1
|
Sharma D, Singh V, Kumar A, Singh TG. Genistein: A promising ally in combating neurodegenerative disorders. Eur J Pharmacol 2025; 991:177273. [PMID: 39828018 DOI: 10.1016/j.ejphar.2025.177273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Neurodegenerative disorders arise when nerve cells in the brain or peripheral nervous system gradually lose functions and eventually die. Although certain therapies may alleviate some of the physical and mental symptoms associated with neurodegenerative disorders, hence slowing their progression, but no sure-shot treatment is currently available. It was shown that the rise in life expectancy and the number of elderly people in the community led to an increasing trend in the incidence and prevalence of neurodegenerative disease. Phytomolecules are demonstrating their effectiveness in combating, regression, and delaying various diseases. Genistein is one of soy isoflavone with antioxidant, anti-inflammatory, and estrogenic effects. Researchers demonstrated that Genistein treatment significantly reduced hyperglycemia, improved cognitive performance by modulating acetylcholinesterase activity and oxidative stress, and alleviated neuroinflammatory conditions in mice. This paper evaluates (in vivo and in vitro) various molecular targets of isoflavones and their ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | |
Collapse
|
2
|
Duarte P, Sanchez-Porro FJ, Crisman E, Cores Á, Jiménez I, Cuadrado A, Menéndez JC, León R. Network-Based Drug Optimization toward the Treatment of Parkinson's Disease: NRF2, MAO-B, Oxidative Stress, and Chronic Neuroinflammation. J Med Chem 2025. [PMID: 39818855 DOI: 10.1021/acs.jmedchem.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, affects around 10 million people worldwide. It is a multifactorial disease marked by dopaminergic neuron loss with oxidative stress (OS) and neuroinflammation as key pathological drivers. Current treatments focus on dopamine replacement and are symptomatic, underscoring the urgent need for disease-modifying therapies. Here, we present a novel class of dual MAO-B inhibitors and NRF2 inducers with neuroprotective properties in in vitro PD models. Through an optimization program, we enhanced their MAO-B inhibitory potency, selectivity, and NRF2 induction capacity while achieving favorable pharmacokinetic profiles. Virtual library screening identified two core derivatives, leading to the development of compound 11, which exhibited potent anti-inflammatory and neuroprotective activity in OS-related in vitro models. Compound 11 also demonstrated high liver microsomal stability and favorable pharmacokinetics in mice, making it a promising candidate for further investigation as a potential PD therapy.
Collapse
Affiliation(s)
- Pablo Duarte
- Consejo Superior de Investigaciones Científicas (IQM-CSIC), Instituto de Química Médica, 28006 Madrid, Spain
| | - Francisco J Sanchez-Porro
- Consejo Superior de Investigaciones Científicas (IQM-CSIC), Instituto de Química Médica, 28006 Madrid, Spain
| | - Enrique Crisman
- Consejo Superior de Investigaciones Científicas (IQM-CSIC), Instituto de Química Médica, 28006 Madrid, Spain
- Fundación Teófilo Hernando para la I+D del Medicamento, Las Rozas, 28290 Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Irene Jiménez
- Consejo Superior de Investigaciones Científicas (IQM-CSIC), Instituto de Química Médica, 28006 Madrid, Spain
- Fundación Teófilo Hernando para la I+D del Medicamento, Las Rozas, 28290 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigación Sanitaria La Paz (IdiPaz) and Departamento de Bioquímica, Facultad de Medicina, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael León
- Consejo Superior de Investigaciones Científicas (IQM-CSIC), Instituto de Química Médica, 28006 Madrid, Spain
| |
Collapse
|
3
|
Schrier MS, Smirnova MI, Nemeth DP, Deth RC, Quan N. Flavins and Flavoproteins in the Neuroimmune Landscape of Stress Sensitization and Major Depressive Disorder. J Inflamm Res 2025; 18:681-699. [PMID: 39839188 PMCID: PMC11748166 DOI: 10.2147/jir.s501652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood. Flavins are potent biomolecules that regulate many redox activities, including ROS generation and energy production. Studies have found that circulating flavin levels are modulated during stress and MDD. Flavins are also known for their importance in immune responses. This review offers a unique perspective that considers the redox-active cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), as vital substrates for linking MDD-related maladaptive processes together, by permitting stress-induced enhancement of microglial interleukin-1 beta (IL-1β) signaling.
Collapse
Affiliation(s)
- Matt Scott Schrier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maria Igorevna Smirnova
- The International Max Planck Research School (IMPRS) for Synapses and Circuits, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, USA
| | - Daniel Paul Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
4
|
Beucher L, Gabillard-Lefort C, Baris OR, Mialet-Perez J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ? Redox Biol 2024; 77:103393. [PMID: 39405979 PMCID: PMC11525629 DOI: 10.1016/j.redox.2024.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lise Beucher
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | | | - Olivier R Baris
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | - Jeanne Mialet-Perez
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
5
|
Braga J, Kuik EJY, Lepra M, Rusjan PM, Kish SJ, Vieira EL, Nasser Z, Verhoeff N, Vasdev N, Chao T, Bagby M, Boileau I, Kloiber S, Husain MI, Kolla N, Koshimori Y, Faiz K, Wang W, Meyer JH. Astrogliosis Marker [ 11C]SL25.1188 After COVID-19 With Ongoing Depressive and Cognitive Symptoms. Biol Psychiatry 2024:S0006-3223(24)01656-1. [PMID: 39395470 DOI: 10.1016/j.biopsych.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND After acute COVID-19, 5% of people experience persistent depressive symptoms and reduced cognitive function (COVID-DC). Theoretical models propose that astrogliosis is important in long COVID, but measures primarily indicative of astrogliosis have not been studied in the brain of long COVID or COVID-DC. The objective of the current study was to measure [11C]SL25.1188 total distribution volume ([11C]SL25.1188 VT), an index of monoamine oxidase B density and a marker of astrogliosis, with positron emission tomography in participants with COVID-DC and compare with healthy control participants. METHODS In 21 COVID-DC cases and 21 healthy control participants, [11C]SL25.1188 VT was measured in the prefrontal cortex, anterior cingulate cortex, hippocampus, dorsal putamen, and ventral striatum. Depressive symptoms were measured with the Beck Depression Inventory-II, and cognitive symptoms were measured with neuropsychological tests. RESULTS [11C]SL25.1188 VT was higher in participants with COVID-DC in the prefrontal cortex, anterior cingulate cortex, hippocampus, dorsal putamen, and ventral striatum than in healthy control participants. Depressive symptom severity negatively correlated with [11C]SL25.1188 VT across prioritized brain regions. More recent acute COVID-19 positively correlated with [11C]SL25.1188 VT, reflecting higher values since predominance of the Omicron variant. Exploratory analyses found greater [11C]SL25.1188 VT in the hippocampus, dorsal putamen, and ventral striatum of COVID-DC participants than control participants with a major depressive episode with no history of COVID-19, and there was no relationship to cognitive testing in prioritized regions. CONCLUSIONS Results strongly support the presence of monoamine oxidase B-labeled astrogliosis in COVID-DC throughout the regions assessed, although the association of greater astrogliosis with fewer symptoms raises the possibility of a protective role. The magnitude of astrogliosis in COVID-DC is greater since the emergence of the Omicron variant.
