1
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Smita S, Webb LM, Mooney B, Früh SP, Oyesola OO, Matheson MK, Peng SA, Tait Wojno ED. Basophil responses in susceptible AKR mice upon infection with the intestinal helminth parasite Trichuris muris. Parasite Immunol 2023; 45:e12999. [PMID: 37415265 PMCID: PMC10513073 DOI: 10.1111/pim.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Intestinal helminth infection promotes a Type 2 inflammatory response in resistant C57BL/6 mice that is essential for worm clearance. The study of inbred mouse strains has revealed factors that are critical for parasite resistance and delineated the role of Type 1 versus Type 2 immune responses in worm clearance. In C57BL/6 mice, basophils are key innate immune cells that promote Type 2 inflammation and are programmed via the Notch signalling pathway during infection with the helminth Trichuris muris. However, how the host genetic background influences basophil responses and basophil expression of Notch receptors remains unclear. Here we use genetically susceptible inbred AKR/J mice that have a Type 1-skewed immune response during T. muris infection to investigate basophil responses in a susceptible host. Basophil population expansion occurred in AKR/J mice even in the absence of fulminant Type 2 inflammation during T. muris infection. However, basophils in AKR/J mice did not robustly upregulate expression of the Notch2 receptor in response to infection as occurred in C57BL/6 mice. Blockade of the Type 1 cytokine interferon-γ in infected AKR/J mice was not sufficient to elicit infection-induced basophil expression of the Notch2 receptor. These data suggest that the host genetic background, outside of the Type 1 skew, is important in regulating basophil responses during T. muris infection in susceptible AKR/J mice.
Collapse
Affiliation(s)
- Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Bridget Mooney
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Oyebola O. Oyesola
- Department of Immunology, University of Washington, Seattle, WA, USA
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Macy K. Matheson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Seth A. Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | |
Collapse
|
3
|
D'Aloisio LD, Shetty V, Ballal M, Gibson DL. Following the Indian Immigrant: adoption of westernization results in a western gut microbiome and an increased risk of inflammatory bowel diseases. FEMS Microbiol Ecol 2022; 98:6825449. [PMID: 36370451 DOI: 10.1093/femsec/fiac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Indians who migrate to westernized countries such as Canada, the USA, and the UK are at an increased risk of developing inflammatory bowel disease (IBD). While the underlying aetiology of IBD remains unclear, a gut microbiome, i.e. no longer symbiotic with its host, is a major player. Increasing IBD incidence in Indian immigrants may be due to the adoption of western practices that result in loss of tolerance of a symbiotic community in the gut and its underlying immune responses. However, little is known about the microbial changes in the Indian gut, including shifts in the microbiome when they migrate to westernized countries. In this Current Opinion, we discuss what is known about the Indian gut microbiome and how living in a westernized environment may be impeding what was once a symbiotic relationship with their gut microbiome and intestinal mucosae, which may be the driving factor in their increased risk of IBD.
Collapse
Affiliation(s)
- Leah D D'Aloisio
- Department of Biology, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada
| | - Vignesh Shetty
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, India.,Department of Medicine, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
| | - Mamatha Ballal
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Deanna L Gibson
- Department of Biology, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada.,Department of Medicine, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada
| |
Collapse
|
4
|
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the Crosstalk Between Ascaris, Trichuris and Gut Microbiota: What´s Next? Front Cell Infect Microbiol 2022; 12:852900. [PMID: 35694539 PMCID: PMC9174645 DOI: 10.3389/fcimb.2022.852900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infections remain a global public health issue, particularly in low- and middle-income countries, where roundworms from theTrichuris and Ascaris genera are most prevalent. These geohelminths not only impact human health but most importantly also affect animal well-being, in particular the swine industry. Host-helminth parasite interactions are complex and at the same time essential to understand the biology, dynamics and pathophysiology of these infections. Within these interactions, the immunomodulatory capacity of these helminths in the host has been extensively studied. Moreover, in recent years a growing interest on how helminths interact with the intestinal microbiota of the host has sparked, highlighting how this relationship plays an essential role in the establishment of initial infection, survival and persistence of the parasite, as well as in the development of chronic infections. Identifying the changes generated by these helminths on the composition and structure of the host intestinal microbiota constitutes a field of great scientific interest, since this can provide essential and actionable information for designing effective control and therapeutic strategies. Helminths like Trichuris and Ascaris are a focus of special importance due to their high prevalence, higher reinfection rates, resistance to anthelmintic therapy and unavailability of vaccines. Therefore, characterizing interactions between these helminths and the host intestinal microbiota represents an important approach to better understand the nature of this dynamic interface and explore novel therapeutic alternatives based on management of host microbiota. Given the extraordinary impact this may have from a biological, clinical, and epidemiological public health standpoint, this review aims to provide a comprehensive overview of current knowledge and future perspectives examining the parasite-microbiota interplay and its impact on host immunity.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Juan David Ramírez, ;
| |
Collapse
|
5
|
Mkhize‐Kwitshana ZL, Naidoo P, Nkwanyana NM, Mabaso MLH. Concurrent allergy and helminthiasis in underprivileged urban South African adults previously residing in rural areas. Parasite Immunol 2022; 44:e12913. [PMID: 35188279 PMCID: PMC9539504 DOI: 10.1111/pim.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
This study investigated whether prior exposure to helminths (Ascaris IgE, Ascaris eggs and Trichuris eggs) either in childhood or in adulthood, and residence in rural and resource‐limited urban areas influence allergy outcomes (asthma, rhinitis, IgE atopy and food allergy) in a South African population. Participants historical and present allergies data were collected through questionnaires and clinical record files. Coproscopy and immunoassays (ImmunoCAPTM Phadiatop, total IgE and allergen‐specific fx3 IgE immunoassays and Ascaris IgE radioallergosorbent [RAST] tests) were used for active helminthiasis and allergy screens respectively. Data were analysed using logistic regression analysis, and models were adjusted for age, gender and locality. High Ascaris IgE was significantly associated with asthma (adjusted odds ratio [aOR] = 2.20, p = .047), IgE atopy (aOR = 18.18, p < .0001) and food allergy (aOR = 14.47, p < .0001). Asthma was significantly less likely among participants with Ascaris eggs (aOR = 0.43, p = .048) and Trichuris eggs (aOR = 0.36, p = .024). The findings of co‐occurrent helminthiasis and allergic disorders in a population that has resided both in rural and peri‐urban informal settlements both oppose and agree with two main notions of the hygiene hypothesis that (i) individuals residing in rural settings with poor sanitation and geohelminth infection are less prone to allergy, and (ii) helminth infections protect against allergy respectively. Further research is warranted.
