1
|
Rosen BC, Sawatzki K, Ricciardi MJ, Smith E, Golez I, Mauter JT, Pedreño-López N, Yrizarry-Medina A, Weisgrau KL, Vosler LJ, Voigt TB, Louw JJ, Tisoncik-Go J, Whitmore LS, Panayiotou C, Ghosh N, Furlott JR, Parks CL, Desrosiers RC, Lifson JD, Rakasz EG, Watkins DI, Gale M. Acute-phase innate immune responses in SIVmac239-infected Mamu-B*08+ Indian rhesus macaques may contribute to the establishment of elite control. Front Immunol 2024; 15:1478063. [PMID: 39502699 PMCID: PMC11534762 DOI: 10.3389/fimmu.2024.1478063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Spontaneous control of chronic-phase HIV/SIV viremia is often associated with the expression of specific MHC class I allotypes. HIV/SIV-specific CD8+ cytotoxic T lymphocytes (CTLs) restricted by these MHC class I allotypes appear to be critical for viremic control. Establishment of the elite controller (EC) phenotype is predictable in SIVmac239-infected Indian rhesus macaques (RMs), with approximately 50% of Mamu-B*08+ RMs and 20% of Mamu-B*17+ RMs becoming ECs. Despite extensive characterization of EC-associated CTLs in HIV/SIV-infected individuals, the precise mechanistic basis of elite control remains unknown. Because EC and non-EC viral load trajectories begin diverging by day 14 post-infection, we hypothesized that hyperacute innate immune responses may contribute to viremic control. Methods To gain insight into the immunological factors involved in the determination of EC status, we vaccinated 16 Mamu-B*08+ RMs with Vif and Nef to elicit EC-associated CTLs, then subjected these 16 vaccinees and an additional 16 unvaccinated Mamu-B*08+ controls to repeated intrarectal SIVmac239 challenges. We then performed whole-blood transcriptomic analysis of all 32 SIVmac239-infected Mamu-B*08+ RMs and eight SIVmac239-infected Mamu-B*08 - RMs during the first 14 days of infection. Results Vaccination did not provide protection against acquisition, but peak and setpoint viremia were significantly lower in vaccinees relative to controls. We did not identify any meaningful correlations between vaccine-induced CTL parameters and SIVmac239 acquisition rate or chronic-phase viral loads. Ultimately, 13 of 16 vaccinees (81%) and 7 of 16 controls (44%) became ECs (viremia ≤ 10,000 vRNA copies/mL plasma for ≥ 4 weeks). We identified subsets of immunomodulatory genes differentially expressed (DE) between RM groupings based on vaccination status, EC status, and MHC class I genotype. These DE genes function in multiple innate immune processes, including the complement system, cytokine/chemokine signaling, pattern recognition receptors, and interferon-mediated responses. Discussion A striking difference in the kinetics of differential gene expression among our RM groups suggests that Mamu-B*08-associated elite control is characterized by a robust, rapid innate immune response that quickly resolves. These findings indicate that, despite the association between MHC class I genotype and elite control, innate immune factors in hyperacute SIV infection preceding CTL response development may facilitate the establishment of the EC phenotype.
Collapse
Affiliation(s)
- Brandon C. Rosen
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Kaitlin Sawatzki
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Michael J. Ricciardi
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elise Smith
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Inah Golez
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jack T. Mauter
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Núria Pedreño-López
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aaron Yrizarry-Medina
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas B. Voigt
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Johan J. Louw
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jennifer Tisoncik-Go
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Leanne S. Whitmore
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Christakis Panayiotou
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Noor Ghosh
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jessica R. Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - David I. Watkins
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
3
|
Limited impact of fingolimod treatment during the initial weeks of ART in SIV-infected rhesus macaques. Nat Commun 2022; 13:5055. [PMID: 36030289 PMCID: PMC9420154 DOI: 10.1038/s41467-022-32698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Antiretroviral therapy (ART) is not curative due to the persistence of a reservoir of HIV-infected cells, particularly in tissues such as lymph nodes, with the potential to cause viral rebound after treatment cessation. In this study, fingolimod (FTY720), a lysophospholipid sphingosine-1-phosphate receptor modulator is administered to SIV-infected rhesus macaques at initiation of ART to block the egress from lymphoid tissues of natural killer and T-cells, thereby promoting proximity between cytolytic cells and infected CD4+ T-cells. When compared with the ART-only controls, FTY720 treatment during the initial weeks of ART induces a profound lymphopenia and increases frequencies of CD8+ T-cells expressing perforin in lymph nodes, but not their killing capacity; FTY720 also increases frequencies of cytolytic NK cells in lymph nodes. This increase of cytolytic cells, however, does not limit measures of viral persistence during ART, including intact proviral genomes. After ART interruption, a subset of animals that initially receives FTY720 displays a modest delay in viral rebound, with reduced plasma viremia and frequencies of infected T follicular helper cells. Further research is needed to optimize the potential utility of FTY720 when coupled with strategies that boost the antiviral function of T-cells in lymphoid tissues.
Collapse
|
4
|
Sugawara S, Reeves RK, Jost S. Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Front Immunol 2022; 13:858383. [PMID: 35572502 PMCID: PMC9094575 DOI: 10.3389/fimmu.2022.858383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Although antiretroviral therapy (ART) has drastically changed the lives of people living with human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus, the control of HIV-1 replication by the host immune system, namely functional cure, has long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs) are rare individuals who naturally maintain undetectable HIV-1 replication levels in the absence of ART and whose immune repertoire might be a desirable blueprint for a functional cure. While the role(s) played by distinct human leukocyte antigen (HLA) expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1 has been widely characterized in ECs, the innate immune phenotype has been decidedly understudied. Comparably, in animal models such as HIV-1-infected humanized mice and simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control is known to be associated with specific major histocompatibility complex (MHC) alleles and CD8+ T cell activity, but the innate immune response remains incompletely characterized. Notably, recent work demonstrating the existence of trained innate immunity may provide new complementary approaches to achieve an HIV-1 cure. Herein, we review the known characteristics of innate immune responses in ECs and available animal models, identify gaps of knowledge regarding responses by adaptive or trained innate immune cells, and speculate on potential strategies to induce EC-like responses in HIV-1 non-controllers.
Collapse
|
5
|
Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages. Viruses 2021; 13:v13030397. [PMID: 33801437 PMCID: PMC7998229 DOI: 10.3390/v13030397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/23/2023] Open
Abstract
Rhesus macaques can be readily infected with chimeric simian-human immunodeficiency viruses (SHIV) as a suitable virus challenge system for testing the efficacy of HIV vaccines. Three Chinese-origin rhesus macaques (ChRM) were inoculated intravenously (IV) with SHIVC109P4 in a rapid serial in vivo passage. SHIV recovered from the peripheral blood of the final ChRM was used to generate a ChRM-adapted virus challenge stock. This stock was titrated for the intrarectal route (IR) in 8 ChRMs using undiluted, 1:10 or 1:100 dilutions, to determine a suitable dose for use in future vaccine efficacy testing via repeated low-dose IR challenges. All 11 ChRMs were successfully infected, reaching similar median peak viraemias at 1–2 weeks post inoculation but undetectable levels by 8 weeks post inoculation. T-cell responses were detected in all animals and Tier 1 neutralizing antibodies (Nab) developed in 10 of 11 infected ChRMs. All ChRMs remained healthy and maintained normal CD4+ T cell counts. Sequence analyses showed >98% amino acid identity between the original inoculum and virus recovered at peak viraemia indicating only minimal changes in the env gene. Thus, while replication is limited over time, our adapted SHIV can be used to test for protection of virus acquisition in ChRMs.
