1
|
Wright SW, Ekchariyawat P, Sengyee S, Phunpang R, Dulsuk A, Saiprom N, Thiansukhon E, Pattanapanyasat K, Korbsrisate S, West TE, Chantratita N. Dysfunctional host cellular immune responses are associated with mortality in melioidosis. Emerg Microbes Infect 2024; 13:2380822. [PMID: 39008280 PMCID: PMC11293272 DOI: 10.1080/22221751.2024.2380822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Melioidosis is a tropical infection caused by the intracellular pathogen Burkholderia pseudomallei, an underreported and emerging global threat. As melioidosis-associated mortality is frequently high despite antibiotics, novel management strategies are critically needed. Therefore, we sought to determine whether functional changes in the host innate and adaptive immune responses are induced during acute melioidosis and are associated with outcome. Using a unique whole blood stimulation assay developed for use in resource-limited settings, we examined induced cellular functional and phenotypic changes in a cohort of patients with bacteremic melioidosis prospectively enrolled within 24 h of positive blood culture and followed for 28 days. Compared to healthy controls, melioidosis survivors generated an IL-17 response mediated by Th17 cells and terminally-differentiated effector memory CD8+ T cells (P < .05, both), persisting to 28 days after enrolment. Furthermore, melioidosis survivors developed polyfunctional cytokine production in CD8+ T cells (P < .01). Conversely, a reduction in CCR6+ CD4+ T cells was associated with higher mortality, even after adjustments for severity of illness (P = 0.004). Acute melioidosis was also associated with a profound acute impairment in monocyte function as stimulated cytokine responses were reduced in classical, intermediate and non-classical monocytes. Impaired monocyte cytokine function improved by 28-days after enrolment. These data suggest that IL-17 mediated cellular responses may be contributors to host defense during acute melioidosis, and that innate immune function may be impaired. These insights could provide novel targets for the development of therapies and vaccine targets in this frequently lethal disease.
Collapse
Affiliation(s)
- Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Peeraya Ekchariyawat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kovit Pattanapanyasat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Hoft D. A Novel Role for γδ T Cells in Protection Against Severe Melioidosis. Am J Respir Cell Mol Biol 2024; 71:507-508. [PMID: 39158580 PMCID: PMC11568471 DOI: 10.1165/rcmb.2024-0363ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Daniel Hoft
- Department of Internal Medicine St. Louis University St. Louis, Missouri
| |
Collapse
|
3
|
Gupta N, Tirlangi PK, Ravindra P, Bhat R, Gupta M, Boodman C, Rashid A, Mukhopadhyay C. Low leucocyte, neutrophil and lymphocyte count (tri-low phenotype) in melioidosis: A predictor of early mortality. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100303. [PMID: 39584038 PMCID: PMC11584951 DOI: 10.1016/j.crmicr.2024.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Introduction Melioidosis is a bacterial disease caused by Burkholderia pseudomallei, a gram-negative bacillus endemic to parts of Asia and Northern Australia. This study aimed to identify the role of total and differential leucocyte count in predicting 48-h mortality in patients with melioidosis. Methodology This retrospective cohort study included patients diagnosed with culture-proven melioidosis at Kasturba Medical College between 2017 and 2023. Total leucocyte count (TLC), absolute neutrophil count (ANC), and absolute lymphocytic count (ALC) were classified into low (first quartile), medium (second and third quartile) and high (last quartile). The chi-square test was used to compare each group's early (48-h) mortality. Results Of the 170 patients with culture-confirmed melioidosis, 24 patients died within 48 h. The mortality was significantly higher in those with low TLC, ANC and ALC. When all three parameters were found to be low (tri-low phenotype), the specificity in predicting mortality was 93.2 %. Conclusion Low TLC, ANC and ALC are significant predictors of mortality among melioidosis patients. There is a need to explore new strategies to improve clinical outcomes among melioidosis patients with tri-low phenotype.
Collapse
Affiliation(s)
- Nitin Gupta
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- University of Antwerp, Antwerp, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Praveen Kumar Tirlangi
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Prithvishree Ravindra
- Department of Emergency Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rachana Bhat
- Department of Emergency Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mukund Gupta
- Department of Community Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Carl Boodman
- University of Antwerp, Antwerp, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Adil Rashid
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
4
|
Nagoba BS, Dhotre SV, Rayate AS, Mumbre SS, Dhotre PS. Multi-systemic melioidosis. World J Clin Cases 2024; 12:6151-6154. [PMID: 39371552 PMCID: PMC11362900 DOI: 10.12998/wjcc.v12.i28.6151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 08/13/2024] Open
Abstract
This editorial is a commentary on the article by Ni et al, which was published in the World Journal of Clinical Cases. The article discusses the diagnostic and therapeutic challenges of melioidosis caused by Burkholderia pseudomallei. The case study highlights a rare instance of multisystemic melioidosis in a female patient who did not have a travel history, emphasizing the significance of recognizing this condition in non-endemic regions. Diagnostic complexities and therapeutic strategies are addressed, emphasizing the need for heightened clinical suspicion, comprehensive evaluation, and multidisciplinary collaboration. The editorial delves into the clinical presentation, diagnostic dilemmas, therapeutic approaches, and their implications for patient care in managing multi-systemic melioidosis.
Collapse
Affiliation(s)
- Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences and Research (Medical College), Latur 413531, India
| | - Shree V Dhotre
- Department of Microbiology, Ashwini Rural Medical College, Solapur 413001, India
| | - Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences and Research (Medical College), Latur 413531, India
| | - Sachin S Mumbre
- Department of Community Medicine, Ashwini Rural Medical College, Solapur 413006, India
| | - Pradnya S Dhotre
- Department of Biochemistry, Ashwini Rural Medical College, Solapur 413001, India
| |
Collapse
|
5
|
Rongkard P, Xia L, Kronsteiner B, Yimthin T, Phunpang R, Dulsuk A, Hantrakun V, Wongsuvan G, Chamnan P, Lovelace-Macon L, Marchi E, Day NP, Shojaie A, Limmathurotsakul D, Chantratita N, Klenerman P, Dunachie SJ, West TE, Gharib SA. Dysregulated immunologic landscape of the early host response in melioidosis. JCI Insight 2024; 9:e179106. [PMID: 39163129 PMCID: PMC11457863 DOI: 10.1172/jci.insight.179106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Melioidosis, a neglected tropical infection caused by Burkholderia pseudomallei, commonly presents as pneumonia or sepsis with mortality rates up to 50% despite appropriate treatment. A better understanding of the early host immune response to melioidosis may lead to new therapeutic interventions and prognostication strategies to reduce disease burden. Whole blood transcriptomic signatures in 164 patients with melioidosis and in 70 patients with other infections hospitalized in northeastern Thailand enrolled within 24 hours following hospital admission were studied. Key findings were validated in an independent melioidosis cohort. Melioidosis was characterized by upregulation of interferon (IFN) signaling responses compared with other infections. Mortality in melioidosis was associated with excessive inflammation, enrichment of type 2 immune responses, and a dramatic decrease in T cell-mediated immunity compared with survivors. We identified and independently confirmed a 5-gene predictive set classifying fatal melioidosis (validation cohort area under the receiver operating characteristic curve 0.83; 95% CI, 0.67-0.99). This study highlights the intricate balance between innate and adaptive immunity during fatal melioidosis and can inform future precision medicine strategies for targeted therapies and prognostication in this severe infection.
Collapse
Affiliation(s)
- Patpong Rongkard
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
| | - Lu Xia
- Department of Statistics and Probability, Michigan State University, East Lansing, USA
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Thatcha Yimthin
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
| | | | | | - Lara Lovelace-Macon
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas P.J. Day
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, USA
| | | | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, United Kingdom
| | - Susanna J. Dunachie
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Salaya, Thailand
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, United Kingdom
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
- Department of Global Health, University of Washington, Seattle, USA
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| |
Collapse
|
6
|
Ni HY, Zhang Y, Huang DH, Zhou F. Multi-systemic melioidosis in a patient with type 2 diabetes in non-endemic areas: A case report and review of literature. World J Clin Cases 2024; 12:1669-1676. [PMID: 38576731 PMCID: PMC10989420 DOI: 10.12998/wjcc.v12.i9.1669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Melioidosis, an infectious disease caused by Burkholderia pseudomallei (B. pseudomallei), occurs endemically in Southeast Asia and Northern Australia and is a serious opportunistic infection associated with a high mortality rate. CASE SUMMARY A 58-year-old woman presented with scattered erythema on the skin of her limbs, followed by fever and seizures. B. pseudomallei was isolated successively from the patient's urine, blood, and pus. Magnetic resonance imaging showed abscess formation involving the right forehead and the right frontal region. Subsequently, abscess resection and drainage were performed. The patient showed no signs of relapse after 4 months of follow-up visits post-treatment. CONCLUSION We present here a unique case of multi-systemic melioidosis that occurs in non-endemic regions in a patient who had no recent travel history. Hence, it is critical to enhance awareness of melioidosis in non-endemic regions.
Collapse
Affiliation(s)
- Huan-Yu Ni
- Department of Endocrinology, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430080, Hubei Province, China
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430080, Hubei Province, China
| | - Ying Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Dong-Hai Huang
- Department of Rheumatology and Immunology, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430080, Hubei Province, China
| | - Feng Zhou
- Department of Endocrinology, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430080, Hubei Province, China
| |
Collapse
|
7
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Barnes KB, Brett P, Burtnick M, Vente A, Bentley C, Richards MI, Flick-Smith HC, Burgess G, Thwaite JE, Laws TR, Maishman TC, Nelson M, Harding SV. Layering vaccination with antibiotic therapy results in protection and clearance of Burkholderia pseudomallei in Balb/c mice. Infect Immun 2024; 92:e0045523. [PMID: 38289122 DOI: 10.1128/iai.00455-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 03/13/2024] Open
Abstract
Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.