Collapse
Affiliation(s)
- Zilungile L. Mkhize‐Kwitshana
- Department of Medical Microbiology School of Laboratory Medicine and Medical Sciences College of Health Sciences Nelson R. Mandela Medical School Campus University of KwaZulu‐Natal Durban South Africa 4001
- Research Capacity Development Division South African Medical Research Council Tygerberg, Cape Town South Africa 7505
| | - Pragalathan Naidoo
- Department of Medical Microbiology School of Laboratory Medicine and Medical Sciences College of Health Sciences Nelson R. Mandela Medical School Campus University of KwaZulu‐Natal Durban South Africa 4001
- Research Capacity Development Division South African Medical Research Council Tygerberg, Cape Town South Africa 7505
| | - Ntombifikile M. Nkwanyana
- Discipline of Public Health Medicine School of Nursing and Public Health College of Health Sciences Howard College University of KwaZulu Natal Durban South Africa 4041
| | - Musawenkosi L. H. Mabaso
- Human Sciences Research Council (HAST) The Atrium, 5th Floor, 430 Peter Mokaba Street Berea, Durban South Africa 4001
| |
Collapse
|
6
|
Recombinant Fasciola hepatica Fatty Acid Binding Protein as a Novel Anti-Inflammatory Biotherapeutic Drug in an Acute Gram-Negative Nonhuman Primate Sepsis Model. Microbiol Spectr 2021; 9:e0191021. [PMID: 34937173 PMCID: PMC8694124 DOI: 10.1128/spectrum.01910-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Due to their phylogenetic proximity to humans, nonhuman primates (NHPs) are considered an adequate choice for a basic and preclinical model of sepsis. Gram-negative bacteria are the primary causative of sepsis. During infection, bacteria continuously release the potent toxin lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to death. Our previous research has demonstrated in vitro and in vivo using a mouse model of septic shock that Fh15, a recombinant variant of the Fasciola hepatica fatty acid binding protein, acts as an antagonist of Toll-like receptor 4 (TLR4) suppressing the LPS-induced proinflammatory cytokine storm. The present communication is a proof-of concept study aimed to demonstrate that a low-dose of Fh15 suppresses the cytokine storm and other inflammatory markers during the early phase of sepsis induced in rhesus macaques by intravenous (i.v.) infusion with lethal doses of live Escherichia coli. Fh15 was administered as an isotonic infusion 30 min prior to the bacterial infusion. Among the novel findings reported in this communication, Fh15 (i) significantly prevented bacteremia, suppressed LPS levels in plasma, and the production of C-reactive protein and procalcitonin, which are key signatures of inflammation and bacterial infection, respectively; (ii) reduced the production of proinflammatory cytokines; and (iii) increased innate immune cell populations in blood, which suggests a role in promoting a prolonged steady state in rhesus macaques even in the presence of inflammatory stimuli. This report is the first to demonstrate that a F. hepatica-derived molecule possesses potential as an anti-inflammatory drug against sepsis in an NHP model. IMPORTANCE Sepsis caused by Gram-negative bacteria affects 1.7 million adults annually in the United States and is one of the most important causes of death at intensive care units. Although the effective use of antibiotics has resulted in improved prognosis of sepsis, the pathological and deathly effects have been attributed to the persistent inflammatory cascade. There is a present need to develop anti-inflammatory agents that can suppress or neutralize the inflammatory responses and prevent the lethal consequences of sepsis. We demonstrated here that a small molecule of 14.5 kDa can suppress the bacteremia, endotoxemia, and many other inflammatory markers in an acute Gram-negative sepsis rhesus macaque model. These results reinforce the notion that Fh15 constitutes an excellent candidate for drug development against sepsis.
Collapse
|
7
|
Chen Y, Zhang M, Ding X, Yang Y, Chen Y, Zhang Q, Fan Y, Dai Y, Wang J. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach. Front Cell Infect Microbiol 2021; 11:781132. [PMID: 34858883 PMCID: PMC8632049 DOI: 10.3389/fcimb.2021.781132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Hookworm is one type of soil-transmitted helminth, which could exert an anti-inflammatory effect in human or animal host, which provides a beneficial possibility for the discovery of inflammatory-related disease interventions. The identification of hookworm-derived anti-inflammatory molecules is urgently needed for future translational research. The emergence of metabolomics has become a powerful approach to comprehensively characterize metabolic alterations in recent times. Herein, excretory and secretory products (ESPs) were collected from cultured adult worm, while small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis, Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore the identification of anti-inflammatory molecules. Out of 45 differential metabolites that were discovered from ESPs, 10 of them showed potential anti-inflammatory properties, which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids, gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were discovered to demonstrate anti-inflammatory effects, with possible subclassification into amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the differential metabolites appeared both in ESPs and infected intestinal contents, wherein four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine (Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the identification and analysis of parasite-derived molecules with potential anti-inflammatory properties in the present study. This array of anti-inflammatory metabolites could provide clues for future evaluation and translational study of these anti-inflammatory molecules.
Collapse
Affiliation(s)
- Yuying Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yougui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yujia Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yinwen Fan
- Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yang Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| |
Collapse
|
8
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
9
|
Yue TT, Zhang N, Li JH, Lu XY, Wang XC, Li X, Zhang HB, Cheng SQ, Wang BB, Gong PT, Zhang XC. Anti-osteosarcoma effect of antiserum against cross antigen TPD52 between osteosarcoma and Trichinella spiralis. Parasit Vectors 2021; 14:498. [PMID: 34565443 PMCID: PMC8474799 DOI: 10.1186/s13071-021-05008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichinella spiralis (T. spiralis) is a parasite occurring worldwide that has been proven to have antitumour ability. However, studies on the antitumour effects of cross antigens between the tumour and T. spiralis or antibodies against cross antigens between tumours and T. spiralis are rare. METHODS To study the role of cross antigens between osteosarcoma and T. spiralis, we first screened the cDNA expression library of T. spiralis muscle larvae to obtain the cross antigen gene tumour protein D52 (TPD52), and prepared fusion protein TPD52 and its antiserum. The anti-osteosarcoma effect of the anti-TPD52 antiserum was studied using cell proliferation and cytotoxicity assays as well as in vivo animal models; preliminary data on the mechanism were obtained using western blot and immunohistochemistry analyses. RESULTS Our results indicated that TPD52 was mainly localized in the cytoplasm of MG-63 cells. Anti-TPD52 antiserum inhibited the proliferation of MG-63 cells and the growth of osteosarcoma in a dose-dependent manner. The tumour inhibition rate in the 100 μg treatment group was 61.95%. Enzyme-linked immunosorbent assay showed that injection of anti-TPD52 antiserum increased the serum levels of IFN-γ, TNF-α, and IL-12 in nude mice. Haematoxylin and eosin staining showed that anti-TPD52 antiserum did not cause significant pathological damage. Apoptosis of osteosarcoma cells was induced by anti-TPD52 antiserum in vivo and in vitro. CONCLUSIONS Anti-TPD52 antiserum exerts an anti-osteosarcoma effect by inducing apoptosis without causing histopathological damage.