Collapse
Affiliation(s)
- Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Emily J Y Kuik
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Mariel Lepra
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erica L Vieira
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Natasha Verhoeff
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Bagby
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Kloiber
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Kolla
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wei Wang
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
7
|
Singh A, Sinha S, Singh NK. Dietary Natural Flavonoids: Intervention for MAO-B Against Parkinson's Disease. Chem Biol Drug Des 2024; 104:e14619. [PMID: 39223743 DOI: 10.1111/cbdd.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suman Sinha
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
8
|
Ayoup MS, Ghanem M, Abdel-Hamid H, Abu-Serie MM, Masoud A, Ghareeb DA, Hawsawi MB, Sonousi A, Kassab AE. New 1,2,4-oxadiazole derivatives as potential multifunctional agents for the treatment of Alzheimer's disease: design, synthesis, and biological evaluation. BMC Chem 2024; 18:130. [PMID: 39003489 PMCID: PMC11246588 DOI: 10.1186/s13065-024-01235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
A series of new 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their anti-AD potential. The results revealed that eleven compounds (1b, 2a-c, 3b, 4a-c, and 5a-c) exhibited excellent inhibitory potential against AChE, with IC50 values ranging from 0.00098 to 0.07920 µM. Their potency was 1.55 to 125.47 times higher than that of donepezil (IC50 = 0.12297 µM). In contrast, the newly synthesized oxadiazole derivatives with IC50 values in the range of 16.64-70.82 µM exhibited less selectivity towards BuChE when compared to rivastigmine (IC50 = 5.88 µM). Moreover, oxadiazole derivative 2c (IC50 = 463.85 µM) was more potent antioxidant than quercetin (IC50 = 491.23 µM). Compounds 3b (IC50 = 536.83 µM) and 3c (IC50 = 582.44 µM) exhibited comparable antioxidant activity to that of quercetin. Oxadiazole derivatives 3b (IC50 = 140.02 µM) and 4c (IC50 = 117.43 µM) showed prominent MAO-B inhibitory potential. They were more potent than biperiden (IC50 = 237.59 µM). Compounds 1a, 1b, 3a, 3c, and 4b exhibited remarkable MAO-A inhibitory potential, with IC50 values ranging from 47.25 to 129.7 µM. Their potency was 1.1 to 3.03 times higher than that of methylene blue (IC50 = 143.6 µM). Most of the synthesized oxadiazole derivatives provided significant protection against induced HRBCs lysis, revealing the nontoxic effect of the synthesized compounds, thus making them safe drug candidates. The results unveiled oxadiazole derivatives 2b, 2c, 3b, 4a, 4c, and 5a as multitarget anti-AD agents. The high AChE inhibitory potential can be computationally explained by the synthesized oxadiazole derivatives' significant interactions with the AChE active site. Compound 2b showed good physicochemical properties. All these data suggest that 2b could be considered as a promising candidate for future development.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mariam Ghanem
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Aliaa Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt.
| |
Collapse
|
9
|
Pifferi A, Chiaino E, Fernandez-Abascal J, Bannon AC, Davey GP, Frosini M, Valoti M. Exploring the Regulation of Cytochrome P450 in SH-SY5Y Cells: Implications for the Onset of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:7439. [PMID: 39000543 PMCID: PMC11242626 DOI: 10.3390/ijms25137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, β-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following β-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Pifferi
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Jesus Fernandez-Abascal
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain;
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Aoife C. Bannon
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, 3533645 Dublin, Ireland;
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| |
Collapse
|
10
|
Asefi MB, Heidari A, Hajikarim-Hamedani A, Mousavi Z, Ashabi G, Sadat-Shirazi MS, Zarrindast MR. Preconception ethanol exposure changes anxiety, depressive and checking-like behavior and alter the expression levels of MAO-B in male offspring. Neurotoxicol Teratol 2024; 104:107367. [PMID: 38866258 DOI: 10.1016/j.ntt.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Alcohol use, which alters the epigenome, increases the probability that it could affect subsequent generations, even if they were never directly exposed to ethanol or even in utero. We explored the effects of parental ethanol exposure before conception on behavioral changes in the offspring. Considering the role of Monoamine oxidase-B (MAO-B) in dopamine turnover in the prefrontal cortex (PFC) and its influence on behavior, and taking into account that ethanol exposure could alter MAO-B, we assessed the protein levels in the offspring. Male and female rats were exposed to ethanol for 30 days and then allowed ten days of abstinence. Afterward, they were mated with either control or ethanol-exposed rats. The F1 and F2 male offspring underwent tests to assess behavioral changes. Additionally, the levels of MAO-B in the PFC were evaluated. Results revealed that in the F1, anxiety increased only in the bi-parental ethanol-exposed male offspring in the elevated plus maze test (p < 0.05), while depressive-like behavior rose only in maternal and bi-parental ethanol-exposed offspring (p < 0.01). However, compulsive-like behavior increased in all ethanol-exposed offspring (p < 0.01). No significant phenotypic changes were observed in the F2. The levels of MAO-B in the PFC increased in the maternal (p < 0.05) and bi-parental ethanol-exposed offspring (p < 0.01). Our study demonstrates that parental ethanol exposure, even in the days preceding mating, adversely affects behaviors and induces molecular changes in the brain. Given these findings, it becomes imperative to monitor children exposed to parental (especially maternal) ethanol for the prevention of mental disorders.
Collapse
Affiliation(s)
- Mohammad Basir Asefi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Zahra Mousavi
- Department of Pharmacology-Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
12
|
Chen Q, Lin R, Wang W, Zuo Y, Zhuo Y, Yu Y, Chen S, Gu H. Efficient Electrochemical Microsensor for the Simultaneous Measurement of Hydrogen Peroxide and Ascorbic Acid in Living Brains. Anal Chem 2024; 96:6683-6691. [PMID: 38619493 DOI: 10.1021/acs.analchem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 μM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.
