1
|
Wong PK, Syafruddin SE, Cheah FC, Azmi N, Ng PY, Chua EW. Introduction of a single-nucleotide variant, rs16851030, into the ADORA1 gene increased cellular susceptibility to hypoxia. Per Med 2024:1-14. [PMID: 39440484 DOI: 10.1080/17410541.2024.2412514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Aim: Rs16851030, a single-nucleotide variant located in the 3'-untranslated region of the ADORA1 gene, has been proposed as a potential marker of caffeine sensitivity in apnea of prematurity. Besides, it is associated with aspirin-induced asthma and the development of acute chest syndrome. However, its functional significance is still unconfirmed. This study aimed to elucidate the functional impact of rs16851030 by using CRISPR/Cas9 approach to induce the DNA variant and attendant physiological changes.Methods: Rs16851030 was introduced into HEK293 cells via homology-directed repair (HDR). Edited cells were fluorescence-enriched, sorted, isolated, and expanded into single-cell-derived clones. The edit was confirmed by Sanger sequencing. RNA sequencing was used to analyze affected pathways.Results: Rs16851030-mutant cells showed increased susceptibility to hypoxia, a condition related to apnea of prematurity. After 24 h of hypoxia, the viability of mutant clones 1 and 2 was low compared with wild-type cells (75.45% and 74.47% vs. 96.34%). RNA sequencing revealed transcriptomic changes linked to this increased vulnerability.Conclusion: Rs16851030 impairs cellular resistance to hypoxia, suggesting its role in conditions like apnea of prematurity. Further research should investigate the molecular mechanisms and transcriptomic alterations caused by rs16851030 under hypoxic conditions.
Collapse
Affiliation(s)
- Poh Kuan Wong
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
- Faculty of Pharmacy, MAHSA University, Jenjarom, 42610, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Norazrina Azmi
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Pei Yuen Ng
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Eng Wee Chua
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
2
|
Nwaduru C, Ovalle LA, Hoareau GL, Baker E, Buff M, Selim M, Baker TB, Zimmerman MA. Ectonucleotidases in Ischemia Reperfusion Injury: Unravelling the Interplay With Mitochondrial Dysfunction in Liver Transplantation. Transplant Proc 2024; 56:1598-1606. [PMID: 39183080 DOI: 10.1016/j.transproceed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) profoundly impacts organ transplantation, especially in orthotopic liver transplantation (OLT). Disruption of the mitochondrial respiratory chain during ischemia leads to ATP loss and ROS production. Reperfusion exacerbates mitochondrial damage, triggering the release of damage-associated molecular patterns (DAMPs) and inflammatory responses. Mitochondrial dysfunction, a pivotal aspect of IRI, is explored in the context of the regulatory role of ectonucleotidases in purinergic signaling and immune responses. CD39, by hydrolyzing ATP and ADP; and CD73, by converting AMP to adenosine, emerge as key players in mitigating liver IRI, particularly through ischemic preconditioning and adenosine receptor signaling. Despite established roles in vascular health and immunity, the impact of ectonucleotidases on mitochondrial function during hepatic IRI is unclear. This review aims to elucidate the interplay between CD39/73 and mitochondria, emphasizing their potential as therapeutic targets for liver transplantation. This article explores the role of CD39/73 in tissue hypoxia, emphasizing adenosine production during inflammation. CD39 and CD73 upregulation under hypoxic conditions regulate immune responses, demonstrating protective effects in various organ-specific ischemic models. However, prolonged adenosine activation may have dual effects, beneficial in acute settings but detrimental in chronic hypoxia. Herein, we raise questions about ectonucleotidases influencing mitochondrial function during hepatic IRI, drawing parallels with cancer cell responses to chemotherapy. The review underscores the need for comprehensive research into the intricate interplay between ectonucleotidases, mitochondrial dynamics, and their therapeutic implications in hepatic IRI, providing valuable insights for advancing transplantation outcomes.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guillaume L Hoareau
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
3
|
Wisniewski AM, Chancellor WZ, Young A, Money D, Beller JP, Charlton J, Lunardi N, Yang Z, Laubach VE, Mehaffey JH, Kron IL, Roeser ME. Adenosine 2A Receptor Agonism Improves Survival in Extracorporeal Cardiopulmonary Resuscitation. J Surg Res 2024; 301:404-412. [PMID: 39029264 DOI: 10.1016/j.jss.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024]
Abstract
INTRODUCTION Despite resuscitation advances including extracorporeal cardiopulmonary resuscitation (ECPR), freedom from neurologic and myocardial insult after cardiac arrest remains unlikely. We hypothesized that adenosine 2A receptor (A2AR) agonism, which attenuates reperfusion injury, would improve outcomes in a porcine model of ECPR. METHODS Adult swine underwent 20 min of circulatory arrest followed by defibrillation and 6 h of ECPR. Animals were randomized to receive saline vehicle or A2AR agonist (ATL1223 or Regadenoson) infusion during extracorporeal membrane oxygenation. Animals were weaned off extracorporeal membrane oxygenation and monitored for 24 h. Clinical and biochemical end points were compared. RESULTS The administration of A2AR agonists increased survival (P = 0.01) after cardiac arrest compared to vehicle. Markers of neurologic damage including S100 calcium binding protein B and glial fibrillary acidic protein were significantly lower with A2AR agonist treatment. CONCLUSIONS In a model of cardiac arrest treated with ECPR, A2AR agonism increased survival at 24 h and reduced neurologic damage suggesting A2AR activation may be a promising therapeutic target after cardiac arrest.
Collapse
Affiliation(s)
- Alex M Wisniewski
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - William Z Chancellor
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Andrew Young
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Dustin Money
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Jared P Beller
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Jennifer Charlton
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia
| | - Zequan Yang
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Mark E Roeser
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
4
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
5
|
He F, Wang F, Xiang H, Ma Y, Lu Q, Xia Y, Zhou H, Wang Y, Ke J. Activation of adenosine A2B receptor alleviates myocardial ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and restoring autophagy flux. Arch Biochem Biophys 2024; 754:109945. [PMID: 38395121 DOI: 10.1016/j.abb.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) poses a significant threat to patients with coronary heart disease. Adenosine A2A receptors have been known as a protective role in MIRI by regulating autophagy, so we assumed that activation of adenosine A2B receptor (A2BAR) might exert a similar effect during MIRI and underlying mechanism be related to proteostasis maintenance as well. In situ hearts were subjected to 30 min of ischemia and 120 min of reperfusion (IR), while invitro cardiomyocytes from neonatal rats experienced 6 h of oxygen-glucose deprivation followed by 12 h of reoxygenation (OGDR). Initially, we observed that post-ischemia-reperfusion induced autophagy flux blockade and ERS both in vivo and in vitro, evident through the increased expression of p62, LC3II, and BIP, which indicated the deteriorated proteostasis. We used a selective A2BAR agonist, Bay 60-6583, to explore the positive effects of A2BAR on cardiomyocytes and found that A2BAR activation rescued damaged cardiac function and morphological changes in the IR group and improved frail cell viability in the OGDR group. The A2BAR agonist also alleviated the blockage of autophagic flux, coupled with augmented ERS in the IR/OGDR group, which was reassured by using an autophagy inhibitor chloroquine (CQ) and ERS inhibitor (4-PBA) in vitro. Additionally, considering cAMP/PKA as a well-known downstream effector of A2BAR, we utilized H89, a selective PKA inhibitor. We observed that the positive efficacy of Bay 60-6583 was inhibited by H89. Collectively, our findings demonstrate that the A2BAR/cAMP/PKA signaling pathway exerts a protective role in MIRI by mitigating impaired autophagic flux and excessive ERS.
Collapse
Affiliation(s)
- Feng He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuyu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanmin Xiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunna Ma
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Lu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun Xia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huimin Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Zhu W, Hong Y, Tong Z, He X, Li Y, Wang H, Gao X, Song P, Zhang X, Wu X, Tan Z, Huang W, Liu Z, Bao Y, Ma J, Zheng N, Xie C, Ke X, Zhou W, Jia W, Li M, Zhong J, Sheng L, Li H. Activation of hepatic adenosine A1 receptor ameliorates MASH via inhibiting SREBPs maturation. Cell Rep Med 2024; 5:101477. [PMID: 38508143 PMCID: PMC10983109 DOI: 10.1016/j.xcrm.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.