Collapse
Affiliation(s)
- Tao-Tao Yue
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiang-Yun Lu
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hong-Bo Zhang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shu-Qin Cheng
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bo-Bo Wang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research By Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Patel C, Keller L, Welsche S, Hattendorf J, Sayasone S, Ali SM, Ame SM, Coulibaly JT, Hürlimann E, Keiser J. Assessment of fecal calprotectin and fecal occult blood as point-of-care markers for soil-transmitted helminth attributable intestinal morbidity in a case-control substudy conducted in Côte d'Ivoire, Lao PDR and Pemba Island, Tanzania. EClinicalMedicine 2021; 32:100724. [PMID: 33554091 PMCID: PMC7851339 DOI: 10.1016/j.eclinm.2021.100724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Infections with soil-transmitted helminths (STHs) may result in chronic inflammatory disorders affecting the human host. The objective of this study was to evaluate Fecal Calprotectin (FC) and Fecal Occult Blood (FOB) in individuals infected and non-infected with STHs to identify potential intestinal morbidity markers. METHODS Stool from participants diagnosed positive for Trichuris trichiura and concomitant STH infections from three countries was used to perform FC and FOB point-of-care assays. Simultaneously, identified STH negative participants underwent FC and FOB testing as controls. Potential associations between test results and determinants were analyzed using multivariable logistic regression. FINDINGS In total, 1034 T. trichiura infected cases (mostly light infections) and 157 STH negative controls were tested for FC and FOB. Among all participants tested, 18·5% had ≥ 50 µg/g FC concentration, while 14 (1·2%) were positive for FOB. No statistically significant association was found between T. trichiura infection or Ascaris lumbricoides co-infection and FC concentration, while an inverse association (odds ratio (OR): 0·45, 95% credible intervals (CrI): 0·26, 0·75) was found between hookworm co-infection and FC concentration. In Lao PDR, the proportion of participants in the ≥ 50 µg/g FC category was significantly higher in the oldest age category compared to the 5-11 years group (OR: 3·31, 95% CrI: 1·62, 7·24). Too few participants were found positive for FOB to derive any conclusions. INTERPRETATION Studies are needed to better understand the relationship between intestinal morbidity and STH infections. Suitable, standardized, low-cost markers of STH attributable morbidity to better monitor the impact of STH control interventions are necessary. FUNDING BMGF (OPP1153928).
Collapse
Affiliation(s)
- Chandni Patel
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ladina Keller
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sophie Welsche
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jan Hattendorf
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Somphou Sayasone
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of International Program for Health in the Tropics, Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Said M. Ali
- Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba, Zanzibar, Tanzania
| | - Shaali M. Ame
- Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba, Zanzibar, Tanzania
| | - Jean Tenena Coulibaly
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Department of Research and Development, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eveline Hürlimann
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Toychiev A, Navruzov B, Pazylova D, Davis N, Badalova N, Osipova S. Intestinal protozoa and helminths in ulcerative colitis and the influence of anti-parasitic therapy on the course of the disease. Acta Trop 2021; 213:105755. [PMID: 33188747 DOI: 10.1016/j.actatropica.2020.105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study is to determine the prevalence of intestinal helminths and protozoa in patients with ulcerative colitis (UC) and to estimate the influence of the anti-parasitic therapy on the course of the disease. METHODS The study was conducted at the Research Institute of Epidemiology, Microbiology and Infectious Diseases and Coloproctology Department of the Republic Clinical Hospital №1 of the Ministry of Health of the Republic of Uzbekistan. One hundred UC patients and 200 healthy individuals were examined by triple coproscopy. Additionally, 20, 25 and 22 UC patients with Blastocystis infection were treated with nitazoxanide (1.0 g/day), mesalazine (1.5-2 g/day) or a combination of nitazoxanide (1.0 g/day) and mesalazine (≥1.5-2 g/day) for 14 consecutive days, respectively. Parasitological, clinical and endoscopic examinations were conducted before therapy, immediately after and 6 and 12 weeks after therapy completion. RESULTS The overall prevalence of helminths in UC patients and control individuals was not significantly different: 14±3.4% and 8.5±1.9%, respectively (OR: 1.7524; 95% CI: 0.8258 to 3.7186; P=0.1). Giardia lamblia was the most prevalent parasite in both groups, but the difference compared to the control was insignificant (OR: 0.4565; 95% CI: 0.2020 to 1.0318; P=0.05). A significantly higher prevalence of Blastocystis sp., Chilomastix mesnili and Iodamoeba butschlii in UC patients compared to control individuals was found (P<0.0005): 65.0%, 14.0% and 22.0%, respectively. During all follow-up periods, the clinical response and clinical remission were not statistically different between the groups (P>0.05). Mucosal healing immediately and 6 weeks after therapy with a combination of nitazoxanide with mesalazine was significantly better than with a monotherapy of nitazoxanide, respectively (P<0.05). UC patients treated with a combination of nitazoxanide with mesalazine showed better mucosal healing than in patients treated with a monotherapy of mesalazine (P>0.05). CONCLUSIONS Diagnosis of Blastocystis sp. should be introduced in the complex examination of UC patients. Further clinical studies are necessary for assessment of the efficiency of anti-Blastocystis therapy in UC patients.
Collapse
|
12
|
Batista MA, Calvo-Fortes F, Silveira-Nunes G, Camatta GC, Speziali E, Turroni S, Teixeira-Carvalho A, Martins-Filho OA, Neretti N, Maioli TU, Santos RR, Brigidi P, Franceschi C, Faria AMC. Inflammaging in Endemic Areas for Infectious Diseases. Front Immunol 2020; 11:579972. [PMID: 33262758 PMCID: PMC7688519 DOI: 10.3389/fimmu.2020.579972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Immunosenescence is marked by a systemic process named inflammaging along with a series of defects in the immunological activity that results in poor responses to infectious agents and to vaccination. Inflammaging, a state of low-grade chronic inflammation, usually leads to chronic inflammatory diseases and frailty in the elderly. However, some elderly escape from frailty and reach advanced age free of the consequences of inflammaging. This process has been called immunological remodeling, and it is the hallmark of healthy aging as described in the studies of centenarians in Italy. The biological markers of healthy aging are still a matter of debate, and the studies on the topic have focused on inflammatory versus remodeling processes and molecules. The sub-clinical inflammatory status associated with aging might be a deleterious event for populations living in countries where chronic infectious diseases are not prevalent. Nevertheless, in other parts of the world where they are, two possibilities may occur. Inflammatory responses may have a protective effect against these infectious agents. At the same time, the long-term consequences of protective immune responses during chronic infections may result in accelerated immunosenescence in these individuals. Therefore, the biological markers of healthy aging can vary according to environmental, cultural, and geographical settings that reflect worldwide, and in a non-biased, non-westernized perspective, the changes that we experience regarding our contacts with microorganisms and the outcomes of such contacts.
