1
|
Prajeeth CK, Zdora I, Saletti G, Friese J, Gerlach T, Wilken L, Beicht J, Kubinski M, Puff C, Baumgärtner W, Kortekaas J, Wichgers Schreur PJ, Osterhaus ADME, Rimmelzwaan GF. Immune correlates of protection of the four-segmented Rift Valley fever virus candidate vaccine in mice. Emerg Microbes Infect 2024; 13:2373313. [PMID: 38946528 PMCID: PMC11238650 DOI: 10.1080/22221751.2024.2373313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available. The safety and efficacy of a genetically engineered four-segmented RVFV variant (hRVFV-4s) as a potential live-attenuated human vaccine has been tested successfully in mice, ruminants, and marmosets though the correlates of protection of this vaccine are still largely unknown. In the present study, we have assessed hRVFV-4s-induced humoral and cellular immunity in a mouse model of RVFV infection. Our results confirm that a single dose of hRVFV-4s is highly efficient in protecting naïve mice from developing severe disease following intraperitoneal challenge with a highly virulent RVFV strain and data show that virus neutralizing (VN) serum antibody titres in a prime-boost regimen are significantly higher compared to the single dose. Subsequently, VN antibodies from prime-boost-vaccinated recipients were shown to be protective when transferred to naïve mice. In addition, hRVFV-4s vaccination induced a significant virus-specific T cell response as shown by IFN-γ ELISpot assay, though these T cells did not provide significant protection upon passive transfer to naïve recipient mice. Collectively, this study highlights hRVFV-4s-induced VN antibodies as a major correlate of protection against lethal RVFV infection.
Collapse
MESH Headings
- Animals
- Rift Valley fever virus/immunology
- Rift Valley fever virus/genetics
- Rift Valley Fever/prevention & control
- Rift Valley Fever/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Disease Models, Animal
- Immunity, Cellular
- T-Lymphocytes/immunology
- Immunity, Humoral
- Mice, Inbred BALB C
- Interferon-gamma/immunology
- Vaccination
Collapse
Affiliation(s)
- Chittappen K Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Julia Friese
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Lucas Wilken
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
- Boehringer Ingelheim Animal Health, Global Innovation, Saint Priest, France
| | - Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
- BunyaVax B.V., Lelystad, The Netherlands
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Chabert M, Lacôte S, Marianneau P, Confort MP, Aurine N, Pédarrieu A, Doumbia B, Ould Baba Ould Gueya M, Habiboullah H, Beyatt ABEM, Lo MM, Nichols J, Sreenu VB, da Silva Filipe A, Colle MA, Pain B, Cêtre-Sossah C, Arnaud F, Ratinier M. Comparative study of two Rift Valley fever virus field strains originating from Mauritania. PLoS Negl Trop Dis 2024; 18:e0012728. [PMID: 39652604 DOI: 10.1371/journal.pntd.0012728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/19/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Rift Valley fever (RVF) is one of the major viral arthropod-borne diseases in Africa. In recent decades, RVF virus (RVFV), the causative agent of RVF, has been responsible for multiple outbreaks in West Africa with important consequences on human and animal health. In particular, an outbreak occurred in 2010 after heavy rains in the desertic region of Adrar, Mauritania. It was characterized by the appearance of severe clinical signs among dromedary camels. Another one occurred in 2013-2014 across Senegal and the southern part of Mauritania. In this study, we characterized two RVFV field strains isolated during these two outbreaks. The first strain, MRU25010-30, was isolated from a camel (2010) while the second, MRU2687-3, was isolated from a goat (2013). By deep-sequencing and rapid amplification of cDNA-ends by polymerase chain reaction, we successfully sequenced the complete genome of these two RVFV strains as well as the reference laboratory strain ZH548. Phylogenetic analysis showed that the two field viruses belong to two different RVFV genetic lineages. Moreover, we showed that MRU25010-30 replicates more efficiently in various in vitro cell culture models than MRU2687-3 and ZH548. In vivo, MRU25010-30 caused rapid death of BALB/c mice and proved to be more virulent than MRU2687-3, regardless of the route of inoculation (subcutaneous or intranasal). The virulence of MRU25010-30 is associated with a high viral load in the liver and serum of infected mice, while the death of mice infected with MRU2687-3 and ZH548 correlated with a high viral load in the brain. Altogether, the data presented in this study provide new avenues to unveil the molecular viral determinants that modulate RVFV virulence and replication capacity.
Collapse
Affiliation(s)
- Mehdi Chabert
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | | | | - Marie-Pierre Confort
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Noémie Aurine
- Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Aurélie Pédarrieu
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Baba Doumbia
- Direction des Services Vétérinaires, Ministère de l'élevage, Nouakchott, Mauritania
| | | | | | | | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Bertrand Pain
- Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
3
|
Quellec J, Piro-Megy C, Cannac M, Nisole S, Marty FH, Gosselet F, Shimizu F, Kanda T, Cêtre-Sossah C, Salinas S. Rift Valley fever virus is able to cross the human blood-brain barrier in vitro by direct infection with no deleterious effects. J Virol 2024; 98:e0126724. [PMID: 39345143 PMCID: PMC11494904 DOI: 10.1128/jvi.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arboviral disease that causes recurrent epidemics in Africa that may trigger fatal neurological disorders. However, the mechanisms of neuroinvasion by which the RVF virus (RVFV) reaches the human central nervous system (CNS) remain poorly characterized. In particular, it is not clear how RVFV is able to cross the human blood-brain barrier (hBBB), which is a neurovascular endothelium that protects the brain by regulating brain and blood exchanges. To explore these mechanisms, we used an in vitro hBBB model to mimic in vivo hBBB selectiveness and apicobasal polarity. Our results highlight the ability of RVFV to cross the hBBB by direct infection in a non-structural protein S (NSs)-independent but strain-dependent manner, leading to astrocyte and pericyte infections. Interestingly, RVFV infection did not induce hBBB disruption and was associated with progressive elimination of infected cells with no impairment of the tight junction protein scaffold and barrier function. Our work also shows that NSs, a well described RVFV virulence factor, limited the establishment of the hBBB-induced innate immune response and subsequent lymphocyte recruitment. These results provide in vitro confirmation of the ability of RVFV to reach human CNS by direct infection of the hBBB without altering its barrier function, and provide new directions to explore human RVFV neurovirulence and neuroinvasion mechanisms.IMPORTANCEThe RVF virus (RVFV) is capable of infecting humans and inducing severe and fatal neurological disorders. Neuropathogenesis and human central nervous system (CNS) invasion mechanisms of RVFV are still unknown, with only historical studies of autopsy data from fatal human cases in the 1980s and exploration studies in rodent models. One of the gaps in understanding RVFV human pathogenesis is how RVFV is able to cross the blood-brain barrier (BBB) in order to reach the human CNS. For the first time, we show that RVFV is able to directly infect cells of the human BBB in vitro to release viral particles into the human CNS, a well-characterized neuroinvasion mechanism of pathogens. Furthermore, we demonstrate strain-dependent variability of this neuroinvasion mechanism, identifying possible viral properties that could be explored to prevent neurological disorders during RVFV outbreaks.