Collapse
Affiliation(s)
- Qiuyue Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Wenhui Wang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha 410006, Hunan, P. R. China
| | - Yanyan Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| |
Collapse
|
13
|
Kassab AE, Gedawy EM, Sayed AS. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer's disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation. Int J Biol Macromol 2024; 265:131018. [PMID: 38518928 DOI: 10.1016/j.ijbiomac.2024.131018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aβ) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3β (GSK3-β) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aβ aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| | - Alaa S Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
14
|
Wu J, Li Y, Tian S, Na S, Wei H, Wu Y, Yang Y, Shen Z, Ding J, Bao S, Liu S, Li L, Feng R, Zhu Y, He C, Yue J. CYP1B1 affects the integrity of the blood-brain barrier and oxidative stress in the striatum: An investigation of manganese-induced neurotoxicity. CNS Neurosci Ther 2024; 30:e14633. [PMID: 38429921 PMCID: PMC10907825 DOI: 10.1111/cns.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
AIMS Excessive influx of manganese (Mn) into the brain across the blood-brain barrier induces neurodegeneration. CYP1B1 is involved in the metabolism of arachidonic acid (AA) that affects vascular homeostasis. We aimed to investigate the effect of brain CYP1B1 on Mn-induced neurotoxicity. METHOD Brain Mn concentrations and α-synuclein accumulation were measured in wild-type and CYP1B1 knockout mice treated with MnCl2 (30 mg/kg) and biotin (0.2 g/kg) for 21 continuous days. Tight junctions and oxidative stress were analyzed in hCMEC/D3 and SH-SY5Y cells after the treatment with MnCl2 (200 μM) and CYP1B1-derived AA metabolites (HETEs and EETs). RESULTS Mn exposure inhibited brain CYP1B1, and CYP1B1 deficiency increased brain Mn concentrations and accelerated α-synuclein deposition in the striatum. CYP1B1 deficiency disrupted the integrity of the blood-brain barrier (BBB) and increased the ratio of 3, 4-dihydroxyphenylacetic acid (DOPAC) to dopamine in the striatum. HETEs attenuated Mn-induced inhibition of tight junctions by activating PPARγ in endothelial cells. Additionally, EETs attenuated Mn-induced up-regulation of the KLF/MAO-B axis and down-regulation of NRF2 in neuronal cells. Biotin up-regulated brain CYP1B1 and reduced Mn-induced neurotoxicity in mice. CONCLUSIONS Brain CYP1B1 plays a critical role in both cerebrovascular and dopamine homeostasis, which might serve as a novel therapeutic target for the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Juan Wu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of PharmacyTaikang Tongji (Wuhan) HospitalWuhuChina
| | - Yueran Li
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of PharmacyThe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Shuwei Tian
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shufang Na
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan UniversityTransplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on TransplantationWuhanHubeiChina
| | - Hongyan Wei
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yafei Wu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yafei Yang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Zixia Shen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jiayue Ding
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shenglan Bao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Siqi Liu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lingyun Li
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Rongling Feng
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yong Zhu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chunyan He
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Hubei Province Key Laboratory of Allergy and ImmunologyWuhanChina
| |
Collapse
|
15
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
16
|
Moradi Vastegani S, Khoshnam SE, Ghafouri S, Bakhtiari N, Farbood Y, Sarkaki A. Anethole attenuates motor dysfunctions, striatal neuronal activity deficiency and blood brain barrier permeability by decreasing striatal α-synuclein and oxidative stress in rotenone-induced Parkinson's disease of male rats. PLoS One 2023; 18:e0294612. [PMID: 37972114 PMCID: PMC10653401 DOI: 10.1371/journal.pone.0294612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Anethole is the main compound of the essential oil of anise and several other plants, which has antioxidant, anti-inflammatory, and neuroprotective properties. Oxidative stress is considered as an important factor in the pathogenesis of PD. In the present study, we aimed to investigate the effects of anethole against rotenone-induced PD. METHODS Male Wistar rats were randomly divided into six groups. Control group received DMSO + sunflower oil, model group received rotenone (2 mg/kg, s.c, daily for 35 days), positive control group received L-Dopa, and test groups received anethole (62.5, 125, and 250 mg/kg, i.g, daily for 35 days) 1 hour before each rotenone injection. Body weight changes, rotarod test, stride length test, and extracellular single unit recording were performed after treatment. After behavioral test, Brain water content and blood brain barrier (BBB) permeability were evaluated, and the levels of malondialdehyde (MDA), superoxide dismutases (SOD), alpha-synuclein and MAO-B were measured in the striatum. RESULTS Chronic administration of rotenone induced body weight loss and caused significant dysfunction in locomotor activity, neuronl firing rate, and BBB. Rotenone also decreased SOD activity, increased MDA level, and elevated the expression of alpha-synuclein and MAO-B in the striatum. However, treatment with anethole attenuated body weight loss, motor function, neuronal activity, and BBB function. Furthermore, Anethole treatment attenuated oxidative stress and decreased the expression of alpha-synuclein and MAO-B compared to the rotenone group. CONCLUSION Our results show that through its antioxidant properties, aethole can improve the cellular, molecular and behavioral characteristics of rotenone-induced Parkinson's disease.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Koshimori Y, Cusimano MD, Vieira EL, Rusjan PM, Kish SJ, Vasdev N, Moriguchi S, Boileau I, Chao T, Nasser Z, Ishrat Husain M, Faiz K, Braga J, Meyer JH. Astrogliosis marker 11C-SL25.1188 PET in traumatic brain injury with persistent symptoms. Brain 2023; 146:4469-4475. [PMID: 37602426 PMCID: PMC10629767 DOI: 10.1093/brain/awad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Traumatic brain injury (TBI) is common but little is known why up to a third of patients have persisting symptoms. Astrogliosis, a pathophysiological response to brain injury, may be a potential therapeutic target, but demonstration of astrogliosis in the brain of humans with TBI and persistent symptoms is lacking. Astroglial marker monoamine oxidase B (MAO-B) total distribution volume (11C-SL25.1188 VT), an index of MAO-B density, was measured in 29 TBI and 29 similarly aged healthy control cases with 11C-SL25.1188 PET, prioritizing prefrontal cortex (PFC) and cortex proximal to cortical convexity. Correlations of PFC 11C-SL25.1188 VT with psychomotor and processing speed; and serum blood measures implicated in astrogliosis were determined. 11C-SL25.1188 VT was greater in TBI in PFC (P = 0.00064) and cortex (P = 0.00038). PFC 11C-SL25.1188 VT inversely correlated with Comprehensive Trail Making Test psychomotor and processing speed (r = -0.48, P = 0.01). In participants scanned within 2 years of last TBI, PFC 11C-SL25.1188 VT correlated with serum glial fibrillary acid protein (r = 0.51, P = 0.037) and total tau (r = 0.74, P = 0.001). Elevated 11C-SL25.1188 VT argues strongly for astrogliosis and therapeutics modifying astrogliosis towards curative phenotypes should be tested in TBI with persistent symptoms. Given substantive effect size, astrogliosis PET markers should be applied to stratify cases and/or assess target engagement for putative therapeutics targeting astrogliosis.
