1
|
Lin YL, Wang CR. Diet-induced dyslipidemia enhances IFN-γ production in mycolic acid-specific T cells and affects mycobacterial control. Mucosal Immunol 2025:S1933-0219(25)00047-9. [PMID: 40324594 DOI: 10.1016/j.mucimm.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/21/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Dyslipidemia, characterized by altered lipid profiles, influences host immune responses against infections, including Mycobacterium tuberculosis (Mtb). While the effects of dyslipidemia on conventional T cell responses are well documented, its impact on group 1-CD1 restricted T cells, a distinct subset of lipid antigen-specific unconventional T cells, during Mtb infection remains unclear. In this study, we developed a double-transgenic mouse model expressing human group 1 CD1 (hCD1Tg) and mycolic acid (MA)-specific CD1b-restricted T cell receptor (DN1Tg) in a Rag-deficient and low-density lipoprotein receptor-deficient background to investigate how diet-induced dyslipidemia affects the functionality of MA-specific T cells and their role in anti-Mtb immunity. We found that diet-induced dyslipidemia led to increased IFN-γ production by MA-specific T cells, which promoted mycobacterial clearance in vitro. Mechanistically, this enhanced IFN-γ production was associated with increased TCR signaling and enhanced glycolysis in DN1 T cells, rather than changes in antigen presentation by dendritic cells. However, dyslipidemia also increased apoptosis in DN1 T cells, which may have impaired their ability to control mycobacterial infection in vivo, resulting in reduced bacterial clearance. These findings highlight a complex interplay between diet-induced dyslipidemia and lipid antigen-specific T-cell responses in Mtb infection, providing insights for potential therapeutic strategies to mitigate dyslipidemia-induced changes in T-cell functions.
Collapse
Affiliation(s)
- Yen-Lin Lin
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| |
Collapse
|
2
|
Korpak K, Rossi M, Van Meerhaeghe A, Boudjeltia KZ, Compagnie M. Omega-3 long-chain polyunsaturated fatty acids and their bioactive lipids: A strategy to improve resistance to respiratory tract infectious diseases in the elderly? NUTRITION AND HEALTHY AGING 2024; 9:55-76. [DOI: 10.3233/nha-220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Age-related changes in organ function, immune dysregulation, and the effects of senescence explain in large part the high prevalence of infections, including respiratory tract infections in older persons. Poor nutritional status in many older persons increases susceptibility to infection and worsens prognosis. Interestingly, there is an association between the amount of saturated fats in the diet and the rate of community-acquired pneumonia. Polyunsaturated fatty acids, particularly omega-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have well-known anti-inflammatory, immunomodulatory, and antimicrobial effects, which may, in theory, be largely induced by PUFAs-derived lipids such as specialized pro-resolving mediators (SPMs). In adults, preliminary results of studies show that ω-3 LC-PUFAs supplementation can lead to SPM generation. SPMs have a crucial role in the resolution of inflammation, a factor relevant to survival from infection independent of the pathogen’s virulence. Moreover, the immune system of older adults appears to be more sensitive to ω-3 PUFAs. This review explores the effects of ω-3 LC-PUFAs, and PUFA bioactive lipid-derived SPMs in respiratory tract infections and the possible relevance of these data to infectious disease outcomes in the older population. The hypothesis that PUFAs have beneficial effects via SPM generation will need to be confirmed by animal experiments and patient-derived data.
Collapse
Affiliation(s)
- Kéziah Korpak
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Rossi
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
- Department of Urology, CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - A. Van Meerhaeghe
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - K. Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Compagnie
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
3
|
Wunderlich M, Miller M, Ritter B, Le Gleut R, Marchi H, Majzoub-Altweck M, Knerr PJ, Douros JD, Müller TD, Brielmeier M. Experimental colonization with H. hepaticus, S. aureus and R. pneumotropicus does not influence the metabolic response to high-fat diet or incretin-analogues in wildtype SOPF mice. Mol Metab 2024; 87:101992. [PMID: 39019114 PMCID: PMC11338133 DOI: 10.1016/j.molmet.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVES We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes. METHODS Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709. RESULTS Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709. CONCLUSIONS We conclude that the occurrence of H. hepaticus, R. pneumotropicus and S. aureus does neither affect the development of diet-induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.
Collapse
Affiliation(s)
| | - Manuel Miller
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany.
| | - Bärbel Ritter
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Munich, Germany
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Munich, Germany; Faculty of Business Administration and Economics, Bielefeld University, Germany
| | - Monir Majzoub-Altweck
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Patrick J Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany, and German Center for Diabetes Research, DZD, and Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | |
Collapse
|
4
|
Entrup GP, Unadkat A, Warheit-Niemi HI, Thomas B, Gurczynski SJ, Cui Y, Smith AM, Gallagher KA, Moore BB, Singer K. Obesity Inhibits Alveolar Macrophage Responses to Pseudomonas aeruginosa Pneumonia via Upregulation of Prostaglandin E2 in Male, but Not Female, Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:317-327. [PMID: 38905107 PMCID: PMC11250913 DOI: 10.4049/jimmunol.2400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/23/2024]
Abstract
Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.