Collapse
Affiliation(s)
- Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Paul Brett
- University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Mahidol University, Bangkok, Thailand
| | - Mary Burtnick
- University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Mahidol University, Bangkok, Thailand
| | | | | | - Mark I Richards
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Helen C Flick-Smith
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Gary Burgess
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Joanne E Thwaite
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Thomas R Laws
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Thomas C Maishman
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Michelle Nelson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Tomás-Cortázar J, Quinn C, Corcoran N, Blanco A, Christensen D, McClean S. BpOmpW antigen administered with CAF01 adjuvant stimulates comparable T cell responses to Sigma adjuvant system. Vaccine X 2024; 17:100438. [PMID: 38303776 PMCID: PMC10831100 DOI: 10.1016/j.jvacx.2024.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
There are no licensed vaccines to protect vulnerable populations from the potentially fatal tropical infection, melioidosis, despite its causative agent, Burkholderia pseudomallei, being endemic in tropical and subtropical regions. A promising vaccine candidate, BpOmpW protected mice from melioidosis infection for up to 81 days and stimulated robust interferon gamma responses in CD4+, CD8+, NK and NKT cells. In order to progress to human studies, selection of an adjuvant with an acceptable human safety profile that stimulates appropriate correlates of protection is essential. Here we demonstrate that the CAF01 vaccine adjuvant elicits optimal immune correlates of protection when administered with our BpOmpW vaccine. Specifically, we demonstrate that CAF01 administered with BpOmpW elicits robust Th1 responses, with potent IFN-γ responses in CD4+ and CD8+ T cells and NKT cells, in addition to Th17 and Th2 responses. This formulation will be particularly effective in protecting susceptible populations including people with type 2 diabetes from melioidosis.
Collapse
Affiliation(s)
- Julen Tomás-Cortázar
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Conor Quinn
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh Corcoran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen S, Denmark
| | - Siobhán McClean
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
11
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
12
|
Wagner GE, Stanjek TFP, Albrecht D, Lipp M, Dunachie SJ, Föderl-Höbenreich E, Riedel K, Kohler A, Steinmetz I, Kohler C. Deciphering the human antibody response against Burkholderia pseudomallei during melioidosis using a comprehensive immunoproteome approach. Front Immunol 2023; 14:1294113. [PMID: 38146371 PMCID: PMC10749318 DOI: 10.3389/fimmu.2023.1294113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction The environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients. Methods and results In this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio. Conclusion Our study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis.
Collapse
Affiliation(s)
- Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | | | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Michaela Lipp
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Susanna J. Dunachie
- Nuffield Department of Medicine (NDM) Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Esther Föderl-Höbenreich
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Diagnostic & Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Anne Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine, Greifswald, Germany
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine, Greifswald, Germany
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine, Greifswald, Germany
| |
Collapse
|
13
|
Rongkard P, Dunachie SJ, Kronsteiner B. Impact of shipping temperature on cell viability and T cell responses to bacterial antigens. Wellcome Open Res 2023; 8:188. [PMID: 38903244 PMCID: PMC11187529 DOI: 10.12688/wellcomeopenres.18822.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 06/22/2024] Open
Abstract
Background: Interferon-γ (IFN-γ) secretion by T cells is a key correlate of immune protection against many pathogens including tuberculosis and the neglected tropical disease melioidosis. Clinical studies in tropical regions of immune responses to pathogens and vaccine monitoring studies require the collection of samples in resource-limited rural areas and subsequent shipment to central laboratories for downstream assays and long-term storage. Here, we studied the impact of two different shipping temperatures on the viability, composition and function of peripheral blood mononuclear cells (PBMC) using multi-colour flow cytometry and IFN-γ enzyme-linked immunospot assay (IFN-γ ELISpot), in order to provide guidance on sample shipment conditions for future clinical studies. Methods: Paired peripheral blood mononuclear cell (PBMC) samples from recovered melioidosis patients were stored in liquid nitrogen (-196°C) and then shipped from Bangkok, Thailand to Oxford, UK at either -80°C (dry ice) or -196°C (dry shipper). After thawing, cell viability and composition were assessed by flow cytometry and antigen specific responses to Burkholderia pseudomallei (BP) were measured using IFN-γ ELISpot. Results: We observed modest lowering of viability in the majority of samples and a reduction in IFN-γ responses to BP which correlated to a decrease of monocytes and natural killer cells in samples shipped at -80°C compared to -196°C. Despite being lower in magnitude antigen-specific responses remained detectable in the majority of samples. Conclusions: Here we demonstrate that shipment of cryopreserved PBMC at -196°C has a benefit on cell viability, recovery and T cell responses to bacterial antigens, although useful information can still be obtained from samples shipped at -80°C, thus providing important guidance for sample management in future clinical trials.
Collapse
Affiliation(s)
- Patpong Rongkard
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Susanna J. Dunachie
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Barbara Kronsteiner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| |
Collapse
|
14
|
Inthawong M, Pinthong N, Thaiprakhong A, Wangrangsimakul T, Sunyakumthorn P, Hill J, Sonthayanon P, Paris DH, Dunachie SJ, Kronsteiner B. A whole blood intracellular cytokine assay optimised for field site studies demonstrates polyfunctionality of CD4+ T cells in acute scrub typhus. PLoS Negl Trop Dis 2023; 17:e0010905. [PMID: 36961865 PMCID: PMC10075457 DOI: 10.1371/journal.pntd.0010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/05/2023] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Assessment of cellular immune responses by combining intracellular cytokine staining and immunophenotyping using flow cytometry enables the simultaneous measurement of T cell phenotype and effector function in response to pathogens and vaccines. The use of whole blood samples rather than peripheral blood mononuclear cells avoids both the need for immediate processing and loss of functional antigen presenting cells due to processing and cryopreservation. Using whole blood provides the possibility to stimulate peripheral T cells in situ, and is more suitable for studies where sample volume is limited, such as those involving children, the elderly and critically ill patients. The aim of this study was to provide a robust tool for the assessment of antigen-specific T cell responses in a field site setting with limited resources. METHODOLOGY/PRINCIPLE FINDINGS We optimised a flow cytometry-based whole blood intracellular cytokine assay (WBA) with respect to duration of antigen stimulation and intracellular protein retention time. We demonstrate the ability of the WBA to capture polyfunctional T cell responses in the context of acute scrub typhus infection, by measuring IFN-γ, TNF and IL-2 in CD4+ and CD8+ T cells in response to the causative agent O. tsutsugamushi (OT). Using an optimised OT antigen preparation, we demonstrate the presence of polyfunctional antigen-specific memory CD4+ T cells in the blood of scrub typhus patients. CONCLUSIONS/SIGNIFICANCE In conclusion, this flow cytometry-based WBA is well-suited for use at field study sites, and enables the assessment of polyfunctional T cell responses to infectious agents and vaccines through delineation of antigen-specific cytokine secretion at the single cell level.
Collapse
Affiliation(s)
- Manutsanun Inthawong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nattapon Pinthong
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Areerat Thaiprakhong
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tri Wangrangsimakul
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Jennifer Hill
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel H. Paris
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Barbara Kronsteiner
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Low-Diversity Microbiota in Apical Periodontitis and High Blood Pressure Are Signatures of the Severity of Apical Lesions in Humans. Int J Mol Sci 2023; 24:ijms24021589. [PMID: 36675104 PMCID: PMC9866854 DOI: 10.3390/ijms24021589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
(1) Background: In developed countries, the prevalence of apical periodontitis (AP) varies from 20% to 50% for reasons that could be associated with the apical periodontitis microbiota ecology. (2) Methods: We performed a clinical study in the Odontology department of Toulouse hospital in France, to sequence the 16S rRNA gene of AP microbiota and collect clinical parameters from 94 patients. Forty-four patients were characterized with a PAI (periapical index of AP severity) score lower or equal to 3, while the others had superior scores (n = 50). (3) Results: The low diversity of granuloma microbiota is associated with the highest severity (PAI = 5) of periapical lesions (Odds Ratio 4.592, IC 95% [1.6329; 14.0728]; p = 0.001; notably, a lower relative abundance of Burkholderiaceae and a higher relative abundance of Pseudomonas and Prevotella). We also identified that high blood pressure (HBP) is associated with the increase in PAI scores. (4) Conclusions: Our data show that a low diversity of bacterial ecology of the AP is associated with severe PAI scores, suggesting a causal mechanism. Furthermore, a second risk factor was blood pressure associated with the severity of apical periodontitis.
Collapse
|
16
|
Li X, Zeng Y, Guo S, Chen C, Liu L, Xia Q. Glycometabolism change during Burkholderia pseudomallei infection in RAW264.7 cells by proteomic analysis. Sci Rep 2022; 12:12560. [PMID: 35869254 PMCID: PMC9307605 DOI: 10.1038/s41598-022-16716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractBurkholderia pseudomallei is a Gram-negative intracellular bacterium that causes melioidosis, a life-threatening disease. The interaction of B. pseudomallei with its host is complicated, and cellular response to B. pseudomallei infection is still largely unknown. In this study, we aimed to determine host-cell responses to B. pseudomallei at the proteomics level. We performed proteomic profiling of B. pseudomallei HNBP001-infected mouse macrophage RAW264.7 cells to characterize the cellular response dynamics during infection. Western blot analysis was utilized for the validation of changes in protein expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using the clusterProfiler R package. Compared with the negative control (NC) group, 811 common proteins varied over time, with a cut-off level of two fold change and an adjusted P-value less than 0.05. The bioinformatics analysis revealed that the proteins significantly changed in the B. pseudomallei HNBP001 infection group (Bp group) were enriched in glycometabolism pathways, including glycolysis, fructose and mannose metabolism, pentose phosphate pathway, galactose metabolism, and carbon metabolism. Western blot analysis verified three selected proteins involved in glycometabolism pathways, namely PGM1, PKM, and PGK1 were increase over time post the infection. Furthermore, in vitro functional analysis revealed an increased glucose uptake and decreased ATP production and O-GlcNAcylation in the Bp group compared with control group, suggesting that B. pseudomallei HNBP001 infection induces changes in glycometabolism in RAW264.7 cells. These results indicate that glycometabolism pathways change in RAW264.7 cells post B. pseudomallei HNBP001 infection, providing important insights into the intimate interaction between B. pseudomallei and macrophages.