Collapse
Affiliation(s)
- Marina Andrade Batista
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Calvo-Fortes
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Giovanna Caliman Camatta
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | - Nicola Neretti
- Departament of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tatiani Uceli Maioli
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Ribeiro Santos
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Center for Biophysics, Bioinformatics, Biocomplexity, University of Bologna, Bologna, Italy.,Laboratory of Systems Biology of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Ana Maria Caetano Faria
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Keestra S, Högqvist Tabor V, Alvergne A. Reinterpreting patterns of variation in human thyroid function: An evolutionary ecology perspective. Evol Med Public Health 2020; 9:93-112. [PMID: 34557302 PMCID: PMC8454515 DOI: 10.1093/emph/eoaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Two hundred million people worldwide experience some form of thyroid disorder, with women being especially at risk. However, why human thyroid function varies between populations, individuals, and across the lifespan has attracted little research to date. This limits our ability to evaluate the conditions under which patterns of variation in thyroid function are best understood as 'normal' or 'pathological'. In this review, we aim to spark interest in research aimed at understanding the causes of variation in thyroid phenotypes. We start by assessing the biomedical literature on thyroid imbalance to discuss the validity of existing reference intervals for diagnosis and treatment across individuals and populations. We then propose an evolutionary ecological framework for understanding the phylogenetic, genetic, ecological, developmental, and physiological causes of normal variation in thyroid function. We build on this approach to suggest testable predictions for how environmental challenges interact with individual circumstances to influence the onset of thyroid disorders. We propose that dietary changes, ecological disruptions of co-evolutionary processes during pregnancy and with pathogens, emerging infections, and exacerbated stress responses can contribute to explaining the onset of thyroid diseases. For patients to receive the best personalized care, research into the causes of thyroid variation at multiple levels is needed.
Collapse
Affiliation(s)
- Sarai Keestra
- School of Anthropology & Museum Ethnography,
University of Oxford, Oxford, UK
- Amsterdam UMC, University of
Amsterdam, Amsterdam, The
Netherlands
| | | | - Alexandra Alvergne
- School of Anthropology & Museum Ethnography,
University of Oxford, Oxford, UK
- ISEM, Université de Montpellier, CNRS, IRD,
EPHE, Montpellier, France
| |
Collapse
|
14
|
Weatherhead JE, Gazzinelli-Guimaraes P, Knight JM, Fujiwara R, Hotez PJ, Bottazzi ME, Corry DB. Host Immunity and Inflammation to Pulmonary Helminth Infections. Front Immunol 2020; 11:594520. [PMID: 33193446 PMCID: PMC7606285 DOI: 10.3389/fimmu.2020.594520] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Helminths, including nematodes, cestodes and trematodes, are complex parasitic organisms that infect at least one billion people globally living in extreme poverty. Helminthic infections are associated with severe morbidity particularly in young children who often harbor the highest burden of disease. While each helminth species completes a distinct life cycle within the host, several helminths incite significant lung disease. This impact on the lungs occurs either directly from larval migration and host immune activation or indirectly from a systemic inflammatory immune response. The impact of helminths on the pulmonary immune response involves a sophisticated orchestration and activation of the host innate and adaptive immune cells. The consequences of activating pulmonary host immune responses are variable with several helminthic infections leading to severe, pulmonary compromise while others providing immune tolerance and protection against the development of pulmonary diseases. Further delineation of the convoluted interface between helminth infection and the pulmonary host immune responses is critical to the development of novel therapeutics that are critically needed to prevent the significant global morbidity caused by these parasites.
Collapse
Affiliation(s)
- Jill E. Weatherhead
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - John M. Knight
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
| | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter J. Hotez
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Center for Vaccine Development, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
- Hagler Institute for Advanced Study at Texas A&M University, College State, TX, United States
| | - Maria Elena Bottazzi
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Center for Vaccine Development, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Immunology, Allergy, Rheumatology, Baylor College of Medicine, Houston, TX, United States
- Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Houston, TX, United States
| |
Collapse
|
15
|
Cleenewerk L, Garssen J, Hogenkamp A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front Immunol 2020; 11:1821. [PMID: 32903582 PMCID: PMC7438586 DOI: 10.3389/fimmu.2020.01821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis states that improved hygiene and the resulting disappearance of once endemic diseases is at the origin of the enormous increase in immune related disorders such as autoimmune diseases seen in the industrialized world. Helminths, such as Schistosoma mansoni, are thought to provide protection against the development of autoimmune diseases by regulating the host's immune response. This modulation primarily involves induction of regulatory immune responses, such as generation of tolerogenic dendritic cells and alternatively activated macrophages. This points toward the potential of employing helminths or their products/metabolites as therapeutics for autoimmune diseases that are characterized by an excessive inflammatory state, such as multiple sclerosis (MS), type I diabetes (T1D) and inflammatory bowel disease (IBD). In this review, we examine the known mechanisms of immune modulation by S. mansoni, explore preclinical and clinical studies that investigated the use of an array helminthic products in these diseases, and propose that helminthic therapy opens opportunities in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- L Cleenewerk
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Whipworm Infection Promotes Bacterial Invasion, Intestinal Microbiota Imbalance, and Cellular Immunomodulation. Infect Immun 2020; 88:IAI.00642-19. [PMID: 31843966 DOI: 10.1128/iai.00642-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 01/24/2023] Open
Abstract
Infections with Trichuris trichiura are among the most common causes of intestinal parasitism in children worldwide, and the diagnosis is based on microscopic egg identification in the chronic phase of the infection. During parasitism, the adult worm of the trichurid nematode maintains its anterior region inserted in the intestinal mucosa, which causes serious damage and which may open access for gut microorganisms through the intestinal tissue. The immune-regulatory processes taking place during the evolution of the chronic infection are still not completely understood. By use of the Swiss Webster outbred mouse model, mice were infected with 200 eggs, and tolerance to the establishment of a chronic Trichuris muris infection was induced by the administration of a short pulse of dexamethasone during nematode early larval development. The infected mice presented weight loss, anemia, an imbalance of the microbiota, and intense immunological cell infiltration in the large intestine. It was found that mice have a mixed Th1/Th2/Th17 response, with differences being found among the different anatomical locations. After 45 days of infection, the parasitism induced changes in the microbiota composition and bacterial invasion of the large intestine epithelium. In addition, we describe that the excretory-secretory products from the nematode have anti-inflammatory effects on mouse macrophages cultured in vitro, suggesting that T. muris may modulate the immune response at the site of insertion of the worm inside mouse tissue. The data presented in this study suggest that the host immune state at 45 days postinfection with T. muris during the chronic phase of infection is the result of factors derived from the worm as well as alterations to the microbiota and bacterial invasion. Taken together, these results provide new information about the parasite-host-microbiota relationship and open new treatment possibilities.