Collapse
Affiliation(s)
- Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Michael D Cusimano
- Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Erica L Vieira
- Molecular Neurobiology and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Sho Moriguchi
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
18
|
Pileggi CA, Parmar G, Elkhatib H, Stewart CM, Alecu I, Côté M, Bennett SA, Sandhu JK, Cuperlovic-Culf M, Harper ME. The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100112. [PMID: 38020812 PMCID: PMC10663135 DOI: 10.1016/j.crneur.2023.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Hussein Elkhatib
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Current Address: Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jagdeep K. Sandhu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
19
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
20
|
Roy R, Paul R, Bhattacharya P, Borah A. Combating Dopaminergic Neurodegeneration in Parkinson's Disease through Nanovesicle Technology. ACS Chem Neurosci 2023; 14:2830-2848. [PMID: 37534999 DOI: 10.1021/acschemneuro.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration, resulting in dopamine depletion and motor behavior deficits. Since the discovery of L-DOPA, it has been the most prescribed drug for symptomatic relief in PD, whose prolonged use, however, causes undesirable motor fluctuations like dyskinesia and dystonia. Further, therapeutics targeting the pathological hallmarks of PD including α-synuclein aggregation, oxidative stress, neuroinflammation, and autophagy impairment have also been developed, yet PD treatment is a largely unmet success. The inception of the nanovesicle-based drug delivery approach over the past few decades brings add-on advantages to the therapeutic strategies for PD treatment in which nanovesicles (basically phospholipid-containing artificial structures) are used to load and deliver drugs to the target site of the body. The present review narrates the characteristic features of nanovesicles including their blood-brain barrier permeability and ability to reach dopaminergic neurons of the brain and finally discusses the current status of this technology in the treatment of PD. From the review, it becomes evident that with the assistance of nanovesicle technology, the therapeutic efficacy of anti-PD pharmaceuticals, phyto-compounds, as well as that of nucleic acids targeting α-synuclein aggregation gained a significant increment. Furthermore, owing to the multiple drug-carrying abilities of nanovesicles, combination therapy targeting multiple pathogenic events of PD has also found success in preclinical studies and will plausibly lead to effective treatment strategies in the near future.
Collapse
Affiliation(s)
- Rubina Roy
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj 788723, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
21
|
Diep YN, Park HJ, Kwon JH, Tran M, Ko HY, Jo H, Kim J, Chung JI, Kim TY, Kim D, Chang JH, Kang YJ, Lee CJ, Yun M, Cho H. Astrocytic scar restricting glioblastoma via glutamate-MAO-B activity in glioblastoma-microglia assembloid. Biomater Res 2023; 27:71. [PMID: 37468961 DOI: 10.1186/s40824-023-00408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Glial scar formation is a reactive glial response confining injured regions in a central nervous system. However, it remains challenging to identify key factors formulating glial scar in response to glioblastoma (GBM) due to complex glia-GBM crosstalk. METHODS Here, we constructed an astrocytic scar enclosing GBM in a human assembloid and a mouse xenograft model. GBM spheroids were preformed and then co-cultured with microglia and astrocytes in 3D Matrigel. For the xenograft model, U87-MG cells were subcutaneously injected to the Balb/C nude female mice. RESULTS Additional glutamate was released from GBM-microglia assembloid by 3.2-folds compared to GBM alone. The glutamate upregulated astrocytic monoamine oxidase-B (MAO-B) activity and chondroitin sulfate proteoglycans (CSPGs) deposition, forming the astrocytic scar and restricting GBM growth. Attenuating scar formation by the glutamate-MAO-B inhibition increased drug penetration into GBM assembloid, while reducing GBM confinement. CONCLUSIONS Taken together, our study suggests that astrocytic scar could be a critical modulator in GBM therapeutics.
Collapse
Affiliation(s)
- Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hee Jung Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joon-Ho Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hae Young Ko
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hanhee Jo
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jisu Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jee-In Chung
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Dongwoo Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Seoul, 120-752, Republic of Korea
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
- Department of Biomedical Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea.
- Korea University-Korea Institute of Science and Technology, Graduate School of Convergence Technology, Korea University, Seoul, 136-701, Republic of Korea.
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
22
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel) 2023; 12:antiox12020517. [PMID: 36830075 PMCID: PMC9952099 DOI: 10.3390/antiox12020517] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative disorders constitute a substantial proportion of neurological diseases with significant public health importance. The pathophysiology of neurodegenerative diseases is characterized by a complex interplay of various general and disease-specific factors that lead to the end point of neuronal degeneration and loss, and the eventual clinical manifestations. Oxidative stress is the result of an imbalance between pro-oxidant species and antioxidant systems, characterized by an elevation in the levels of reactive oxygen and reactive nitrogen species, and a reduction in the levels of endogenous antioxidants. Recent studies have increasingly highlighted oxidative stress and associated mitochondrial dysfunction to be important players in the pathophysiologic processes involved in neurodegenerative conditions. In this article, we review the current knowledge of the general effects of oxidative stress on the central nervous system, the different specific routes by which oxidative stress influences the pathophysiologic processes involved in Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis and Huntington's disease, and how oxidative stress may be therapeutically reversed/mitigated in order to stall the pathological progression of these neurodegenerative disorders to bring about clinical benefits.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 5116, PMB, Nigeria
| | - Michelle B. Gerke-Duncan
- Education Innovation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
24
|
Kumar D, Kumar H, Kumar V, Deep A, Sharma A, Marwaha MG, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
25
|
Data-Driven Approaches Used for Compound Library Design for the Treatment of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24021134. [PMID: 36674652 PMCID: PMC9867512 DOI: 10.3390/ijms24021134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in older individuals worldwide. Pharmacological treatment for such a disease consists of drugs such as monoamine oxidase B (MAO-B) inhibitors to increase dopamine concentration in the brain. However, such drugs have adverse reactions that limit their use for extended periods; thus, the design of less toxic and more efficient compounds may be explored. In this context, cheminformatics and computational chemistry have recently contributed to developing new drugs and the search for new therapeutic targets. Therefore, through a data-driven approach, we used cheminformatic tools to find and optimize novel compounds with pharmacological activity against MAO-B for treating PD. First, we retrieved from the literature 3316 original articles published between 2015-2021 that experimentally tested 215 natural compounds against PD. From such compounds, we built a pharmacological network that showed rosmarinic acid, chrysin, naringenin, and cordycepin as the most connected nodes of the network. From such compounds, we performed fingerprinting analysis and developed evolutionary libraries to obtain novel derived structures. We filtered these compounds through a docking test against MAO-B and obtained five derived compounds with higher affinity and lead likeness potential. Then we evaluated its antioxidant and pharmacokinetic potential through a docking analysis (NADPH oxidase and CYP450) and physiologically-based pharmacokinetic (PBPK modeling). Interestingly, only one compound showed dual activity (antioxidant and MAO-B inhibitors) and pharmacokinetic potential to be considered a possible candidate for PD treatment and further experimental analysis.
Collapse
|
26
|
Kim J, Kaang BK. Cyclic AMP response element-binding protein (CREB) transcription factor in astrocytic synaptic communication. Front Synaptic Neurosci 2023; 14:1059918. [PMID: 36685081 PMCID: PMC9845270 DOI: 10.3389/fnsyn.2022.1059918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are known to actively participate in synaptic communication by forming structures called tripartite synapses. These synapses consist of presynaptic axon terminals, postsynaptic dendritic spines, and astrocytic processes where astrocytes release and receive transmitters. Although the transcription factor cyclic AMP response element (CRE)-binding protein (CREB) has been actively studied as an important factor for mediating synaptic activity-induced responses in neurons, its role in astrocytes is relatively unknown. Synaptic signals are known to activate various downstream pathways in astrocytes, which can activate the CREB transcription factor. Therefore, there is a need to summarize studies on astrocytic intracellular pathways that are induced by synaptic communication resulting in activation of the CREB pathway. In this review, we discuss the various neurotransmitter receptors and intracellular pathways that can induce CREB activation and CREB-induced gene regulation in astrocytes.