Collapse
Affiliation(s)
- Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xianshan Zhang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cen Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xisong Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
8
|
Liang Y, Ruan W, Jiang Y, Smalling R, Yuan X, Eltzschig HK. Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. Nat Rev Cardiol 2023; 20:723-737. [PMID: 37308571 PMCID: PMC11014460 DOI: 10.1038/s41569-023-00886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/14/2023]
Abstract
Mammals have evolved to adapt to differences in oxygen availability. Although systemic oxygen homeostasis relies on respiratory and circulatory responses, cellular adaptation to hypoxia involves the transcription factor hypoxia-inducible factor (HIF). Given that many cardiovascular diseases involve some degree of systemic or local tissue hypoxia, oxygen therapy has been used liberally over many decades for the treatment of cardiovascular disorders. However, preclinical research has revealed the detrimental effects of excessive use of oxygen therapy, including the generation of toxic oxygen radicals or attenuation of endogenous protection by HIFs. In addition, investigators in clinical trials conducted in the past decade have questioned the excessive use of oxygen therapy and have identified specific cardiovascular diseases in which a more conservative approach to oxygen therapy could be beneficial compared with a more liberal approach. In this Review, we provide numerous perspectives on systemic and molecular oxygen homeostasis and the pathophysiological consequences of excessive oxygen use. In addition, we provide an overview of findings from clinical studies on oxygen therapy for myocardial ischaemia, cardiac arrest, heart failure and cardiac surgery. These clinical studies have prompted a shift from liberal oxygen supplementation to a more conservative and vigilant approach to oxygen therapy. Furthermore, we discuss the alternative therapeutic strategies that target oxygen-sensing pathways, including various preconditioning approaches and pharmacological HIF activators, that can be used regardless of the level of oxygen therapy that a patient is already receiving.
Collapse
Affiliation(s)
- Yafen Liang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yandong Jiang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard Smalling
- Department of Cardiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
9
|
Tang T, Huang X, Lu M, Zhang G, Han X, Liang T. Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat Commun 2023; 14:3364. [PMID: 37291128 PMCID: PMC10250326 DOI: 10.1038/s41467-023-38578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Cancer cell metabolism contributes to the establishment of an immunosuppressive tumor microenvironment. Aberrant expression of CD73, a critical enzyme in ATP metabolism, on the cell surface results in the extracellular accumulation of adenosine, which exhibits direct inhibitory effects on tumor-infiltrating lymphocytes. However, little is known about the influence of CD73 on negative immune regulation-associated signaling molecules and transduction pathways inside tumor cells. This study aims to demonstrate the moonlighting functions of CD73 in immunosuppression in pancreatic cancer, an ideal model characterized by complex crosstalk among cancer metabolism, immune microenvironment, and immunotherapeutic resistance. The synergistic effect of CD73-specific drugs in combination with immune checkpoint blockade is observed in multiple pancreatic cancer models. Cytometry by time-of-flight analysis shows that CD73 inhibition reduces tumor-infiltrating Tregs in pancreatic cancer. Tumor cell-autonomous CD73 is found to facilitate Treg recruitment, in which CCL5 is identified as a significant downstream effector of CD73 using integrated proteomic and transcriptomic analyses. CD73 transcriptionally upregulates CCL5 through tumor cell-autocrine adenosine-Adora2a signaling-mediated activation of the p38-STAT1 axis, recruiting Tregs to pancreatic tumors and causing an immunosuppressive microenvironment. Together, this study highlights that CD73-adenosine metabolism transcriptionally controls pancreatic cancer immunosuppression in a tumor-autonomous and -autocrine manner.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Minghao Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xu Han
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Ruan W, Li J, Choi S, Ma X, Liang Y, Nair R, Yuan X, Mills TW, Eltzschig HK. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 2023; 8:e166011. [PMID: 37288658 PMCID: PMC10393224 DOI: 10.1172/jci.insight.166011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiwen Li
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Seungwon Choi
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xinxin Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Yafen Liang
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Ragini Nair
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
11
|
Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer. Front Immunol 2023; 14:1163585. [PMID: 37187740 PMCID: PMC10175829 DOI: 10.3389/fimmu.2023.1163585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care, and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Kowash RR, Akbay EA. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer. Front Immunol 2023; 14:1130358. [PMID: 37033953 PMCID: PMC10079876 DOI: 10.3389/fimmu.2023.1130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The adenosine pathway is an exciting new target in the field of cancer immunotherapy. CD73 is the main producer of extracellular adenosine. Non-small cell lung cancer (NSCLC) has one of the highest CD73 expression signatures among all cancer types and the presence of common oncogenic drivers of NSCLC, such as mutant epidermal growth factor receptor (EGFR) and KRAS, correlate with increased CD73 expression. Current immune checkpoint blockade (ICB) therapies only benefit a subset of patients, and it has proved challenging to understand which patients might respond even with the current understanding of predictive biomarkers. The adenosine pathway is well known to disrupt cytotoxic function of T cells, which is currently the main target of most clinical agents. Data thus far suggests that combining ICB therapies already in the clinic with adenosine pathway inhibitors provides promise for the treatment of lung cancer. However, antigen loss or lack of good antigens limits efficacy of ICB; simultaneous activation of other cytotoxic immune cells such as natural killer (NK) cells can be explored in these tumors. Clinical trials harnessing both T and NK cell activating treatments are still in their early stages with results expected in the coming years. In this review we provide an overview of new literature on the adenosine pathway and specifically CD73. CD73 is thought of mainly for its role as an immune modulator, however recent studies have demonstrated the tumor cell intrinsic properties of CD73 are potentially as important as its role in immune suppression. We also highlight the current understanding of this pathway in lung cancer, outline ongoing studies examining therapies in combination with adenosine pathway targeting, and discuss future prospects.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| |
Collapse
|
13
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
14
|
Guo Q, Li X, Li W, Wang R, Zhao A, Wang Z. A Pharmacodynamic Evaluation of the Protective Effects of Roxadustat Against Hypoxic Injury at High Altitude. Drug Des Devel Ther 2023; 17:75-85. [PMID: 36686057 PMCID: PMC9851060 DOI: 10.2147/dddt.s390975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose To investigate roxadustat's preventive effects on hypoxia damage in the quick ascent to high altitude. Methods The roxadustat (7.8 mg/kg, 15.6 mg/kg, and 31.2 mg/kg) and control groups of BALB/C mice were distributed at random. To evaluate roxadustat's anti-hypoxic effectiveness at the recommended dose, an atmospheric pressure closed hypoxic experiment was used. Wistar rats were randomly assigned to groups that received normal oxygen, hypoxic, acetazolamide, or roxadustat in order to evaluate the protective effects against hypoxic damage. Animal blood was obtained for arterial blood-gas analysis, inflammatory factors, and the identification of oxidative stress indicators. Animal tissues were removed for pathological investigation. Results In each group, the mice's survival time was noticeably extended compared to the normal oxygen group. The medium dose had the best time extension rate at 19.05%. Blood SatO2 and PaO2 were significantly higher in the roxadustat group compared to the hypoxic group. Erythrocyte content, hemoglobin content, and hematocrit were also significantly higher. Plasma levels of IL-6, TNF-α, and IFN-γ were also significantly lower in the roxadustat group. Roxadustat can also improve the level of oxidative stress in the tissues of hypoxic rats. According to the results of HE staining, roxadustat could greatly lessen the harm done to rat heart, brain, lung, liver, and kidney tissue as a result of hypoxia. Conclusion Roxadustat can greatly reduce inflammation, oxidative stress, and tissue damage brought on by hypoxia, showing that it can significantly enhance the body's ability to adapt to high altitude exposure.