Collapse
Affiliation(s)
| | - Aayush Unadkat
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | | | - Brooke Thomas
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Yuxiao Cui
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | | | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
5
|
Love AC, Tabb V, Youssef NH, Wilder SM, DuRant SE. Effect of dietary macronutrients and immune challenge on gut microbiota, physiology and feeding behaviour in zebra finches. Mol Ecol 2024; 33:e17428. [PMID: 38837812 DOI: 10.1111/mec.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Macronutrients play a vital role in host immunity and can influence host-pathogen dynamics, potentially through dietary effects on gut microbiota. To increase our understanding of how dietary macronutrients affect physiology and gut microbiota and investigate whether feeding behaviour is influenced by an immune threat, we conducted two experiments. First, we determined whether zebra finches (Taeniopygia guttata) exhibit shifts in physiology and gut microbiota when fed diets differing in macronutrient ratios. We found the type and amount of diet consumed affected gut microbiota alpha diversity, where microbial richness and Shannon diversity increased with caloric intake in birds fed a high-fat diet and decreased with caloric intake in birds fed a high protein diet. Diet macronutrient content did not affect physiological metrics, but lower caloric intake was associated with higher complement activity. In our second experiment, we simulated an infection in birds using the bacterial endotoxin lipopolysaccharide (LPS) and quantified feeding behaviour in immune challenged and control individuals, as well as birds housed near either a control pair (no immune threat), or birds housed near a pair given an immune challenge with LPS (social cue of heightened infection risk). We also examined whether social cues of infection alter physiological responses relevant to responding to an immune threat, an effect that could be mediated through shifts in feeding behaviour. LPS induced a reduction in caloric intake driven by a decrease in protein, but not fat consumption. No evidence was found for socially induced shifts in feeding behaviour, physiology or gut microbiota. Our findings carry implications for host health, as sickness-induced anorexia and diet-induced shifts in the microbiome could shape host-pathogen interactions.
Collapse
Affiliation(s)
- Ashley C Love
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Victoria Tabb
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sarah E DuRant
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
6
|
Eng M, Suthaaharan K, Newton L, Sheikh F, Fox-Robichaud A. Sepsis and obesity: a scoping review of diet-induced obesity murine models. Intensive Care Med Exp 2024; 12:15. [PMID: 38388878 PMCID: PMC10884395 DOI: 10.1186/s40635-024-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Sepsis, the life-threatening host response to infection, is a major cause of mortality. Obesity increases vulnerability to sepsis; however, some degree of obesity may be protective, called the "obesity paradox". This scoping review systematically maps the literature on outcomes associated with diet-induced obesity and sepsis-induced organ injury, focusing on non-transgenic murine models. METHODS A literature search of primary articles was conducted from database inception to June 2023. Eligible articles compared diet-induced obesity to non-obese mice in sepsis models involving live pathogens. Two reviewers screened articles and extracted data on obesogenic and sepsis models utilized, and organ injury outcomes, including physiological dysfunction, histological alterations, and biochemical changes. RESULTS Seventeen studies met eligibility criteria; 82% used male C57BL/6 mice, and 88% used cecal ligation and puncture to induce sepsis. Most studies used 60% high-fat diets compared to 10-16% fat in controls. Seven (64%) studies reported increased mortality in obese septic mice, one (9%) observed a decrease, and three (37%) found no significant difference. The liver, lungs, and kidneys were the most studied organs. Alanine transaminase results were inconclusive. Myeloperoxidase levels were increased in the livers of two studies and inconclusive in the lungs of obese septic mice. Creatinine and neutrophil gelatinase-associated lipocalin were elevated in obese septic mice. CONCLUSIONS There is variability in the methodology and measured outcomes in murine models of diet-induced obesity and sepsis and a lack of studies in female mice. The absence of standardized models has produced conflicting findings on the impact of obesity on sepsis outcomes.
Collapse
Affiliation(s)
- Mikaela Eng
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, Canada
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Keshikaa Suthaaharan
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, Canada
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Logan Newton
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, Canada
| | - Fatima Sheikh
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Alison Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, Canada.