Collapse
|
27
|
Abstract
Monoamine oxidase (MAO) enzymes (MAO A and B) catalyze the oxidative deamination of biogenic amines, neurotransmitters, and xenobiotic amines and contribute to the regulation of the content of these active substances in mammalian organisms. The oxidation of biogenic amines by MAO produces hydrogen peroxide (H2O2) and aldehydes that represent risk factors for oxidative injury. The inhibitors of MAO are useful as antidepressants and neuroprotective agents. Usually, the assays of MAO determine amine deamination products or measure the H2O2 released by using direct spectrophotometric or fluorimetric methods. Direct methods are more prone to interferences and can afford inaccurate results. Those limitations can be avoided by using chromatographic techniques. This work describes a chromatographic method to assay MAO A and MAO B activity by using kynuramine as a nonselective substrate and the subsequent analysis of 4-hydroxyquinoline by RP-HPLC-DAD-fluorescence and mass spectrometry (MS). Alternatively, the assay uses the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin as a substrate of MAO that is oxidized (bioactivated) to neurotoxic pyridinium cations which are analyzed by HPLC. These methods are applied to assess the inhibition of MAO by bioactive β-carboline alkaloids occurring in foods, plants, and biological systems.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
28
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
29
|
Boulaamane Y, Ibrahim MAA, Britel MR, Maurady A. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA 2AR antagonists for the treatment of Parkinson's disease. J Integr Bioinform 2022; 19:jib-2021-0027. [PMID: 36112816 PMCID: PMC9800045 DOI: 10.1515/jib-2021-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/24/2022] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease is considered the second most frequent neurodegenerative disease. It is described by the loss of dopaminergic neurons in the mid-brain. For many decades, L-DOPA has been considered as the gold standard for treating Parkinson's disease motor symptoms, however, due to the decrease of efficacy, in the long run, there is an urgent need for novel antiparkinsonian drugs. Caffeine derivatives have been reported several times for their neuroprotective properties and dual blockade of monoamine oxidase (MAO) and adenosine A2A receptors (AA2AR). Natural products are currently attracting more focus due to structural diversity and safety in contrast to synthetic drugs. In the present work, computational studies were conducted on natural product-like caffeine derivatives to search for novel potent candidates acting as dual MAO-B inhibitors/AA2AR antagonists for Parkinson's disease. Our findings revealed two natural products among the top hits: CNP0202316 and CNP0365210 fulfill the requirements of drugs acting on the brain. The selected lead compounds were further studied using molecular dynamics simulation to assess their stability with MAO-B. Current findings might shift the interest towards natural-based compounds and could be exploited to further optimize caffeine derivatives into a successful dual-target-directed drug for managing and halting the neuronal damage in Parkinson's disease patients.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
30
|
Kim SC, Park JY, Hwang EM. Caspase-dependent apoptosis induces reactivation and gliogenesis of astrocytes in adult mice. Front Cell Neurosci 2022; 16:1054956. [DOI: 10.3389/fncel.2022.1054956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Astrocytes play an important role in increasing synaptic plasticity, regulating endogenous homeostasis, and contributing to neuroprotection but become overactivated or apoptotic in persistent neuroinflammatory responses or pathological conditions. Although gliogenesis under these conditions may be essential for neuronal protection, much remains unknown. Here, we generated new conditional transgenic mice (cTg) that can induce apoptosis via Cre-dependent active caspase-3 (taCasp3-2A-TEVp) without pathological conditions. We induced apoptosis of hippocampal CA1 astrocytes in cTg mice using GFAP promoter-driven adeno-associated virus (AAV) containing Cre recombinase. Activated caspase-3 was detected in astrocytes of the hippocampal CA1, and the number of astrocytes decreased sharply at 1 week but recovered at 2 weeks and was maintained until 4 weeks. Nuclear factor 1A (NF1A) mRNA, an important transcription factor for hippocampal reactive astrocytes, was significantly increased only at week 1. Interestingly, all reactive markers (pan, A1, A2) increased despite the decreased number of astrocytes at week 1, and there was no change in monoamine oxidase B (MAOB) observed in astrocytes of animal models of degenerative brain disease. Extensive CA1 astrocyte depletion at week 1 induced cognitive deficits; however, both recovered at weeks 2 and 4. Overall, transient hippocampal astrocyte depletion caused by apoptosis restored cell number and function within 2 weeks and did not induce significant neurotoxicity. Therefore, cTg mice are valuable as an in vivo animal model for studying gliogenesis in multiple regions of the adult brain.
Collapse
|
31
|
Prunell G, Olivera-Bravo S. A Focus on Astrocyte Contribution to Parkinson's Disease Etiology. Biomolecules 2022; 12:biom12121745. [PMID: 36551173 PMCID: PMC9775515 DOI: 10.3390/biom12121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease of high prevalence, characterized by the prominent death of dopaminergic neurons in the substantia nigra pars compacta, which produces dopamine deficiency, leading to classic motor symptoms. Although PD has traditionally been considered as a neuronal cell autonomous pathology, in which the damage of vulnerable neurons is responsible for the disease, growing evidence strongly suggests that astrocytes might have an active role in the neurodegeneration observed. In the present review, we discuss several studies evidencing astrocyte implications in PD, highlighting the consequences of both the loss of normal homeostatic functions and the gain in toxic functions for the wellbeing of dopaminergic neurons. The revised information provides significant evidence that allows astrocytes to be positioned as crucial players in PD etiology, a factor that needs to be taken into account when considering therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Giselle Prunell
- Laboratorio de Neurodegeneración y Neuroprotección, Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| | - Silvia Olivera-Bravo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| |
Collapse
|
32
|
Fomo KN, Schmelter C, Atta J, Beutgen VM, Schwarz R, Perumal N, Govind G, Speck T, Pfeiffer N, Grus FH. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein histone H3.1. Front Med (Lausanne) 2022; 9:993351. [PMID: 36313990 PMCID: PMC9613933 DOI: 10.3389/fmed.2022.993351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs) as well as their axons leading to irreversible loss of sight. Medical management of the intraocular pressure (IOP) still represents the gold standard in glaucoma therapy, which only manages a single risk factor and does not directly address the neurodegenerative component of this eye disease. Recently, our group showed that antibody-derived immunopeptides (encoding complementarity-determining regions, CDRs) provide attractive glaucoma medication candidates and directly interfere its pathogenic mechanisms by different modes of action. In accordance with these findings, the present study showed the synthetic complementary-determining region 2 (CDR2) peptide (INSDGSSTSYADSVK) significantly increased RGC viability in vitro in a concentration-dependent manner (p < 0.05 using a CDR2 concentration of 50 μg/mL). Employing state-of the-art immunoprecipitation experiments, we confirmed that synthetic CDR2 exhibited a high affinity toward the retinal target protein histone H3.1 (HIST1H3A) (p < 0.001 and log2-fold change > 3). Furthermore, molecular dynamics (MD) simulations along with virtual docking analyses predicted potential CDR2-specific binding regions of HIST1H3A, which might represent essential post-translational modification (PTM) sites for epigenetic regulations. Quantitative mass spectrometry (MS) analysis of retinas demonstrated 39 proteins significantly affected by CDR2 treatment (p < 0.05). An up-regulation of proteins involved in the energy production (e.g., ATP5F1B and MT-CO2) as well as the regulatory ubiquitin proteasome system (e.g., PSMC5) was induced by the synthetic CDR2 peptide. On the other hand, CDR2 reduced metabolic key enzymes (e.g., DDAH1 and MAOB) as well as ER stress-related proteins (e.g., SEC22B and VCP) and these data were partially confirmed by microarray technology. Our outcome measurements indicate that specific protein-peptide interactions influence the regulatory epigenetic function of HIST1H3A promoting the neuroprotective mechanism on RGCs in vitro. In addition to IOP management, such synthetic peptides as CDR2 might serve as a synergistic immunotherapy for glaucoma in the future.