Collapse
|
6
|
Schouest B, Leslie GJ, Hoxie JA, Maness NJ. Tetherin downmodulation by SIVmac Nef lost with the H196Q escape variant is restored by an upstream variant. PLoS One 2020; 15:e0225420. [PMID: 32764749 PMCID: PMC7413475 DOI: 10.1371/journal.pone.0225420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/13/2020] [Indexed: 01/17/2023] Open
Abstract
The H196 residue in SIVmac239 Nef is conserved across the majority of HIV and SIV isolates, lies immediately adjacent to the AP-2 (adaptor protein 2) binding di-leucine domain (ExxxLM195), and is critical for several described AP-2 dependent Nef functions, including the downregulation of tetherin (BST-2/CD317), CD4, and others. Surprisingly, many stocks of the closely related SIVmac251 swarm virus harbor a nef allele encoding a Q196. In SIVmac239, this variant is associated with loss of multiple AP-2 dependent functions. Publicly available sequences for SIVmac251 stocks were mined for variants linked to Q196 that might compensate for functional defects associated with this residue. Variants were engineered into the SIVmac239 backbone and in Nef expression plasmids and flow cytometry was used to examine surface tetherin expression in primary CD4 T cells and surface CD4 expression in SupT1 cells engineered to express rhesus CD4. We found that SIVmac251 stocks that encode a Q196 residue in Nef uniformly also encode an upstream R191 residue. We show that R191 restores the ability of Nef to downregulate tetherin in the presence of Q196 and has a similar but less pronounced impact on CD4 expression. However, a published report showed Q196 commonly evolves to H196 in vivo, suggesting a fitness cost. R191 may represent compensatory evolution to restore the ability to downregulate tetherin lost in viruses harboring Q196.
Collapse
Affiliation(s)
- Blake Schouest
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States of America
| | - George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States of America
- Department of Microbiology and Immunology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Virologic and Immunologic Features of Simian Immunodeficiency Virus Control Post-ART Interruption in Rhesus Macaques. J Virol 2020; 94:JVI.00338-20. [PMID: 32350073 DOI: 10.1128/jvi.00338-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Antiretroviral therapy (ART) cannot eradicate human immunodeficiency virus (HIV) and a rapid rebound of virus replication follows analytical treatment interruption (ATI) in the vast majority of HIV-infected individuals. Sustained control of HIV replication without ART has been documented in a subset of individuals, defined as posttreatment controllers (PTCs). The key determinants of post-ART viral control remain largely unclear. Here, we identified 7 SIVmac239-infected rhesus macaques (RMs), defined as PTCs, who started ART 8 weeks postinfection, continued ART for >7 months, and controlled plasma viremia at <104 copies/ml for up to 8 months after ATI and <200 copies/ml at the latest time point. We characterized immunologic and virologic features associated with post-ART SIV control in blood, lymph node (LN), and colorectal (RB) biopsy samples compared to 15 noncontroller (NC) RMs. Before ART initiation, PTCs had higher CD4 T cell counts, lower plasma viremia, and SIV-DNA content in blood and LN compared to NCs, but had similar CD8 T cell function. While levels of intestinal CD4 T cells were similar, PTCs had higher frequencies of Th17 cells. On ART, PTCs had significantly lower levels of residual plasma viremia and SIV-DNA content in blood and tissues. After ATI, SIV-DNA content rapidly increased in NCs, while it remained stable or even decreased in PTCs. Finally, PTCs showed immunologic benefits of viral control after ATI, including higher CD4 T cell levels and reduced immune activation. Overall, lower plasma viremia, reduced cell-associated SIV-DNA, and preserved Th17 homeostasis, including at pre-ART, are the main features associated with sustained viral control after ATI in SIV-infected RMs.IMPORTANCE While effective, antiretroviral therapy is not a cure for HIV infection. Therefore, there is great interest in achieving viral remission in the absence of antiretroviral therapy. Posttreatment controllers represent a small subset of individuals who are able to control HIV after cessation of antiretroviral therapy, but characteristics associated with these individuals have been largely limited to peripheral blood analysis. Here, we identified 7 SIV-infected rhesus macaques that mirrored the human posttreatment controller phenotype and performed immunologic and virologic analysis of blood, lymph node, and colorectal biopsy samples to further understand the characteristics that distinguish them from noncontrollers. Lower viral burden and preservation of immune homeostasis, including intestinal Th17 cells, both before and after ART, were shown to be two major factors associated with the ability to achieve posttreatment control. Overall, these results move the field further toward understanding of important characteristics of viral control in the absence of antiretroviral therapy.
Collapse
|
8
|
Brasó-Vives M, Povolotskaya IS, Hartasánchez DA, Farré X, Fernandez-Callejo M, Raveendran M, Harris RA, Rosene DL, Lorente-Galdos B, Navarro A, Marques-Bonet T, Rogers J, Juan D. Copy number variants and fixed duplications among 198 rhesus macaques (Macaca mulatta). PLoS Genet 2020; 16:e1008742. [PMID: 32392208 PMCID: PMC7241854 DOI: 10.1371/journal.pgen.1008742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/21/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
The rhesus macaque is an abundant species of Old World monkeys and a valuable model organism for biomedical research due to its close phylogenetic relationship to humans. Copy number variation is one of the main sources of genomic diversity within and between species and a widely recognized cause of inter-individual differences in disease risk. However, copy number differences among rhesus macaques and between the human and macaque genomes, as well as the relevance of this diversity to research involving this nonhuman primate, remain understudied. Here we present a high-resolution map of sequence copy number for the rhesus macaque genome constructed from a dataset of 198 individuals. Our results show that about one-eighth of the rhesus macaque reference genome is composed of recently duplicated regions, either copy number variable regions or fixed duplications. Comparison with human genomic copy number maps based on previously published data shows that, despite overall similarities in the genome-wide distribution of these regions, there are specific differences at the chromosome level. Some of these create differences in the copy number profile between human disease genes and their rhesus macaque orthologs. Our results highlight the importance of addressing the number of copies of target genes in the design of experiments and cautions against human-centered assumptions in research conducted with model organisms. Overall, we present a genome-wide copy number map from a large sample of rhesus macaque individuals representing an important novel contribution concerning the evolution of copy number in primate genomes.