Collapse
|
17
|
Efficacy of Co-Trimoxazole against Experimental Melioidosis Acquired by Different Routes of Infection. Antimicrob Agents Chemother 2022; 66:e0070822. [PMID: 36226972 DOI: 10.1128/aac.00708-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis and presents with diverse clinical manifestations. Naturally occurring infection occurs following contamination of cuts or skin abrasions, or ingestion of contaminated water, and occasionally through inhalational of infected soil or water particles. The influence of the route of disease acquisition on the efficacy of medical countermeasures has not been explored in humans or in appropriate animal models. The efficacy of co-trimoxazole against melioidosis acquired by different routes of exposure was assessed in postexposure prophylaxis (PEP) and treatment studies in marmoset models of melioidosis. Following challenge with B. pseudomallei by the inhalational, subcutaneous, or ingestion routes of administration, animals were given co-trimoxazole at 12 hourly intervals for 14 days, starting either 6 h postchallenge or at the onset of fever. Animals were then observed for 28 days. All animals that received antibiotic 6 h postchallenge survived the duration of dosing. All animals that received antibiotics at the onset of fever completed the treatment, but 10%, 57%, and 60% of those with ingestion, subcutaneous, and inhalation challenge relapsed, respectively. Bacteriological and histological differences were observed between placebo-control animals and those that relapsed. Immunological profiles indicate difference between animals given placebo and those that relapsed or survived the duration of the study. A broad T-cell activation was observed in animals that survived. Overall, these data suggest the efficacy of co-trimoxazole, as measured in the incidence of relapse, differs depending on the disease-acquisition route. Therefore, there are implications in treating this disease in regions of endemicity.
Collapse
|
18
|
Biryukov SS, Cote CK, Klimko CP, Dankmeyer JL, Rill NO, Shoe JL, Hunter M, Shamsuddin Z, Velez I, Hedrick ZM, Rosario-Acevedo R, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Burtnick MN, Brett PJ, Welkos SL, DeShazer D. Evaluation of two different vaccine platforms for immunization against melioidosis and glanders. Front Microbiol 2022; 13:965518. [PMID: 36060742 PMCID: PMC9428723 DOI: 10.3389/fmicb.2022.965518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.
Collapse
Affiliation(s)
- Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- *Correspondence: Christopher K. Cote
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zain Shamsuddin
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Ivan Velez
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zander M. Hedrick
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- David DeShazer
| |
Collapse
|
19
|
Development of Melioidosis Subunit Vaccines Using an Enzymatically Inactive Burkholderia pseudomallei AhpC. Infect Immun 2022; 90:e0022222. [PMID: 35862715 PMCID: PMC9387246 DOI: 10.1128/iai.00222-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular, Gram-negative pathogen that is highly infectious via the respiratory route and can cause severe, debilitating, and often fatal diseases in humans and animals. At present, no licensed vaccines for immunization against this CDC Tier 1 select agent exist. Studies in our lab have previously demonstrated that subunit vaccine formulations consisting of a B. pseudomallei capsular polysaccharide (CPS)-based glycoconjugate (CPS-CRM197) combined with hemolysin-coregulated protein (Hcp1) provided C57BL/6 mice with high-level protection against an acute inhalational challenge of B. pseudomallei. In this study, we evaluated the immunogenicity and protective capacity of B. pseudomallei alkyl hydroperoxide reductase subunit C (AhpC) in combination with CPS-CRM197. AhpC is a peroxiredoxin involved in oxidative stress reduction and is a potential protective antigen. To facilitate our studies and maximize safety in animals, recombinant B. pseudomallei AhpC harboring an active site mutation (AhpCC57G) was expressed in Escherichia coli and purified using tandem nickel-cobalt affinity chromatography. Immunization of C57BL/6 mice with CPS-CRM197 combined with AhpCC57G stimulated high-titer IgG responses against the CPS component of the glycoconjugate as well as stimulated high-titer IgG and robust interferon gamma (IFN-γ)-, interleukin-5 (IL-5)-, and IL-17-secreting T cell responses against AhpCC57G. When challenged via an inhalational route with a high dose (~27 50% lethal doses [LD50s]) of B. pseudomallei, 70% of the immunized mice survived 35 days postchallenge. Collectively, our findings demonstrate that AhpCC57G is a potent activator of cellular and humoral immune responses and may be a promising candidate to include in future melioidosis subunit vaccines.
Collapse
|
20
|
Chowdhury S, Barai L, Afroze SR, Ghosh PK, Afroz F, Rahman H, Ghosh S, Hossain MB, Rahman MZ, Das P, Rahim MA. The Epidemiology of Melioidosis and Its Association with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11020149. [PMID: 35215093 PMCID: PMC8878808 DOI: 10.3390/pathogens11020149] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Melioidosis is an under-recognized fatal disease in humans, caused by the Gram-negative bacterium Burkholderia pseudomallei. Globally, more than 35,000 human melioidosis cases have been reported since 1911. Soil acts as the natural reservoir of B. pseudomallei. Humans may become infected by this pathogen through direct contact with contaminated soil and/or water. Melioidosis commonly occurs in patients with diabetes mellitus, who increase the occurrence of melioidosis in a population. We carried out a systematic review and meta-analysis to investigate to what extent diabetes mellitus affects the patient in getting melioidosis. We selected 39 articles for meta-analysis. This extensive review also provided the latest updates on the global distribution, clinical manifestation, preexisting underlying diseases, and risk factors of melioidosis. Diabetes mellitus was identified as the predominant predisposing factor for melioidosis in humans. The overall proportion of melioidosis cases having diabetes was 45.68% (95% CI: 44.8-46.57, p < 0.001). Patients with diabetes mellitus were three times more likely to develop melioidosis than patients with no diabetes (RR 3.40, 95% CI: 2.92-3.87, p < 0.001). The other potential risk factors included old age, exposure to soil and water, preexisting underlying diseases (chronic kidney disease, lung disease, heart disease, and thalassemia), and agricultural activities. Evidence-based clinical practice guidelines for melioidosis in patients with diabetes mellitus may be developed and shared with healthcare professionals of melioidosis endemic countries to reduce morbidity.
Collapse
Affiliation(s)
- Sukanta Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.K.G.); (H.R.); (S.G.); (M.Z.R.)
- Correspondence:
| | - Lovely Barai
- Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) General Hospital, Dhaka 1000, Bangladesh; (L.B.); (S.R.A.); (F.A.); (M.A.R.)
| | - Samira Rahat Afroze
- Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) General Hospital, Dhaka 1000, Bangladesh; (L.B.); (S.R.A.); (F.A.); (M.A.R.)
| | - Probir Kumar Ghosh
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.K.G.); (H.R.); (S.G.); (M.Z.R.)
| | - Farhana Afroz
- Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) General Hospital, Dhaka 1000, Bangladesh; (L.B.); (S.R.A.); (F.A.); (M.A.R.)
| | - Habibur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.K.G.); (H.R.); (S.G.); (M.Z.R.)
| | - Sumon Ghosh
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.K.G.); (H.R.); (S.G.); (M.Z.R.)
| | - Muhammad Belal Hossain
- Department of Ecology & Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.K.G.); (H.R.); (S.G.); (M.Z.R.)
| | - Pritimoy Das
- School of Health, Federation University Australia, Ballarat, VIC 3353, Australia;
| | - Muhammad Abdur Rahim
- Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) General Hospital, Dhaka 1000, Bangladesh; (L.B.); (S.R.A.); (F.A.); (M.A.R.)
| |
Collapse
|
21
|
The innate immune response in the marmoset during the acute pneumonic disease caused by Burkholderia pseudomallei. Infect Immun 2022; 90:e0055021. [PMID: 35041487 PMCID: PMC8929355 DOI: 10.1128/iai.00550-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a severe human infection that is difficult to treat with antibiotics and for which there is no effective vaccine. Development of novel treatments rely upon appropriately characterized animal models. The common marmoset (Callithrix jacchus) has been established at Defense Science and Technology laboratories (DSTL) as a model of melioidosis. Further analysis was performed on samples generated in these studies to provide a description of the innate immune response. Many of the immunological features described, (migration/activation of neutrophils and macrophages, activation of T cells, elevation of key cytokines IFNγ, TNF-α, IL-6, and IL-1β) have been observed in acute melioidosis human cases and correlated with prognosis. Expression of the MHCII marker (HLA-DR) on neutrophils showed potential as a diagnostic with 80% accuracy when comparing pre- and postchallenge levels in paired blood samples. Discriminant analysis of cell surface, activation markers on neutrophils combined with levels of key cytokines, differentiated between disease states from single blood samples with 78% accuracy. These key markers have utility as a prototype postexposure, presymptomatic diagnostic. Ultimately, these data further validate the use of the marmoset as a suitable model for determining efficacy of medical countermeasures against B. pseudomallei.
Collapse
|
22
|
Gassiep I, Ganeshalingam V, Chatfield MD, Harris PNA, Norton RE. Melioidosis: Laboratory Investigations and Association with Patient Outcomes. Am J Trop Med Hyg 2022; 106:54-59. [PMID: 34724627 PMCID: PMC8733490 DOI: 10.4269/ajtmh.21-0548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023] Open
Abstract
Melioidosis is an infection caused by the bacterium Burkholderia pseudomallei. The most common presentation is bacteremia occurring in 38-73% of all patients, and the mortality rate ranges from 9% to 42%. Although there is abundant data representing risk factors for infection and patient outcomes, there is limited information regarding laboratory investigations associated with bacteremia and mortality. We assessed a range of baseline and diagnostic investigations and their association with patient outcomes in a retrospective cohort study in Townsville, Australia. 124 patients' medical and laboratory records were reviewed between January 1, 1997 and December 31, 2020. Twenty-seven patients died and 87 patients were bacteremic. The presence of lymphopenia (< 1.5 × 109 cells/L) was the highest risk for bacteremia (relative risk [RR] 2.2; 95% CI: 1.3-3.7, P < 0.001). Factors associated with mortality included lymphopenia, (RR: 1.4; 95% CI: 1.2-1.6, P = 0.004); uremia (RR: 1.7; 95% CI: 1.1-2.5, P = 0.03); and an elevated international normalized ratio (RR: 1.5; 95% CI: 1.2-2.0, P = 0.006). Median incubation to positive blood culture result was 28 hours with 15/82 (18%) positive in ≤ 24 hours. For serological testing during admission only 53/121 (44%) were indirect hemagglutination assay positive, 67/120 (56%) enzyme immunoassay IgG positive, and 23/89 (26%) IgM positive. Simple baseline investigations at time of presentation may be used to stratify patients at high risk for both bacteremia and mortality. This information can be used as a decision aid for early intensive management.