Collapse
Affiliation(s)
- Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Joshua Atta
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Vanessa M. Beutgen
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Rebecca Schwarz
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany,*Correspondence: Franz H. Grus,
| |
Collapse
|
33
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
34
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
35
|
Lee JM, Sa M, An H, Kim JMJ, Kwon J, Yoon BE, Lee CJ. Generation of Astrocyte-Specific MAOB Conditional Knockout Mouse with Minimal Tonic GABA Inhibition. Exp Neurobiol 2022; 31:158-172. [PMID: 35786639 PMCID: PMC9272118 DOI: 10.5607/en22016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Monoamine oxidase B (MAOB) is a key enzyme for GABA production in astrocytes in several brain regions. To date, the role of astrocytic MAOB has been studied in MAOB null knockout (KO) mice, although MAOB is expressed throughout the body. Therefore, there has been a need for genetically engineered mice in which only astrocytic MAOB is targeted. Here, we generated an astrocyte-specific MAOB conditional KO (cKO) mouse line and characterized it in the cerebellar and striatal regions of the brain. Using the CRISPR-Cas9 gene-editing technique, we generated Maob floxed mice (B6-Maobem1Cjl/Ibs) which have floxed exons 2 and 3 of Maob with two loxP sites. By crossing these mice with hGFAP-CreERT2, we obtained Maob floxed::hGFAP-CreERT2 mice which have a property of tamoxifen-inducible ablation of Maob under the human GFAP (hGFAP) promoter. When we treated Maob floxed::hGFAP-CreERT2 mice with tamoxifen for 5 consecutive days, MAOB and GABA immunoreactivity were significantly reduced in striatal astrocytes as well as in Bergmann glia and lamellar astrocytes in the cerebellum, compared to sunflower oil-injected control mice. Moreover, astrocyte-specific MAOB cKO led to a 74.6% reduction in tonic GABA currents from granule cells and a 76.8% reduction from medium spiny neurons. Our results validate that astrocytic MAOB is a critical enzyme for the synthesis of GABA in astrocytes. We propose that this new mouse line could be widely used in studies of various brain diseases to elucidate the pathological role of astrocytic MAOB in the future.
Collapse
Affiliation(s)
- Jung Moo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Heeyoung An
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | | | - Jea Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Bo-Eun Yoon
- Department of Molecular biology, Dankook University, Cheonan 31116, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
36
|
Luo Y, Lin R, Zuo Y, Zhang Z, Zhuo Y, Lu M, Chen S, Gu H. Efficient Electrochemical Microsensor for In Vivo Monitoring of H 2O 2 in PD Mouse Brain: Rational Design and Synthesis of Recognition Molecules. Anal Chem 2022; 94:9130-9139. [PMID: 35694821 DOI: 10.1021/acs.analchem.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen peroxide (H2O2), one of the most stable and abundant reactive oxygen species (ROS), acting as a modulator of dopaminergic signaling, has been intimately implicated in Parkinson's disease, creating a critical need for the selective quantification of H2O2 in the living brain. Current natural or nanomimic enzyme-based electrochemical methods employed for the determination of H2O2 suffer from inadequate selectivity and stability, due to which the in vivo measurement of H2O2 in the living brain remains a challenge. Herein, a series of 5-(1,2-dithiolan-3-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (DBP) derivatives were designed by tuning the substitute groups and sites of a boric acid ester, which served as probes to specifically react with H2O2. Consequently, the reaction products, 5-(1,2-dithiolan-3-yl)-N-(4-hydroxyphen-yl)pentanamide (DHP) derivatives, converted the electrochemical signal from inactive into active. After systematically evaluating their performances, 5-(1,2-dithiolan-3-yl)-N-(3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (o-Cl-DBP) was finally identified as the optimized probe for H2O2 detection as it revealed the fastest reaction time, the largest current density, and the most negative potential. In addition, electrochemically oxidized graphene oxide (EOGO) was utilized to produce a stable inner reference. The designed electrochemical microsensor provided a ratiometric strategy for real-time tracking of H2O2 in a linear range of 0.5-600 μM with high selectivity and accuracy. Eventually, the efficient electrochemical microsensor was successfully applied to the measurement of H2O2 in Parkinson's disease (PD) mouse brain. The average levels of H2O2 in the cortex, striatum, and hippocampus in the normal mouse and PD mouse were systematically compared for the first time.
Collapse
Affiliation(s)
- Yu Luo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
37
|
Nam MH, Sa M, Ju YH, Park MG, Lee CJ. Revisiting the Role of Astrocytic MAOB in Parkinson's Disease. Int J Mol Sci 2022; 23:4453. [PMID: 35457272 PMCID: PMC9028367 DOI: 10.3390/ijms23084453] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/11/2022] Open
Abstract
Monoamine oxidase-B (MAOB) has been believed to mediate the degradation of monoamine neurotransmitters such as dopamine. However, this traditional belief has been challenged by demonstrating that it is not MAOB but MAOA which mediates dopamine degradation. Instead, MAOB mediates the aberrant synthesis of GABA and hydrogen peroxide (H2O2) in reactive astrocytes of Parkinson's disease (PD). Astrocytic GABA tonically suppresses the dopaminergic neuronal activity, whereas H2O2 aggravates astrocytic reactivity and dopaminergic neuronal death. Recently discovered reversible MAOB inhibitors reduce reactive astrogliosis and restore dopaminergic neuronal activity to alleviate PD symptoms in rodents. In this perspective, we redefine the role of MAOB for the aberrant suppression and deterioration of dopaminergic neurons through excessive GABA and H2O2 synthesis of reactive astrocytes in PD.