Collapse
Affiliation(s)
- Marina Brasó-Vives
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Inna S. Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Diego A. Hartasánchez
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
| | - Xavier Farré
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
| | - Marcos Fernandez-Callejo
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Belen Lorente-Galdos
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
- National Institute for Bioinformatics (INB), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
10
|
Martins MA, Gonzalez-Nieto L, Shin YC, Domingues A, Gutman MJ, Maxwell HS, Magnani DM, Ricciardi MJ, Pedreño-Lopez N, Bailey VK, Altman JD, Parks CL, Allison DB, Ejima K, Rakasz EG, Capuano S, Desrosiers RC, Lifson JD, Watkins DI. The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges in Mamu-B*08+ Rhesus Macaques. J Virol 2019; 93:e01626-18. [PMID: 30541854 PMCID: PMC6384082 DOI: 10.1128/jvi.01626-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of rhesus macaques (RMs) expressing the major histocompatibility complex class I (MHC-I) allele Mamu-B*08 spontaneously control chronic-phase viremia after infection with the pathogenic simian immunodeficiency virus mac239 (SIVmac239) clone. CD8+ T-cell responses in these animals are focused on immunodominant Mamu-B*08-restricted SIV epitopes in Vif and Nef, and prophylactic vaccination with these epitopes increases the incidence of elite control in SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+ ) RMs. Here we evaluated if robust vaccine-elicited CD8+ T-cell responses against Vif and Nef can prevent systemic infection in Mamu-B*08+ RMs following mucosal SIV challenges. Ten Mamu-B*08+ RMs were vaccinated with a heterologous prime/boost/boost regimen encoding Vif and Nef, while six sham-vaccinated MHC-I-matched RMs served as the controls for this experiment. Vaccine-induced CD8+ T cells against Mamu-B*08-restricted SIV epitopes reached high frequencies in blood but were present at lower levels in lymph node and gut biopsy specimens. Following repeated intrarectal challenges with SIVmac239, all control RMs became infected by the sixth SIV exposure. By comparison, four vaccinees were still uninfected after six challenges, and three of them remained aviremic after 3 or 4 additional challenges. The rate of SIV acquisition in the vaccinees was numerically lower (albeit not statistically significantly) than that in the controls. However, peak viremia was significantly reduced in infected vaccinees compared to control animals. We found no T-cell markers that distinguished vaccinees that acquired SIV infection from those that did not. Additional studies will be needed to validate these findings and determine if cellular immunity can be harnessed to prevent the establishment of productive immunodeficiency virus infection.IMPORTANCE It is generally accepted that the antiviral effects of vaccine-induced classical CD8+ T-cell responses against human immunodeficiency virus (HIV) are limited to partial reductions in viremia after the establishment of productive infection. Here we show that rhesus macaques (RMs) vaccinated with Vif and Nef acquired simian immunodeficiency virus (SIV) infection at a lower (albeit not statistically significant) rate than control RMs following repeated intrarectal challenges with a pathogenic SIV clone. All animals in the present experiment expressed the elite control-associated major histocompatibility complex class I (MHC-I) molecule Mamu-B*08 that binds immunodominant epitopes in Vif and Nef. Though preliminary, these results provide tantalizing evidence that the protective efficacy of vaccine-elicited CD8+ T cells may be greater than previously thought. Future studies should examine if vaccine-induced cellular immunity can prevent systemic viral replication in RMs that do not express MHC-I alleles associated with elite control of SIV infection.
Collapse
Affiliation(s)
| | | | - Young C Shin
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - David B Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Keisuke Ejima
- School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
11
|
Banerjee P, Ries M, Janaka SK, Grandea AG, Wiseman R, O'Connor DH, Golos TG, Evans DT. Diversification of Bw4 Specificity and Recognition of a Nonclassical MHC Class I Molecule Implicated in Maternal-Fetal Tolerance by Killer Cell Ig-like Receptors of the Rhesus Macaque. THE JOURNAL OF IMMUNOLOGY 2018; 201:2776-2786. [PMID: 30232137 DOI: 10.4049/jimmunol.1800494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
The rhesus macaque is an important animal model for AIDS and other infectious diseases; however, studies to address NK cell function in this species have been limited by the lack of defined ligands for killer cell Ig-like receptors (KIRs). To identify ligands for rhesus macaque KIRs, we adopted a novel approach based on a pair of stable cell lines. NFAT-responsive luciferase reporter cell lines expressing the extracellular domains of macaque KIRs fused to the transmembrane and cytoplasmic domains of CD28 and CD3ζ were incubated with target cells expressing individual MHC class I molecules, and ligand recognition was detected by the MHC class I-dependent upregulation of luciferase. Using this approach, we found that Mamu-KIR3DL01, -KIR3DL06, -KIR3DL08, and -KIR3DSw08 all recognize Mamu-Bw4 molecules but with differing allotype specificity. In contrast, Mamu-KIR3DL05 recognizes Mamu-A and Mamu-A-related molecules, including Mamu-A1*002 and -A3*13, Mamu-B*036, the product of a recombinant Mamu-B allele with α1 and α2 domain sequences derived from a MHC-A gene, and Mamu-AG*01, a nonclassical molecule expressed on placental trophoblasts that originated from an ancestral duplication of a MHC-A gene. These results reveal an expansion of the lineage II KIRs in macaques that recognize Bw4 ligands and identify a nonclassical molecule implicated in placental development and pregnancy as a ligand for Mamu-KIR3DL05. In addition to offering new insights into KIR-MHC class I coevolution, these findings provide an important foundation for investigating the role of NK cells in the rhesus macaque as an animal model for infectious diseases and reproductive biology.
Collapse
Affiliation(s)
- Priyankana Banerjee
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Andres G Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Roger Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706; and.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; .,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
12
|
Martins MA, Tully DC, Pedreño-Lopez N, von Bredow B, Pauthner MG, Shin YC, Yuan M, Lima NS, Bean DJ, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Magnani DM, Ricciardi MJ, Bailey VK, Altman JD, Burton DR, Ejima K, Allison DB, Evans DT, Rakasz EG, Parks CL, Bonaldo MC, Capuano S, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Mamu-B*17+ Rhesus Macaques Vaccinated with env, vif, and nef Manifest Early Control of SIVmac239 Replication. J Virol 2018; 92:e00690-18. [PMID: 29875239 PMCID: PMC6069176 DOI: 10.1128/jvi.00690-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.
Collapse
Affiliation(s)
| | - Damien C Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Young C Shin
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Noemia S Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - David J Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Keisuke Ejima
- School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
13
|
Maintenance of AP-2-Dependent Functional Activities of Nef Restricts Pathways of Immune Escape from CD8 T Lymphocyte Responses. J Virol 2018; 92:JVI.01822-17. [PMID: 29237831 DOI: 10.1128/jvi.01822-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/02/2017] [Indexed: 01/28/2023] Open
Abstract
Nef-specific CD8+ T lymphocytes (CD8TL) are linked to extraordinary control of primate lentiviral replication, but the mechanisms underlying their efficacy remain largely unknown. The immunodominant, Mamu-B*017:01+-restricted Nef195-203MW9 epitope in SIVmac239 partially overlaps a sorting motif important for interactions with host AP-2 proteins and, hence, downmodulation of several host proteins, including Tetherin (CD317/BST-2), CD28, CD4, SERINC3, and SERINC5. We reasoned that CD8TL-driven evolution in this epitope might compromise Nef's ability to modulate these important molecules. Here, we used deep sequencing of SIV from nine B*017:01+ macaques throughout infection with SIVmac239 to characterize the patterns of viral escape in this epitope and then assayed the impacts of these variants on Nef-mediated modulation of multiple host molecules. Acute variation in multiple Nef195-203MW9 residues significantly compromised Nef's ability to downregulate surface Tetherin, CD4, and CD28 and reduced its ability to prevent SERINC5-mediated reduction in viral infectivity but did not impact downregulation of CD3 or major histocompatibility complex class I, suggesting the selective disruption of immunomodulatory pathways involving Nef AP-2 interactions. Together, our data illuminate a pattern of viral escape dictated by a selective balance to maintain AP-2-mediated downregulation while evading epitope-specific CD8TL responses. These data could shed light on mechanisms of both CD8TL-driven viral control generally and on Mamu-B*017:01-mediated viral control specifically.IMPORTANCE A rare subset of humans infected with HIV-1 and macaques infected with SIV can control the virus without aid of antiviral medications. A common feature of these individuals is the ability to mount unusually effective CD8 T lymphocyte responses against the virus. One of the most formidable aspects of HIV is its ability to evolve to evade immune responses, particularly CD8 T lymphocytes. We show that macaques that target a specific peptide in the SIV Nef protein are capable of better control of the virus and that, as the virus evolves to escape this response, it does so at a cost to specific functions performed by the Nef protein. Our results help show how the virus can be controlled by an immune response, which could help in designing effective vaccines.
Collapse
|
14
|
ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 2018; 92:JVI.01748-17. [PMID: 29118125 DOI: 10.1128/jvi.01748-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and β chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.