Collapse
Affiliation(s)
- Ian Gassiep
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman’s Hospital, Herston, Queensland, Australia;,Department of Infectious Diseases, Mater Hospital Brisbane, South Brisbane, Queensland, Australia;,Address correspondence to Ian Gassiep, Department of Infectious Diseases, Mater Hospital Brisbane, South Brisbane, Queensland, 4101, Australia. E-mail:
| | | | - Mark D. Chatfield
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman’s Hospital, Herston, Queensland, Australia
| | - Patrick N. A. Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman’s Hospital, Herston, Queensland, Australia;,Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Robert E. Norton
- Pathology Queensland, Townsville University Hospital, Townsville, Queensland, Australia;,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Tomás-Cortázar J, Bossi L, Quinn C, Reynolds CJ, Butler DK, Corcoran N, Murchú MÓ, McMahon E, Singh M, Rongkard P, Anguita J, Blanco A, Dunachie SJ, Altmann D, Boyton RJ, Arnold J, Giltaire S, McClean S. BpOmpW Antigen Stimulates the Necessary Protective T-Cell Responses Against Melioidosis. Front Immunol 2021; 12:767359. [PMID: 34966388 PMCID: PMC8710444 DOI: 10.3389/fimmu.2021.767359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Burkholderia pseudomallei/immunology
- Burkholderia pseudomallei/metabolism
- Burkholderia pseudomallei/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- Cells, Cultured
- Diabetes Mellitus, Type 2/immunology
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Male
- Melioidosis/immunology
- Melioidosis/microbiology
- Melioidosis/prevention & control
- Mice, Inbred C57BL
- Mice, Transgenic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
- Mice
Collapse
Affiliation(s)
- Julen Tomás-Cortázar
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lorenzo Bossi
- Immunxperts SA, a Nexelis Company, Gosselies, Belgium
| | - Conor Quinn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catherine J. Reynolds
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - David K. Butler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Niamh Corcoran
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Maitiú Ó Murchú
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Eve McMahon
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford Centre for Global Health Research, University of Oxford, Oxford, United Kingdom
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alfonso Blanco
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford Centre for Global Health Research, University of Oxford, Oxford, United Kingdom
| | - Daniel Altmann
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Johan Arnold
- Immunxperts SA, a Nexelis Company, Gosselies, Belgium
| | | | - Siobhán McClean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Xu K, Lian F, Quan Y, Liu J, Yin L, Li X, Tian S, Pei H, Xia Q. Septicemic Melioidosis Detection Using Support Vector Machine with Five Immune Cell Types. DISEASE MARKERS 2021; 2021:8668978. [PMID: 34912476 PMCID: PMC8668356 DOI: 10.1155/2021/8668978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Melioidosis, caused by Burkholderia pseudomallei (B. pseudomallei), predominantly occurs in the tropical regions. Of various types of melioidosis, septicemic melioidosis is the most lethal one with a mortality rate of 40%. Early detection of the disease is paramount for the better chances of cure. In this study, we developed a novel approach for septicemic melioidosis detection, using a machine learning technique-support vector machine (SVM). Several SVM models were built, and 19 features characterized by the corresponding immune cell types were generated by Cell type Identification Estimating Relative Subsets Of RNA Transcripts (CIBERSORT). Using these features, we trained a binomial SVM model on the training set and evaluated it on the independent testing set. Our findings indicated that this model performed well with means of sensitivity and specificity up to 0.962 and 0.979, respectively. Meanwhile, the receiver operating characteristic (ROC) curve analysis gave area under curves (AUCs) ranging from 0.952 to 1.000. Furthermore, we found that a concise SVM model, built upon a combination of CD8+ T cells, resting CD4+ memory T cells, monocytes, M2 macrophages, and activated mast cells, worked perfectly on the detection of septicemic melioidosis. Our data showed that its mean of sensitivity was up to 0.976 while that of specificity up to 0.993. In addition, the ROC curve analysis gave AUC close to 1.000. Taken together, this SVM model is a robust classification tool and may serve as a complementary diagnostic technique to septicemic melioidosis.
Collapse
Affiliation(s)
- Ke Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Fang Lian
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yunfan Quan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jun Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Li Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Xuexia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Shen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
25
|
Xu K, Xu D, Pei H, Quan Y, Liu J, Yin L, Li X, ShenTian, Li K, Xia Q. Whole Blood Transcriptome Analysis Reveals the Correlation between Specific Immune Cells and Septicemic Melioidosis. DISEASE MARKERS 2021; 2021:6166492. [PMID: 34691288 PMCID: PMC8528583 DOI: 10.1155/2021/6166492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Melioidosis is a serious infectious disease caused by the environmental Gram-negative bacillus Burkholderia pseudomallei. It has been shown that the host immune system, mainly comprising various types of immune cells, fights against the disease. The present study was to specify correlation between septicemic melioidosis and the levels of multiple immune cells. First, the genes with differential expression patterns between patients with septicemic melioidosis (B. pseudomallei) and health donors (control/healthy) were identified. These genes being related to cytokine binding, cell adhesion molecule binding, and MHC relevant proteins may influence immune response. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed 23 enriched immune response pathways. We further leveraged the microarray data to investigate the relationship between immune response and septicemic melioidosis, using the CIBERSORT analysis. Comparison of the percentages of 22 immune cell types in B. pseudomallei vs. control/healthy revealed that those of CD4 memory resting cells, CD8+ T cells, B memory cells, and CD4 memory activated cells were low, whereas those of M0 macrophages, neutrophils, and gamma delta T cells were high. The multivariate logistic regression analysis further revealed that CD8+ T cells, M0 macrophages, neutrophils, and naive CD4+ cells were strongly associated with the onset of septicemic melioidosis, and M2 macrophages and neutrophils were associated with the survival in septicemic melioidosis. Taken together, these data point to a complex role of immune cells on the development and progression of melioidosis.
Collapse
Affiliation(s)
- Ke Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yunfan Quan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jun Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Li Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Xuexia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - ShenTian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
26
|
Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. Hijacking of the Host's Immune Surveillance Radars by Burkholderia pseudomallei. Front Immunol 2021; 12:718719. [PMID: 34456925 PMCID: PMC8384953 DOI: 10.3389/fimmu.2021.718719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei (B. pseudomallei) causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in B. pseudomallei infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19. Pathogenesis is attributed to the intracellular ability of the bacterium to ‘step into’ the host cell’s cytoplasm from the endocytotic vacuole, where it appears to polymerize actin filaments to spread across cells in the closer vicinity. B. pseudomallei effectively evades the host’s surveillance armory to remain latent for prolonged duration also causing relapses despite antimicrobial therapy. Therefore, eradication of intracellular B. pseudomallei is highly dependent on robust cellular immune responses. However, it remains ambiguous why certain individuals in endemic areas experience asymptomatic seroconversion, whereas others succumb to sepsis-associated sequelae. Here, we propose key insights on how the host’s surveillance radars get commandeered by B. pseudomallei.
Collapse
Affiliation(s)
- Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Sengyee S, Yarasai A, Janon R, Morakot C, Ottiwet O, Schmidt LK, West TE, Burtnick MN, Chantratita N, Brett PJ. Melioidosis Patient Survival Correlates With Strong IFN-γ Secreting T Cell Responses Against Hcp1 and TssM. Front Immunol 2021; 12:698303. [PMID: 34394091 PMCID: PMC8363298 DOI: 10.3389/fimmu.2021.698303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a serious infectious disease with diverse clinical manifestations. The morbidity and mortality of melioidosis is high in Southeast Asia and no licensed vaccines currently exist. This study was aimed at evaluating human cellular and humoral immune responses in Thai adults against four melioidosis vaccine candidate antigens. Blood samples from 91 melioidosis patients and 100 healthy donors from northeast Thailand were examined for immune responses against B. pseudomallei Hcp1, AhpC, TssM and LolC using a variety of cellular and humoral immune assays including IFN-γ ELISpot assays, flow cytometry and ELISA. PHA and a CPI peptide pool were also used as control stimuli in the ELISpot assays. Hcp1 and TssM stimulated strong IFN-γ secreting T cell responses in acute melioidosis patients which correlated with survival. High IFN-γ secreting CD4+ T cell responses were observed during acute melioidosis. Interestingly, while T cell responses of melioidosis patients against the CPI peptide pool were low at the time of enrollment, the levels increased to the same as in healthy donors by day 28. Although high IgG levels against Hcp1 and AhpC were detected in acute melioidosis patients, no significant differences between survivors and non-survivors were observed. Collectively, these studies help to further our understanding of immunity against disease following natural exposure of humans to B. pseudomallei as well as provide important insights for the selection of candidate antigens for use in the development of safe and effective melioidosis subunit vaccines.