Collapse
Affiliation(s)
- Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
38
|
Grychowska K, Olejarz-Maciej A, Blicharz K, Pietruś W, Karcz T, Kurczab R, Koczurkiewicz P, Doroz-Płonka A, Latacz G, Keeri AR, Piska K, Satała G, Pęgiel J, Trybała W, Jastrzębska-Więsek M, Bojarski AJ, Lamaty F, Partyka A, Walczak M, Krawczyk M, Malikowska-Racia N, Popik P, Zajdel P. Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1 H-pyrrolo-[3,2-c]quinolines. Eur J Med Chem 2022; 236:114329. [DOI: 10.1016/j.ejmech.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
|
39
|
Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Front Neurosci 2022; 15:773404. [PMID: 35280341 PMCID: PMC8914088 DOI: 10.3389/fnins.2021.773404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is a high-density protein in the brain mainly found on outer mitochondrial membranes, primarily in astroglia, but additionally in serotonergic neurons and in the substantia nigra in the midbrain. It is an enzyme that participates in the oxidative metabolism of important monoamines including dopamine, norepinephrine, benzylamine, and phenylethylamine. Elevated MAO-B density may be associated with astrogliosis and inhibiting MAO-B may reduce astrogliosis. MAO-B density is elevated in postmortem sampling of pathology for many neuropsychiatric diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and alcohol use disorder. Initial development of positron emission tomography (PET) imaging agents focused on analogs of [11C]L-deprenyl, with the most commonly applied being the deuterium substituted [11C]L-deprenyl-D2. This latter radiotracer was modeled with an irreversible trapping compartment reflecting its irreversible binding to MAO-B. Subsequently, [11C]SL25.1188, a reversible binding MAO-B radioligand with outstanding properties including high specific binding and excellent reversibility was developed. [11C]SL25.1188 PET was applied to discover a substantive elevation of MAO-B binding in the prefrontal cortex in major depressive disorder (MDD) with an effect size of more than 1.5. Longer duration of MDD was associated with greater MAO-B binding throughout most gray matter regions in the brain, suggesting progressive astrogliosis. Important applications of [11C]L-deprenyl-D2 PET are detecting a 40% loss in radiotracer accumulation in cigarette smokers, and substantial occupancy of novel therapeutics like EVT301 and sembragiline. Given the number of diseases with elevations of MAO-B density and astrogliosis, and the advance of [11C]SL25.1188, clinical applications of MAO-B imaging are still at an early stage.
Collapse
Affiliation(s)
- Jeffrey H. Meyer
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jeffrey H. Meyer,
| | - Joeffre Braga
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Boulaamane Y, Ahmad I, Patel H, Das N, Britel MR, Maurady A. Structural exploration of selected C6 and C7-substituted coumarin isomers as selective MAO-B inhibitors. J Biomol Struct Dyn 2022; 41:2326-2340. [PMID: 35168478 DOI: 10.1080/07391102.2022.2033643] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monoamine Oxidase B is considered a successful target for developing antiparkinsonian drugs. Due to the side effects of current MAO-B inhibitors, there's an urgent need for novel potent and highly selective MAO-B inhibitors. A recent study has shown that coumarins tend to be more selective towards MAO-B than MAO-A when connected to a hex-5-ynyloxy chain at position 6 in contrast to their C7-isomers. The present study describes the mode of interaction of the C6 and C7-substituted coumarin isomers characterized by their difference in selectivity towards MAO-B through molecular docking and molecular dynamics simulations in an effort to elucidate the structural components and molecular interactions that may be responsible for MAO-B selectivity. Three isomeric coumarin pairs connected to ether chain at position 6 or 7 were taken from the literature and modelled according to their IUPAC nomenclature. Molecular docking study revealed one π- π stacking interaction with Tyr-326 in common between the selective coumarin C6-isomers. Resulting complexes of one isomeric coumarin pair that displayed the highest selectivity shift towards MAO-B were subject to 100 ns molecular dynamics simulations study to analyze the stability of the docked complexes. Molecular dynamics revealed that the C7-isomer is relatively stable in both MAO isoforms through the simulation duration, whereas the C6-isomer deemed unstable for MAO-A which may be due to the bulky Phe-208 residue in MAO-A. Our results might be applied for further development and optimization of coumarin derivatives into a successful drug against Parkinson's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Niloy Das
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco.,Laboratory of Innovative Technologies, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
41
|
Harada R, Furumoto S, Kudo Y, Yanai K, Villemagne VL, Okamura N. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci 2022; 16:807435. [PMID: 35210989 PMCID: PMC8862631 DOI: 10.3389/fnins.2022.807435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as β-amyloid (Aβ) plaques and tau tangles in Alzheimer’s disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aβ plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aβ and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Ryuichi Harada,
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development and Aging, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Nobuyuki Okamura,
| |
Collapse
|
42
|
Duarte P, Michalska P, Crisman E, Cuadrado A, León R. Novel Series of Dual NRF2 Inducers and Selective MAO-B Inhibitors for the Treatment of Parkinson’s Disease. Antioxidants (Basel) 2022; 11:antiox11020247. [PMID: 35204129 PMCID: PMC8868346 DOI: 10.3390/antiox11020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by a complex network of physiopathological events where oxidative stress plays a central role among other factors such as neuroinflammation and protein homeostasis. Nuclear factor-erythroid 2 p45-related factor 2 (NRF2) has a multitarget profile itself as it controls a plethora of cellular processes involved in the progression of the disease. In this line, we designed a novel family of 2-(1H-indol-3-yl)ethan-1-amine derivatives as NRF2 inducers with complementary activities. Novel compounds are based on melatonin scaffold and include, among other properties, selective monoamine oxidase B (MAO-B) inhibition activity. Novel multitarget compounds exhibited NRF2 induction activity and MAO-B selective inhibition, combined with anti-inflammatory, antioxidant, and blood–brain barrier permeation properties. Furthermore, they exert neuroprotective properties against oxidative stress toxicity in PD-related in vitro. Hit compound 14 reduced oxidative stress markers and exerted neuroprotection in rat striatal slices exposed to 6-hydroxydopamine or rotenone. In conclusion, we developed a promising family of dual NRF2 inducers and selective MAO-B inhibitors that could serve as a novel therapeutic strategy for PD treatment.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain; (P.D.); (E.C.)
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain; (P.D.); (E.C.)
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa (IIS-IS), Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ UAM-CSIC, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain; (P.D.); (E.C.)