Collapse
|
15
|
Martins MA, Tully DC, Shin YC, Gonzalez-Nieto L, Weisgrau KL, Bean DJ, Gadgil R, Gutman MJ, Domingues A, Maxwell HS, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Cruz MA, Lima NS, Bonaldo MC, Altman JD, Rakasz E, Capuano S, Reimann KA, Piatak M, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Res Hum Retroviruses 2017; 33:843-858. [PMID: 28503929 DOI: 10.1089/aid.2017.0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Effector memory T cell (TEM) responses display potent antiviral properties and have been linked to stringent control of simian immunodeficiency virus (SIV) replication. Since recurrent antigen stimulation drives the differentiation of CD8+ T cells toward the TEM phenotype, in this study we incorporated a persistent herpesviral vector into a heterologous prime/boost/boost vaccine approach to maximize the induction of TEM responses. This new regimen resulted in CD8+ TEM-biased responses in four rhesus macaques, three of which controlled viral replication to <1,000 viral RNA copies/ml of plasma for more than 6 months after infection with SIVmac239. Over the course of this study, we made a series of interesting observations in one of these successful controller animals. Indeed, in vivo elimination of CD8αβ+ T cells using a new CD8β-depleting antibody did not abrogate virologic control in this monkey. Only after its CD8α+ lymphocytes were depleted did SIV rebound, suggesting that CD8αα+ but not CD8αβ+ cells were controlling viral replication. By 2 weeks postinfection (PI), the only SIV sequences that could be detected in this animal harbored a small in-frame deletion in nef affecting six amino acids. Deep sequencing of the SIVmac239 challenge stock revealed no evidence of this polymorphism. However, sequencing of the rebound virus following CD8α depletion at week 38.4 PI again revealed only the six-amino acid deletion in nef. While any role for immunological pressure on the selection of this deleted variant remains uncertain, our data provide anecdotal evidence that control of SIV replication can be maintained without an intact CD8αβ+ T cell compartment.
Collapse
Affiliation(s)
| | - Damien C. Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida
| | | | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Rujuta Gadgil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida
| | | | | | | | | | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida
| | - Michael A. Cruz
- Department of Pathology, University of Miami, Miami, Florida
| | - Noemia S. Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | |
Collapse
|
16
|
Silver ZA, Watkins DI. The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 2017; 69:511-519. [PMID: 28695289 PMCID: PMC5537376 DOI: 10.1007/s00251-017-0997-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Human immunodeficiency virus (HIV) remains among the most significant public health threats worldwide. Despite three decades of research following the discovery of HIV, a preventive vaccine remains elusive. The study of HIV elite controllers has been crucial to elaborate the genetic and immunologic determinants that underlie control of HIV replication. Coordinated studies of elite control in humans have, however, been limited by variability among infecting viral strains, host genotype, and the uncertainty of the timing and route of infection. In this review, we discuss the role of nonhuman primate (NHP) models for the elucidation of the immunologic correlates that underlie control of AIDS virus replication. We discuss the importance of major histocompatibility complex class I (MHC-I) alleles in activating CD8+ T-cell populations that promote control of both HIV and simian immunodeficiency virus (SIV) replication. Provocatively, we make the argument that T-cell subsets recognizing the HIV/SIV viral infectivity factor (Vif) protein may be crucial for control of viral replication. We hope that this review demonstrates how an in-depth understanding of the MHC-I gene products associated with elite control of HIV/SIV, and the epitopes that they present, can provide researchers with a glimpse into the protective immune responses that underlie AIDS nonprogression.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Ries M, Reynolds MR, Bashkueva K, Crosno K, Capuano S, Prall TM, Wiseman R, O’Connor DH, Rakasz EG, Uno H, Lifson JD, Evans DT. KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathog 2017; 13:e1006506. [PMID: 28708886 PMCID: PMC5529027 DOI: 10.1371/journal.ppat.1006506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023] Open
Abstract
Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.
Collapse
Affiliation(s)
- Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ksenia Bashkueva
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristin Crosno
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trent M. Prall
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hajime Uno
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Martins MA, Shin YC, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Castro I, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Betancourt D, Altman JD, Pauthner M, Burton DR, von Bredow B, Evans DT, Yuan M, Parks CL, Ejima K, Allison DB, Rakasz E, Barber GN, Capuano S, Lifson JD, Desrosiers RC, Watkins DI. Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathog 2017; 13:e1006529. [PMID: 28732035 PMCID: PMC5540612 DOI: 10.1371/journal.ppat.1006529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023] Open
Abstract
The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.
Collapse
Affiliation(s)
- Mauricio A. Martins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Martin J. Gutman
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Helen S. Maxwell
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Iris Castro
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Diogo M. Magnani
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Michael Ricciardi
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Nuria Pedreño-Lopez
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Dillon Betancourt
- Department of Microbiology and Immunology, University of Miami, Miami, Florida, United States of America
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Matthias Pauthner
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Keisuke Ejima
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David B. Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
19
|
Jensen K, Dela Pena-Ponce MG, Piatak M, Shoemaker R, Oswald K, Jacobs WR, Fennelly G, Lucero C, Mollan KR, Hudgens MG, Amedee A, Kozlowski PA, Estes JD, Lifson JD, Van Rompay KKA, Larsen M, De Paris K. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00360-16. [PMID: 27655885 PMCID: PMC5216431 DOI: 10.1128/cvi.00360-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Myra Grace Dela Pena-Ponce
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Michelle Larsen
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Burwitz BJ, Malouli D, Bimber BN, Reed JS, Ventura AB, Hancock MH, Uebelhoer LS, Bhusari A, Hammond KB, Espinosa Trethewy RG, Klug A, Legasse AW, Axthelm MK, Nelson JA, Park BS, Streblow DN, Hansen SG, Picker LJ, Früh K, Sacha JB. Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques. PLoS Pathog 2016; 12:e1006014. [PMID: 27829026 PMCID: PMC5102353 DOI: 10.1371/journal.ppat.1006014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alex Klug
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alfred W. Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Byung S. Park
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
21
|
Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J Gen Virol 2016; 97:3413-3426. [PMID: 27902330 DOI: 10.1099/jgv.0.000641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
Collapse
Affiliation(s)
- Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ichiro Takahashi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo 204-0022, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
22
|
|
23
|
Jensen K, Nabi R, Van Rompay KKA, Robichaux S, Lifson JD, Piatak M, Jacobs WR, Fennelly G, Canfield D, Mollan KR, Hudgens MG, Larsen MH, Amedee AM, Kozlowski PA, De Paris K. Vaccine-Elicited Mucosal and Systemic Antibody Responses Are Associated with Reduced Simian Immunodeficiency Viremia in Infant Rhesus Macaques. J Virol 2016; 90:7285-7302. [PMID: 27252535 PMCID: PMC4984660 DOI: 10.1128/jvi.00481-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Despite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuated Mycobacterium tuberculosis strains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oral M. tuberculosis vaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4(+) T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity. IMPORTANCE Despite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rafiq Nabi
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | - Spencer Robichaux
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Albert Einstein College of Medicine, New York, New York, USA
| | - Don Canfield
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Public Health and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Angela M Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Marcilla M, Alvarez I, Ramos-Fernández A, Lombardía M, Paradela A, Albar JP. Comparative Analysis of the Endogenous Peptidomes Displayed by HLA-B*27 and Mamu-B*08: Two MHC Class I Alleles Associated with Elite Control of HIV/SIV Infection. J Proteome Res 2016; 15:1059-69. [PMID: 26811146 DOI: 10.1021/acs.jproteome.5b01146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indian rhesus macaques are arguably the most reliable animal models in AIDS research. In this species the MHC class I allele Mamu-B*08, among others, is associated with elite control of SIV replication. A similar scenario is observed in humans where the expression of HLA-B*27 or HLA-B*57 has been linked to slow or no progression to AIDS after HIV infection. Despite having large differences in their primary structure, it has been reported that HLA-B*27 and Mamu-B*08 display peptides with sequence similarity. To fine-map the Mamu-B*08 binding motif and assess its similarities with that of HLA-B*27, we affinity purified the peptidomes bound to these MHC class I molecules and analyzed them by LC-MS, identifying several thousands of endogenous ligands. Sequence analysis of both sets of peptides revealed a degree of similarity in their binding motifs, especially at peptide position 2 (P2), where arginine was present in the vast majority of ligands of both allotypes. In addition, several differences emerged from this analysis: (i) ligands displayed by Mamu-B*08 tended to be shorter and to have lower molecular weight, (ii) Mamu-B*08 showed a higher preference for glutamine at P2 as a suboptimal binding motif, and (iii) the second major anchor position, found at PΩ, was much more restrictive in Mamu-B*08. In this regard, HLA-B*27 bound efficiently peptides with aliphatic, aromatic (including tyrosine), and basic C-terminal residues while Mamu-B*08 preferred peptides with leucine and phenylalanine in this position. Finally, in silico estimations of binding efficiency and competitive binding assays to Mamu-B*08 of several selected peptides revealed a good correlation between the characterized anchor motif and binding affinity. These results deepen our understanding of the molecular basis of the presentation of peptides by Mamu-B*08 and can contribute to the detection of novel SIV epitopes restricted by this allotype.