Collapse
Affiliation(s)
- Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Atchara Yarasai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rachan Janon
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Orawan Ottiwet
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - T. Eoin West
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
- International Respiratory and Severe Illness Center, University of Washington, Seattle, WA, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| |
Collapse
|
28
|
Multicomponent Gold-Linked Glycoconjugate Vaccine Elicits Antigen-Specific Humoral and Mixed T H1-T H17 Immunity, Correlated with Increased Protection against Burkholderia pseudomallei. mBio 2021; 12:e0122721. [PMID: 34182777 PMCID: PMC8263005 DOI: 10.1128/mbio.01227-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal disease with a high mortality rate. The intrinsic resistance to commonly used antibiotics combined with the complex bacterial life cycle has hampered the development of preventive and therapeutic interventions and vaccines. Furthermore, the need of humoral and cell-mediated immunity in protection against B. pseudomallei has complicated the development of effective vaccines. Antigen delivery vaccine platforms that promote humoral and cellular responses while maintaining a safe profile are a roadblock to developing subunit vaccines against intracellular pathogens. Gold nanoparticles (AuNPs) were used for the delivery of multicomponent antigens with the goal of inducing vaccine-mediated immunity, promoting protection against melioidosis disease. Different nanoglycoconjugates using predicted immunogenic protein candidates, Hcp1, FlgL, OpcP, OpcP1, OmpW, and hemagglutinin, were covalently coupled to AuNPs, together with the lipopolysaccharide (LPS) from Burkholderia thailandensis, which acted as an additional antigen. Animals immunized with individually coupled (AuNP-protein-LPS) formulations containing OpcP or OpcP1, together with CpG as an adjuvant, showed a significant increase in protection, whereas a nanovaccine combination (AuNP-Combo2-LPS) showed significant and complete protection against a lethal intranasal B. pseudomallei challenge. Animals immunized with AuNP-Combo2-LPS showed robust humoral antigen-specific (IgG and IgA) responses with higher IgG2c titer, indicating a TH1-skewed response and promotion of macrophage uptake. In addition, immunization with the nanovaccine combination resulted in a mixed antigen-specific TH1-TH17 cytokine profile after immunization. This study provides the basis for an elegant and refined multicomponent glycoconjugate vaccine formulation capable of eliciting both humoral and cell-mediated responses against lethal B. pseudomallei challenge.
Collapse
|
29
|
Chaichana P, Jenjaroen K, Chumseng S, Sumonwiriya M, Rongkard P, Kronsteiner B, Teparrukkul P, Limmathurotsakul D, Day NPJ, Chantratita N, Dunachie SJ. Role of Burkholderia pseudomallei-Specific IgG2 in Adults with Acute Melioidosis, Thailand. Emerg Infect Dis 2021; 27:463-470. [PMID: 33496230 PMCID: PMC7853568 DOI: 10.3201/eid2702.200213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Melioidosis is a life-threatening infectious disease caused by the gram-negative bacillus Burkholderia pseudomallei. An effective vaccine is needed, but data on protective immune responses in human melioidosis are lacking. We used ELISA and an antibody-dependent cellular phagocytosis assay to identify the major features of protective antibodies in patients with acute melioidosis in Thailand. We found that high levels of B. pseudomallei–specific IgG2 are associated with protection against death in a multivariable logistic regression analysis adjusting for age, diabetes, renal disease, and neutrophil count. Serum from melioidosis survivors enhanced bacteria uptake into human monocytes expressing FcγRIIa-H/R131, an intermediate-affinity IgG2-receptor, compared with serum from nonsurvivors. We did not find this enhancement when using monocytes carrying the low IgG2–affinity FcγRIIa-R131 allele. The findings indicate the importance of IgG2 in protection against death in human melioidosis, a crucial finding for antibody-based therapeutics and vaccine development.
Collapse
|
30
|
Ogbe A, Kronsteiner B, Skelly DT, Pace M, Brown A, Adland E, Adair K, Akhter HD, Ali M, Ali SE, Angyal A, Ansari MA, Arancibia-Cárcamo CV, Brown H, Chinnakannan S, Conlon C, de Lara C, de Silva T, Dold C, Dong T, Donnison T, Eyre D, Flaxman A, Fletcher H, Gardner J, Grist JT, Hackstein CP, Jaruthamsophon K, Jeffery K, Lambe T, Lee L, Li W, Lim N, Matthews PC, Mentzer AJ, Moore SC, Naisbitt DJ, Ogese M, Ogg G, Openshaw P, Pirmohamed M, Pollard AJ, Ramamurthy N, Rongkard P, Rowland-Jones S, Sampson O, Screaton G, Sette A, Stafford L, Thompson C, Thomson PJ, Thwaites R, Vieira V, Weiskopf D, Zacharopoulou P, Turtle L, Klenerman P, Goulder P, Frater J, Barnes E, Dunachie S. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat Commun 2021; 12:2055. [PMID: 33824342 PMCID: PMC8024333 DOI: 10.1038/s41467-021-21856-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.
Collapse
Affiliation(s)
- Ane Ogbe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Donal T Skelly
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew Pace
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Anthony Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Emily Adland
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kareena Adair
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Hossain Delowar Akhter
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Serat-E Ali
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - M Azim Ansari
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Carolina V Arancibia-Cárcamo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Helen Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Senthil Chinnakannan
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Christopher Conlon
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Catherine de Lara
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Thushan de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Timothy Donnison
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - David Eyre
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Big Data Institute, Nuffield Department. of Population Health, University of Oxford, Oxford, UK
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford, UK
| | - Helen Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Joshua Gardner
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - James T Grist
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Carl-Philipp Hackstein
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kanoot Jaruthamsophon
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | - Lian Lee
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Wenqin Li
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nicholas Lim
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander J Mentzer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shona C Moore
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Monday Ogese
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Graham Ogg
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Openshaw
- Faculty of Medicine, National Heart and Lung institute, Imperial College, London, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Narayan Ramamurthy
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Patpong Rongkard
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sarah Rowland-Jones
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Nuffield Department. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Oliver Sampson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, Los Angeles, California, USA
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Craig Thompson
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Paul J Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Ryan Thwaites
- Faculty of Medicine, National Heart and Lung institute, Imperial College, London, UK
| | - Vinicius Vieira
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, Los Angeles, California, USA
| | - Panagiota Zacharopoulou
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Lance Turtle
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - John Frater
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|
31
|
Rongkard P, Kronsteiner B, Hantrakun V, Jenjaroen K, Sumonwiriya M, Chaichana P, Chumseng S, Chantratita N, Wuthiekanun V, Fletcher HA, Teparrukkul P, Limmathurotsakul D, Day NPJ, Dunachie SJ. Human Immune Responses to Melioidosis and Cross-Reactivity to Low-Virulence Burkholderia Species, Thailand 1. Emerg Infect Dis 2021; 26:463-471. [PMID: 32091359 PMCID: PMC7045851 DOI: 10.3201/eid2603.190206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melioidosis is a neglected tropical disease with an estimated annual mortality rate of 89,000 in 45 countries across tropical regions. The causative agent is Burkholderia pseudomallei, a gram-negative soil-dwelling bacterium. In Thailand, B. pseudomallei can be found across multiple regions, along with the low-virulence B. thailandensis and the recently discovered B. thailandensis variant (BTCV), which expresses B. pseudomallei-like capsular polysaccharide. Comprehensive studies of human immune responses to B. thailandensis variants and cross-reactivity to B. pseudomallei are not complete. We evaluated human immune responses to B. pseudomallei, B. thailandensis, and BTCV in melioidosis patients and healthy persons in B. pseudomallei-endemic areas using a range of humoral and cellular immune assays. We found immune cross-reactivity to be strong for both humoral and cellular immunity among B. pseudomallei, B. thailandensis, and BTCV. Our findings suggest that environmental exposure to low-virulence strains may build cellular immunity to B. pseudomallei.
Collapse
|
32
|
Saha A, Bagchi A, Chatterjee S, Dutta S, Misra S, Bhattacharjee D, Chatterjee S, Mondal S, Ghosh P, Chatterjee M, Ghosh A. Phenotypic characterization of circulating endothelial cells induced by inflammation and oxidative stress in ankylosing spondylitis. Free Radic Res 2021; 55:520-532. [PMID: 33517802 DOI: 10.1080/10715762.2020.1870113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic auto-immune disease, affecting the spine, sacroiliac, and sometimes peripheral joints. It is also involved with cardio-vascular risk factors due to accelerated atherosclerosis. Oxidative burst, systemic inflammation coupled with endothelial dysfunction (ED), resulting in reduced bioavailability of the vasodilator nitric oxide (NO) and an increased number of circulating endothelial cells (CECs) may correlate with disease activity and its sustenance. Hence, the study was aimed to detect and quantify CECs and assess the oxidative stress and inflammatory status in AS patients vis-à-vis healthy controls, as well as relate these parameters with AS disease activity and atherosclerotic markers in patients. Our study showed an increased frequency of endothelial cells in peripheral blood of AS patients in pro-inflammatory conditions. In AS patient population, they showed significant reduction of flow-mediated dilatation (%FMD) (p < 0.05), and increased soluble adhesion molecules such as sICAM-1 (p < 0.01) and sVCAM-1 (p < 0.05) compared to healthy controls. A marked increase in pro-inflammatory markers such as TNF-α (p < 0.01) and IL-1β (p < 0.001) and reactive free radicals (p < 0.05) along with reduced serum nitrite in AS, provided a strong pro-inflammatory milieu which positively correlated with Bath ankylosing spondylitis disease activity and functional indices (BASDAI and BASFI). The observed significant upregulation in CECs (CD45-/CD31+/CD105+/CD144+) in patients compared to healthy controls positively correlated with disease activity and duration as well as with markers of oxidative stress. Thus, chronic inflammation and oxidative burst induce loss of NO bioavailability, leading to ED. This may cause the derangement of CECs that may be considered as a prognostic biomarker for ED.
Collapse
Affiliation(s)
- Ayindrila Saha
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Aniruddha Bagchi
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sulagna Chatterjee
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Satarupa Dutta
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sanchaita Misra
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Dipanjan Bhattacharjee
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sudipta Chatterjee
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sumantro Mondal
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Parasar Ghosh
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Alakendu Ghosh
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| |
Collapse
|
33
|
Chomkatekaew C, Boonklang P, Sangphukieo A, Chewapreecha C. An Evolutionary Arms Race Between Burkholderia pseudomallei and Host Immune System: What Do We Know? Front Microbiol 2021; 11:612568. [PMID: 33552023 PMCID: PMC7858667 DOI: 10.3389/fmicb.2020.612568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
A better understanding of co-evolution between pathogens and hosts holds promise for better prevention and control strategies. This review will explore the interactions between Burkholderia pseudomallei, an environmental and opportunistic pathogen, and the human host immune system. B. pseudomallei causes "Melioidosis," a rapidly fatal tropical infectious disease predicted to affect 165,000 cases annually worldwide, of which 89,000 are fatal. Genetic heterogeneities were reported in both B. pseudomallei and human host population, some of which may, at least in part, contribute to inter-individual differences in disease susceptibility. Here, we review (i) a multi-host-pathogen characteristic of the interaction; (ii) selection pressures acting on B. pseudomallei and human genomes with the former being driven by bacterial adaptation across ranges of ecological niches while the latter are driven by human encounter of broad ranges of pathogens; (iii) the mechanisms that generate genetic diversity in bacterial and host population particularly in sequences encoding proteins functioning in host-pathogen interaction; (iv) reported genetic and structural variations of proteins or molecules observed in B. pseudomallei-human host interactions and their implications in infection outcomes. Together, these predict bacterial and host evolutionary trajectory which continues to generate genetic diversity in bacterium and operates host immune selection at the molecular level.