Collapse
Affiliation(s)
- Jordan Quellec
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | | | - Marion Cannac
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Florent H. Marty
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Sara Salinas
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
4
|
Wilson LR, McElroy AK. Rift Valley Fever Virus Encephalitis: Viral and Host Determinants of Pathogenesis. Annu Rev Virol 2024; 11:309-325. [PMID: 38635867 PMCID: PMC11427164 DOI: 10.1146/annurev-virology-093022-011544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.
Collapse
Affiliation(s)
- Lindsay R Wilson
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Anita K McElroy
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
5
|
Borrego B, Alonso C, Moreno S, de la Losa N, Sánchez-Cordón PJ, Brun A. The Rift Valley fever (RVF) vaccine candidate 40Fp8 shows an extreme attenuation in IFNARKO mice following intranasal inoculation. PLoS Negl Trop Dis 2024; 18:e0012011. [PMID: 39159263 PMCID: PMC11361746 DOI: 10.1371/journal.pntd.0012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Rift Valley fever (RVF) is an important zoonotic viral disease affecting several species of domestic and wild ruminants, causing major economic losses and dozens of human deaths in various geographical areas of Africa, where it is endemic. Although it is not present in Europe, there is a risk of its introduction and spread linked to globalisation and climate change. At present, the only measure that could help to prevent the disease is vaccination of flocks in areas at risk of RVF. Available live attenuated vaccines are an effective means of controlling the disease, but their use is often questioned due to residual virulence, particularly in susceptible hosts such as pregnant sheep. On the other hand, no vaccine is currently licensed for use in humans. The development of safe and effective vaccines is therefore a major area of research. In previous studies, we selected under selective mutagenic pressure a highly attenuated RVFV 56/74 virus variant called 40Fp8. This virus showed an extremely attenuated phenotype in both wild-type and immunodeficient A129 (IFNARKO) mice, yet was still able to induce protective immunity after a single inoculation, thus supporting its use as a safe, live attenuated vaccine. To further investigate its safety, in this work we have analysed the attenuation level of 40Fp8 in immunosuppressed mice (A129) when administered by the intranasal route, and compared it with other attenuated RVF viruses that are the basis of vaccines in use or in development. Our results show that 40Fp8 has a much higher attenuated level than these other viruses and confirm its potential as a candidate for safe RVF vaccine development.
Collapse
Affiliation(s)
- Belén Borrego
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Celia Alonso
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Nuria de la Losa
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Department of INFECTIOUS DISEASES AND GLOBAL HEALTH, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| |
Collapse
|
6
|
Alkan C, Jurado-Cobena E, Ikegami T. Distinct Pathological Changes in Preweaning Mice Infected with Live-Attenuated Rift Valley Fever Virus Strains. Viruses 2024; 16:999. [PMID: 39066162 PMCID: PMC11281583 DOI: 10.3390/v16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Middle East. Live-attenuated RVF vaccines have been studied for both veterinary and human use due to their strong immunogenicity and cost-effective manufacturing. The live-attenuated MP-12 vaccine has been conditionally approved for veterinary use in the U.S.A., and next-generation live-attenuated RVF vaccine candidates are being actively researched. Assessing the virulence phenotype of vaccine seeds or lots is crucial for managing vaccine safety. Previously, preweaning 19-day-old outbred CD1 mice have been used to evaluate the MP-12 strain. This study aimed to characterize the relative virulence of three live-attenuated RVF vaccine strains in 19-day-old inbred C57BL/6 mice: the recombinant MP-12 (rMP-12), the RVax-1, and the ∆NSs-∆NSm-rZH501 strains. Although this mouse model did not show dose-dependent pathogenesis, mice that succumbed to the infection exhibited distinct brain pathology. Mice infected with ∆NSs-∆NSm-rZH501 showed an infiltration of inflammatory cells associated with infected neurons, and focal lesions formed around virus-infected cells. In contrast, mice infected with rMP-12 or RVax-1 showed a minimal association of inflammatory cells in the brain, yet the virus spread diffusely. The preweaning model is likely useful for evaluating host responses to attenuated RVFV strains, although further refinement may be necessary to quantitate the virulence among different RVFV strains or vaccine lots.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Freeman TL, McElroy AK. Laboratory Animal Models for Rift Valley Fever Virus Disease. Methods Mol Biol 2024; 2824:425-445. [PMID: 39039428 DOI: 10.1007/978-1-0716-3926-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.
Collapse
Affiliation(s)
- Tracey L Freeman
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA
| | - Anita K McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA.
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Intranasal Exposure to Rift Valley Fever Virus Live-Attenuated Strains Leads to High Mortality Rate in Immunocompetent Mice. Viruses 2022; 14:v14112470. [PMID: 36366567 PMCID: PMC9694885 DOI: 10.3390/v14112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.
Collapse
|
10
|
Immune correlates of protection following Rift Valley fever virus vaccination. NPJ Vaccines 2022; 7:129. [PMID: 36307416 PMCID: PMC9616434 DOI: 10.1038/s41541-022-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a hemorrhagic fever virus with the potential for significant economic and public health impact. Vaccination with an attenuated strain, DelNSsRVFV, provides protection from an otherwise lethal RVFV challenge, but mechanistic determinants of protection are undefined. In this study, a murine model was used to assess the contributions of humoral and cellular immunity to DelNSsRVFV-mediated protection. Vaccinated mice depleted of T cells were protected against subsequent challenge, and passive transfer of immune serum from vaccinated animals to naïve animals was also protective, demonstrating that T cells were dispensable in the presence of humoral immunity and that humoral immunity alone was sufficient. Animals depleted of B cells and then vaccinated were protected against challenge. Total splenocytes, but not T cells alone, B cells alone, or B + T cells harvested from vaccinated animals and then transferred to naïve animals were sufficient to confer protection, suggesting that multiple cellular interactions were required for effective cellular immunity. Together, these data indicate that humoral immunity is sufficient to confer vaccine-mediated protection and suggests that cellular immunity plays a role in protection that requires the interaction of various cellular components.
Collapse
|
11
|
Intact Type I Interferon Receptor Signaling Prevents Hepatocellular Necrosis but Not Encephalitis in a Dose-Dependent Manner in Rift Valley Fever Virus Infected Mice. Int J Mol Sci 2022; 23:ijms232012492. [DOI: 10.3390/ijms232012492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to “abortion storms” and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR−/−) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7–11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR−/− mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2–5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route.
Collapse
|
12
|
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.