Collapse
Affiliation(s)
- Miguel Marcilla
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Antonio Ramos-Fernández
- Proteobotics SL, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Manuel Lombardía
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Juan Pablo Albar
- Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
25
|
Bansal A, Mann T, Sterrett S, Peng BJ, Bet A, Carlson JM, Goepfert PA. Enhanced Recognition of HIV-1 Cryptic Epitopes Restricted by HLA Class I Alleles Associated With a Favorable Clinical Outcome. J Acquir Immune Defic Syndr 2015; 70:1-8. [PMID: 26322665 DOI: 10.1097/qai.0000000000000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cryptic epitopes (CEs) are peptides derived from the translation of 1 or more of the 5 alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1-specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association. METHODS Peptides (9mer to 11mer) were designed based on HLA-I-binding algorithms for B*27, B*57, or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (nonprotective allele) in all 5 ARFs of the 9 HIV-1 encoded proteins. Peptides with >50% probability of being an epitope (n = 231) were tested for T-cell responses in an IFN-γ enzyme-linked immunosorbent spot (ELISpot) assay. Peripheral blood mononuclear cell samples from HIV-1 seronegative donors (n = 42) and HIV-1 seropositive patients with chronic clade B infections (n = 129) were used. RESULTS Overall, 16%, 2%, and 2% of chronic HIV infected patients had CE responses by IFN-γ ELISpot in the protective, nonprotective, and seronegative groups, respectively (P = 0.009, Fischer exact test). Twenty novel CE-specific responses were mapped (median magnitude of 95 spot forming cells/10 peripheral blood mononuclear cells), and most were both antisense derived (90%) and represented ARFs of accessory proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by intracellular cytokine staining. CONCLUSIONS CE responses were preferentially restricted by the protective HLA-I alleles in HIV-1 infection, suggesting that they may contribute to viral control in this group of patients.
Collapse
Affiliation(s)
- Anju Bansal
- *Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and †Microsoft Research, Redmond, WA
| | | | | | | | | | | | | |
Collapse
|
26
|
Martins MA, Tully DC, Cruz MA, Power KA, Veloso de Santana MG, Bean DJ, Ogilvie CB, Gadgil R, Lima NS, Magnani DM, Ejima K, Allison DB, Piatak M, Altman JD, Parks CL, Rakasz EG, Capuano S, Galler R, Bonaldo MC, Lifson JD, Allen TM, Watkins DI. Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8+ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection. J Virol 2015; 89:10802-20. [PMID: 26292326 PMCID: PMC4621113 DOI: 10.1128/jvi.01440-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed "elite controllers" [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08(+) animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08(+) macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8(+) T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8(+) T-cell response would facilitate the development of elite control in Mamu-B*08(+) animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08(+) animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8(+) T cells. These vaccine-induced effector memory CD8(+) T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8(+) T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08(+) macaques. IMPORTANCE Since elite control of chronic-phase viremia is a classic example of an effective immune response against HIV/SIV, elucidating the basis of this phenomenon may provide useful insights into how to elicit such responses by vaccination. We have previously established that vaccine-induced CD8(+) T-cell responses against three immunodominant epitopes can increase the incidence of elite control in SIV-infected Mamu-B*08(+) rhesus macaques—a model of HLA-B*27-mediated elite control. Here, we investigated whether a monotypic vaccine-induced CD8(+) T-cell response targeting the conserved "late-escaping" Nef RL10 epitope can increase the incidence of elite control in Mamu-B*08(+) monkeys. Surprisingly, vaccine-induced Nef RL10-specific CD8(+) T cells selected for variants within days after infection and, ultimately, did not facilitate the development of elite control. Elite control is, therefore, likely to involve CD8(+) T-cell responses against more than one epitope. Together, these results underscore the complexity and multidimensional nature of virologic control of lentivirus infection.
Collapse
Affiliation(s)
| | - Damien C Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael A Cruz
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - David J Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Colin B Ogilvie
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rujuta Gadgil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Noemia S Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Keisuke Ejima
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
27
|
Connick E, Folkvord JM, Lind KT, Rakasz EG, Miles B, Wilson NA, Santiago ML, Schmitt K, Stephens EB, Kim HO, Wagstaff R, Li S, Abdelaal HM, Kemp N, Watkins DI, MaWhinney S, Skinner PJ. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. THE JOURNAL OF IMMUNOLOGY 2014; 193:5613-25. [PMID: 25362178 DOI: 10.4049/jimmunol.1401161] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA(+) cells and SIV-specific CTL in situ in spleen, lymph nodes, and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS, SIV-producing cells were more concentrated in follicular (F) compared with extrafollicular (EF) regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with simian AIDS, which often have low-frequency CTL responses. SIV-specific CTL were consistently more concentrated within EF regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within F and EF compartments predicted SIV RNA(+) cells within these compartments in a mixed model. Few SIV-specific CTL expressed the F homing molecule CXCR5 in the absence of the EF retention molecule CCR7, possibly accounting for the paucity of F CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection.
Collapse
Affiliation(s)
- Elizabeth Connick
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045;
| | - Joy M Folkvord
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Katherine T Lind
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Brodie Miles
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Nancy A Wilson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Kimberly Schmitt
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hyeon O Kim
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Reece Wagstaff
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Shengbin Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Hadia M Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN; Department of Microbiology and Immunology, Zagazig University, Zagazig, Egypt 44519; and
| | - Nathan Kemp
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - David I Watkins
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, CO 80045
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| |
Collapse
|
28
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
29
|
Adland E, Carlson JM, Paioni P, Kløverpris H, Shapiro R, Ogwu A, Riddell L, Luzzi G, Chen F, Balachandran T, Heckerman D, Stryhn A, Edwards A, Ndung’u T, Walker BD, Buus S, Goulder P, Matthews PC. Nef-specific CD8+ T cell responses contribute to HIV-1 immune control. PLoS One 2013; 8:e73117. [PMID: 24023819 PMCID: PMC3759414 DOI: 10.1371/journal.pone.0073117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022] Open
Abstract
Recent studies in the SIV-macaque model of HIV infection suggest that Nef-specific CD8+ T-cell responses may mediate highly effective immune control of viraemia. In HIV infection Nef recognition dominates in acute infection, but in large cohort studies of chronically infected subjects, breadth of T cell responses to Nef has not been correlated with significant viraemic control. Improved disease outcomes have instead been associated with targeting Gag and, in some cases, Pol. However analyses of the breadth of Nef-specific T cell responses have been confounded by the extreme immunogenicity and multiple epitope overlap within the central regions of Nef, making discrimination of distinct responses impossible via IFN-gamma ELISPOT assays. Thus an alternative approach to assess Nef as an immune target is needed. Here, we show in a cohort of >700 individuals with chronic C-clade infection that >50% of HLA-B-selected polymorphisms within Nef are associated with a predicted fitness cost to the virus, and that HLA-B alleles that successfully drive selection within Nef are those linked with lower viral loads. Furthermore, the specific CD8+ T cell epitopes that are restricted by protective HLA Class I alleles correspond substantially to effective SIV-specific epitopes in Nef. Distinguishing such individual HIV-specific responses within Nef requires specific peptide-MHC I tetramers. Overall, these data suggest that CD8+ T cell targeting of certain specific Nef epitopes contributes to HIV suppression. These data suggest that a re-evaluation of the potential use of Nef in HIV T-cell vaccine candidates would be justified.