Collapse
|
17
|
Apostol AC, Jensen KDC, Beaudin AE. Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis. Front Immunol 2020; 11:123. [PMID: 32117273 PMCID: PMC7026678 DOI: 10.3389/fimmu.2020.00123] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced microbial exposures during early life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a “perfect storm” of many contributing factors, we argue here that two important considerations have rarely been explored. First, the window of microbial exposure that impacts immune development is not limited to early childhood, but likely extends into the womb. Second, restricted microbial interactions by an expectant mother will bias the fetal immune system toward hypersensitivity. Here, we extend this discussion to hypothesize that the cell types sensing microbial exposures include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.
Collapse
Affiliation(s)
- April C Apostol
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Kirk D C Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
18
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Cepon‐Robins TJ, Gildner TE, Schrock J, Eick G, Bedbury A, Liebert MA, Urlacher SS, Madimenos FC, Harrington CJ, Amir D, Bribiescas RG, Sugiyama LS, Snodgrass JJ. Soil‐transmitted helminth infection and intestinal inflammation among the Shuar of Amazonian Ecuador. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:65-74. [DOI: 10.1002/ajpa.23897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Joshua Schrock
- Department of Anthropology University of Oregon Eugene Oregon
| | - Geeta Eick
- Department of Anthropology University of Oregon Eugene Oregon
| | - Ali Bedbury
- Department of Anthropology University of Oregon Eugene Oregon
| | - Melissa A. Liebert
- Department of Anthropology Northern Arizona University Flagstaff Arizona
| | - Samuel S. Urlacher
- Department of Evolutionary Anthropology Duke University Durham North Carolina
- Department of Anthropology Baylor University Waco Texas
| | - Felicia C. Madimenos
- Department of Anthropology Queens College ‐ City University of New York Queens New York
| | | | - Dorsa Amir
- Department of Psychology Boston College Chestnut Hill Massachusetts
| | | | | | | |
Collapse
|
20
|
Alexandre-Silva GM, Brito-Souza PA, Oliveira AC, Cerni FA, Zottich U, Pucca MB. The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. Acta Trop 2018; 188:16-26. [PMID: 30165069 DOI: 10.1016/j.actatropica.2018.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis was proposed almost three decades ago. Nevertheless, its mechanism still remains with relevant controversies. Some studies defend that early exposures during childhood to microbes and parasites are key determinants to prevent allergies and autoimmune diseases; however, other studies demonstrated that these early exposures can even potentiate the clinical scenario of the diseases. Based on several studies covering the influences of microbiome, parasites, related theories and others, this review focuses on recent advances in the hygiene hypothesis field. In addition, the main immunological mechanisms underlying the hygiene hypothesis are also discussed. We also strongly encourage that researchers do not consider the hygiene hypothesis as a theory based strictly on hygiene habits, but a theory combining diverse influences, as illustrated in this review as the hygiene hypothesis net.
Collapse
|
21
|
Ascaris Larval Infection and Lung Invasion Directly Induce Severe Allergic Airway Disease in Mice. Infect Immun 2018; 86:IAI.00533-18. [PMID: 30249744 DOI: 10.1128/iai.00533-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Ascaris lumbricoides (roundworm) is the most common helminth infection globally and a cause of lifelong morbidity that may include allergic airway disease, an asthma phenotype. We hypothesize that Ascaris larval migration through the lungs leads to persistent airway hyperresponsiveness (AHR) and type 2 inflammatory lung pathology despite resolution of infection that resembles allergic airway disease. Mice were infected with Ascaris by oral gavage. Lung AHR was measured by plethysmography and histopathology with hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) stains, and cytokine concentrations were measured by using Luminex Magpix. Ascaris-infected mice were compared to controls or mice with allergic airway disease induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Ascaris-infected mice developed profound AHR starting at day 8 postinfection (p.i.), peaking at day 12 p.i. and persisting through day 21 p.i., despite resolution of infection, which was significantly increased compared to controls and OVA/OVA mice. Ascaris-infected mice had a robust type 2 cytokine response in both the bronchoalveolar lavage (BAL) fluid and lung tissue, similar to that of the OVA/OVA mice, including interleukin-4 (IL-4) (P < 0.01 and P < 0.01, respectively), IL-5 (P < 0.001 and P < 0.001), and IL-13 (P < 0.001 and P < 0.01), compared to controls. By histopathology, Ascaris-infected mice demonstrated early airway remodeling similar to, but more profound than, that in OVA/OVA mice. We found that Ascaris larval migration causes significant pulmonary damage, including AHR and type 2 inflammatory lung pathology that resembles an extreme form of allergic airway disease. Our findings indicate that ascariasis may be an important cause of allergic airway disease in regions of endemicity.
Collapse
|
22
|
Urbanization in Sub-Saharan Africa: Declining Rates of Chronic and Recurrent Infection and Their Possible Role in the Origins of Non-communicable Diseases. World J Surg 2018; 42:1617-1628. [PMID: 29234849 DOI: 10.1007/s00268-017-4389-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Non-communicable diseases (NCDs), such as atherosclerosis and cancers, are a leading cause of death worldwide. An important, yet poorly explained epidemiological feature of NCDs is their low incidence in under developed areas of low-income countries and rising rates in urban areas. METHODS With the goal of better understanding how urbanization increases the incidence of NCDs, we provide an overview of the urbanization process in sub-Saharan Africa, discuss gene expression differences between rural and urban populations, and review the current NCD determinant model. We conclude by identifying research priorities. RESULTS Declining rates of chronic and recurrent infection are the hallmark of urbanization in sub-Saharan Africa. Gene profiling studies show urbanization results in complex molecular changes, with almost one-third of the peripheral blood leukocyte transcriptome altered. The current NCD determinant model could be improved by including a possible effect from declining rates of infection and expanding the spectrum of diseases that increase with urbanization. CONCLUSIONS Urbanization in sub-Saharan Africa provides a unique opportunity to investigate the mechanism by which the environment influences disease epidemiology. Research priorities include: (1) studies to define the relationship between infection and risk factors for NCDs, (2) explaining the observed differences in the inflammatory response between rural and urban populations, and (3) identification of animal models that simulate the biological changes that occurs with urbanization. A better understanding of the biological changes that occur with urbanization could lead to new prevention and treatment strategies for some of the most common surgical diseases in high-income countries.