- Correspondence:
| |
Collapse
|
43
|
Kumar B, Kumar N, Thakur A, Kumar V, Kumar R, Kumar V. A Review on the Arylpiperazine Derivatives as Potential Therapeutics for the Treatment of Various Neurological Disorders. Curr Drug Targets 2022; 23:729-751. [DOI: 10.2174/1389450123666220117104038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Abstract:
Neurological disorders are disease conditions related to the neurons and central nervous system (CNS). Any kind of structural, electrical, biochemical and functional abnormalities in neurons can lead to various types of disorders like Alzheimer’s disease (AD), depression, Parkinson’s disease (PD), epilepsy, stroke, etc. Currently available medicines are symptomatic and do not treat the disease state. Thus, novel CNS active agents with the potential of complete treatment of an illness are highly desired. A range of small organic molecules are being explored as potential drug candidates for the cure of different neurological disorders. In this context, arylpiperazine has been found to be a versatile scaffold and indispensable pharmacophore in many CNS active agents. A number of molecules with arylpiperazine nucleus have been developed as potent leads for the treatment of AD, PD, depression and other disorders. The arylpiperazine nucleus can be optionally substituted at different chemical structures and offer flexibility for the synthesis of large number of derivatives. In the current review article, we have explored the role of various arylpiperazine containing scaffolds against different neurological disorders, including AD, PD, and depression. The structure-activity relationship studies were conducted for recognizing potent lead compounds. This review article may provide important clues on the structural requirements for the design and synthesis of effective molecules as curative agents for different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Amandeep Thakur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | | | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| |
Collapse
|
44
|
Segura-Aguilar J, Paris I. Mechanisms of Dopamine Oxidation and Parkinson’s Disease. HANDBOOK OF NEUROTOXICITY 2022:1433-1468. [DOI: 10.1007/978-3-031-15080-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
46
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
47
|
Chun H, Lim J, Park KD, Lee CJ. Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia 2021; 70:354-367. [PMID: 34713936 DOI: 10.1002/glia.24110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
Reactive astrocytes manifest molecular, structural, and functional alterations under various pathological conditions. We have previously demonstrated that the reactive astrocytes of the stab wound injury model (STAB) display aberrant cellular gamma-aminobutyric acid (GABA) content and tonic GABA release, whereas the active astrocytes under enriched environment (EE) express high levels of proBDNF. However, the role of monoamine oxidase B (MAO-B) in reactive astrogliosis and hypertrophy still remains unknown. Here, we investigate the role of MAO-B, a GABA-producing enzyme, in reactive astrogliosis in STAB. We observed that the genetic removal of MAO-B significantly reduced the hypertrophy, scar formation, and GABA production of reactive astrocytes, whereas the MAO-B overexpression under glial fibrillary acidic protein (GFAP) promoter enhanced the levels of GFAP and GABA. Furthermore, we found that one of the by-products of the MAO-B action, H2 O2 , but not GABA, was sufficient and necessary for the hypertrophy of reactive astrocytes. Notably, we identified two potent pharmacological tools to attenuate scar-forming astrogliosis-the recently developed reversible MAO-B inhibitor, KDS2010, and an H2 O2 scavenger, crisdesalazine (AAD-2004). Our results implicate that inhibiting MAO-B activity has dual beneficial effects in preventing astrogliosis and scar-formation under brain injury, and that the MAO-B/H2 O2 pathway can be a useful therapeutic target with a high clinical potential.
Collapse
Affiliation(s)
- Heejung Chun
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
48
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021; 10:antiox10111649. [PMID: 34829520 PMCID: PMC8614768 DOI: 10.3390/antiox10111649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson's disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson's disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches.
Collapse
Affiliation(s)
- Juan A. Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| |
Collapse
|
49
|
Buckley S, Byrnes S, Cochrane C, Roche M, Estes JD, Selemidis S, Angelovich TA, Churchill MJ. The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav Immun Health 2021; 13:100235. [PMID: 34589750 PMCID: PMC8474476 DOI: 10.1016/j.bbih.2021.100235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a leading cause of morbidity in up to 50% of individuals living with HIV, despite effective treatment with antiretroviral therapy (ART). Current evidence suggests that chronic inflammation associated with HIV is especially attributed to the dysregulated production of reactive oxygen species (ROS) that contribute to neurodegeneration and poor clinical outcomes. While ROS have beneficial effects in eliciting immune responses to infection, chronic ROS production causes damage to macromolecules such as DNA and lipids that has been linked to altered redox homeostasis associated with antioxidant dysregulation. As a result, this disruption in the balance between antioxidant-dependent mechanisms of ROS inactivation and ROS production by enzymes such as the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family, as well as from the electron transport chain of the mitochondria can result in oxidative stress. This is particularly relevant to the brain, which is exquisitely susceptible to oxidative stress due to its inherently high lipid concentration and ROS levels that have been linked to many neurodegenerative diseases that have similar stages of pathogenesis to HAND. In this review, we discuss the possible role and mechanisms of ROS production leading to oxidative stress that underpin HAND pathogenesis even when HIV is suppressed by current gold-standard antiretroviral therapies. Furthermore, we highlight that pathological ROS can serve as biomarkers for HIV-dependent HAND, and how manipulation of oxidative stress and antioxidant-dependent pathways may facilitate novel strategies for HIV cure. Production of reactive oxygen species has been linked to neurodegenerative diseases. ROS production contributes to HIV-associated neurocognitive disorders. ROS may be used as a biomarker for HIV-associated neurocognitive disorders. Manipulation of antioxidant pathways may present novel HIV cure strategies.
Collapse
Affiliation(s)
- Sarah Buckley
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Sarah Byrnes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Catherine Cochrane
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Jacob D Estes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Vaccine and Gene Therapy Institute, Oregon National Primate Research Centre, Oregon Health & Science University, United States
| | - Stavros Selemidis
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Angelovich
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia
| | - Melissa J Churchill
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia.,Departments of Microbiology and Medicine, Monash University, Clayton, Australia
| |
Collapse
|
50
|
Crawford RA, Bowman KR, Cagle BS, Doorn JA. In vitro inhibition of glutathione-S-transferase by dopamine and its metabolites, 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylacetic acid. Neurotoxicology 2021; 86:85-93. [PMID: 34314733 DOI: 10.1016/j.neuro.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is characterized by dopamine dyshomeostasis and oxidative stress. The aldehyde metabolite of dopamine, 3,4-dihydroxyphenylacetaldehyde (DOPAL), has been reported to be cytotoxic and capable of protein modification. Protein modification by DOPAL has been implicated in the pathogenesis of Parkinson's disease, but the complete pathology is unknown. Our findings show that DOPAL modifies glutathione S-transferase (GST), an important enzyme in the antioxidant defense system. DOPAL, dopamine, and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), inhibited the activity of GST isolated from N27 dopaminergic cells at an IC50 of 31.46 μM, 82.32 μM, and 260.0 μM, respectively. DOPAL, dopamine, and DOPAC inhibited commercially available equine liver GST at an IC50 of 23.72 μM, 32.17 μM, and 73.70 μM, respectively. This inhibition was time dependent and irreversible. 1 mM ʟ-cysteine or glutathione fully protected GST activity from DOPAL, DA, and DOPAC inhibition. 1 mM carnosine partially protected GST activity from DA inhibition. Furthermore, ʟ-cysteine was found to protect GST by forming a putative thiazolidine conjugate with DOPAL. We conclude that GST inactivation may be a part of the broader etiopathology of Parkinson's disease.
Collapse
Affiliation(s)
- Rachel A Crawford
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Kate R Bowman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Brianna S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|