Collapse
Affiliation(s)
| | | | - Apiwat Sangphukieo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
34
|
Warner J, Rush C. Tropical fever in remote tropics: tuberculosis or melioidosis, it depends on the lab. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diagnostics tests used to identify the cause of infection using proteomics and genomics have revolutionised microbiology laboratories in recent times. However, approaches to build the capacity of clinical microbiology services in the rural tropics by simply transplanting these approaches have proven difficult to sustain. Tropical fever in the remote tropics is, by definition, a clinical diagnosis where the aetiology of fever is not known, treatment is empirical, guided by clinical suspicion with treatment failure often attributed to incorrect diagnosis or antimicrobial resistance. Tuberculosis (TB) in rural Papua New Guinea (PNG) is mostly diagnosed clinically, perhaps supported by microscopy. In fact, a ‘tuberculosis patient’ in rural PNG is included in the TB register upon commencement of TB treatment with or without any laboratory-based evidence of infection. The roll-out of GeneXpert is continuing to transform TB diagnostic certainty in TB endemic communities. Melioidosis is endemic in tropical regions and is increasingly reported to mimic TB. Isolation and identification of the causative agent Burkholderia pseudomallei remains the gold standard. Here, we discuss the increasing divide between rural and urban approaches to laboratory-based infection diagnosis using these two enigmatic tropical infectious diseases, in rural PNG, as examples.
Collapse
|
35
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
36
|
Lichtenegger S, Stiehler J, Saiger S, Zauner A, Kleinhappl B, Bernecker C, Schlenke P, Wagner GE, Krause K, Gastager M, Steinmetz I. Burkholderia pseudomallei triggers canonical inflammasome activation in a human primary macrophage-based infection model. PLoS Negl Trop Dis 2020; 14:e0008840. [PMID: 33137811 PMCID: PMC7605897 DOI: 10.1371/journal.pntd.0008840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/01/2020] [Indexed: 12/05/2022] Open
Abstract
Most of the current knowledge on Burkholderia pseudomallei-induced inflammasome activation and cell death in macrophages is derived from murine systems. Little is known about the involved bacterial structures and mechanisms in primary human macrophages. This is of particular relevance since murine and human macrophages as well as primary cells and cell lines differ in many aspects of inflammasome activation, including the proteins involved in the recognition of bacterial patterns. In this study, we therefore aimed (i) to establish an in vitro B. pseudomallei infection model with human monocyte-derived primary macrophages from single donors as these cells more closely resemble macrophages in the human host and (ii) to analyze B. pseudomallei-triggered cell death and bacterial elimination in those cells. Our results show that B. pseudomallei-infected primary human macrophages not only release the inflammasome-independent pro-inflammatory cytokines IL-8 and TNF-α, but are also engaged in canonical inflammasome activation as evidenced by caspase-1 and gasdermin D processing. Absence of the B. pseudomallei T3SS-3 needle protein BsaL, a potent activator of the canonical inflammasome, abolished lytic cell death, reduced IL-1β release, and caspase-1 and gasdermin D processing. IFN-γ, known to promote non-canonical inflammasome activation, did not influence pyroptosis induction or IL-1β release from infected primary human macrophages. Nevertheless, it reduced intracellular B. pseudomallei loads, an effect which was partially antagonist by the inhibition of NADPH oxidase. Overall, our data implicate T3SS-3 dependent inflammasome activation and IFN-γ induced immune mechanisms as critical defense mechanisms of human macrophages against B. pseudomallei. In addition, our infection model provides a versatile tool to study human host-pathogen interactions and has the potential to elucidate the role of human individual genetic variations in B. pseudomallei infections. Considering the constantly emerging antibiotic resistance of pathogens, comprehensive analyses of immune response mechanisms against infections are urgently needed to provide the basis for novel therapeutic strategies. Studies based on primary murine cells and cell lines of murine and human origin led to advances in the understanding of immune defense mechanisms against bacterial infections including B. pseudomallei. Nevertheless, results relying on these cell types are not always transferrable to primary human cells due to e.g. pathway alterations. We established and validated a macrophage-based model system derived from human peripheral blood monocytes, which yields high amounts of genetically identical cells more closely resembling cells found in the human host. This model system provides the basis for studying the pathogenesis of B. pseudomallei in primary human macrophages and for developing new human host directed therapies avoiding pitfalls from cell lines. Using our newly established model we demonstrate, that restriction of B. pseudomallei by primary human macrophages is mediated by T3SS-3 dependent canonical inflammasome activation and IFN-γ induced intracellular bacterial restriction.
Collapse
Affiliation(s)
- Sabine Lichtenegger
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Julia Stiehler
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Sabine Saiger
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Zauner
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Kleinhappl
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gabriel E. Wagner
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Krause
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany, Current address: Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Magdalena Gastager
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ivo Steinmetz
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
37
|
Chaichana P, Kronsteiner B, Rongkard P, Teparrukkul P, Limmathurotsakul D, Chantratita N, Day NPJ, Fletcher HA, Dunachie SJ. Serum From Melioidosis Survivors Diminished Intracellular Burkholderia pseudomallei Growth in Macrophages: A Brief Research Report. Front Cell Infect Microbiol 2020; 10:442. [PMID: 32984070 PMCID: PMC7479196 DOI: 10.3389/fcimb.2020.00442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Melioidosis is a neglected tropical disease with high mortality rate. It is caused by the Gram-negative, CDC category B select agent Burkholderia pseudomallei (B. ps) that is intrinsically resistant to first-line antibiotics. An antibody-based vaccine is likely to be the most effective control measure. Previous studies have demonstrated significant mechanistic roles of antibodies in protection against death in animal models, but data from human melioidosis is scarce. Herein, we used in-vitro antibody-dependent cellular phagocytosis and growth inhibition assays to assess the mechanism of protective antibodies in patients with acute melioidosis. We found that serum from patients who survived the disease enable more live B. ps to be engulfed by THP-1 derived macrophages (median 1.7 × 103 CFU/ml, IQR 1.1 × 103-2.5 × 103 CFU/ml) than serum from patients who did not survive (median 1.2 × 103 CFU/ml, IQR 0.7 × 103-1.8 × 103, p = 0.02). In addition, the intracellular growth rate of B. ps pre-opsonized with serum from survivors (median 7.89, IQR 5.58–10.85) was diminished when compared with those with serum from non-survivors (median 10.88, IQR 5.42–14.88, p = 0.04). However, the difference of intracellular bacterial growth rate failed to reach statistical significance when using purified IgG antibodies (p = 0.09). These results provide new insights into a mechanistic role of serum in protection against death in human melioidosis for antibody-based vaccine development.
Collapse
Affiliation(s)
- Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Patpong Rongkard
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Prapit Teparrukkul
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Department of Tropical Hygiene, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Helen A Fletcher
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Khakhum N, Chapartegui-González I, Torres AG. Combating the great mimicker: latest progress in the development of Burkholderia pseudomallei vaccines. Expert Rev Vaccines 2020; 19:653-660. [PMID: 32669008 DOI: 10.1080/14760584.2020.1791089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Burkholderia pseudomallei is an environmental intracellular Gram-negative bacterium that causes melioidosis, a severe infectious disease affecting humans and animals. An increase in melioidosis cases worldwide and the high mortality rate of the disease makes it a public health concern. Melioidosis is known as the 'great mimicker' because it presents with a wide range of disease manifestations. B. pseudomallei is naturally resistant to antibiotics and delay in diagnosis leads to ineffective treatment. Furthermore, there is no approved vaccine to prevent melioidosis infection in humans. Therefore, it is a priority to license a vaccine that can be used for both high-risk endemic areas and for biodefense purposes. Areas covered In this review, we have focussed on recent progress in the USA for the development and advancement of lead B. pseudomallei vaccine candidate(s) ready for testing in pre-clinical trials. Those candidates include live-attenuated vaccines, glycoconjugate vaccines, outer-membrane vesicles, and gold nanoparticle vaccines. Expert opinion Side-by-side comparison of the leading B. pseudomallei vaccine candidates will provide important information to further advance studies into pre-clinical trials. The likelihood of any of these current vaccines becoming the selected candidate that will reduce the occurrence of melioidosis worldwide is closer than ever.
Collapse
Affiliation(s)
- Nittaya Khakhum
- Department of Microbiology & Immunology, University of Texas Medical Branch , Galveston, TX, USA
| | | | - Alfredo G Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch , Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|
39
|
Nithichanon A, Tussakhon I, Samer W, Kewcharoenwong C, Ato M, Bancroft GJ, Lertmemongkolchai G. Immune responses in beta-thalassaemia: heme oxygenase 1 reduces cytokine production and bactericidal activity of human leucocytes. Sci Rep 2020; 10:10297. [PMID: 32581238 PMCID: PMC7314746 DOI: 10.1038/s41598-020-67346-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Patients with beta-thalassaemia increase the risk of bacterial infections, particularly Burkholderia pseudomallei (Bp), the causative agent of melioidosis in Thailand. Impaired immune cell functions may be the cause of this susceptibility, but detailed mechanisms have not been defined. In this study, we observed impaired production of IFN-gamma and IL-10 by whole blood from beta-thalassaemia patients upon stimulation with a range of bacteria-derived stimuli. In contrast, IFN-gamma response via TCR and plasma IgG specific for Bp were still intact. Importantly, mRNA expression of heme oxygenase 1 (HO-1), a potential modulator of immune function, was increased in whole blood from beta-thalassaemia patients, either with or without stimulation with Bp in vitro. Induction of HO-1 by hemin or CoPP in vitro reduced production of IFN-gamma and IL-10 from healthy human PBMCs and decreased bacterial clearance activity of whole blood from healthy controls and beta-thalassaemia, while inhibition of HO-1 by SnPP enhanced both functions in healthy controls. These results were confirmed to some extent in purified human monocytes of healthy controls. Our results suggest a mechanism that excess hemin of beta-thalassaemia patients is a significant cause of immune suppression via HO-1 induction and may underlie the susceptibility of these individuals to severe bacterial infection.