Collapse
Affiliation(s)
- Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Jonathan M. Carlson
- Microsoft Research, eScience Group, Los Angeles, California, United States of America
| | - Paolo Paioni
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Henrik Kløverpris
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- KwaZulu-Natal Research Institute for Tuberculosis & HIV, K-RITH, Nelson R Mandela School of Medicine, University of KwaZuluNatal, Durban, South Africa
| | - Roger Shapiro
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Anthony Ogwu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare NHS Trust,Northampton General Hospital, Northampton, United Kingdom
| | - Graz Luzzi
- Department of Genitourinary Medicine, Wycombe Hospital, High Wycombe, Bucks, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Thambiah Balachandran
- Department of Genitourinary Medicine, Luton and Dunstable Hospital, Luton, United Kingdom
| | - David Heckerman
- Microsoft Research, eScience Group, Los Angeles, California, United States of America
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Edwards
- The Oxford Department of Genitourinary Medicine, the Churchill Hospital, Oxford, United Kingdom
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bruce D. Walker
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
31
|
Mothé BR, Southwood S, Sidney J, English AM, Wriston A, Hoof I, Shabanowitz J, Hunt DF, Sette A. Peptide-binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes and include HLA-B27-like alleles. Immunogenetics 2013; 65:371-86. [PMID: 23417323 PMCID: PMC3633659 DOI: 10.1007/s00251-013-0686-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/23/2013] [Indexed: 02/07/2023]
Abstract
Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang GQ, Ni C, Ling F, Qiu W, Wang HB, Xiao Y, Guo XJ, Huang JY, Du HL, Wang JF, Zhao SJ, Zhuo M, Wang XN. Characterization of the major histocompatibility complex class I A alleles in cynomolgus macaques of Vietnamese origin. ACTA ACUST UNITED AC 2013; 80:494-501. [PMID: 23137320 DOI: 10.1111/tan.12024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis, Mafa) have emerged as an important animal model for infectious disease and transplantation research. Extensive characterization of their major histocompatibility complex (MHC) polymorphism regions therefore becomes urgently required. In this study, we identified 41 MHC class I A nucleotide sequences in 34 unrelated cynomolgus macaques of Vietnamese origin farmed in Southern China, including eight novel Mafa-A sequences. We found two sequences with perfect identity and six sequences with close similarity to previously defined MHC class I alleles from other populations, especially from Indonesian-origin macaques. We also found three Vietnamese-origin cynomolgus macaque MHC class I sequences for which the predicted protein sequences identical throughout their B and F binding pockets to Mamu-A1*001:01 and Mamu-A3*13:03, respectively. This is important because Mamu-A1*001:01 and Mamu-A3*13:03 are associated with longer survival and lower set-point viral load in simian immunodeficiency virus (SIV)-infected rhesus monkeys. These findings have implications for the evolutionary history of Vietnamese-origin cynomolgus macaque as well as for the use of this model in SIV/SHIV (a virus combining parts of the HIV and SIV genomes) research.
Collapse
Affiliation(s)
- G-Q Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mendoza D, Migueles SA, Rood JE, Peterson B, Johnson S, Doria-Rose N, Schneider D, Rakasz E, Trivett MT, Trubey CM, Coalter V, Hallahan CW, Watkins D, Franchini G, Lifson JD, Connors M. Cytotoxic capacity of SIV-specific CD8(+) T cells against primary autologous targets correlates with immune control in SIV-infected rhesus macaques. PLoS Pathog 2013; 9:e1003195. [PMID: 23468632 PMCID: PMC3585127 DOI: 10.1371/journal.ppat.1003195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Although the study of non-human primates has resulted in important advances for understanding HIV-specific immunity, a clear correlate of immune control over simian immunodeficiency virus (SIV) replication has not been found to date. In this study, CD8(+) T-cell cytotoxic capacity was examined to determine whether this function is a correlate of immune control in the rhesus macaque (RM) SIV infection model as has been suggested in chronic HIV infection. SIVmac251-infected human reverse transcriptase (hTERT)-transduced CD4(+) T-cell clone targets were co-incubated with autologous macaque effector cells to measure infected CD4(+) T-cell elimination (ICE). Twenty-three SIV-infected rhesus macaques with widely varying plasma viral RNA levels were evaluated in a blinded fashion. Nineteen of 23 subjects (83%) were correctly classified as long-term nonprogressor/elite controller (LTNP/EC), slow progressor, progressor or SIV-negative rhesus macaques based on measurements of ICE (weighted Kappa 0.75). LTNP/EC had higher median ICE than progressors (67.3% [22.0-91.7%] vs. 23.7% [0.0-58.0%], p = 0.002). In addition, significant correlations between ICE and viral load (r = -0.57, p = 0.01), and between granzyme B delivery and ICE (r = 0.89, p<0.001) were observed. Furthermore, the CD8(+) T cells of LTNP/EC exhibited higher per-cell cytotoxic capacity than those of progressors (p = 0.004). These findings support that greater lytic granule loading of virus-specific CD8(+) T cells and efficient delivery of active granzyme B to SIV-infected targets are associated with superior control of SIV infection in rhesus macaques, consistent with observations of HIV infection in humans. Therefore, such measurements appear to represent a correlate of control of viral replication in chronic SIV infection and their role as predictors of immunologic control in the vaccine setting should be evaluated.
Collapse
Affiliation(s)
- Daniel Mendoza
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen A. Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julia E. Rood
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bennett Peterson
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Johnson
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Doria-Rose
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Douglas Schneider
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Eva Rakasz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Vicky Coalter
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Claire W. Hallahan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Miami Miller School of Medicine, Department of Pathology Clinical Research Building, Miami, Florida, United States of America
| | - Genoveffa Franchini
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
34
|
Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O'Connor DH. Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J 2013; 54:196-210. [PMID: 24174442 PMCID: PMC3814398 DOI: 10.1093/ilar/ilt036] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.
Collapse
Affiliation(s)
- Roger W. Wiseman
- Address correspondence and reprint requests to Dr. Roger Wiseman, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711 or email
| | | | | | | | | | | |
Collapse
|
35
|
Nomura T, Matano T. Association of MHC-I genotypes with disease progression in HIV/SIV infections. Front Microbiol 2012; 3:234. [PMID: 22754552 PMCID: PMC3386493 DOI: 10.3389/fmicb.2012.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/11/2012] [Indexed: 12/27/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTLs) are major effectors in acquired immune responses against viral infection. Virus-specific CTLs recognize specific viral peptides presented by major histocompatibility complex class-I (MHC-I) on the surface of virus-infected target cells via their T cell receptor (TCR) and eliminate target cells by both direct and indirect mechanisms. In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host immune responses fail to contain the virus and allow persistent viral replication, leading to AIDS progression. CTL responses exert strong suppressive pressure on HIV/SIV replication and cumulative studies have indicated association of HLA/MHC-I genotypes with rapid or slow AIDS progression.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
36
|
Abstract
The complex interplay between the host immune response and HIV has been the subject of intense research over the last 25 years. HIV and simian immunodeficiency virus (SIV) CD8 T cells have been of particular interest since they were demonstrated to be temporally associated with reduction in virus load shortly following transmission. Here, we briefly review the phenotypic and functional properties of HIV-specific and SIV-specific CD8 T-cell subsets during HIV infection and consider the influence of viral variation with specific responses that are associated with disease progression or control. The development of an effective HIV/AIDS vaccine combined with existing successful prevention and treatment strategies is essential for preventing new infections. In the context of previous clinical HIV/AIDS vaccine trials, we consider the challenges faced by therapeutic and vaccine strategies designed to elicit effective HIV-specific CD8 T cells.