Collapse
Affiliation(s)
- Qianwen Guo
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China,School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xue Li
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China
| | - Wenbin Li
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China,Correspondence: Wenbin Li, Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, 730050, People’s Republic of China, Tel +86-931 8994654, Fax +86-931 2662722, Email ;
| | - Rong Wang
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China
| | - Anpeng Zhao
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China
| | - Zihan Wang
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China,School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
15
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
16
|
Novitskaya T, Nishat S, Covarrubias R, Wheeler DG, Chepurko E, Bermeo-Blanco O, Xu Z, Baer B, He H, Moore SN, Dwyer KM, Cowan PJ, Su YR, Absi TS, Schoenecker J, Bellan LM, Koch WJ, Bansal S, Feoktistov I, Robson SC, Gao E, Gumina RJ. Ectonucleoside triphosphate diphosphohydrolase-1 (CD39) impacts TGF-β1 responses: insights into cardiac fibrosis and function following myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 323:H1244-H1261. [PMID: 36240436 PMCID: PMC9722260 DOI: 10.1152/ajpheart.00138.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Extracellular purine nucleotides and nucleosides released from activated or injured cells influence multiple aspects of cardiac physiology and pathophysiology. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1; CD39) hydrolyzes released nucleotides and thereby regulates the magnitude and duration of purinergic signaling. However, the impact of CD39 activity on post-myocardial infarction (MI) remodeling is incompletely understood. We measured the levels and activity of ectonucleotidases in human left ventricular samples from control and ischemic cardiomyopathy (ICM) hearts and examined the impact of ablation of Cd39 expression on post-myocardial infarction remodeling in mice. We found that human CD39 levels and activity are significantly decreased in ICM hearts (n = 5) compared with control hearts (n = 5). In mice null for Cd39, cardiac function and remodeling are significantly compromised in Cd39-/- mice following myocardial infarction. Fibrotic markers including plasminogen activator inhibitor-1 (PAI-1) expression, fibrin deposition, α-smooth muscle actin (αSMA), and collagen expression are increased in Cd39-/- hearts. Importantly, we found that transforming growth factor β1 (TGF-β1) stimulates ATP release and induces Cd39 expression and activity on cardiac fibroblasts, constituting an autocrine regulatory pathway not previously appreciated. Absence of CD39 activity on cardiac fibroblasts exacerbates TGF-β1 profibrotic responses. Treatment with exogenous ectonucleotidase rescues this profibrotic response in Cd39-/- fibroblasts. Together, these data demonstrate that CD39 has important interactions with TGF-β1-stimulated autocrine purinergic signaling in cardiac fibroblasts and dictates outcomes of cardiac remodeling following myocardial infarction. Our results reveal that ENTPD1 (CD39) regulates TGF-β1-mediated fibroblast activation and limits adverse cardiac remodeling following myocardial infarction.NEW & NOTEWORTHY We show that CD39 is a critical modulator of TGF-β1-mediated fibroblast activation and cardiac remodeling following myocardial infarction via modulation of nucleotide signaling. TGF-β1-induced CD39 expression generates a negative feedback loop that attenuates cardiac fibroblast activation. In the absence of CD39 activity, collagen deposition is increased, elastin expression is decreased, and diastolic dysfunction is worsened. Treatment with ecto-apyrase attenuates the TGF-β1-induced profibrotic cardiac fibroblast phenotype, revealing a novel approach to combat post-myocardial infarction cardiac fibrosis.
Collapse
Affiliation(s)
- Tatiana Novitskaya
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shamama Nishat
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Roman Covarrubias
- Division of Cardiac Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Debra G Wheeler
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Elena Chepurko
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Oscar Bermeo-Blanco
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Zhaobin Xu
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bradly Baer
- Department of Mechanical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Heng He
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stephanie N Moore
- Division of Orthopedic Surgery, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Karen M Dwyer
- Immunology Research Center, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Center, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tarek S Absi
- Division of Cardiac Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan Schoenecker
- Division of Orthopedic Surgery, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | | | - Shyam Bansal
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon C Robson
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erhe Gao
- Temple University, Philadelphia, Pennsylvania
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
17
|
Fisher ES, Chen Y, Sifuentes MM, Stubblefield JJ, Lozano D, Holstein DM, Ren J, Davenport M, DeRosa N, Chen TP, Nickel G, Liston TE, Lechleiter JD. Adenosine A1R/A3R agonist AST-004 reduces brain infarction in mouse and rat models of acute ischemic stroke. FRONTIERS IN STROKE 2022; 1:1010928. [PMID: 38348128 PMCID: PMC10861240 DOI: 10.3389/fstro.2022.1010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.
Collapse
Affiliation(s)
- Elizabeth S. Fisher
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Yanan Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Mikaela M. Sifuentes
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jeremy J. Stubblefield
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Damian Lozano
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - JingMei Ren
- NeuroVasc Preclinical Services, Inc., Lexington, MA, United States
| | | | - Nicholas DeRosa
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Tsung-pei Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Gerard Nickel
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | | | - James D. Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
18
|
Heck-Swain KL, Li J, Ruan W, Yuan X, Wang Y, Koeppen M, Eltzschig HK. Myeloid hypoxia-inducible factor HIF1A provides cardio-protection during ischemia and reperfusion via induction of netrin-1. Front Cardiovasc Med 2022; 9:970415. [PMID: 36247475 PMCID: PMC9554136 DOI: 10.3389/fcvm.2022.970415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
The transcription factor hypoxia-inducible factor HIF1A induces cardioprotection from ischemia and reperfusion injury. Here, we investigate tissue-specific pathways that are critical for HIF1A-elicited tissue protection. Initial studies showed that mice with induced global Hif1a deletion (Hif1aloxP/loxP UbiquitinCre+) have exaggerated myocardial injury during in situ ischemia and reperfusion. Surprisingly, this phenotype was mirrored only in mice with myeloid-specific Hif1a deletion (Hif1a loxP/loxP LysM Cre+). In contrast, mice with myocardial specific (Hif1aloxP/loxP Myosin Cre+), or vascular Hif1a deletion (Hif1aloxP/loxP VEcadherin Cre+) experienced similar levels of injury as controls. Subsequent studies using adoptive transfer of Hif1a-deficient polymorphonuclear neutrophils (PMNs) prior to myocardial injury demonstrated increased reperfusion injury. On the contrary, the adoptive transfer of PMNs treated ex vivo with the hypoxia inducible factor (HIF) stabilizer dimethyloxalylglycine (DMOG) was associated with attenuated myocardial injury. Furthermore, DMOG-mediated cardioprotection was abolished in Hif1aloxP/loxP LysM Cre+ mice, but not in Hif2aloxP/loxP LysM Cre+ mice. Finally, studies of PMN-dependent HIF1A target genes implicated the neuronal guidance molecule netrin-1 in mediating the cardioprotective effects of myeloid HIF1A. Taken together, the present studies identified a functional role for myeloid-expressed HIF1A in providing cardioprotection during ischemia and reperfusion injury, which is mediated, at least in part, by the induction of the netrin-1 neuronal guidance molecule in neutrophils.
Collapse
Affiliation(s)
- Ka Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Granade ME, Hargett SR, Lank DS, Lemke MC, Luse MA, Isakson BE, Bochkis IM, Linden J, Harris TE. Feeding desensitizes A1 adenosine receptors in adipose through FOXO1-mediated transcriptional regulation. Mol Metab 2022; 63:101543. [PMID: 35811051 PMCID: PMC9304768 DOI: 10.1016/j.molmet.2022.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Adipose tissue is a critical regulator of energy balance that must rapidly shift its metabolism between fasting and feeding to maintain homeostasis. Adenosine has been characterized as an important regulator of adipocyte metabolism primarily through its actions on A1 adenosine receptors (A1R). We sought to understand the role A1R plays specifically in adipocytes during fasting and feeding to regulate glucose and lipid metabolism. METHODS We used Adora1 floxed mice with an inducible, adiponectin-Cre to generate FAdora1-/- mice, where F designates a fat-specific deletion of A1R. We used these FAdora1-/- mice along with specific agonists and antagonists of A1R to investigate changes in adenosine signaling within adipocytes between the fasted and fed state. RESULTS We found that the adipose tissue response to adenosine is not static, but changes dynamically according to nutrient conditions through the insulin-Akt-FOXO1 axis. We show that under fasted conditions, FAdora1-/- mice had impairments in the suppression of lipolysis by insulin on normal chow and impaired glucose tolerance on high-fat diet. FAdora1-/- mice also exhibited a higher lipolytic response to isoproterenol than WT controls when fasted, however this difference was lost after a 4-hour refeeding period. We demonstrate that FOXO1 binds to the A1R promoter, and refeeding leads to a rapid downregulation of A1R transcript and desensitization of adipocytes to A1R agonism. Obesity also desensitizes adipocyte A1R, and this is accompanied by a disruption of cyclical changes in A1R transcription between fasting and refeeding. CONCLUSIONS We propose that FOXO1 drives high A1R expression under fasted conditions to limit excess lipolysis during stress and augment insulin action upon feeding. Subsequent downregulation of A1R under fed conditions leads to desensitization of these receptors in adipose tissue. This regulation of A1R may facilitate reentrance into the catabolic state upon fasting.