Collapse
Affiliation(s)
- Kaleigh A Connors
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
13
|
Cartwright HN, Barbeau DJ, Doyle JD, Klein E, Heise MT, Ferris MT, McElroy AK. Genetic diversity of collaborative cross mice enables identification of novel rift valley fever virus encephalitis model. PLoS Pathog 2022; 18:e1010649. [PMID: 35834486 PMCID: PMC9282606 DOI: 10.1371/journal.ppat.1010649] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral disease of humans and livestock responsible for severe economic and human health impacts. In humans, RVF spans a variety of clinical manifestations, ranging from an acute flu-like illness to severe forms of disease, including late-onset encephalitis. The large variations in human RVF disease are inadequately represented by current murine models, which overwhelmingly die of early-onset hepatitis. Existing mouse models of RVF encephalitis are either immunosuppressed, display an inconsistent phenotype, or develop encephalitis only when challenged via intranasal or aerosol exposure. In this study, the genetically defined recombinant inbred mouse resource known as the Collaborative Cross (CC) was used to identify mice with additional RVF disease phenotypes when challenged via a peripheral foot-pad route to mimic mosquito-bite exposure. Wild-type Rift Valley fever virus (RVFV) challenge of 20 CC strains revealed three distinct disease phenotypes: early-onset hepatitis, mixed phenotype, and late-onset encephalitis. Strain CC057/Unc, with the most divergent phenotype, which died of late-onset encephalitis at a median of 11 days post-infection, is the first mouse strain to develop consistent encephalitis following peripheral challenge. CC057/Unc mice were directly compared to C57BL/6 mice, which uniformly succumb to hepatitis within 2–4 days of infection. Encephalitic disease in CC057/Unc mice was characterized by high viral RNA loads in brain tissue, accompanied by clearance of viral RNA from the periphery, low ALT levels, lymphopenia, and neutrophilia. In contrast, C57BL/6 mice succumbed from hepatitis at 3 days post-infection with high viral RNA loads in the liver, viremia, high ALT levels, lymphopenia, and thrombocytopenia. The identification of a strain of CC mice as an RVFV encephalitis model will allow for future investigation into the pathogenesis and treatment of RVF encephalitic disease and indicates that genetic background makes a major contribution to RVF disease variation.
Collapse
Affiliation(s)
- Haley N. Cartwright
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Dominique J. Barbeau
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Joshua D. Doyle
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Ed Klein
- University of Pittsburgh, Division of Laboratory Animal Resources, Pittsburgh, Pennsylvania, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anita K. McElroy
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hum NR, Bourguet FA, Sebastian A, Lam D, Phillips AM, Sanchez KR, Rasley A, Loots GG, Weilhammer DR. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. PLoS Pathog 2022; 18:e1010231. [PMID: 35584192 PMCID: PMC9154093 DOI: 10.1371/journal.ppat.1010231] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice. In response to infection, microglia initiated robust transcriptional upregulation of antiviral immune genes, as well as increased levels of activation markers and cytokine secretion that is dependent on mitochondrial antiviral-signaling protein (MAVS) and independent of toll-like receptors 3 and 7. In vivo, Mavs-/- mice displayed enhanced susceptibility to RVFV as determined by increased brain viral burden and higher mortality. Single-cell RNA sequence analysis identified defects in type I interferon and interferon responsive gene expression within microglia in Mavs-/- mice, as well as dysregulated lymphocyte infiltration. The results of this study provide a crucial step towards understanding the precise molecular mechanisms by which RVFV infection is controlled in the brain and will help inform the development of vaccines and antiviral therapies that are effective in preventing encephalitis. Rift Valley fever virus causes severe disease in humans and livestock and in some cases can be fatal. There is concern about the use of Rift Valley fever virus as a bioweapon since it can be transmitted through the air, and there are no vaccines or antiviral treatments. Airborne transmission of the virus causes severe inflammation of the brain, yet little is known about the immune response against the virus in this organ. Here, we investigated the immune response in the brain to Rift Valley fever virus following intranasal infection. We determined that microglia, the resident immune cells of the brain, initiate a robust response to Rift Valley fever virus infection and identified a key immune pathway that is critical for the ability of microglia to respond to infection. When this immune pathway is rendered non-functional, mice have a dysregulated response to infection in the brain. This study provides insight into how the immune response can control Rift Valley fever virus infection of the brain.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Feliza A. Bourguet
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Doris Lam
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kristina R. Sanchez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Clarke LL, Mead DG, Ruder MG, Carter DL, Bloodgood J, Howerth E. Experimental Infection of Domestic Piglets (Sus scrofa) with Rift Valley Fever Virus. Am J Trop Med Hyg 2022; 106:182-186. [PMID: 34695799 PMCID: PMC8733486 DOI: 10.4269/ajtmh.21-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a mosquito-transmitted phlebovirus (Family: Phenuiviridae, Order: Bunyavirales) causing severe neonatal mortality and abortion primarily in domestic ruminants. The susceptibility of young domestic swine to RVFV and this species' role in geographic expansion and establishment of viral endemicity is unclear. Six commercially bred Landrace-cross piglets were inoculated subcutaneously with 105 plaque-forming units of RVFV ZH501 strain and two piglets received a sham inoculum. All animals were monitored for clinical signs, viremia, viral shedding, and antibody response for 14 days. Piglets did not develop evidence of clinical disease, become febrile, or experience decreased weight gain during the study period. A brief lymphopenia followed by progressive lymphocytosis was observed following inoculation in all piglets. Four piglets developed a brief viremia for 2 days post-inoculation and three of these had detectable virus in oronasal secretions three days post-inoculation. Primary inoculated piglets seroconverted and those that developed detectable viremias had the highest titers assessed by serum neutralization (1:64-1:256). Two viremic piglets had a lymphoplasmacytic encephalitis with glial nodules; RVFV was not detected by immunohistochemistry in these sections. While young piglets do not appear to readily develop clinical disease following RVFV infection, results suggest swine could be subclinically infected with RVFV.
Collapse
Affiliation(s)
- Lorelei L. Clarke
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia;,Address correspondence to Lorelei L. Clarke, Wisconsin Veterinary Diagnostic Laboratory, 445 Easterday Ln, Madison, WI 53706. E-mail:
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jennifer Bloodgood
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
16
|
Barbeau DJ, Cartwright HN, Harmon JR, Spengler JR, Spiropoulou CF, Sidney J, Sette A, McElroy AK. Identification and Characterization of Rift Valley Fever Virus-Specific T Cells Reveals a Dependence on CD40/CD40L Interactions for Prevention of Encephalitis. J Virol 2021; 95:e0150621. [PMID: 34495703 PMCID: PMC8577384 DOI: 10.1128/jvi.01506-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. IMPORTANCE The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.