Collapse
|
23
|
Briggs N, Wei J, Versteeg L, Zhan B, Keegan B, Damania A, Pollet J, Hayes KS, Beaumier C, Seid CA, Leong J, Grencis RK, Bottazzi ME, Sastry KJ, Hotez PJ. Trichuris muris whey acidic protein induces type 2 protective immunity against whipworm. PLoS Pathog 2018; 14:e1007273. [PMID: 30153307 PMCID: PMC6130879 DOI: 10.1371/journal.ppat.1007273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Human whipworm (Trichuris trichiura) infects approximately 1 in 15 people worldwide, representing the leading infectious cause of colitis and subsequent, inflammatory bowel disease (IBD). Current control measures focused on mass deworming have had limited success due to low drug efficacies. Vaccination would be an ideal, cost-effective strategy to induce protective immunity, leading to control of infection and transmission. Here we report the identification of whey acidic protein, a whipworm secretory protein, as a strong immunogen for inducing protective efficacy in a surrogate mouse T. muris infection model. The recombinant WAP protein (rTm-WAP49), as well as a single, highly conserved repeat within WAP (fragment 8) expressed as an Na-GST-1 fusion protein (rTm-WAP-F8+Na-GST-1), generate a strong T helper type 2 (Th2) immune response when delivered as subcutaneous vaccines formulated with Montanide ISA 720. Oral challenge with T. muris infective eggs following vaccination led to a significant reduction in worm burden of 48% by rTm-WAP49 and 33% by rTm-WAP-F8+Na-GST-1. The cellular immune correlates of protection included significant antigen-specific production of Th2 cytokines IL-4, IL-9, and IL-13 by cells isolated from the vaccine-draining inguinal lymph nodes, parasite-draining mesenteric lymph nodes, and spleen in mice vaccinated with either rTm-WAP49 or rTm-WAP-F8+Na-GST-1. The humoral immune correlates included a high antigen-specific ratio of IgG1 to IgG2a, without eliciting an IgE-mediated allergic response. Immunofluorescent staining of adult T. muris with WAP antisera identified the worm's pathogenic stichosome organ as the site of secretion of native Tm-WAP protein into the colonic mucosa. Given the high sequence conservation for the WAP proteins from T. muris and T. trichiura, the results presented here support the WAP protein to be further evaluated as a potential human whipworm vaccine candidate.
Collapse
Affiliation(s)
- Neima Briggs
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Junfei Wei
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Ashish Damania
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Kelly S. Hayes
- School of Biological Sciences, FBMH, MAHSC, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- The Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Coreen Beaumier
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Christopher A. Seid
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Jamie Leong
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Richard K. Grencis
- School of Biological Sciences, FBMH, MAHSC, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- The Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - K. Jagannadha Sastry
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
24
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
25
|
Jourdan PM, Lamberton PHL, Fenwick A, Addiss DG. Soil-transmitted helminth infections. Lancet 2018; 391:252-265. [PMID: 28882382 DOI: 10.1016/s0140-6736(17)31930-x] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
Abstract
More than a quarter of the world's population is at risk of infection with the soil-transmitted helminths Ascaris lumbricoides, hookworm (Ancylostoma duodenale and Necator americanus), Trichuris trichiura, and Strongyloides stercoralis. Infected children and adults present with a range of medical and surgical conditions, and clinicians should consider the possibility of infection in individuals living in, or returning from, endemic regions. Although safe and effective drugs are donated free to endemic countries, only half of at-risk children received treatment in 2016. This Seminar describes the epidemiology, lifecycles, pathophysiology, clinical diagnosis, management, and public health control of soil-transmitted helminths. Previous work has questioned the effect of population-level deworming; however, it remains beyond doubt that treatment reduces the severe consequences of soil-transmitted helminthiasis. We highlight the need for refined diagnostic tools and effective control options to scale up public health interventions and improve clinical detection and management of these infections.
Collapse
Affiliation(s)
- Peter Mark Jourdan
- Schistosomiasis Control Initiative, Imperial College London, St Mary's Campus, London, UK; DEWORM3, Natural History Museum, London, UK; Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Poppy H L Lamberton
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, London, UK; Institute of Biodiversity, Animal Health and Comparative Medicine, The University of Glasgow, Glasgow, UK; Wellcome Centre for Molecular Parasitology, The University of Glasgow, Glasgow, UK.
| | - Alan Fenwick
- Schistosomiasis Control Initiative, Imperial College London, St Mary's Campus, London, UK
| | - David G Addiss
- The Task Force for Global Health, Decatur, GA, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
26
|
Schwartz C, Hams E, Fallon PG. Helminth Modulation of Lung Inflammation. Trends Parasitol 2018; 34:388-403. [PMID: 29339033 DOI: 10.1016/j.pt.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Parasitic helminths must establish chronic infections to complete their life cycle and therefore are potent modulators of multiple facets of host physiology. Parasitic helminths have coevolved with humans to become arguably master selectors of our immune system, whereby they have impacted on the selection of genes with beneficial mutations for both host and parasite. While helminth infections of humans are a significant health burden, studies have shown that helminths or helminth products can alter susceptibility to unrelated infectious or inflammatory diseases. This has generated interest in the use of helminth infections or molecules as therapeutics. In this review, we focus on the impact of helminth infections on pulmonary immunity, especially with regard to homeostatic lung function, pulmonary viral and bacterial (co)infections, and asthma.
Collapse
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
27
|
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
28
|
Vargas MH, Becerril-Ángeles M, Medina-Reyes IS, Rascón-Pacheco RA. Altitude above 1500 m is a major determinant of asthma incidence. An ecological study. Respir Med 2017; 135:1-7. [PMID: 29414446 DOI: 10.1016/j.rmed.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous studies suggest an inverse correlation between asthma and altitude. In the present work, we performed an in-depth analysis of asthma incidence in the 758 Mexican counties covered by the largest medical institution in the country (∼37.5 million insured subjects), and evaluated its relationships with altitude and other factors. METHODS Asthma incidence in each county was calculated from new cases diagnosed by family physicians. Other variables in the same counties, including selected diseases, geographical variables, and socioeconomic factors, were also obtained and their association with asthma was evaluated through bivariate and multivariate analyses. RESULTS Median asthma incidence was 296.2 × 100,000 insured subjects, but tended to be higher in those counties located on or near the coast. When asthma incidence was plotted against altitude, a two-stage pattern was evident: asthma rates were relatively stable in counties located below an altitude of ∼1500 m, while these rates progressively decreased as altitude increased beyond this level (rS = -0.51, p < .001). Multivariate analysis showed that, once each variable was adjusted by the potential influence of the others, asthma incidence was inversely correlated with altitude (standardized β coefficient, -0.577), helminthiasis (-0.173), pulmonary tuberculosis (-0.130), and latitude (-0.126), and was positively correlated with acute respiratory tract infection (0.382), pneumonia (0.289), type 2 diabetes (0.138), population (0.108), and pharyngotonsillitis (0.088), all with a p ≤ .001. CONCLUSION Our study showed that altitude higher than ∼1500 m comprises a major factor in determining asthma incidence, with the risk of new-onset asthma decreasing as altitude increases. Other less influential conditions were also identified.