Collapse
Affiliation(s)
- Mitchell E Granade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stefan R Hargett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Daniel S Lank
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Melissa A Luse
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA, USA
| | - Irina M Bochkis
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Linden
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Ruan W, Ma X, Bang IH, Liang Y, Muehlschlegel JD, Tsai KL, Mills TW, Yuan X, Eltzschig HK. The Hypoxia-Adenosine Link during Myocardial Ischemia-Reperfusion Injury. Biomedicines 2022; 10:1939. [PMID: 36009485 PMCID: PMC9405579 DOI: 10.3390/biomedicines10081939] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite increasing availability and more successful interventional approaches to restore coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic, thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional consequences of HIF stabilization include increases in extracellular production and signaling effects of adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy for patients with acute myocardial infarction, or undergoing cardiac surgery.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinxin Ma
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - In Hyuk Bang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jochen Daniel Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
21
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Wall MJ, Hill E, Huckstepp R, Barkan K, Deganutti G, Leuenberger M, Preti B, Winfield I, Carvalho S, Suchankova A, Wei H, Safitri D, Huang X, Imlach W, La Mache C, Dean E, Hume C, Hayward S, Oliver J, Zhao FY, Spanswick D, Reynolds CA, Lochner M, Ladds G, Frenguelli BG. Selective activation of Gαob by an adenosine A 1 receptor agonist elicits analgesia without cardiorespiratory depression. Nat Commun 2022; 13:4150. [PMID: 35851064 PMCID: PMC9293909 DOI: 10.1038/s41467-022-31652-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of β-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK.
| | - Emily Hill
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Robert Huckstepp
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences (CSELS), Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michele Leuenberger
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Barbara Preti
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Ian Winfield
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Sabrina Carvalho
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Anna Suchankova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Xianglin Huang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Innovation Walk, Clayton, VIC, 3800, Australia
| | - Circe La Mache
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Eve Dean
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Cherise Hume
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Stephanie Hayward
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Jess Oliver
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | | | - David Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Innovation Walk, Clayton, VIC, 3800, Australia
- Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences (CSELS), Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Bruno G Frenguelli
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK.
| |
Collapse
|
23
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Halpin-Veszeleiova K, Hatfield SM. Therapeutic Targeting of Hypoxia-A2-Adenosinergic Pathway in COVID-19 Patients. Physiology (Bethesda) 2022; 37:46-52. [PMID: 34486395 PMCID: PMC8742736 DOI: 10.1152/physiol.00010.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hypoxia-hypoxia-inducible factor (HIF)-1α-A2-adenosinergic pathway protects tissues from inflammatory damage during antipathogen immune responses. The elimination of this physiological tissue-protecting mechanism by supplemental oxygenation may contribute to the high mortality of oxygen-ventilated COVID-19 patients by exacerbating inflammatory lung damage. Restoration of this pathway with hypoxia-adenosinergic drugs may improve outcomes in these patients.
Collapse
Affiliation(s)
- Katarina Halpin-Veszeleiova
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| |
Collapse
|
25
|
An overview of current therapeutic strategies for glioblastoma and the role of CD73 as an alternative curative approach. Clin Transl Oncol 2021; 24:742-756. [PMID: 34792724 DOI: 10.1007/s12094-021-02732-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a complicated and heterogeneous brain tumor with short-term survival outcomes. Commercial therapies are not practical due to cell infiltration capacity, high proliferative rate, and blood-brain barrier. In this context, recognition of the molecular mechanism of tumor progression might help the development of new cancer therapeutics. Recently, more evidence has supported CD73 and downstream adenosine A2A/A2B receptor signaling playing a crucial role in glioblastoma pathogenesis; therefore, targeting CD73 in murine tumor models can reduce tumor development. CD73 is an ecto-enzyme inducing tumor metastasis, angiogenesis, and immune escape via the production of extracellular adenosine in the tumor microenvironment. In this review, we provided information about clinical characteristics as well as the therapeutic management of glioblastoma. Then, we focused on newly available experimental evidence distinguishing between the essential role of CD73 on this tumor growth and a new method for the treatment of GBM patients.
Collapse
|
26
|
Ďurčo F, Köstlin-Gille N, Poets CF, Gille C. Modulatory activity of adenosine on the immune response in cord and adult blood. Pediatr Res 2021; 90:989-997. [PMID: 33564128 DOI: 10.1038/s41390-020-01275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Neonatal sepsis is a leading cause of neonatal morbidity and mortality, associated with immunosuppression. Myeloid-derived suppressor cells (MDSCs) are cells with immunosuppressive activity, present in high amounts in cord blood. Mechanisms regulating MDSC expansion are incompletely understood. Adenosine is a metabolite with immunoregulatory effects that are elevated in cord blood. METHODS Impact of adenosine on peripheral and cord blood mononuclear cells (PBMCs and CBMCs) was analysed by quantification of ectonucleotidases and adenosine receptor expression, MDSC induction from PBMCs and CBMCs, their suppressive capacity on T cell proliferation and effector enzyme expression by flow cytometry. RESULTS Cord blood monocytes mainly expressed CD39, while cord blood T cells expressed CD73. Adenosine-induced MDSCs from PBMCs induced indoleamine-2,3-dioxygenase (IDO) expression and enhanced arginase I expression in monocytes. Concerted action of IDO and ArgI led to effective inhibition of T cell proliferation. In addition, adenosine upregulated inhibitory A3 receptors on monocytes. CONCLUSION Adenosine acts by inducing MDSCs and upregulating inhibitory A3 receptors, probably as a mode of autoregulation. Thus, adenosine contributes to immunosuppressive status and may be a target for immunomodulation during pre- and postnatal development. IMPACT Immune effector cells, that is, monocytes, T cells and MDSCs from cord blood express ectonucleotidases CD39 and CD73 and may thus serve as a source for adenosine as an immunomodulatory metabolite. Adenosine mediates its immunomodulatory properties in cord blood by inducing MDSCs, and by modulating the inhibitory adenosine A3 receptor on monocytes. Adenosine upregulates expression of IDO in MDSCs and monocytes potentially contributing to their suppressive activity.
Collapse
Affiliation(s)
- Filip Ďurčo
- Department of Neonatology, University Children's Hospital, Tuebingen, Germany
| | | | - Christian F Poets
- Department of Neonatology, University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, University Children's Hospital, Tuebingen, Germany.
| |
Collapse
|
27
|
Rahman A, DeYoung T, Cahill LS, Yee Y, Debebe SK, Botelho O, Seed M, Chaturvedi RR, Sled JG. A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. Dis Model Mech 2021; 14:dmm049077. [PMID: 34514502 PMCID: PMC8592017 DOI: 10.1242/dmm.049077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023] Open
Abstract
In hypoplastic left heart syndrome (HLHS), the mechanisms leading to left heart hypoplasia and their associated fetal abnormalities are largely unknown. Current animal models have limited utility in resolving these questions as they either do not fully reproduce the cardiac phenotype, do not survive to term and/or have very low disease penetrance. Here, we report the development of a surgically induced mouse model of HLHS that overcomes these limitations. Briefly, we microinjected the fetal left atrium of embryonic day (E)14.5 mice with an embolizing agent under high-frequency ultrasound guidance, which partially blocks blood flow into the left heart and induces hypoplasia. At term (E18.5), all positively embolized mice exhibit retrograde aortic arch flow, non-apex-forming left ventricles and hypoplastic ascending aortas. We thus report the development of the first mouse model of isolated HLHS with a fully penetrant cardiac phenotype and survival to term. Our method allows for the interrogation of previously intractable questions, such as determining the mechanisms of cardiac hypoplasia and fetal abnormalities observed in HLHS, as well as testing of mechanism-based therapies, which are urgently lacking.
Collapse
Affiliation(s)
- Anum Rahman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Lindsay S. Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Chemistry, Memorial University of Newfoundland, St John's, NL A1B 3X7, Canada
| | - Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sarah K. Debebe
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Owen Botelho
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rajiv R. Chaturvedi
- Division of Pediatric Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - John G. Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
28
|
Leão Batista Simões J, Fornari Basso H, Cristine Kosvoski G, Gavioli J, Marafon F, Elias Assmann C, Barbosa Carvalho F, Dulce Bagatini M. Targeting purinergic receptors to suppress the cytokine storm induced by SARS-CoV-2 infection in pulmonary tissue. Int Immunopharmacol 2021; 100:108150. [PMID: 34537482 PMCID: PMC8435372 DOI: 10.1016/j.intimp.2021.108150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
The etiological agent of coronavirus disease (COVID-19) is the new member of the Coronaviridae family, a severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), responsible for the pandemic that is plaguing the world. The single-stranded RNA virus is capable of infecting the respiratory tract, by binding the spike (S) protein on its viral surface to receptors for the angiotensin II-converting enzyme (ACE2), highly expressed in the pulmonary tissue, enabling the interaction of the virus with alveolar epithelial cells promoting endocytosis and replication of viral material. The infection triggers the activation of the immune system, increased purinergic signaling, and the release of cytokines as a defense mechanism, but the response can become exaggerated and prompt the so-called “cytokine storm”, developing cases such as severe acute respiratory syndrome (SARS). This is characterized by fever, cough, and difficulty breathing, which can progress to pneumonia, failure of different organs and death. Thus, the present review aims to compile and correlate the mechanisms involved between the immune and purinergic systems with COVID-19, since the modulation of purinergic receptors, such as A2A, A2B, and P2X7 expressed by immune cells, seems to be effective as a promising therapy, to reduce the severity of the disease, as well as aid in the treatment of acute lung diseases and other cases of generalized inflammation.