Collapse
Affiliation(s)
- Dominique J. Barbeau
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| | - Haley N. Cartwright
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| | - Jessica R. Harmon
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - Jessica R. Spengler
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| | - Anita K. McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Anthony T, van Schalkwyk A, Romito M, Odendaal L, Clift SJ, Davis AS. Vaccination with Rift Valley fever virus live attenuated vaccine strain Smithburn caused meningoencephalitis in alpacas. J Vet Diagn Invest 2021; 33:777-781. [PMID: 34041966 DOI: 10.1177/10406387211015294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic, viral, mosquito-borne disease that causes considerable morbidity and mortality in humans and livestock in Africa and the Arabian Peninsula. In June 2018, 4 alpaca inoculated subcutaneously with live attenuated RVF virus (RVFV) Smithburn strain exhibited pyrexia, aberrant vocalization, anorexia, neurologic signs, and respiratory distress. One animal died the evening of inoculation, and 2 at ~20 d post-inoculation. Concern regarding potential vaccine strain reversion to wild-type RVFV or vaccine-induced disease prompted autopsy of the latter two. Macroscopically, both alpacas had severe pulmonary edema and congestion, myocardial hemorrhages, and cyanotic mucous membranes. Histologically, they had cerebral nonsuppurative encephalomyelitis with perivascular cuffing, multifocal neuronal necrosis, gliosis, and meningitis. Lesions were more severe in the 4-mo-old cria. RVFV antigen and RNA were present in neuronal cytoplasm, by immunohistochemistry and in situ hybridization (ISH) respectively, and cerebrum was also RVFV positive by RT-rtPCR. The virus clustered in lineage K (100% sequence identity), with close association to Smithburn sequences published previously (identity: 99.1-100%). There was neither evidence of an aberrant immune-mediated reaction nor reassortment with wild-type virus. The evidence points to a pure infection with Smithburn vaccine strain as the cause of the animals' disease.
Collapse
Affiliation(s)
- Tasneem Anthony
- Provincial Veterinary Laboratory, Department of Agriculture, Western Cape Government, Capetown, South Africa
| | - Antoinette van Schalkwyk
- South Africa Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Marco Romito
- South Africa Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Lieza Odendaal
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Sarah J Clift
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - A Sally Davis
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
18
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
19
|
Boyles DA, Schwarz MM, Albe JR, McMillen CM, O'Malley KJ, Reed DS, Hartman AL. Development of Rift valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. J Gen Virol 2021; 102:001522. [PMID: 33231535 PMCID: PMC8116942 DOI: 10.1099/jgv.0.001522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
The zoonotic emerging Rift Valley fever virus (RVFV) causes sporadic disease in livestock and humans throughout Africa and the Saudi Arabian peninsula. Infection of people with RVFV can occur through mosquito bite or mucosal exposure during butchering or milking of infected livestock. Disease typically presents as a self-limiting fever; however, in rare cases, hepatitis, encephalitis and ocular disease may occur. Recent studies have illuminated the neuropathogenic mechanisms of RVFV in a rat aerosol infection model. Neurological disease in rats is characterized by breakdown of the blood-brain barrier late in infection, infiltration of leukocytes to the central nervous system (CNS) and massive viral replication in the brain. However, the route of RVFV entry into the CNS after inhalational exposure remains unknown. Here, we visualized the entire nasal olfactory route from snout to brain after RVFV infection using RNA in situ hybridization and immunofluorescence microscopy. We found widespread RVFV-infected cells within the olfactory epithelium, across the cribriform plate, and in the glomerular region of the olfactory bulb within 2 days of infection. These results indicate that the olfactory tract is a major route of infection of the brain after inhalational exposure. A better understanding of potential neuroinvasion pathways can support the design of more effective therapeutic regiments for the treatment of neurological disease caused by RVFV.
Collapse
Affiliation(s)
- Devin A. Boyles
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Abstract
Rift Valley fever virus (RVFV) is a pathogen of both humans and livestock in Africa and the Middle East. Severe human disease is associated with hepatitis and/or encephalitis. Current pathogenesis studies rely on rodents and nonhuman primates, which have advantages and disadvantages. We evaluated disease progression in Mustela putorius furo (the ferret) following intradermal (i.d.) or intranasal (i.n.) infection. Infected ferrets developed hyperpyrexia, weight loss, lymphopenia, and hypoalbuminemia. Three of four ferrets inoculated intranasally with RVFV developed central nervous system (CNS) disease that manifested as seizure, ataxia, and/or hind limb weakness at 8 to 11 days postinfection (dpi). Animals with clinical CNS disease had transient viral RNAemia, high viral RNA loads in the brain, and histopathological evidence of encephalitis. The ferret model will facilitate our understanding of how RVFV accesses the CNS and has utility for the evaluation of vaccines and/or therapeutics in preventing RVFV CNS disease.IMPORTANCE Animal models of viral disease are very important for understanding how viruses make people sick and for testing out drugs and vaccines to see if they can prevent disease. In this study, we identify the ferret as a model of encephalitis caused by Rift Valley fever virus (RVFV). This novel model will allow researchers to evaluate ways to prevent RVFV encephalitis.
Collapse
|
21
|
Grossi-Soyster EN, LaBeaud AD. Rift Valley Fever: Important Considerations for Risk Mitigation and Future Outbreaks. Trop Med Infect Dis 2020; 5:tropicalmed5020089. [PMID: 32498264 PMCID: PMC7345646 DOI: 10.3390/tropicalmed5020089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic phlebovirus of the Phenuiviridae family with great opportunity for emergence in previously unaffected regions, despite its current geographical limits. Outbreaks of RVFV often infect humans or domesticated animals, such as livestock, concurrently and occur sporadically, ranging from localized outbreaks in villages to multi-country events that spread rapidly. The true burden of Rift Valley fever (RVF) is not well defined due to underreporting, misdiagnosis caused by the broad spectrum of disease presentation, and minimal access for rapid and accurate laboratory confirmation. Severe symptoms may include hemorrhagic fever, loss of vision, psychological impairment or disturbances, and organ failure. Those living in endemic areas and travelers should be aware of the potential for exposure to ongoing outbreaks or interepidemic transmission, and engage in behaviors to minimize exposure risks, as vaccinations in humans are currently unavailable and animal vaccinations are not used routinely or ubiquitously. The lack of vaccines approved for use in humans is concerning, as RVFV has proven to be highly pathogenic in naïve populations, causing severe disease in a large percent of confirmed cases, which could have considerable impact on human health.