Collapse
Affiliation(s)
- Mario H Vargas
- Unidad de Investigación Médica en Enfermedades Respiratorias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Martín Becerril-Ángeles
- Departamento de Alergia e Inmunología Clínica, Hospital de Especialidades, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Ismael Seth Medina-Reyes
- División de Información Epidemiológica, Coordinación de Vigilancia Epidemiológica y Apoyo en Contingencias, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ramón Alberto Rascón-Pacheco
- División de Información Epidemiológica, Coordinación de Vigilancia Epidemiológica y Apoyo en Contingencias, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
29
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|
30
|
Szilagyi A, Xue X. Comparison of geographic distributions of Irritable Bowel Syndrome with Inflammatory Bowel Disease fail to support common evolutionary roots: Irritable Bowel Syndrome and Inflammatory Bowel Diseases are not related by evolution. Med Hypotheses 2017; 110:31-37. [PMID: 29317064 DOI: 10.1016/j.mehy.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023]
Abstract
Irritable Bowel Syndrome (IBS) shares overlapping symptoms and some features of pathogenesis with Inflammatory Bowel Diseases (IBD: Crohn's disease [CD], and Ulcerative Colitis [UC]). Geographic markers such as latitude/sunshine and more recently lactase population distributions are found to be correlated with IBD. As a result of clinical and pathogenic similarities between the 2 conditions, some authorities questioned whether a connection exists between them. We compare IBS directly with IBD, and indirectly with geographic markers associated with IBD, in order to evaluate possible evolutionary links between IBS and IBD. Similar correlations may link IBS as a precursor to IBD and possibly other conditions which are geographically connected with IBD. Data from four systematic reviews on IBD incidence and prevalence, IBS prevalence, and lactase distributions were included. Pearson's correlations were used for comparisons, with IBD values log-transformed because of skewed distribution. The articles provided 18-28 complete set of national data. Direct comparison between IBS and IBD showed no significant correlations (r = -0.14, r = -0.06 for CD and UC prevalence, r = -0.10 for CD incidence). Indirect comparisons also failed to show correlations of IBS with lactase distributions (r = -0.17), sunshine (r = -0.2) or latitude (r = 0.097); however, there was significant correlation between lactase distributions and CD incidence (r = -0.84), prevalence (r = -0.55) and UC prevalence (r = -0.59). Both sunshine (r= -0.53) and latitude (r = 0.58) are also significantly related to CD incidence. It is concluded that IBS and IBD do not follow similar global geographic patterns. This suggests a lack of an evolutionary genetic background coincident with emergence of lactase persistence. As well, vitamin D has no obvious impact on development of IBS. Similarities with IBD may result from sub groups (not yet identified) within the current Rome criteria of IBS. Alternatively limited intestinal gut-brain responses to host microbial interactions may result in similar overlap features in both.
Collapse
Affiliation(s)
- Andrew Szilagyi
- Department of Internal Medicine, Division of Gastroenterology, Jewish General Hospital, McGill University School of Medicine, Canada.
| | - Xiaoqing Xue
- Department of Emergency Medicine, Biostatistics, Jewish General Hospital, McGill University School of Medicine, Canada
| |
Collapse
|
31
|
Fleming J, Hernandez G, Hartman L, Maksimovic J, Nace S, Lawler B, Risa T, Cook T, Agni R, Reichelderfer M, Luzzio C, Rolak L, Field A, Fabry Z. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: Results of the HINT 2 clinical trial. Mult Scler 2017; 25:81-91. [PMID: 29064315 DOI: 10.1177/1352458517736377] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hygiene hypothesis suggests that microbial replacement may be therapeutic in allergic and autoimmune diseases. Nevertheless, the results of helminth treatment, including in multiple sclerosis (MS), have been inconclusive. OBJECTIVE To assess safety and brain magnetic resonance imaging (MRI) activity in subjects with relapsing-remitting multiple sclerosis (RRMS) during oral administration of ova from the porcine whipworm, Trichuris suis (TSO). METHODS A total of 16 disease-modifying treatment (DMT) naive RRMS subjects were studied in a baseline versus treatment (BVT) controlled prospective study. MRI scans were performed during 5 months of screening-observation, 10 months of treatment, and 4 months of post-treatment surveillance. RESULTS No serious symptoms or adverse events occurred during treatment. For the cohort, there was a trend consistent with a 35% diminution in active lesions when observation MRIs were compared to treatment MRIs ( p = 0.08), and at the level of individuals, 12 of 16 subjects improved during TSO treatment. T regulatory lymphocytes were increased during TSO treatment. CONCLUSION TSO is safe in RRMS subjects. Potentially favorable MRI outcomes and immunoregulatory changes were observed during TSO treatment; however, the magnitude of these effects was modest, and there was considerable variation among the responses of individual subjects.
Collapse
Affiliation(s)
- John Fleming
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Gianna Hernandez
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leslie Hartman
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jane Maksimovic
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sara Nace
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Benjamin Lawler
- Department of Neurology, Marshfield Clinic Health System, Marshfield WI, USA
| | - Todd Risa
- Department of Radiology, Marshfield Clinic Health System, Marshfield WI, USA
| | - Thomas Cook
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rashmi Agni
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Reichelderfer
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher Luzzio
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Loren Rolak
- Department of Neurology, Marshfield Clinic Health System, Marshfield WI, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
32
|
Novel Therapeutics for Multiple Sclerosis Designed by Parasitic Worms. Int J Mol Sci 2017; 18:ijms18102141. [PMID: 29027962 PMCID: PMC5666823 DOI: 10.3390/ijms18102141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
The evolutionary response to endemic infections with parasitic worms (helminth) was the development of a distinct regulatory immune profile arising from the need to encapsulate the helminths while simultaneously repairing tissue damage. According to the old friend's hypothesis, the diminished exposure to these parasites in the developed world has resulted in a dysregulated immune response that contributes to the increased incidence of immune mediated diseases such as Multiple Sclerosis (MS). Indeed, the global distribution of MS shows an inverse correlation to the prevalence of helminth infection. On this basis, the possibility of treating MS with helminth infection has been explored in animal models and phase 1 and 2 human clinical trials. However, the possibility also exists that the individual immune modulatory molecules secreted by helminth parasites may offer a more defined therapeutic strategy.
Collapse
|
33
|
Liu Y, Ye Q, Liu YL, Kang J, Chen Y, Dong WG. Schistosoma japonicum attenuates dextran sodium sulfate-induced colitis in mice via reduction of endoplasmic reticulum stress. World J Gastroenterol 2017; 23:5700-5712. [PMID: 28883695 PMCID: PMC5569284 DOI: 10.3748/wjg.v23.i31.5700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the impact of Schistosoma (S.) japonicum infection on inflammatory bowel disease by studying the effects of exposure to S. japonicum cercariae on dextran sodium sulfate (DSS)-induced colitis.