Collapse
|
37
|
Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 2012; 64:615-31. [PMID: 22526602 DOI: 10.1007/s00251-012-0617-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response. The MHC region is characterised by a high gene density, and most of these genes display considerable polymorphism. Next to humans, non-human primates (NHP) are well studied for their MHC. The present nomenclature report provides the scientific community with the latest nomenclature guidelines/rules and current implemented nomenclature revisions for Great Ape, Old and New World monkey species. All the currently published MHC data for the different Great Ape, Old and New World monkey species are archived at the Immuno Polymorphism Database (IPD)-MHC NHP database. The curators of the IPD-MHC NHP database are, in addition, responsible for providing official designations for newly detected polymorphisms.
Collapse
|
38
|
Abstract
Recent years have seen a significant increase in understanding of the host genetic and genomic determinants of susceptibility to HIV-1 infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale in vitro genome screens. These studies have identified common variants in some host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogs of genes and pathways involved in viral replication. Experimental models of AIDS and studies in natural hosts of primate lentiviruses have complemented and in some cases extended these findings. As the relevant technology continues to progress, the expectation is that such studies will increase in depth (e.g., to include host whole exome and whole genome sequencing) and in breadth (in particular, by integrating multiple data types).
Collapse
Affiliation(s)
- Amalio Telenti
- Institute of Microbiology, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
39
|
HLA B*5701-positive long-term nonprogressors/elite controllers are not distinguished from progressors by the clonal composition of HIV-specific CD8+ T cells. J Virol 2012; 86:4014-8. [PMID: 22278241 DOI: 10.1128/jvi.06982-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To better understand the qualitative features of effective human immunodeficiency virus (HIV)-specific immunity, we examined the TCR clonal composition of CD8(+) T cells recognizing conserved HIV p24-derived epitopes in HLA-B*5701-positive long-term nonprogressors/elite controllers (LTNP/EC) and HLA-matched progressors. Both groups displayed oligoclonal HLA-B5701-restricted p24-specific CD8(+) T-cell responses with similar levels of diversity and few public clonotypes. Thus, HIV-specific CD8(+) T-cell responses in LTNP/EC are not differentiated from those of progressors on the basis of clonal diversity or TCR sharing.
Collapse
|
40
|
Goulder PJR, Prendergast AJ. Approaches towards avoiding lifelong antiretroviral therapy in paediatric HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 719:25-37. [PMID: 22125032 DOI: 10.1007/978-1-4614-0204-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Reed JS, Sidney J, Piaskowski SM, Glidden CE, León EJ, Burwitz BJ, Kolar HL, Eernisse CM, Furlott JR, Maness NJ, Walsh AD, Rudersdorf RA, Bardet W, McMurtrey CP, O’Connor DH, Hildebrand WH, Sette A, Watkins DI, Wilson NA. The role of MHC class I allele Mamu-A*07 during SIV(mac)239 infection. Immunogenetics 2011; 63:789-807. [PMID: 21732180 PMCID: PMC3706270 DOI: 10.1007/s00251-011-0541-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/19/2011] [Indexed: 01/23/2023]
Abstract
Virus-specific CD8(+) T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n = 63 of 1,240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIV(mac)239 for their capacity to bind Mamu-A1*007:01; 33 were found to bind with an affinity of 500 nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T-cell reactivity. In all, 11 of the peptides elicited IFN-γ(+) T-cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultradeep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8(+) T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8(+) T cells and is part of the immune response to SIV(mac)239.
Collapse
Affiliation(s)
- Jason S. Reed
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Shari M. Piaskowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Chrystal E. Glidden
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Enrique J. León
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Holly L. Kolar
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | | | - Jessica R. Furlott
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Nicholas J. Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Andrew D. Walsh
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Richard A. Rudersdorf
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Curtis P. McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - David I. Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| |
Collapse
|
42
|
Wambua D, Henderson R, Solomon C, Hunter M, Marx P, Sette A, Mothé BR. SIV-infected Chinese-origin rhesus macaques express specific MHC class I alleles in either elite controllers or normal progressors. J Med Primatol 2011; 40:244-7. [PMID: 21781132 DOI: 10.1111/j.1600-0684.2011.00487.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Wambua
- Department of Biology, California State University, San Marcos, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
CD8+ T cell escape mutations in simian immunodeficiency virus SIVmac239 cause fitness defects in vivo, and many revert after transmission. J Virol 2011; 85:12804-10. [PMID: 21957309 DOI: 10.1128/jvi.05841-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Virus-specific CD8(+) T lymphocytes select for escape mutations in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). To assess the effects of these mutations on viral fitness, we introduced escape mutations into 30 epitopes (bound by five major histocompatibility complex class I [MHC-I] molecules) in three different viruses. Two of these MHC-I alleles are associated with elite control. Two of the three viruses demonstrated reduced fitness in vivo, and 27% of the introduced mutations reverted. These findings suggest that T cell epitope diversity may not be such a daunting problem for the development of an HIV vaccine.
Collapse
|
44
|
Barsov EV, Trivett MT, Minang JT, Sun H, Ohlen C, Ott DE. Transduction of SIV-specific TCR genes into rhesus macaque CD8+ T cells conveys the ability to suppress SIV replication. PLoS One 2011; 6:e23703. [PMID: 21886812 PMCID: PMC3160320 DOI: 10.1371/journal.pone.0023703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/22/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8(+) T-cell control of SIV replication in CD4(+) T cells, we asked whether TCRs isolated from rhesus macaque CD8(+) T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8(+) T cells obtained from an uninfected/unvaccinated animal. PRINCIPAL FINDINGS We transferred SIV-specific TCR genes isolated from rhesus macaque CD8(+) T-cell clones with varying abilities to suppress SIV replication in vitro into CD8(+) T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8(+) T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNγ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones. CONCLUSIONS Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases.
Collapse
Affiliation(s)
- Eugene V. Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Haosi Sun
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - David E. Ott
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
45
|
Understanding animal models of elite control: windows on effective immune responses against immunodeficiency viruses. Curr Opin HIV AIDS 2011; 6:197-201. [PMID: 21502922 DOI: 10.1097/coh.0b013e3283453e16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We will summarize recent advances in research regarding control of simian immunodeficiency virus replication in nonhuman primate models. We will then relate these findings to the broader field of human immunodeficiency virus (HIV) vaccine development. RECENT FINDINGS Recent studies have highlighted the importance of T-cell responses in elite control, especially CD8+ T-cell responses and provide insight into the kinetics and qualities of such effective responses. Additionally, these findings suggest that the peptides bound by elite control-associated major histocompatibility complex class I molecules in monkeys and humans share many properties. SUMMARY Animal models of effective immune control of immunodeficiency virus replication have provided important insight into the components of successful immune responses against these viruses. Similarities between the human and nonhuman primate responses to immunodeficiency viruses should help us understand the nature of elite control. Further study of the acute phase, in which virus replication is first brought under control, may help define important characteristics of viral control that could be engendered by a successful HIV vaccine.