Collapse
|
22
|
Albe JR, Boyles DA, Walters AW, Kujawa MR, McMillen CM, Reed DS, Hartman AL. Neutrophil and macrophage influx into the central nervous system are inflammatory components of lethal Rift Valley fever encephalitis in rats. PLoS Pathog 2019; 15:e1007833. [PMID: 31220182 PMCID: PMC6605717 DOI: 10.1371/journal.ppat.1007833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/02/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes severe disease in livestock concurrent with zoonotic transmission to humans. A subset of people infected with RVFV develop encephalitis, and significant gaps remain in our knowledge of how RVFV causes pathology in the brain. We previously found that, in Lewis rats, subcutaneous inoculation with RVFV resulted in subclinical disease while inhalation of RVFV in a small particle aerosol caused fatal encephalitis. Here, we compared the disease course of RVFV in Lewis rats after each different route of inoculation in order to understand more about pathogenic mechanisms of fatal RVFV encephalitis. In aerosol-infected rats with lethal encephalitis, neutrophils and macrophages were the major cell types infiltrating the CNS, and this was concomitant with microglia activation and extensive cytokine inflammation. Despite this, prevention of neutrophil infiltration into the brain did not ameliorate disease. Unexpectedly, in subcutaneously-inoculated rats with subclinical disease, detectable viral RNA was found in the brain along with T-cell infiltration. This study sheds new light on the pathogenic mechanisms of RVFV encephalitis.
Collapse
Affiliation(s)
- Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron W. Walters
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael R. Kujawa
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses 2019; 11:v11020139. [PMID: 30736362 PMCID: PMC6410127 DOI: 10.3390/v11020139] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging transboundary, mosquito-borne, zoonotic viral disease caused high morbidity and mortality in both human and ruminant populations. It is considered an important threat to both agriculture and public health in African and the Middle Eastern countries including Egypt. Five major RVF epidemics have been reported in Egypt (1977, 1993, 1994, 1997, and 2003). The virus is transmitted in Egypt by different mosquito’s genera such as Aedes, Culex, Anopheles, and Mansonia, leading to abortions in susceptible animal hosts especially sheep, goat, cattle, and buffaloes. Recurrent RVF outbreaks in Egypt have been attributed in part to the lack of routine surveillance for the virus. These periodic epizootics have resulted in severe economic losses. We posit that there is a critical need for new approaches to RVF control that will prevent or at least reduce future morbidity and economic stress. One Health is an integrated approach for the understanding and management of animal, human, and environmental determinants of complex problems such as RVF. Employing the One Health approach, one might engage local communities in surveillance and control of RVF efforts, rather than continuing their current status as passive victims of the periodic RVF incursions. This review focuses upon endemic and epidemic status of RVF in Egypt, the virus vectors and their ecology, transmission dynamics, risk factors, and the ecology of the RVF at the animal/human interface, prevention, and control measures, and the use of environmental and climate data in surveillance systems to predict disease outbreaks.
Collapse
|
24
|
Affiliation(s)
- Reiner Ulrich
- 1 Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Island of Riems, Germany
| |
Collapse
|
25
|
CD4 T Cells, CD8 T Cells, and Monocytes Coordinate To Prevent Rift Valley Fever Virus Encephalitis. J Virol 2018; 92:JVI.01270-18. [PMID: 30258000 DOI: 10.1128/jvi.01270-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that causes disease in livestock and humans in Africa and the Middle East. While human disease is typically mild and self-limiting, some individuals develop severe manifestations, such as hepatitis, hemorrhagic fever, or encephalitis. Encephalitis occurs 2 to 3 weeks after acute illness; therefore, we hypothesized that it was a result of an inadequate adaptive immunity. To test this hypothesis in vivo, we used an attenuated virus (DelNSsRVFV) that does not typically cause disease in mice. We first characterized the normal immune response to infection with DelNSsRVFV in immunocompetent mice and noted expansion of natural killer cells and monocytes, as well as activation of both CD8 and CD4 T cells. Depleting C57BL/6 mice of CD4 T cells prior to DelNSsRVFV infection resulted in encephalitis in 30% of the mice; in encephalitic mice, we noted infiltration of T cells and inflammatory monocytes into the brain. CD4 and CD8 codepletion in C57BL/6 mice, as well as CD4 depletion in CCR2 knockout mice, increased the frequency of encephalitis, demonstrating that these cell types normally contributed to the prevention of disease. Encephalitic mice had similar viral RNA loads in the brain regardless of which cell types were depleted, suggesting that CD4 T cells, CD8 T cells, and inflammatory monocytes did little to control viral replication in the brain. CD4-depleted mice exhibited diminished humoral and T cell memory responses, suggesting that these immune mechanisms contributed to peripheral control of virus, thus preventing infection of the brain.IMPORTANCE RVFV is found in Africa and the Middle East and is transmitted by mosquitos or through contact with infected animals. Infected individuals can develop mild disease or more severe forms, such as hepatitis or encephalitis. In order to understand why some individuals develop encephalitis, we first need to know which immune functions protect those who do not develop this form of disease. In this study, we used a mouse model of RVFV infection to demonstrate that CD4 T cells, CD8 T cells, and monocytes all contribute to prevention of encephalitis. Their likely mechanism of action is preventing RVFV from ever reaching the brain.
Collapse
|
26
|
Dawes BE, Gao J, Atkins C, Nelson JT, Johnson K, Wu P, Freiberg AN. Human neural stem cell-derived neuron/astrocyte co-cultures respond to La Crosse virus infection with proinflammatory cytokines and chemokines. J Neuroinflammation 2018; 15:315. [PMID: 30442185 PMCID: PMC6236894 DOI: 10.1186/s12974-018-1356-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND La Crosse virus (LACV) causes pediatric encephalitis in the USA. LACV induces severe inflammation in the central nervous system, but the recruitment of inflammatory cells is poorly understood. A deeper understanding of LACV-induced neural pathology is needed in order to develop treatment options. However, there is a severe limitation of relevant human neuronal cell models of LACV infection. METHODS We utilized human neural stem cell (hNSC)-derived neuron/astrocyte co-cultures to study LACV infection in disease-relevant primary cells. hNSCs were differentiated into neurons and astrocytes and infected with LACV. To characterize susceptibility and responses to infection, we measured viral titers and levels of viral RNA, performed immunofluorescence analysis to determine the cell types infected, performed apoptosis and cytotoxicity assays, and evaluated cellular responses to infection using qRT-PCR and Bioplex assays. RESULTS hNSC-derived neuron/astrocyte co-cultures were susceptible to LACV infection and displayed apoptotic responses as reported in previous in vitro and in vivo studies. Neurons and astrocytes are both targets of LACV infection, with neurons becoming the predominant target later in infection possibly due to astrocytic responses to IFN. Additionally, neuron/astrocyte co-cultures responded to LACV infection with strong proinflammatory cytokine, chemokine, as well as MMP-2, MMP-7, and TIMP-1 responses. CONCLUSIONS hNSC-derived neuron/astrocyte co-cultures reproduce key aspects of LACV infection in humans and mice and are useful models to study encephalitic viruses. Specifically, we show astrocytes to be susceptible to LACV infection and that neurons and astrocytes are important drivers of the inflammatory responses seen in LACV infection through the production of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Brian E. Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
| | - Jacob T. Nelson
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
| | - Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
27
|
Walters AW, Kujawa MR, Albe JR, Reed DS, Klimstra WB, Hartman AL. Vascular permeability in the brain is a late pathogenic event during Rift Valley fever virus encephalitis in rats. Virology 2018; 526:173-179. [PMID: 30396029 DOI: 10.1016/j.virol.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 10/19/2018] [Indexed: 01/19/2023]
Abstract
Rift Valley fever virus (RVFV) is a zoonotic disease of livestock that causes several clinical outcomes in people including febrile disease, hemorrhagic fever, and/or encephalitis. After aerosol infection with RVFV, Lewis rats develop lethal encephalitic disease, and we use this as a model for studying disease mechanisms of RVFV infection in the brain. Permeability of the brain vasculature in relation to virus invasion and replication is not known. Here, we found that vascular permeability in the brain occurred late in the course of infection and corresponded temporally to expression of matrix metalloproteinase-9 (MMP-9). Virus replication was ongoing within the central nervous system for several days prior to detectable vascular leakage. Based on this study, vascular permeability was not required for entry of RVFV into the brain of rats. Prevention of vascular leakage late in infection may be an important component for prevention of lethal neurological disease in the rat model.
