no studies have been carried out to determine the prevalence of the WNV antibody in Malaysia. The aim of this study was to screen for the seroprevalence of the WNV in Malaysia’s Orang Asli population. Methods Serum samples of 742 Orang Asli were collected in seven states in peninsular Malaysia. The samples were assessed to determine the seroprevalence of WNV immunoglobulin (Ig)G with the WNV IgG enzyme-linked immunosorbent assay (ELISA) method. For each individual, we documented the demographic factors. Anti-dengue and anti-tick-borne encephalitis virus IgG ELISA were also performed to rule out a cross reaction. All statistical analyses were performed using the GraphPad Prism 6 (GraphPad Software, Inc.); p values of less than 0.05 were considered significant. Results The serosurvey included 298 men (40.16%) and 444 women (59.84%) of Malaysia’s Orang Asli. Anti-WNV IgG was found in 9 of the 742 samples (1.21%). The seroprevalence was 0.67% (2 of 298) in men and 1.58% (7 of 444) in women. The presence of anti-WNV IgG was found not to be associated with gender but, however, did correlate with age. The peak seroprevalence was found to be 2.06% (2 of 97) in individuals between 30 to 42 years of age. Conclusions No previous studies have examined the seroprevalence of the WNV antibody in the human population in Malaysia, and no clinical reports of infections have been made. Screening for the WNV seroprevalence is very significant because of many risk factors contribute to the presence of WNV in Malaysia, such as the abundance of Culex mosquitoes as the main vector and a high degree of biodiversity, including migratory birds that serve as a reservoir to the virus.
Collapse
|