METHODS Infection was percutaneously established with 20 ± 2 cercariae of S. japonicum, and colitis was induced by administration of 3% DSS at 4 wk post infection. Weight change, colon length, histological score (HS) and disease activity index (DAI) were evaluated. Inflammatory cytokines, such as IL-2, IL-10 and IFN-γ, were tested by a cytometric bead array and real-time quantitative polymerase chain reaction (RT-PCR). Protein and mRNA levels of IRE1α, IRE1β, GRP78, CHOP, P65, P-P65, P-IκBα and IκBα in colon tissues were examined by Western blot and RT-PCR, respectively. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells, cleaved-caspase 3 expression and Bcl2/Bax were investigated to assess the apoptosis in colon tissues.
RESULTS Mice infected with S. japonicum cercariae were less susceptible to DSS. Mice infected with S. japonicum cercariae and treated with DSS showed decreased weight loss, longer colon, and lower HS and DAI compared with mice treated with DSS alone. A substantial decrease in Th1/Th2/Th17 response was observed after infection with S. japonicum. Endoplasmic reticulum (ER) stress and the nuclear factor-kappa B (NF-κB) pathway were reduced in mice infected with S. japonicum cercariae and treated with DSS, along with ameliorated celluar apoptosis, in contrast to mice treated with DSS alone.
CONCLUSION Exposure to S. japonicum attenuated inflammatory response in a DSS-induced colitis model. In addition to the Th1/Th2/Th17 pathway and NF-κB pathway, ER stress was shown to be involved in mitigating inflammation and decreasing apoptosis. Thus, ER stress is a new aspect in elucidating the relationship between helminth infection and inflammatory bowel disease (IBD), which may offer new therapeutic methods for IBD.
Collapse
Affiliation(s)
- Ya Liu
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qing Ye
- Department of Hospital Infection, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yu-Lan Liu
- Departments of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian Kang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yan Chen
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei-Guo Dong
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
34
|
Abstract
Helminth infections, including soil-transmitted helminths and schistosomiasis, remain one of the most common infections in the world with over 1 billion people infected. These infections cause significant morbidity, particularly in young children, that may last a lifetime, including growth and cognitive stunting. There is an urgent need for the control and elimination of helminth infections from areas of poverty to reduce morbidity in children. Mass drug administration programs were adopted by the World Health Assembly in 2001 and have evolved to provide coverage with multiple anthelmintic medications in a single rapid impact package and more extensive coverage within a community.
Collapse
Affiliation(s)
- Jill E Weatherhead
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Feigin Research Building, 1102 Bates Avenue, Suite 550, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM-113, Houston, TX 77030, USA.
| | - Peter J Hotez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Feigin Research Building, 1102 Bates Avenue, Suite 550, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM-113, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital (TCH), Center for Vaccine Development, Feigin Research Building, 1102 Bates Avenue, Suite 550, Houston, TX 77030, USA
| | - Rojelio Mejia
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Feigin Research Building, 1102 Bates Avenue, Suite 550, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM-113, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Bonnefond S, Foucher A, Zunic P, Hoarau G, Magnaval JF. Atypical presentation of hepatic visceral larva migrans mimicking cancer and associated with ADAMTS13 deficiency-mediated thrombotic microangiopathy: A first report from Reunion Island. PLoS Negl Trop Dis 2017; 11:e0005617. [PMID: 28727752 PMCID: PMC5518999 DOI: 10.1371/journal.pntd.0005617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Simon Bonnefond
- Department of Internal Medicine and Infectious Diseases, Centre Hospitalier Universitaire de la Réunion Saint Pierre, Reunion Island, France
| | - Aurélie Foucher
- Department of Internal Medicine and Infectious Diseases, Centre Hospitalier Universitaire de la Réunion Saint Pierre, Reunion Island, France
| | - Patricia Zunic
- Department of Hematology, Centre Hospitalier Universitaire de la Reunion Saint Pierre, Reunion Island, France
| | - Gautier Hoarau
- Department of Microbiology, Centre Hospitalier Universitaire de la Reunion Saint Pierre, Reunion Island, France
| | | |
Collapse
|
36
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
37
|
Godkin A, Smith KA. Chronic infections with viruses or parasites: breaking bad to make good. Immunology 2017; 150:389-396. [PMID: 28009488 PMCID: PMC5343343 DOI: 10.1111/imm.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic forms of life have been continually invaded by microbes and larger multicellular parasites, such as helminths. Over a billion years ago bacterial endosymbionts permanently colonized eukaryotic cells leading to recognized organelles with a distinct genetic lineage, such as mitochondria and chloroplasts. Colonization of our skin and mucosal surfaces with bacterial commensals is now known to be important for host health. However, the contribution of chronic virus and parasitic infections to immune homeostasis is being increasingly questioned. Persistent infection does not necessarily equate to exhibiting a chronic illness: healthy hosts (e.g. humans) have chronic viral and parasitic infections with no evidence of disease. Indeed, there are now examples of complex interactions between these microbes and hosts that seem to confer an advantage to the host at a particular time, suggesting that the relationship has progressed along an axis from parasitic to commensal to one of a mutualistic symbiosis. This concept is explored using examples from viruses and parasites, considering how the relationships may be not only detrimental but also beneficial to the human host.
Collapse
Affiliation(s)
- Andrew Godkin
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| | - Katherine A Smith
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| |
Collapse
|
38
|
Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, Croese J, Bethony JM. Hookworm infection. Nat Rev Dis Primers 2016; 2:16088. [PMID: 27929101 DOI: 10.1038/nrdp.2016.88] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hookworms are soil-transmitted nematode parasites that can reside for many years in the small intestine of their human hosts; Necator americanus is the predominant infecting species. Adult worms feed on the blood of a host and can cause iron deficiency anaemia, especially in high-risk populations (children and women of childbearing age). Almost 500 million people in developing tropical countries are infected, and simulation models estimate that hookworm infection is responsible for >4 million disability-adjusted life years lost annually. Humans mount an immune response to hookworms, but it is mostly unsuccessful at removing adult worms from the bowel. Accordingly, the host switches to an immune-tolerant state that enables hookworms to reside in the gut for many years. Although anthelmintic drugs are available and widely used, their efficacy varies and the drugs do not prevent reinfection. Thus, other control strategies aimed at improving water quality, sanitation and hygiene are needed. In addition, efforts are underway to develop a human hookworm vaccine through public-private partnerships. However, hookworms could also be a resource; as hookworms have the capability to regulate the host's inflammation, researchers are experimentally infecting patients to treat some inflammatory diseases as an approach to discover new anti-inflammatory molecules. This area of endeavour might well yield new biotherapeutics for autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College Of Medicine, Houston, Texas, USA.,Sabin Vaccine Institute, Houston, Texas, USA.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas, USA
| | - David Diemert
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA.,Sabin Vaccine Institute, Washington DC, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - James S McCarthy
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | | | - John Croese
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia.,Department of Gastroenterology, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jeffrey M Bethony
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA
| |
Collapse
|