Collapse
Affiliation(s)
| | | | | | - Jullye Gavioli
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charles Elias Assmann
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
29
|
Czopik A, Yuan X, Evans S, Eltzschig HK. Targeting the Hypoxia-Adenosine Link for Controlling Excessive Inflammation. Anesthesiology 2021; 135:15-17. [PMID: 34046661 PMCID: PMC8249341 DOI: 10.1097/aln.0000000000003841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Agnieszka Czopik
- Department of Anesthesiology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Scott Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
30
|
Li J, Conrad C, Mills TW, Berg NK, Kim B, Ruan W, Lee JW, Zhang X, Yuan X, Eltzschig HK. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J Exp Med 2021; 218:212023. [PMID: 33891683 PMCID: PMC8077173 DOI: 10.1084/jem.20210008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies implicated the neuronal guidance molecule netrin-1 in attenuating myocardial ischemia-reperfusion injury. However, the tissue-specific sources and receptor signaling events remain elusive. Neutrophils are among the first cells responding to an ischemic insult and can be associated with tissue injury or rescue. We found netrin-1 levels were elevated in the blood of patients with myocardial infarction, as well as in mice exposed to myocardial ischemia-reperfusion. Selectively increased infarct sizes and troponin levels were found in Ntn1loxP/loxP Lyz2 Cre+ mice, but not in mice with conditional netrin-1 deletion in other tissue compartments. In vivo studies using neutrophil depletion identified neutrophils as the main source for elevated blood netrin-1 during myocardial injury. Finally, pharmacologic studies using treatment with recombinant netrin-1 revealed a functional role for purinergic signaling events through the myeloid adenosine A2b receptor in mediating netrin-1-elicited cardioprotection. These findings suggest an autocrine signaling loop with a functional role for neutrophil-derived netrin-1 in attenuating myocardial ischemia-reperfusion injury through myeloid adenosine A2b signaling.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Catharina Conrad
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nathaniel K Berg
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Boyun Kim
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Wei Ruan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Second Xiangya Hospital, Central South University, Hunan, China
| | - Jae W Lee
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT
| | - Xu Zhang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
31
|
Deganutti G, Barkan K, Ladds G, Reynolds CA. Multisite Model of Allosterism for the Adenosine A1 Receptor. J Chem Inf Model 2021; 61:2001-2015. [PMID: 33779168 DOI: 10.1021/acs.jcim.0c01331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite being a target for about one-third of approved drugs, G protein-coupled receptors (GPCRs) still represent a tremendous reservoir for therapeutic strategies against diseases. For example, several cardiovascular and central nervous system conditions could benefit from clinical agents that activate the adenosine 1 receptor (A1R); however, the pursuit of A1R agonists for clinical use is usually impeded by both on- and off-target side effects. One of the possible strategies to overcome this issue is the development of positive allosteric modulators (PAMs) capable of selectively enhancing the effect of a specific receptor subtype and triggering functional selectivity (a phenomenon also referred to as bias). Intriguingly, besides enforcing the effect of agonists upon binding to an allosteric site, most of the A1R PAMs display intrinsic partial agonism and orthosteric competition with antagonists. To rationalize this behavior, we simulated the binding of the prototypical PAMs PD81723 and VCP171, the full-agonist NECA, the antagonist 13B, and the bitopic agonist VCP746. We propose that a single PAM can bind several A1R sites rather than a unique allosteric pocket, reconciling the structure-activity relationship and the mutagenesis results.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K
| |
Collapse
|
32
|
Caracciolo M, Correale P, Mangano C, Foti G, Falcone C, Macheda S, Cuzzola M, Conte M, Falzea AC, Iuliano E, Morabito A, Caraglia M, Polimeni N, Ferrarelli A, Labate D, Tescione M, Di Renzo L, Chiricolo G, Romano L, De Lorenzo A. Efficacy and Effect of Inhaled Adenosine Treatment in Hospitalized COVID-19 Patients. Front Immunol 2021; 12:613070. [PMID: 33815368 PMCID: PMC8012541 DOI: 10.3389/fimmu.2021.613070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
Lack of specific antiviral treatment for COVID-19 has resulted in long hospitalizations and high mortality rate. By harnessing the regulatory effects of adenosine on inflammatory mediators, we have instituted a new therapeutic treatment with inhaled adenosine in COVID-19 patients, with the aim of reducing inflammation, the onset of cytokine storm, and therefore to improve prognosis. The use of inhaled adenosine in COVID19 patients has allowed reduction of length of stay, on average 6 days. This result is strengthened by the decrease in SARS-CoV-2 positive days. In treated patients compared to control, a clear improvement in PaO2/FiO2 was observed together with a reduction in inflammation parameters, such as the decrease of CRP level. Furthermore, the efficacy of inhaled exogenous adenosine led to an improvement of the prognosis indices, NLR and PLR. The treatment seems to be safe and modulates the immune system, allowing an effective response against the viral infection progression, reducing length of stay and inflammation parameters.
Collapse
Affiliation(s)
- Massimo Caracciolo
- Unit of Post-Surgery Intensive Therapy (USDO), Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmelo Mangano
- Unit of Infectious Disease, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Giuseppe Foti
- Unit of Infectious Disease, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmela Falcone
- Unit of Radiology, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Maria Cuzzola
- Microbiology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Marco Conte
- Microbiology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | | | - Eleonora Iuliano
- Medical Oncology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Nicola Polimeni
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Anna Ferrarelli
- Unit of Radiology, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Marco Tescione
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gaetano Chiricolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Romano
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
33
|
Deganutti G, Barkan K, Preti B, Leuenberger M, Wall M, Frenguelli BG, Lochner M, Ladds G, Reynolds CA. Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor. ACS Pharmacol Transl Sci 2021; 4:314-326. [PMID: 33615181 PMCID: PMC7887845 DOI: 10.1021/acsptsci.0c00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Despite being among the most characterized G protein-coupled receptors (GPCRs), adenosine receptors (ARs) have always been a difficult target in drug design. To date, no agonist other than the natural effector and the diagnostic regadenoson has been approved for human use. Recently, the structure of the adenosine A1 receptor (A1R) was determined in the active, Gi protein complexed state; this has important repercussions for structure-based drug design. Here, we employed supervised molecular dynamics simulations and mutagenesis experiments to extend the structural knowledge of the binding of selective agonists to A1R. Our results identify new residues involved in the association and dissociation pathway, they suggest the binding mode of N6-cyclopentyladenosine (CPA) related ligands, and they highlight the dramatic effect that chemical modifications can have on the overall binding mechanism, paving the way for the rational development of a structure-kinetics relationship of A1R agonists.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K.
| | - Kerry Barkan
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K.
| | - Barbara Preti
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Michele Leuenberger
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mark Wall
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Bruno G. Frenguelli
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Martin Lochner
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K.
| | - Christopher A. Reynolds
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K.