Collapse
|
46
|
Maness NJ, Walsh AD, Rudersdorf RA, Erickson PA, Piaskowski SM, Wilson NA, Watkins DI. Chinese origin rhesus macaque major histocompatibility complex class I molecules promiscuously present epitopes from SIV associated with molecules of Indian origin; implications for immunodominance and viral escape. Immunogenetics 2011; 63:587-97. [PMID: 21626440 DOI: 10.1007/s00251-011-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 05/19/2011] [Indexed: 01/21/2023]
Abstract
The presentation of identical peptides by different major histocompatibility complex class I (MHC-I) molecules, termed promiscuity, is a controversial feature of T cell-mediated immunity to pathogens. The astounding diversity of MHC-I molecules in human populations, presumably to enable binding of equally diverse peptides, implies promiscuity would be a rare phenomenon. However, if it occurs, it would have important implications for immunity. We screened 77 animals for responses to peptides known to bind MHC-I molecules that were not expressed by these animals. Some cases of supposed promiscuity were determined to be the result of either non-identical optimal peptides or were simply not mapped to the correct MHC-I molecule in previous studies. Cases of promiscuity, however, were associated with alterations of immunodominance hierarchies, either in terms of the repertoire of peptides presented by the different MHC-I molecules or in the magnitude of the responses directed against the epitopes themselves. Specifically, we found that the Mamu-B*017:01-restricted peptides Vif HW8 and cRW9 were also presented by Mamu-A2*05:26 and targeted by an animal expressing that allele. We also found that the normally subdominant Mamu-A1*001:01 presented peptide Gag QI9 was also presented by Mamu-B*056:01. Both A2*05:26 and B*056:01 are molecules typically or exclusively expressed by animals of Chinese origin. These data clearly demonstrate that MHC-I epitope promiscuity, though rare, might have important implications for immunodominance and for the transmission of escape mutations, depending on the relative frequencies of the given alleles in a population.
Collapse
Affiliation(s)
- Nicholas James Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI 53711, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Reduction of CD4+ T cells in vivo does not affect virus load in macaque elite controllers. J Virol 2011; 85:7454-9. [PMID: 21593153 DOI: 10.1128/jvi.00738-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A small percentage of human immunodeficiency virus (HIV)- and simian immunodeficiency virus (SIV)-infected individuals spontaneously control virus replication. The majority of these elite controllers mount high-frequency virus-specific CD4(+) T cell responses. To evaluate the role these responses might play in viral control, we depleted two elite controller macaques of CD4(+) cells. SIV-specific CD4(+) T cell responses did not return to baseline levels until 8 weeks postdepletion. Viral loads remained stable throughout the experiment, suggesting that SIV-specific CD4(+) T cell responses may not play a direct role in controlling chronic viral replication in these elite controllers.
Collapse
|
48
|
Lasaro MO, Haut LH, Zhou X, Xiang Z, Zhou D, Li Y, Giles-Davis W, Li H, Engram JC, Dimenna LJ, Bian A, Sazanovich M, Parzych EM, Kurupati R, Small JC, Wu TL, Leskowitz RM, Klatt NR, Brenchley JM, Garber DA, Lewis M, Ratcliffe SJ, Betts MR, Silvestri G, Ertl HC. Vaccine-induced T cells provide partial protection against high-dose rectal SIVmac239 challenge of rhesus macaques. Mol Ther 2011; 19:417-26. [PMID: 21081905 PMCID: PMC3034846 DOI: 10.1038/mt.2010.238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/05/2010] [Indexed: 12/31/2022] Open
Abstract
Despite enormous efforts by the scientific community, an effective HIV vaccine remains elusive. To further address to what degree T cells in absence of antibodies may protect against simian immunodeficiency virus (SIV) disease progression, rhesus macaques were vaccinated intramuscularly with a chimpanzee-derived Ad vector (AdC) serotype 6 and then boosted intramuscularly with a serologically distinct AdC vector of serotype 7 both expressing Gag of SIVmac239. Animals were subsequently boosted intramuscularly with a modified vaccinia Ankara (MVA) virus expressing Gag and Tat of the homologous SIV before mucosal challenge with a high dose of SIVmac239 given rectally. Whereas vaccinated animals showed only a modest reduction of viral loads, their overall survival was improved, in association with a substantial protection from the loss of CD4(+) T cells. In addition, the two vaccinated Mamu-A*01(+) macaques controlled viral loads to levels below detection within weeks after challenge. These data strongly suggest that T cells, while unable to affect SIV acquisition upon high-dose rectal infection, can reduce disease progression. Induction of potent T-cell responses should thus remain a component of our efforts to develop an efficacious vaccine to HIV-1.
Collapse
|
49
|
Transcriptionally abundant major histocompatibility complex class I alleles are fundamental to nonhuman primate simian immunodeficiency virus-specific CD8+ T cell responses. J Virol 2011; 85:3250-61. [PMID: 21270169 DOI: 10.1128/jvi.02355-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV)-infected macaques are the preferred animal model for human immunodeficiency virus (HIV) vaccines that elicit CD8(+) T cell responses. Unlike humans, whose CD8(+) T cell responses are restricted by a maximum of six HLA class I alleles, macaques express up to 20 distinct major histocompatibility complex class I (MHC-I) sequences. Interestingly, only a subset of macaque MHC-I sequences are transcriptionally abundant in peripheral blood lymphocytes. We hypothesized that highly transcribed MHC-I sequences are principally responsible for restricting SIV-specific CD8(+) T cell responses. To examine this hypothesis, we measured SIV-specific CD8(+) T cell responses in MHC-I homozygous Mauritian cynomolgus macaques. Each of eight CD8(+) T cell responses defined by full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay were restricted by four of the five transcripts that are transcriptionally abundant (>1% of total MHC-I transcripts in peripheral blood lymphocytes). The five transcriptionally rare transcripts shared by these animals did not restrict any detectable CD8(+) T cell responses. Further, seven CD8(+) T cell responses were defined by identifying peptide binding motifs of the three most frequent MHC-I transcripts on the M3 haplotype. Combined, these results suggest that transcriptionally abundant MHC-I transcripts are principally responsible for restricting SIV-specific CD8(+) T cell responses. Thus, only a subset of the thousands of known MHC-I alleles in macaques should be prioritized for CD8(+) T cell epitope characterization.
Collapse
|
50
|
Nieuwenhuis I, Beenhakker N, Bogers WMJM, Otting N, Bontrop RE, Dubois P, Mooij P, Heeney JL, Koopman G. No difference in Gag and Env immune-response profiles between vaccinated and non-vaccinated rhesus macaques that control immunodeficiency virus replication. J Gen Virol 2010; 91:2974-84. [PMID: 20826621 DOI: 10.1099/vir.0.022772-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent advances in human immunodeficiency virus (HIV) vaccine design have resulted in induction of strong CD4 T-cell proliferative and polyfunctional cytokine responses, which are also characteristic for long-term non-progressing (LTNP) HIV-infected individuals. However, limited information is available on the persistence of these responses after infection. Results from studies in non-human primates indicate that vaccine-induced immune responses are partially maintained upon viral infection and differ from the responses seen in non-vaccinated animals that typically progress to disease. However, it is unclear how these partially preserved responses compare to immune responses that are acquired naturally by LTNP animals. In this study, immune-response profiles were compared between vaccinated animals that, upon SHIV₈₉.₆ challenge, became infected but were able to control virus replication, and a group of animals having spontaneous control of this viral infection. Both groups were found to develop very similar immune responses with regard to induction of CD4 and CD8 T-cell polyfunctional cytokine responses, proliferative capacity and cytotoxic capacity, as measured by a standard ₅₁Cr release assay and more direct ex vivo and in vivo CTL assays. Hence, vaccinated animals that become infected, but control infection, appear to establish immune responses that are similar to those elicited by long-term non-progressors.
Collapse
Affiliation(s)
- Ivonne Nieuwenhuis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|