Collapse
Affiliation(s)
- Aaron W Walters
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Michael R Kujawa
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Joseph R Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Odendaal L, Clift SJ, Fosgate GT, Davis AS. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Adult Sheep. Vet Pathol 2018; 56:61-77. [DOI: 10.1177/0300985818806049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne disease that affects both ruminants and humans, with epidemics occurring more frequently in recent years in Africa and the Middle East, probably as a result of climate change and intensified livestock trade. Sheep necropsied during the 2010 RVF outbreak in South Africa were examined by histopathology and immunohistochemistry (IHC). A total of 124 sheep were available for study, of which 99 cases were positive for RVF. Multifocal-random, necrotizing hepatitis was confirmed as the most distinctive lesion of RVF cases in adult sheep. Of cases where liver, spleen, and kidney tissues were available, 45 of 70 had foci of acute renal tubular epithelial injury in addition to necrosis in both the liver and spleen. In some cases, acute renal injury was the most significant RVF lesion. Immunolabeling for RVFV was most consistent and unequivocal in liver, followed by spleen, kidney, lung, and skin. RVFV antigen-positive cells included hepatocytes, adrenocortical epithelial cells, renal tubular epithelial cells, macrophages, neutrophils, epidermal keratinocytes, microvascular endothelial cells, and vascular smooth muscle. The minimum set of specimens to be submitted for histopathology and IHC to confirm or exclude a diagnosis of RVFV are liver, spleen, and kidney. Skin from areas with visible crusts and lung could be useful additional samples. In endemic areas, cases of acute renal tubular injury should be investigated further if other more common causes of renal lesions have already been excluded. RVFV can also cause an acute infection in the testis, which requires further investigation.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - Sarah J. Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - Geoffrey T. Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - A. Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
29
|
Song P, Zheng N, Liu Y, Tian C, Wu X, Ma X, Chen D, Zou X, Wang G, Wang H, Zhang Y, Lu S, Wu C, Wu Z. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat Commun 2018; 9:3328. [PMID: 30127439 PMCID: PMC6102208 DOI: 10.1038/s41467-018-05746-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), an emerging infectious disease caused by a novel phlebovirus, is associated with high fatality. Therapeutic interventions are lacking and disease pathogenesis is yet to be fully elucidated. The anti-viral immune response has been reported, but humoral involvement in viral pathogenesis is poorly understood. Here we show defective serological responses to SFTSV is associated with disease fatality and a combination of B-cell and T-cell impairment contribute to disruption of anti-viral immunity. The serological profile in deceased patients is characterized by absence of specific IgG to viral nucleocapsid and glycoprotein due to failure of B-cell class switching. Expansion and impairment of antibody secretion is a signature of fatal SFTSV infection. Apoptosis of monocytes in the early stage of infection diminishes antigen-presentation by dendritic cells, impedes differentiation and function of T follicular helper cells, and contributes to failure of the virus-specific humoral response. SFTSV is a novel phlebovirus associated with high fatality, but understanding of pathogenesis is lacking. Here the authors show defective cellular immunity, deficient antibody production and defunct humoral immunity is associated with fatal infection in human cases of infection.
Collapse
Affiliation(s)
- Peixin Song
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.,Jiangsu Laboratory for Molecular Medicines, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yong Liu
- Department of Experimental Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Chen Tian
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xilin Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,Jiangsu Laboratory for Molecular Medicines, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xiaohua Ma
- Y-Clone BioMedical, Ltd., Suzhou Hi-Tech Innovation Park, Suzhou, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Xue Zou
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Guiyang Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Huanru Wang
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Yongyang Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Sufang Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China. .,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China. .,Jiangsu Laboratory for Molecular Medicines, Nanjing University Medical School, Nanjing, People's Republic of China.
| |
Collapse
|
30
|
Smith DR, Johnston SC, Piper A, Botto M, Donnelly G, Shamblin J, Albariño CG, Hensley LE, Schmaljohn C, Nichol ST, Bird BH. Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates. PLoS Negl Trop Dis 2018; 12:e0006474. [PMID: 29742102 PMCID: PMC5962102 DOI: 10.1371/journal.pntd.0006474] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/21/2018] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (ΔNSs rRVFV) and double deletion mutant (ΔNSs-ΔNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the ΔNSs and ΔNSs-ΔNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the ΔNSs and ΔNSs-ΔNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat. Rift Valley fever (RVF) is an important neglected tropical disease that has caused severe epidemics and epizootics throughout Africa and the Arabian Peninsula. Severe outbreaks have involved tens of thousands of both human and livestock cases for which no effective, commercially available human vaccines are available. Vaccine candidates have been developed based on the complete deletion of two known RVF virus virulence factors, the NSs and NSm genes. These vaccines were previously demonstrated to be protective in rats, mice, and sheep. In this study, we expand upon those results and evaluate the vaccine candidates in a non-human primate model for RVF. The animals received a single dose of vaccine that led to the development of a robust immune response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated animals. All vaccinated animals that were subsequently challenged with RVF virus were protected against viremia and liver disease. These results demonstrate that the vaccines are safe and effective in non-human primates, which provides the impetus for further development of these candidates for use in humans.