| |
Collapse
|
34
|
Wei R, Gust SL, Tandio D, Maheux A, Nguyen KH, Wang J, Bourque S, Plane F, Hammond JR. Deletion of murine slc29a4 modifies vascular responses to adenosine and 5-hydroxytryptamine in a sexually dimorphic manner. Physiol Rep 2021; 8:e14395. [PMID: 32170814 PMCID: PMC7070170 DOI: 10.14814/phy2.14395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Equilibrative nucleoside transporter 4 (ENT4), encoded by SLC29A4, mediates the flux of both 5‐hydroxytryptamine (5‐HT) and adenosine across cell membranes. We hypothesized that loss of ENT4 function in mice would modify the effects of these established regulators of vascular function. Male and female wild‐type (WT) and slc29a4‐null (ENT4‐KO) mice were compared with respect to their hemodynamics and mesenteric vascular function. Male ENT4‐KO mice had a complete loss of myogenic tone in their mesenteric resistance arteries. This was accompanied by a decrease in blood flow in the superior mesenteric artery in the male ENT4‐KO mice, and a reduced responsiveness to 5‐HT. In contrast, endothelium‐dependent relaxations of mesenteric arteries from female ENT4‐KO mice were more sensitive to Ca2+‐activated K+ (KCa) channel blockade than WT mice. Female ENT4‐KO mice also demonstrated an enhanced vasodilatory response to adenosine in vivo that was not seen in males. Ketanserin (5‐HT2A inhibitor) and GR55562 (5‐HT1B/1D inhibitor) decreased 5‐HT‐induced tone, but only ketanserin inhibited the relaxant effect of 5‐HT in mesenteric arteries. 5‐HT‐evoked increases in tone were elevated in arteries from ENT4‐KO mice upon block of endothelial relaxant pathways, with arteries from female ENT4‐KO mice showing the greatest increase. Adenosine A2b receptor expression was decreased, while other adenosine transporter subtypes, as well as adenosine deaminase and adenosine kinase were increased in mesenteric arteries from male, but not female, ENT4‐KO mice. These findings indicate that deletion of slc29a4 leads to sex‐specific changes in vascular function with significant consequences for regulation of blood flow and pressure by adenosine and 5‐HT.
Collapse
Affiliation(s)
- Ran Wei
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Stephen L Gust
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - David Tandio
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Alexia Maheux
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Khanh H Nguyen
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Stephane Bourque
- Department of Anaesthesia and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Frances Plane
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
36
|
Ho SY, Chen IC, Chang KC, Lin HR, Tsai CW, Lin CJ, Liou HH. Equilibrative Nucleoside Transporters-1 Inhibitors Act as Anti-epileptic Agents by Inhibiting Glutamatergic Transmission. Front Neurosci 2020; 14:610898. [PMID: 33390891 PMCID: PMC7773772 DOI: 10.3389/fnins.2020.610898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose: Adenosine dysregulation is associated with the occurrence of the epilepsy and equilibrative nucleoside transporters-1 (ENT-1) functions as an important regulator of extracellular adenosine in the brain. This study was aimed to prove the anti-epileptic effect of BBB permeable ENT-1 inhibitors, JMF1907 and J4, on animal models of various epilepsy, and the mechanisms that are involved. Experimental Approach: Maximal electroshock seizure (MES), pentylenetetrazol (PTZ)-induced seizure and kindling models were used as mouse models of generalized tonic-clonic epilepsy, generalized myoclonic epilepsy, and partial epilepsy, respectively. The epilepsy frequency, duration, and Racine score were evaluated. Whole-cell recordings were made from the hippocampal dentate granule cells by using a patch-clamp technique in the brain slice of the mice. Key Results: In MES, JMF1907 at a dose of 5 mg kg-1 was efficacious in decreasing hindlimb extension, while J4 did not decrease hindlimb extension until a higher dose (10 mg kg-1). Both JMF1907 and J4 were more potent in lengthening onset latency than ethosuximide (ETH) in PTZ-induced myoclonic epilepsy model, whereas ETH had better effects on the Racine score. In kindling model, JMF1907 and J4 at a dose of 1 mg kg-1 had effects on seizure frequency and duration, and the effects of JMF1907 were comparable with those of carbamazepine. Both JMF1907 and J4 can reduce the glutamatergic spontaneous excitatory post-synaptic currents (sEPSCs) frequency. The maximal inhibition was about 50% for JMF1907 at a concentration of 1 μg L-1, whereas J4 only inhibited 40% of sEPSCs frequency at a dose of 10 μg L-1. Conclusion and Implications: ENT-1 inhibitors, JMF1907 and J4, showed anti-epileptic effects in different epilepsy models and the effects involved pre-synaptic neuronal modulation.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Hsiao-Ru Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| |
Collapse
|
37
|
Falcone C, Caracciolo M, Correale P, Macheda S, Vadalà EG, La Scala S, Tescione M, Danieli R, Ferrarelli A, Tarsitano MG, Romano L, De Lorenzo A. Can Adenosine Fight COVID-19 Acute Respiratory Distress Syndrome? J Clin Med 2020; 9:E3045. [PMID: 32967358 PMCID: PMC7564484 DOI: 10.3390/jcm9093045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) patients can develop interstitial pneumonia, which, in turn, can evolve into acute respiratory distress syndrome (ARDS). This is accompanied by an inflammatory cytokine storm. severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has proteins capable of promoting the cytokine storm, especially in patients with comorbidities, including obesity. Since currently no resolutive therapy for ARDS has been found and given the scientific literature regarding the use of adenosine, its application has been hypothesized. Through its receptors, adenosine is able to inhibit the acute inflammatory process, increase the protection capacity of the epithelial barrier, and reduce the damage due to an overactivation of the immune system, such as that occurring in cytokine storms. These features are known in ischemia/reperfusion models and could also be exploited in acute lung injury with hypoxia. Considering these hypotheses, a COVID-19 patient with unresponsive respiratory failure was treated with adenosine for compassionate use. The results showed a rapid improvement of clinical conditions, with negativity of SARS-CoV2 detection.
Collapse
Affiliation(s)
- Carmela Falcone
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | - Massimo Caracciolo
- Unit of Intensive Postoperative Therapy, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Eugenio Giuseppe Vadalà
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Stefano La Scala
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Marco Tescione
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Roberta Danieli
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Anna Ferrarelli
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | | | - Lorenzo Romano
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
38
|
Oyama Y, Shuff S, Maddry JK, Schauer SG, Bebarta VS, Eckle T. Intense Light Pretreatment Improves Hemodynamics, Barrier Function and Inflammation in a Murine Model of Hemorrhagic Shock Lung. Mil Med 2020; 185:e1542-e1550. [PMID: 32515788 DOI: 10.1093/milmed/usaa088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Hemorrhagic shock is a primary injury amongst combat casualties. Hemorrhagic shock can lead to acute lung injury, which has a high mortality rate. Based on studies showing the role of intense light for organ-protection, we sought to evaluate if intense light pretreatment would be protective in a murine model of hemorrhagic shock lung. MATERIALS AND METHODS After exposure to standard room light or to intense light (10 000 LUX), mice were hemorrhaged for 90 minutes to maintain a mean arterial pressure (MAP) of 30-35 mmHg. Mice were then resuscitated with their blood and a NaCl infusion at a rate of 0.2 ml/h over a 3-hour period. During resuscitation, blood pressure was recorded. At the end of resuscitation, bronchoalveolar lavage was analyzed for alveolar epithelial barrier function and inflammation. To get insight into the relevance of intense light for humans, we performed a proteomics screen for lung injury biomarkers in plasma from healthy volunteers following intense light therapy. RESULTS We found that intense light pretreated mice had improved hemodynamics and significantly lower albumin, IL-6, and IL-8 levels in their bronchoalveolar lavage than controls. We further discovered that intense light therapy in humans significantly downregulated proinflammatory plasma proteins that are known to cause acute lung injury. CONCLUSIONS Our data demonstrate that mice exposed to intense light before hemorrhagic shock lung have less lung inflammation and improved alveolar epithelial barrier function. We further show that intense light therapy downregulates lung injury promoting proteins in human plasma. Together, these data suggest intense light as a possible strategy to ameliorate the consequences of a hemorrhagic shock on lung injury.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado-Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045
| | - Sydney Shuff
- Department of Anesthesiology, University of Colorado-Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045
| | - Joseph K Maddry
- Department of Emergency Medicine, Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234.,US Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234.,Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Steven G Schauer
- Department of Emergency Medicine, Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234.,US Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234.,Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado-Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045.,Office of the Chief Scientist, 59MDW Science and Technology, 1632 Nellis Street, Bldg 5406, Joint Base San Antonio-Lackland, TX 78233-9908
| | - Tobias Eckle
- Department of Emergency Medicine, Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234.,US Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234.,Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| |
Collapse
|
39
|
Soattin L, Lubberding AF, Bentzen BH, Christ T, Jespersen T. Inhibition of Adenosine Pathway Alters Atrial Electrophysiology and Prevents Atrial Fibrillation. Front Physiol 2020; 11:493. [PMID: 32595514 PMCID: PMC7304385 DOI: 10.3389/fphys.2020.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
Background Adenosine leads to atrial action potential (AP) shortening through activation of adenosine 1 receptors (A1-R) and subsequent opening of G-protein-coupled inwardly rectifying K+ channels. Extracellular production of adenosine is drastically increased during stress and ischemia. Objective The aim of this study was to address whether the pharmacological blockade of endogenous production of adenosine and of its signaling prevents atrial fibrillation (AF). Methods The role of A1-R activation on atrial action potential duration, refractoriness, and AF vulnerability was investigated in rat isolated beating heart preparations (Langendorff) with an A1-R agonist [2-chloro-N6-cyclopentyladenosine (CCPA), 50 nM] and antagonist [1-butyl-3-(3-hydroxypropyl)-8-(3-noradamantyl)xanthine (PSB36), 40 nM]. Furthermore, to interfere with the endogenous adenosine release, the ecto-5′-nucleotidase (CD73) inhibitor was applied [5′-(α,β-methylene) diphosphate sodium salt (AMPCP), 500 μM]. Isolated trabeculae from human right atrial appendages (hRAAs) were used for comparison. Results As expected, CCPA shortened AP duration at 90% of repolarization (APD90) and effective refractory period (ERP) in rat atria. PSB36 prolonged APD90 and ERP in rat atria, and CD73 inhibition with AMPCP prolonged ERP in rats, confirming that endogenously produced amount of adenosine is sufficiently high to alter atrial electrophysiology. In human atrial appendages, CCPA shortened APD90, while PSB36 prolonged it. Rat hearts treated with CCPA are prone to AF. In contrast, PSB36 and AMPCP prevented AF events and reduced AF duration (vehicle, 11.5 ± 2.6 s; CCPA, 40.6 ± 16.1 s; PSB36, 6.5 ± 3.7 s; AMPCP, 3.0 ± 1.4 s; P < 0.0001). Conclusion A1-R activation by intrinsic adenosine release alters atrial electrophysiology and promotes AF. Inhibition of adenosine pathway protects atria from arrhythmic events.