Collapse
Affiliation(s)
- Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Inthira Tussakhon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Waraporn Samer
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chidchamai Kewcharoenwong
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Gregory J Bancroft
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ganjana Lertmemongkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
40
|
The Impact of Age and Sex on Mouse Models of Melioidosis. Pathogens 2020; 9:pathogens9020113. [PMID: 32054106 PMCID: PMC7168040 DOI: 10.3390/pathogens9020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mouse models have been used to generate critical data for many infectious diseases. In the case of Burkholderia pseudomallei, mouse models have been invaluable for bacterial pathogenesis studies as well as for testing novel medical countermeasures including both vaccines and therapeutics. Mouse models of melioidosis have also provided a possible way forward to better understand the chronicity associated with this infection, as it appears that BALB/c mice develop an acute infection with B. pseudomallei, whereas the C57BL/6 model is potentially more suggestive of a chronic infection. Several unanswered questions, however, persist around this model. In particular, little attention has been paid to the effect of age or sex on the disease outcome in these animal models. In this report, we determined the LD50 of the B. pseudomallei K96243 strain in both female and male BALB/c and C57BL/6 mice in three distinct age groups. Our data demonstrated a modest increase in susceptibility associated with sex in this model, and we documented important histopathological differences associated with the reproductive systems of each sex. There was a statistically significant inverse correlation between age and susceptibility. The older mice, in most cases, were more susceptible to the infection. Additionally, our retrospective analyses suggested that the impact of animal supplier on disease outcome in mice may be minimal. These observations were consistent regardless of whether the mice were injected with bacteria intraperitoneally or if they were exposed to aerosolized bacteria. All of these factors should be considered when designing experiments using mouse models of melioidosis.
Collapse
|
41
|
Amemiya K, Dankmeyer JL, Bearss JJ, Zeng X, Stonier SW, Soffler C, Cote CK, Welkos SL, Fetterer DP, Chance TB, Trevino SR, Worsham PL, Waag DM. Dysregulation of TNF-α and IFN-γ expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunol 2020; 21:5. [PMID: 32013893 PMCID: PMC6998218 DOI: 10.1186/s12865-020-0333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-γ, IL-1α, IL-1β, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1α, IL-1β, TNF-α, IFN-γ) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-γ, TNF-α, and MIP-1α ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-α and IFN-γ without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | - Jennifer L Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jeremy J Bearss
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Spencer W Stonier
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Carl Soffler
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Susan L Welkos
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - David P Fetterer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Taylor B Chance
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Sylvia R Trevino
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Patricia L Worsham
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - David M Waag
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
42
|
Dunachie S, Chamnan P. The double burden of diabetes and global infection in low and middle-income countries. Trans R Soc Trop Med Hyg 2020; 113:56-64. [PMID: 30517697 PMCID: PMC6364794 DOI: 10.1093/trstmh/try124] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022] Open
Abstract
Four out of five people in the world with diabetes now live in low- and middle-income countries (LMIC), and the incidence of diabetes is accelerating in poorer communities. Diabetes increases susceptibility to infection and worsens outcomes for some of the world’s major infectious diseases such as tuberculosis, melioidosis and dengue, but the relationship between diabetes and many neglected tropical diseases is yet to be accurately characterised. There is some evidence that chronic viral infections such as hepatitis B and HIV may predispose to the development of type 2 diabetes by chronic inflammatory and immunometabolic mechanisms. Helminth infections such as schistosomiasis may be protective against the development of diabetes, and this finding opens up new territory for discovery of novel therapeutics for the prevention and treatment of diabetes. A greater understanding of the impact of diabetes on risks and outcomes for infections causing significant diseases in LMIC is essential in order to develop vaccines and therapies for the growing number of people with diabetes at risk of infection, and to prioritise research agendas, public health interventions and policy. This review seeks to give an overview of the current international diabetes burden, the evidence for interactions between diabetes and infection, immune mechanisms for the interaction, and potential interventions to tackle the dual burden of diabetes and infection.
Collapse
Affiliation(s)
- Susanna Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, 3rd Floor, 60th Anniversary Chalermprakiat Building, 420/6 Ratchawithi Rd., Ratchathewi District, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, Nuffield Department of Medicine Research Building, University of Oxford, Old Road campus, Roosevelt Drie, Headington, Oxford, United Kingdom.,The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Parinya Chamnan
- Cardiometabolic Research Group, Department of Social Medicine, Sunpasitthiprasong Hospital, Tambon Nai Mueang, Amphoe Mueang Ubon Ratchathani, Chang Wat Ubon Ratchathani, Thailand
| |
Collapse
|
43
|
Kaewarpai T, Ekchariyawat P, Phunpang R, Wright SW, Dulsuk A, Moonmueangsan B, Morakot C, Thiansukhon E, Day NPJ, Lertmemongkolchai G, West TE, Chantratita N. Longitudinal profiling of plasma cytokines in melioidosis and their association with mortality: a prospective cohort study. Clin Microbiol Infect 2019; 26:783.e1-783.e8. [PMID: 31705997 DOI: 10.1016/j.cmi.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To characterize plasma cytokine responses in melioidosis and analyse their association with mortality. METHODS A prospective longitudinal study was conducted in two hospitals in Northeast Thailand to enrol 161 individuals with melioidosis, plus 13 uninfected healthy individuals and 11 uninfected individuals with diabetes to act as controls. Blood was obtained from all individuals at enrolment (day 0), and at days 5, 12 and 28 from surviving melioidosis patients. Interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-23, and tumour necrosis factor-α (TNF-α) were assayed in plasma. The association of each cytokine and its dynamics with 28-day mortality was determined. RESULTS Of the individuals with melioidosis, 131/161 (81%) were bacteraemic, and 68/161 (42%) died. On enrolment, median levels of IFN-γ, IL-6, IL-8, IL-10, IL-23 and TNF-α were higher in individuals with melioidosis compared with uninfected healthy individuals and all but IFN-γ were positively associated with 28-day mortality. Interleukin-8 provided the best discrimination of mortality (area under the receiver operating characteristic curve 0.78, 95% CI 0.71-0.85). Over time, non-survivors had increasing IL-6, IL-8 and IL-17A levels, in contrast to survivors. In joint modelling, temporal trajectories of IFN-γ, IL-6, IL-8, IL-10 and TNF-α predicted survival. CONCLUSIONS In a severely ill cohort of individuals with melioidosis, specific pro- and anti-inflammatory and T helper type 17 cytokines were associated with survival from melioidosis, at enrolment and over time. Persistent inflammation preceded death. These findings support further evaluation of these mediators as prognostic biomarkers and to guide targeted immunotherapeutic development for severe melioidosis.
Collapse
Affiliation(s)
- T Kaewarpai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - P Ekchariyawat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - R Phunpang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - S W Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - A Dulsuk
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - B Moonmueangsan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - C Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - E Thiansukhon
- Department of Medicine, Udon Thani Hospital, Udon Thani, Thailand
| | - N P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre of Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - G Lertmemongkolchai
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - T E West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, USA; International Respiratory and Severe Illness Center, University of Washington, Seattle, WA, USA
| | - N Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
44
|
Kronsteiner B, Chaichana P, Sumonwiriya M, Jenjaroen K, Chowdhury FR, Chumseng S, Teparrukkul P, Limmathurotsakul D, Day NPJ, Klenerman P, Dunachie SJ. Diabetes alters immune response patterns to acute melioidosis in humans. Eur J Immunol 2019; 49:1092-1106. [PMID: 31032897 PMCID: PMC6618312 DOI: 10.1002/eji.201848037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a serious global health problem currently affecting over 450 million people worldwide. Defining its interaction with major global infections is an international public health priority. Melioidosis is caused by Burkholderia pseudomallei, an exemplar pathogen for studying intracellular bacterial infection in the context of DM due to the 12‐fold increased risk in this group. We characterized immune correlates of survival in peripheral blood of acute melioidosis patients with and without DM and highlight different immune response patterns. We demonstrate the importance of circulating NK cells and show that CX3CR1 expression on lymphocytes is a novel correlate of survival from acute melioidosis. Furthermore, excessive serum levels of IL‐15 and IL‐18BP contribute to poor outcome independent of DM comorbidity. CD8+ T cells and granzyme B expression in NK cells are important for survival of non‐DM patients, whereas high antibody titers against B. pseudomallei and double‐negative T cells are linked to survival of DM patients. Recall responses support a role of γδ T‐cell‐derived IFN‐γ in the establishment of protective immunity in the DM group. Defining the hallmarks of protection in people with DM is crucial for the design of new therapies and vaccines targeting this rapidly expanding risk group.
Collapse
Affiliation(s)
- Barbara Kronsteiner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Kemajitra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Fazle Rabbi Chowdhury
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Suchintana Chumseng
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Morici L, Torres AG, Titball RW. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin Exp Immunol 2019; 196:178-188. [PMID: 30963550 DOI: 10.1111/cei.13286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. Historically believed to be a relatively rare human disease in tropical countries, a recent study estimated that, worldwide, there are approximately 165 000 human melioidosis cases per year, more than half of whom die. The bacterium is inherently resistant to many antibiotics and treatment of the disease is often protracted and ineffective. There is no licensed vaccine against melioidosis, but a vaccine is predicted to be of value if used in high-risk populations. There has been progress over the last decade in the pursuit of an effective vaccine against melioidosis. Animal models of disease including mouse and non-human primates have been developed, and these models show that antibody responses play a key role in protection against melioidosis. Surprisingly, although B. pseudomallei is an intracellular pathogen there is limited evidence that CD8+ T cells play a role in protection. It is evident that a multi-component vaccine, incorporating one or more protective antigens, will probably be essential for protection because of the pathogen's sophisticated virulence mechanisms as well as strain heterogeneity. Multi-component vaccines in development include glycoconjugates, multivalent subunit preparations, outer membrane vesicles and other nano/microparticle platforms and live-attenuated or inactivated bacteria. A consistent finding with vaccine candidates tested in mice is the ability to induce sterilizing immunity at low challenge doses and extended time to death at higher challenge doses. Further research to identify ways of eliciting more potent immune responses might provide a path for licensing an effective vaccine.