Collapse
Affiliation(s)
- Darci R. Smith
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
- * E-mail:
| | - Sara C. Johnston
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Ashley Piper
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Miriam Botto
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Ginger Donnelly
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Joshua Shamblin
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - César G. Albariño
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, GA, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Connie Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Stuart T. Nichol
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, GA, United States of America
| | - Brian H. Bird
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, GA, United States of America
| |
Collapse
|
31
|
Wonderlich ER, Caroline AL, McMillen CM, Walters AW, Reed DS, Barratt-Boyes SM, Hartman AL. Peripheral Blood Biomarkers of Disease Outcome in a Monkey Model of Rift Valley Fever Encephalitis. J Virol 2018; 92:e01662-17. [PMID: 29118127 PMCID: PMC5774883 DOI: 10.1128/jvi.01662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8+ T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4+ and CD8+ T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model.IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which we lack both an effective human vaccine and treatment. Encephalitis and neurological disease resulting from RVF lead to death or significant long-term disability for infected people. African green monkeys (AGM) develop lethal neurological disease when infected with RVF virus by inhalation. Here we report the similarities in disease course between infected AGM and humans. For the first time, we examine the peripheral immune response during the course of infection in AGM and show that there are very early differences in the immune response between animals that survive infection and those that succumb. We conclude that AGM are a novel and suitable monkey model for studying the neuropathogenesis of RVF and for testing vaccines and therapeutics against this emerging viral pathogen.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Caroline
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia M McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aaron W Walters
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Innate Immune Basis for Rift Valley Fever Susceptibility in Mouse Models. Sci Rep 2017; 7:7096. [PMID: 28769107 PMCID: PMC5541133 DOI: 10.1038/s41598-017-07543-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) leads to varied clinical manifestations in animals and in humans that range from moderate fever to fatal illness, suggesting that host immune responses are important determinants of the disease severity. We investigated the immune basis for the extreme susceptibility of MBT/Pas mice that die with mild to acute hepatitis by day 3 post-infection compared to more resistant BALB/cByJ mice that survive up to a week longer. Lower levels of neutrophils observed in the bone marrow and blood of infected MBT/Pas mice are unlikely to be causative of increased RVFV susceptibility as constitutive neutropenia in specific mutant mice did not change survival outcome. However, whereas MBT/Pas mice mounted an earlier inflammatory response accompanied by higher amounts of interferon (IFN)-α in the serum compared to BALB/cByJ mice, they failed to prevent high viral antigen load. Several immunological alterations were uncovered in infected MBT/Pas mice compared to BALB/cByJ mice, including low levels of leukocytes that expressed type I IFN receptor subunit 1 (IFNAR1) in the blood, spleen and liver, delayed leukocyte activation and decreased percentage of IFN-γ-producing leukocytes in the blood. These observations are consistent with the complex mode of inheritance of RVFV susceptibility in genetic studies.
Collapse
|
33
|
Wichgers Schreur PJ, van Keulen L, Kant J, Kortekaas J. Four-segmented Rift Valley fever virus-based vaccines can be applied safely in ewes during pregnancy. Vaccine 2017; 35:3123-3128. [PMID: 28457675 DOI: 10.1016/j.vaccine.2017.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022]
Abstract
Rift Valley fever virus (RVFV) causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. This mosquito-borne virus, belonging to the genus Phlebovirus of the family Bunyaviridae contains a tri-segmented negative-strand RNA genome. Previously, we developed four-segmented RVFV (RVFV-4s) variants by splitting the M-genome segment into two M-type segments each encoding one of the structural glycoproteins; Gn or Gc. Vaccination/challenge experiments with mice and lambs subsequently showed that RVFV-4s induces protective immunity against wild-type virus infection after a single administration. To demonstrate the unprecedented safety of RVFV-4s, we here report that the virus does not cause encephalitis after intranasal inoculation of mice. A study with pregnant ewes subsequently revealed that RVFV-4s does not cause viremia and does not cross the ovine placental barrier, as evidenced by the absence of teratogenic effects and virus in the blood and organs of the fetuses. Altogether, these results show that the RVFV-4s vaccine virus can be applied safely in pregnant ewes.
Collapse
Affiliation(s)
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jet Kant
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
34
|
Lang Y, Henningson J, Jasperson D, Li Y, Lee J, Ma J, Li Y, Cao N, Liu H, Wilson W, Richt J, Ruder M, McVey S, Ma W. Mouse model for the Rift Valley fever virus MP12 strain infection. Vet Microbiol 2016; 195:70-77. [PMID: 27771072 DOI: 10.1016/j.vetmic.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licensed for use for veterinary purposes in the U.S. which was excluded from the select agent rule of Health and Human Services and the U.S. Department of Agriculture. The MP12 vaccine strain is commonly used in BSL-2 laboratories that is generally not virulent in mice. To establish a small animal model that can be used in a BSL-2 facility for antiviral drug development, we investigated susceptibility of six mouse strains (129S6/SvEv, STAT-1 KO, 129S1/SvlmJ, C57BL/6J, NZW/LacJ, BALB/c) to the MP12 virus infection via an intranasal inoculation route. Severe weight loss, obvious clinical and neurologic signs, and 50% mortality was observed in the STAT-1 KO mice, whereas the other 5 mouse strains did not display obvious and/or severe disease. Virus replication and histopathological lesions were detected in brain and liver of MP12-infected STAT-1 KO mice that developed the acute-onset hepatitis and delayed-onset encephalitis. In conclusion, the STAT-1 KO mouse strain is susceptible to MP12 virus infection, indicating that it can be used to investigate RVFV antivirals in a BSL-2 environment.
Collapse
Affiliation(s)
- Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dane Jasperson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Nan Cao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Haixia Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - William Wilson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Mark Ruder
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Scott McVey
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
35
|
Bird BH, McElroy AK. Rift Valley fever virus: Unanswered questions. Antiviral Res 2016; 132:274-80. [PMID: 27400990 DOI: 10.1016/j.antiviral.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
This mosquito-borne pathogen of humans and animals respects no international or geographic boundaries. It is currently found in parts of Africa and the Arabian Peninsula where periodic outbreaks of severe and fatal disease occur, and threatens to spread into other geographic regions. In recent years, modern molecular techniques have led to many breakthroughs deepening our understanding of the mechanisms of RVFV virulence, phylogenetics, and the creation of several next-generation vaccine candidates. Despite tremendous progress in these areas, other challenges remain in RVF disease pathogenesis, the virus life-cycle, and outbreak response preparedness that deserve our attention. Here we discuss and highlight ten key knowledge gaps and challenges in RVFV research. Answers to these key questions may lead to the development of new effective therapeutics and enhanced control strategies for this serious human and veterinary health threat.
Collapse
Affiliation(s)
- Brian H Bird
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anita K McElroy
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; Pediatric Infectious Disease, Emory University Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Nishiyama S, Slack OAL, Lokugamage N, Hill TE, Juelich TL, Zhang L, Smith JK, Perez D, Gong B, Freiberg AN, Ikegami T. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR. Virulence 2016; 7:871-881. [PMID: 27248570 DOI: 10.1080/21505594.2016.1195528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.
Collapse
Affiliation(s)
- Shoko Nishiyama
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Olga A L Slack
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Nandadeva Lokugamage
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Terence E Hill
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Terry L Juelich
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Lihong Zhang
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Jennifer K Smith
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - David Perez
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Bin Gong
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,c The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Alexander N Freiberg
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,c The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,d The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Tetsuro Ikegami
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,c The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,d The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| |
Collapse
|
37
|
Islam MK, Baudin M, Eriksson J, Öberg C, Habjan M, Weber F, Överby AK, Ahlm C, Evander M. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:354-62. [PMID: 26762502 DOI: 10.1177/1087057115625184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022]
Abstract
Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection.