Collapse
Affiliation(s)
- Luca Soattin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anniek Frederike Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Han SJ, Lovaszi M, Kim M, D’Agati V, Haskó G, Lee HT. P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling. FASEB J 2020; 34:5465-5482. [PMID: 32086866 PMCID: PMC7136150 DOI: 10.1096/fj.201903287r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
We tested the hypothesis that the P2X4 purinergic receptor (P2X4) exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation after ischemia and reperfusion (IR). Supporting this, P2X4-deficient (KO) mice were protected against ischemic AKI with significantly attenuated renal tubular necrosis, inflammation, and apoptosis when compared to P2X4 wild-type (WT) mice subjected to renal IR. Furthermore, WT mice treated with P2X4 allosteric agonist ivermectin had exacerbated renal IR injury whereas P2X4 WT mice treated with a selective P2X4 antagonist (5-BDBD) were protected against ischemic AKI. Mechanistically, induction of kidney NLRP3 inflammasome signaling after renal IR was significantly attenuated in P2X4 KO mice. A P2 agonist ATPγS increased NLRP3 inflammasome signaling (NLRP3 and caspase 1 induction and IL-1β processing) in isolated renal proximal tubule cells from WT mice whereas these increases were absent in renal proximal tubules isolated from P2X4 KO mice. Moreover, 5-BDBD attenuated ATPγS induced NLRP3 inflammasome induction in renal proximal tubules from WT mice. Finally, P2X4 agonist ivermectin induced NLRP3 inflammasome and pro-inflammatory cytokines in cultured human proximal tubule cells. Taken together, our studies suggest that renal proximal tubular P2X4 activation exacerbates ischemic AKI and promotes NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - Marianna Lovaszi
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - Mihwa Kim
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - Vivette D’Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY
| | - György Haskó
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| | - H. Thomas Lee
- Department of Anesthesiology,College of Physicians and Surgeons of Columbia University, New York, NY
| |
Collapse
|
41
|
Oyama Y, Blaskowsky J, Eckle T. Dose-dependent Effects of Esmolol-epinephrine Combination Therapy in Myocardial Ischemia and Reperfusion Injury. Curr Pharm Des 2020; 25:2199-2206. [PMID: 31258066 DOI: 10.2174/1381612825666190618124829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Animal studies on cardiac arrest found that a combination of epinephrine with esmolol attenuates post-resuscitation myocardial dysfunction. Based on these findings, we hypothesized that esmololepinephrine combination therapy would be superior to a reported cardioprotective esmolol therapy alone in a mouse model of myocardial ischemia and reperfusion (IR) injury. METHODS C57BL/6J mice were subjected to 60 min of myocardial ischemia and 120 min of reperfusion. Mice received either saline, esmolol (0.4 mg/kg/h), epinephrine (0.05 mg/kg/h), or esmolol combined with epinephrine (esmolol: 0.4 mg/kg/h or 0.8 mg/kg/h and epinephrine: 0.05 mg/kg/h) during reperfusion. After reperfusion, infarct sizes in the area-at-risk and serum cardiac troponin-I levels were determined. Hemodynamic effects of drugs infused were determined by measurements of heart rate (HR) and mean arterial blood pressure (MAP) via a carotid artery catheter. RESULTS Esmolol during reperfusion resulted in robust cardioprotection (esmolol vs. saline: 24.3±8% vs. 40.6±3% infarct size), which was abolished by epinephrine co-administration (38.1±15% infarct size). Increasing the esmolol dose, however, was able to restore esmolol-cardioprotection in the epinephrine-esmolol (18.6±8% infarct size) co-treatment group with improved hemodynamics compared to the esmolol group (epinephrine-esmolol vs. esmolol: MAP 80 vs. 75 mmHg, HR 452 vs. 402 beats/min). CONCLUSION These results confirm earlier studies on esmolol-cardioprotection from myocardial IR-injury and demonstrate that a dose optimized epinephrine-esmolol co-treatment maintains esmolol-cardioprotection with improved hemodynamics compared to esmolol treatment alone. These findings might have implications for current clinical practice in hemodynamically unstable patients suffering from myocardial ischemia.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Justin Blaskowsky
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
42
|
Abstract
Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of the human purinoceptors have been found in mouse, making this laboratory animal a useful model to study their function. Indeed, analyses of purinoceptors via knock-in or knockout approaches to produce gain or loss of function phenotypes have revealed several important therapeutic targets. None of the homozygous purinoceptor knockouts proved to be developmentally lethal, which suggest that either these receptors are not involved in key developmental processes or that the large number of receptors in each family allowed for functional compensation. Different models for the same purinoceptor often show compatible phenotypes but there have been examples of significant discrepancies. These revealed unexpected differences in the structure of human and mouse genes and emphasized the importance of the genetic background of different mouse strains. In this chapter, we provide an overview of the current knowledge and new trends in the modifications of purinoceptor genes in vivo. We discuss the resulting phenotypes, their applications and relative merits and limitations of mouse models available to study purinoceptor subtypes.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| |
Collapse
|
43
|
Mangoni AA, Tommasi S, Zinellu A, Sotgia S, Bassu S, Piga M, Erre GL, Carru C. Methotrexate and Vasculoprotection: Mechanistic Insights and Potential Therapeutic Applications in Old Age. Curr Pharm Des 2019; 25:4175-4184. [DOI: 10.2174/1381612825666191112091700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Increasing age is a strong, independent risk factor for atherosclerosis and cardiovascular disease. Key
abnormalities driving cardiovascular risk in old age include endothelial dysfunction, increased arterial stiffness,
blood pressure, and the pro-atherosclerotic effects of chronic, low-grade, inflammation. The identification of
novel therapies that comprehensively target these alterations might lead to a major breakthrough in cardiovascular
risk management in the older population. Systematic reviews and meta-analyses of observational studies have
shown that methotrexate, a first-line synthetic disease-modifying anti-rheumatic drug, significantly reduces
cardiovascular morbidity and mortality in patients with rheumatoid arthritis, a human model of systemic
inflammation, premature atherosclerosis, and vascular aging. We reviewed in vitro and in vivo studies
investigating the effects of methotrexate on endothelial function, arterial stiffness, and blood pressure, and the
potential mechanisms of action involved. The available evidence suggests that methotrexate might have beneficial
effects on vascular homeostasis and blood pressure control by targeting specific inflammatory pathways,
adenosine metabolism, and 5' adenosine monophosphate-activated protein kinase. Such effects might be
biologically and clinically relevant not only in patients with rheumatoid arthritis but also in older adults with high
cardiovascular risk. Therefore, methotrexate has the potential to be repurposed for cardiovascular risk
management in old age because of its putative pharmacological effects on inflammation, vascular homeostasis,
and blood pressure. However, further study and confirmation of these effects are essential in order to adequately
design intervention studies of methotrexate in the older population.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefania Bassu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Gian L. Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
44
|
Long VP, Bonilla IM, Baine S, Glynn P, Kumar S, Schober K, Mowrey K, Weiss R, Lee NY, Mohler PJ, Györke S, Hund TJ, Fedorov VV, Carnes CA. Chronic heart failure increases negative chronotropic effects of adenosine in canine sinoatrial cells via A1R stimulation and GIRK-mediated I Kado. Life Sci 2019; 240:117068. [PMID: 31751583 DOI: 10.1016/j.lfs.2019.117068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
AIMS Bradycardia contributes to tachy-brady arrhythmias or sinus arrest during heart failure (HF). Sinoatrial node (SAN) adenosine A1 receptors (ADO A1Rs) are upregulated in HF, and adenosine is known to exert negative chronotropic effects on the SAN. Here, we investigated the role of A1R signaling at physiologically relevant ADO concentrations on HF SAN pacemaker cells. MAIN METHODS Dogs with tachypacing-induced chronic HF and normal controls (CTL) were studied. SAN tissue was collected for A1R and GIRK mRNA quantification. SAN cells were isolated for perforated patch clamp recordings and firing rate (bpm), slope of slow diastolic depolarization (SDD), and maximum diastolic potential (MDP) were measured. Action potentials (APs) and currents were recorded before and after addition of 1 and 10 μM ADO. To assess contributions of A1R and G protein-coupled Inward Rectifier Potassium Current (GIRK) to ADO effects, APs were measured after the addition of DPCPX (selective A1R antagonist) or TPQ (selective GIRK blocker). KEY FINDINGS A1R and GIRK mRNA expression were significantly increased in HF. In addition, ADO induced greater rate slowing and membrane hyperpolarization in HF vs CTL (p < 0.05). DPCPX prevented ADO-induced rate slowing in CTL and HF cells. The ADO-induced inward rectifying current, IKado, was observed significantly more frequently in HF than in CTL. TPQ prevented ADO-induced rate slowing in HF. SIGNIFICANCE An increase in A1R and GIRK expression enhances IKAdo, causing hyperpolarization, and subsequent negative chronotropic effects in canine chronic HF at relevant [ADO]. GIRK blockade may be a useful strategy to mitigate bradycardia in HF.