Collapse
Affiliation(s)
- L Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - A G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - R W Titball
- College of Life and Environmental Science, University of Exeter, Exeter, UK
| |
Collapse
|
46
|
Webb JR, Sarovich DS, Price EP, Ward LM, Mayo M, Currie BJ. Burkholderia pseudomallei Lipopolysaccharide Genotype Does Not Correlate With Severity or Outcome in Melioidosis: Host Risk Factors Remain the Critical Determinant. Open Forum Infect Dis 2019; 6:ofz091. [PMID: 30949536 PMCID: PMC6441565 DOI: 10.1093/ofid/ofz091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
Background The causative agent of melioidosis is the Gram-negative bacterium Burkholderia pseudomallei. Clinical presentations of melioidosis are notably diverse, with host risk factors considered central to progression from infection to disease and clinical outcome. Ubiquitous and variably present virulence determinants have been described for B pseudomallei, with several variably present minority genotypes associated with specific disease presentations. The lipopolysaccharide (LPS) O-antigen of B pseudomallei is highly diverse with 3 types described. In vitro data suggest differential virulence between LPS types, but it remains unclear whether this LPS O-antigen diversity influences clinical presentation, severity, and outcomes in patients with melioidosis. Methods Whole-genome sequencing was performed to assign an LPS type to 1005 consecutive B pseudomallei strains, each corresponding to a melioidosis patient enrolled in the 28-year Darwin Prospective Melioidosis study. Correlations of LPS genotype with clinical parameters was then undertaken. Results Bivariate analysis demonstrated that mortality and the rates of bacteremia and septic shock were the same for patients with the 2 predominant B pseudomallei LPS genotypes A (87% of cases) and B (12% of all cases). Mortality was 12% and 12%, bacteremia was 57% and 53%, and septic shock was 22% and 18% for LPS A and LPS B, respectively. Conclusions Lipopolysaccharide genotype was not associated with melioidosis severity or outcome. These findings suggest that in vitro differential virulence between B pseudomallei LPS genotypes does not translate to clinical significance, and this supports the primary role of host risk factors in determining disease severity and outcomes in melioidosis.
Collapse
Affiliation(s)
- Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Linda M Ward
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Northern Territory, Australia
| |
Collapse
|
47
|
Burkholderia pseudomallei Δ tonB Δ hcp1 Live Attenuated Vaccine Strain Elicits Full Protective Immunity against Aerosolized Melioidosis Infection. mSphere 2019; 4:4/1/e00570-18. [PMID: 30602524 PMCID: PMC6315081 DOI: 10.1128/msphere.00570-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, an increasing number of melioidosis cases have been reported in several regions where melioidosis is endemic and in areas where melioidosis had not commonly been diagnosed. Currently, the estimated burden of disease is around 165,000 new cases annually, including 89,000 cases that have fatal outcomes. This life-threatening infectious disease is caused by B. pseudomallei, which is classified as a Tier 1 select agent. Due to the high case fatality rate, intrinsic resistance to multiple antibiotic treatments, susceptibility to infection via the aerosol route, and potential use as a bioweapon, we have developed an effective live attenuated PBK001 vaccine capable of protecting against aerosolized melioidosis. Burkholderia pseudomallei is a Gram-negative facultative intracellular bacterium and the causative agent of melioidosis, a severe infectious disease found throughout the tropics. This organism is closely related to Burkholderia mallei, the etiological agent of glanders disease which primarily affects equines. These two pathogenic bacteria are classified as Tier 1 select agents due to their amenability to aerosolization, limited treatment options, and lack of an effective vaccine. We have previously successfully demonstrated the immunogenicity and protective efficacy of a live attenuated vaccine strain, B. malleiΔtonB Δhcp1 (CLH001). Thus, we applied this successful approach to the development of a similar vaccine against melioidosis by constructing the B. pseudomalleiΔtonB Δhcp1 (PBK001) strain. C57BL/6 mice were vaccinated intranasally with the live attenuated PBK001 strain and then challenged with wild-type B. pseudomallei K96243 by the aerosol route. Immunization with strain PBK001 resulted in full protection (100% survival) against acute aerosolized melioidosis with very low bacterial burden as observed in the lungs, livers, and spleens of immunized mice. PBK001 vaccination induced strong production of B. pseudomallei-specific serum IgG antibodies and both Th1 and Th17 CD4+ T cell responses. Further, humoral immunity appeared to be essential for vaccine-induced protection, whereas CD4+ and CD8+ T cells played a less direct immune role. Overall, PBK001 was shown to be an effective attenuated vaccine strain that activates a robust immune response and offers full protection against aerosol infection with B. pseudomallei. IMPORTANCE In recent years, an increasing number of melioidosis cases have been reported in several regions where melioidosis is endemic and in areas where melioidosis had not commonly been diagnosed. Currently, the estimated burden of disease is around 165,000 new cases annually, including 89,000 cases that have fatal outcomes. This life-threatening infectious disease is caused by B. pseudomallei, which is classified as a Tier 1 select agent. Due to the high case fatality rate, intrinsic resistance to multiple antibiotic treatments, susceptibility to infection via the aerosol route, and potential use as a bioweapon, we have developed an effective live attenuated PBK001 vaccine capable of protecting against aerosolized melioidosis.
Collapse
|
48
|
Chaichana P, Jenjaroen K, Amornchai P, Chumseng S, Langla S, Rongkard P, Sumonwiriya M, Jeeyapant A, Chantratita N, Teparrukkul P, Limmathurotsakul D, Day NPJ, Wuthiekanun V, Dunachie SJ. Antibodies in Melioidosis: The Role of the Indirect Hemagglutination Assay in Evaluating Patients and Exposed Populations. Am J Trop Med Hyg 2018; 99:1378-1385. [PMID: 30298810 PMCID: PMC6283516 DOI: 10.4269/ajtmh.17-0998] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Melioidosis is a major neglected tropical disease with high mortality, caused by the Gram-negative bacterium Burkholderia pseudomallei (Bp). Microbiological culture remains the gold standard for diagnosis, but a simpler and more readily available test such as an antibody assay is highly desirable. In this study, we conducted a serological survey of blood donors (n = 1,060) and adult melioidosis patients (n = 200) in northeast Thailand to measure the antibody response to Bp using the indirect hemagglutination assay (IHA). We found that 38% of healthy adults (aged 17-59 years) have seropositivity (IHA titer ≥ 1:80). The seropositivity in healthy blood donors was associated with having a declared occupation of rice farmer and with residence in a nonurban area, but not with gender or age. In the melioidosis cohort, the seropositivity rate was higher in adult patients aged between 18 and 45 years (90%, 37/41) compared with those aged ≥ 45 years (68%, 108/159, P = 0.004). The seropositivity rate was significantly higher in people with diabetes (P = 0.008). Seropositivity was associated with decreased mortality on univariable analysis (P = 0.005), but not on multivariable analysis when adjusted for age, diabetes status, preexisting renal disease, and neutrophil count. This study confirms the presence of high background antibodies in an endemic region and demonstrates the limitations of using IHA during acute melioidosis in this population.
Collapse
Affiliation(s)
- Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suchintana Chumseng
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Atthanee Jeeyapant
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prapit Teparrukkul
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Koosakulnirand S, Phokrai P, Jenjaroen K, Roberts RA, Utaisincharoen P, Dunachie SJ, Brett PJ, Burtnick MN, Chantratita N. Immune response to recombinant Burkholderia pseudomallei FliC. PLoS One 2018; 13:e0198906. [PMID: 29902230 PMCID: PMC6002054 DOI: 10.1371/journal.pone.0198906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022] Open
Abstract
Burkholderia pseudomallei is a flagellated Gram-negative bacterium which is the causative agent of melioidosis. The disease poses a major public health problem in tropical regions and diabetes is a major risk factor. The high mortality rate of melioidosis is associated with severe sepsis which involves the overwhelming production of pro-inflammatory cytokines. Bacterial flagellar protein (flagellin) activates Toll-like receptor 5 (TLR5)-mediated innate immune signaling pathways and induces adaptive immune response. However, previous studies of TLR5 signaling in melioidosis have been performed using recombinant flagellin from Salmonella Typhimurium instead of B. pseudomallei. This study aimed to investigate human innate immune response and antibody response against a recombinant B. pseudomallei flagellin (rFliC). We prepared B. pseudomallei rFliC and used it to stimulate HEK-BlueTM-hTLR5 and THP1-DualTM cells to assess TLR5 activation. Subsequently, whole blood stimulation assays with rFliC were performed ex vivo. TLR5-flagellin interactions trigger activation of transcription factor NF-κB in HEK-BlueTM-hTLR5 cells. Pro-inflammatory cytokine (IL-1β, IL-6, and TNF-α) productions from whole blood in response to rFliC differed between fourteen healthy individuals. The levels of these cytokines changed in a dose and time-dependent manner. ELISA was used to determine rFliC-specific antibodies in serum samples from different groups of melioidosis patients and healthy subjects. IgG antibody to rFliC in melioidosis patients with diabetes were higher compared with non-diabetic patients. Our results show that B. pseudomallei flagellin is a potent immune stimulator and that the immune responses to rFliC are different among individuals. This may provide valuable insights toward the potential use of rFliC in vaccine development.
Collapse
Affiliation(s)
- Sirikamon Koosakulnirand
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpun Phokrai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rosemary A. Roberts
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, United States of America
| | | | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, United States of America
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|