Collapse
Affiliation(s)
- Md Koushikul Islam
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Maria Baudin
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Jonas Eriksson
- Department of Chemistry, Umeå University, Umeå, Sweden Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden, Solna, Sweden
| | - Christopher Öberg
- Department of Chemistry, Umeå University, Umeå, Sweden Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden, Solna, Sweden
| | - Matthias Habjan
- Innate Immunity Laboratory, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University Gießen, Gießen, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype. J Virol 2016; 90:3735-44. [PMID: 26819307 DOI: 10.1128/jvi.02241-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by "abortion storms" in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature sensitivity (ts) of MP-12 vaccine to understand virologic characteristics. Our study revealed that MP-12 vaccine contains ts mutations independently in the L, M, and S segments and that MP-12 displays a restrictive replication at 38°C.
Collapse
|
39
|
Caroline AL, Kujawa MR, Oury TD, Reed DS, Hartman AL. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model. Front Microbiol 2016; 6:1509. [PMID: 26779164 PMCID: PMC4703790 DOI: 10.3389/fmicb.2015.01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1-2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3-5 dpi) followed by brain (5-7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Amy L Caroline
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA, USA
| | - Michael R Kujawa
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, PittsburghPA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Douglas S Reed
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Immunology, University of Pittsburgh School of Medicine, PittsburghPA, USA
| | - Amy L Hartman
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, PittsburghPA, USA
| |
Collapse
|
40
|
Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, Fooks AR. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 2015; 33:5520-5531. [PMID: 26296499 DOI: 10.1016/j.vaccine.2015.08.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Lorraine McElhinney
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
41
|
Terasaki K, Makino S. Interplay between the Virus and Host in Rift Valley Fever Pathogenesis. J Innate Immun 2015; 7:450-8. [PMID: 25766761 DOI: 10.1159/000373924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus, family Bunyaviridae, and carries single-stranded tripartite RNA segments. The virus is transmitted by mosquitoes and has caused large outbreaks among ruminants and humans in sub-Saharan African and Middle East countries. The disease is characterized by a sudden onset of fever, headache, muscle pain, joint pain, photophobia, and weakness. In most cases, patients recover from the disease after a period of weeks, but some also develop retinal or macular changes, which result in vision impairment that lasts for an undefined period of time, and severe disease, characterized by hemorrhagic fever or encephalitis. The virus also causes febrile illness resulting in a high rate of spontaneous abortions in ruminants. The handling of wild-type RVFV requires high-containment facilities, including biosafety level 4 or enhanced biosafety level 3 laboratories. Nonetheless, studies clarifying the mechanisms of the RVFV-induced diseases and preventing them are areas of active research throughout the world. By primarily referring to recent studies using several animal model systems, protein expression systems, and specific mutant viruses, this review describes the current knowledge about the mechanisms of pathogenesis of RVF and biological functions of various viral proteins that affect RVFV pathogenicity.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Tex., USA
| | | |
Collapse
|
42
|
Lorenzo G, López-Gil E, Warimwe GM, Brun A. Understanding Rift Valley fever: contributions of animal models to disease characterization and control. Mol Immunol 2015; 66:78-88. [PMID: 25725948 DOI: 10.1016/j.molimm.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology. Translation of data obtained in these animal models to target species (ruminants and humans) is highly desirable but does not always occur. Small ruminants and non-human primates have been used for pathogenesis and transmission studies, and for testing the efficacy of vaccines and therapeutic antiviral compounds. However, the molecular mechanisms of the immune response elicited by RVF virus infection or vaccination are still poorly understood. The paucity of data in this area offers opportunities for new research activities and programs. This review summarizes our current understanding with respect to immunity and pathogenesis of RVF in animal models with a particular emphasis on small ruminants and non-human primates, including recent experimental infection data in sheep.
Collapse
Affiliation(s)
- Gema Lorenzo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Elena López-Gil
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - George M Warimwe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
43
|
Santos RI, Bueno-Júnior LS, Ruggiero RN, Almeida MF, Silva ML, Paula FE, Correa VMA, Arruda E. Spread of Oropouche virus into the central nervous system in mouse. Viruses 2014; 6:3827-36. [PMID: 25310583 PMCID: PMC4213564 DOI: 10.3390/v6103827] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
Oropouche virus (OROV) is an important cause of arboviral illness in Brazil and other Latin American countries, with most cases clinically manifested as acute febrile illness referred to as Oropouche fever, including myalgia, headache, arthralgia and malaise. However, OROV can also affect the central nervous system (CNS) with clinical neurological implications. Little is known regarding OROV pathogenesis, especially how OROV gains access to the CNS. In the present study, neonatal BALB/c mice were inoculated with OROV by the subcutaneous route and the progression of OROV spread into the CNS was evaluated. Immunohistochemistry revealed that OROV infection advances from posterior parts of the brain, including the periaqueductal gray, toward the forebrain. In the early phases of the infection OROV gains access to neural routes, reaching the spinal cord and ascending to the brain through brainstem regions, with little inflammation. Later, as infection progresses, OROV crosses the blood-brain barrier, resulting in more intense spread into the brain parenchyma, with more severe manifestations of encephalitis.
Collapse
Affiliation(s)
- Rodrigo I. Santos
- Department of Cell Biology, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (R.I.S.); (M.F.A.); (M.L.S.); (F.E.P.); (V.M.A.C.)
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lézio S. Bueno-Júnior
- Department of Neurology and Behavioral Sciences, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (L.S.B.-J.); (R.N.R.)
| | - Rafael N. Ruggiero
- Department of Neurology and Behavioral Sciences, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (L.S.B.-J.); (R.N.R.)
| | - Mariana F. Almeida
- Department of Cell Biology, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (R.I.S.); (M.F.A.); (M.L.S.); (F.E.P.); (V.M.A.C.)
| | - Maria L. Silva
- Department of Cell Biology, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (R.I.S.); (M.F.A.); (M.L.S.); (F.E.P.); (V.M.A.C.)
| | - Flávia E. Paula
- Department of Cell Biology, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (R.I.S.); (M.F.A.); (M.L.S.); (F.E.P.); (V.M.A.C.)
| | - Vani M. A. Correa
- Department of Cell Biology, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (R.I.S.); (M.F.A.); (M.L.S.); (F.E.P.); (V.M.A.C.)
| | - Eurico Arruda
- Department of Cell Biology, University of Sao Paulo, School of Medicine at Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; E-Mails: (R.I.S.); (M.F.A.); (M.L.S.); (F.E.P.); (V.M.A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-1636023337
| |
Collapse
|