Collapse
Affiliation(s)
- Victor P Long
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ingrid M Bonilla
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Stephen Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Patric Glynn
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sanjay Kumar
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Karsten Schober
- College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | | | - Raul Weiss
- Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Peter J Mohler
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Györke
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Vadim V Fedorov
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
46
|
Załuski M, Stanuch K, Karcz T, Hinz S, Latacz G, Szymańska E, Schabikowski J, Doroż-Płonka A, Handzlik J, Drabczyńska A, Müller CE, Kieć-Kononowicz K. Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties. MEDCHEMCOMM 2018; 9:951-962. [PMID: 30108984 PMCID: PMC6071793 DOI: 10.1039/c8md00070k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022]
Abstract
A library of 27 novel amide derivatives of annelated xanthines was designed and synthesized. The new compounds represent 1,3-dipropyl- and 1,3-dibutyl-pyrimido[2,1-f]purinedione-9-ethylphenoxy derivatives including a CH2CONH linker between the (CH2)2-amino group and the phenoxy moiety. A synthetic strategy to obtain the final products was developed involving solvent-free microwave irradiation. The new compounds were evaluated for their adenosine receptor (AR) affinities. The most potent derivatives contained a terminal tertiary amino function. Compounds with nanomolar AR affinities and at the same time high water-solubility were obtained (A1 (Ki = 24-605 nM), A2A (Ki = 242-1250 nM), A2B (Ki = 66-911 nM) and A3 (Ki = 155-1000 nM)). 2-(4-(2-(1,3-Dibutyl-2,4-dioxo-1,2,3,4,7,8-hexahydropyrimido[2,1-f]purin-9(6H)-yl)ethyl)phenoxy)-N-(3-(diethylamino)propyl)acetamide (27) and the corresponding N-(2-(pyrrolidin-1-yl)ethyl)acetamide (36) were found to be the most potent antagonists of the present series. While 27 showed CYP inhibition and moderate metabolic stability, 36 was found to possess suitable properties for in vivo applications. In an attempt to explain the affinity data for the synthesized compounds, molecular modeling and docking studies were performed using homology models of A1 and A2A adenosine receptors. The potent compound 36 was used as an example for discussion of the possible ligand-protein interactions. Moreover, the compounds showed high water-solubility indicating that the approach of introducing a basic side chain was successful for the class of generally poorly soluble AR antagonists.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Katarzyna Stanuch
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Tadeusz Karcz
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sonja Hinz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Agata Doroż-Płonka
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Anna Drabczyńska
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Christa E Müller
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| |
Collapse
|
47
|
Haanes KA, Labastida-Ramírez A, Chan KY, de Vries R, Shook B, Jackson P, Zhang J, Flores CM, Danser AHJ, Villalón CM, MaassenVanDenBrink A. Characterization of the trigeminovascular actions of several adenosine A 2A receptor antagonists in an in vivo rat model of migraine. J Headache Pain 2018; 19:41. [PMID: 29802484 PMCID: PMC5970128 DOI: 10.1186/s10194-018-0867-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Migraine is considered a neurovascular disorder, but its pathophysiological mechanisms are not yet fully understood. Adenosine has been shown to increase in plasma during migraine attacks and to induce vasodilation in several blood vessels; however, it remains unknown whether adenosine can interact with the trigeminovascular system. Moreover, caffeine, a non-selective adenosine receptor antagonist, is included in many over the counter anti-headache/migraine treatments. METHODS This study used the rat closed cranial window method to investigate in vivo the effects of the adenosine A2A receptor antagonists with varying selectivity over A1 receptors; JNJ-39928122, JNJ-40529749, JNJ-41942914, JNJ-40064440 or JNJ-41501798 (0.3-10 mg/kg) on the vasodilation of the middle meningeal artery produced by either CGS21680 (an adenosine A2A receptor agonist) or endogenous CGRP (released by periarterial electrical stimulation). RESULTS Regarding the dural meningeal vasodilation produced neurogenically or pharmacologically, all JNJ antagonists: (i) did not affect neurogenic vasodilation but (ii) blocked the vasodilation produced by CGS21680, with a blocking potency directly related to their additional affinity for the adenosine A1 receptor. CONCLUSIONS These results suggest that vascular adenosine A2A (and, to a certain extent, also A1) receptors mediate the CGS21680-induced meningeal vasodilation. These receptors do not appear to modulate prejunctionally the sensory release of CGRP. Prevention of meningeal arterial dilation might be predictive for anti-migraine drugs, and since none of these JNJ antagonists modified per se blood pressure, selective A2A receptor antagonism may offer a novel approach to antimigraine therapy which remains to be investigated in clinical trials.
Collapse
Affiliation(s)
- Kristian A Haanes
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Dr Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands
| | - Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Dr Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands
| | - Kayi Y Chan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Dr Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Dr Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands
| | - Brian Shook
- Janssen Research & Development, L.L.C, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - Paul Jackson
- Janssen Research & Development, L.L.C, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - Jimmy Zhang
- Janssen Research & Development, L.L.C, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - Christopher M Flores
- Janssen Research & Development, L.L.C, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - Alexander H J Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Dr Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P, 14330, Ciudad de México, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, Dr Molewaterplein 50, 3015, GE, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Lee JS, Yilmaz Ö. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. Int J Mol Sci 2018; 19:E199. [PMID: 29315226 PMCID: PMC5796148 DOI: 10.3390/ijms19010199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling have has strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| |
Collapse
|
49
|
Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. Purinergic Signal 2016; 13:179-190. [PMID: 27848069 DOI: 10.1007/s11302-016-9548-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023] Open
Abstract
Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser9 GSK-3β. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3β activity by Akt-mediated Ser9-GSK-3β phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.
Collapse
|
50
|
Teng B, Tilley SL, Ledent C, Mustafa SJ. In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice. Physiol Rep 2016; 4:4/11/e12818. [PMID: 27302991 PMCID: PMC4908494 DOI: 10.14814/phy2.12818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((π/4) × D(2) × VTI × HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | - S Jamal Mustafa
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|