- Division of Critical Care, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
| |
Collapse
|
7
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Muske J, Knoop K. Contributions of the microbiota to the systemic inflammatory response. MICROBIOTA AND HOST 2023; 1:e230018. [PMID: 38872988 PMCID: PMC11170979 DOI: 10.1530/mah-23-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The health of the intestinal microbiota impacts tolerance at homeostasis and the strength of the inflammation response during acute bloodstream infections. A complete understanding of the feedback loop between systemic inflammation and dysregulation of the gut microbiota is necessary for inflammation management. Here we will review the many ways in which the microbiota can influence the systemic pro-inflammatory response. Short-chain fatty acids, produced through the microbial metabolism of dietary fibers, can suppress inflammation systemically; in the absence of a balanced diet or disruption of the microbiota through antibiotics, there is disrupted metabolite production, leading to systemic inflammation. Dysbiosis or inflammation in the intestines can lead to a breakdown of the sturdy intestinal-epithelial barrier. When this barrier is perturbed, immunogenic lipopolysaccharides or extracellular vesicles enter the bloodstream and induce excessive inflammation. Necessary clinical treatments, such as antifungals or antibacterials, induce microbiota dysregulation and thus increased risk of endotoxemia; though probiotics may aid in improving the microbiota health and have been shown to deflate inflammation during sepsis. Within this complicated relationship: What is in control, the dysbiotic microbiota or the systemic inflammation?
Collapse
Affiliation(s)
- Josey Muske
- Mayo Graduate School of Biomedical Sciences
- Department of Immunology, Mayo Clinic Rochester, MN USA
| | - Kathryn Knoop
- Department of Immunology, Mayo Clinic Rochester, MN USA
- Department of Pediatrics, Mayo Clinic Rochester, MN USA
| |
Collapse
|
9
|
Lewis ED, Williams HC, Bruno ME, Stromberg AJ, Saito H, Johnson LA, Starr ME. Exploring the Obesity Paradox in A Murine Model of Sepsis: Improved Survival Despite Increased Organ Injury in Obese Mice. Shock 2022; 57:151-159. [PMID: 34482320 PMCID: PMC8678195 DOI: 10.1097/shk.0000000000001856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Despite the known deleterious effects of obesity, clinical data indicate that overweight or obese patients experience higher rates of sepsis survival compared to normal and underweight patients; a phenomenon called the obesity paradox. Results from preclinical sepsis studies have not been able to replicate these findings. The objective of this study was to test the existence of the obesity paradox in a murine model of cecal slurry (CS)-induced sepsis with insulin-resistant diet-induced obese mice. Male C57BL/6 mice were provided high-fat (HFD) or low-fat (LFD) diets for 20 weeks. HFD-fed mice experienced higher rates of survival compared to LFD-fed mice after septic challenge induced by CS injection (66% vs. 25%, P = 0.01, survival assessed for 14 days). Despite the survival advantage, HFD-fed mice had higher rates of positive bacterial cultures and increased markers of kidney injury. Circulating levels of IL-6, IL-1β, TNFα, and IL-23 were equivalent 24 h after CS-injection; however, IL-17A was uniquely increased in HFD-fed mice. While LFD-fed mice maintained euglycemia, HFD-fed mice were hyperglycemic 6 and 12 h after CS-injection. Stable isotope resolved metabolomics analysis of liver tissue showed diverging pathways of glucose utilization during sepsis, with LFD-fed mice significantly upregulating glycolytic activity and HFD-fed mice decreasing glucose entry into the TCA cycle. This murine study corroborates clinical data that obesity confers a survival benefit in sepsis, albeit at the expense of more significant organ injury. The mechanisms promoting survival in the obese remain unknown; however, this model appears to be well-poised to begin answering this question. Differences in glucose utilization are a novel target to investigate this paradox.
Collapse
Affiliation(s)
- Erick D. Lewis
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Holden C. Williams
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Maria E.C. Bruno
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Arnold J. Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Hiroshi Saito
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Marlene E. Starr
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
10
|
Khuat LT, Vick LV, Dunai C, Collins CP, More SK, Le CT, Pai CCS, Stoffel KM, Maverakis E, Canter RJ, Monjazeb AM, Longo DL, Abedi M, Choi E, Blazar BR, Dave M, Murphy WJ. Increased efficacy of dual proinflammatory cytokine blockade on acute GVHD while maintaining GVT effects. Blood 2021; 138:2583-2588. [PMID: 34424962 PMCID: PMC8678998 DOI: 10.1182/blood.2021011216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a potential curative option for treating a variety of hematologic diseases, but acute and chronic graft-versus-host disease (GVHD) remain major barriers limiting efficacy. Acute gut GVHD occurs with marked increases in proinflammatory cytokines (including TNF and IL-6), which we recently demonstrated was exacerbated in obesity resulting in severe gastrointestinal pathology. Given the pleiotropic and overlapping effects of these 2 cytokines, we assessed the impact of dual TNF and IL-6R blockade on GVHD as well as graft-versus tumor (GVT) effects in different mouse GVHD models. Early administration of combined blockade resulted in greater protection and survival from acute gut GVHD compared with single blockade regimens and even development of later chronic skin GVHD. Importantly, double cytokine blockade preserved GVT effects reinforcing that GVT and GVHD can be delineated and may result in greater efficacy in allo-HSCT.
Collapse
Affiliation(s)
| | | | | | | | - Shyam K More
- Division of Gastroenterology, Department of Internal Medicine
| | | | | | | | | | | | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA
| | - Dan L Longo
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA
| | - Eunju Choi
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA; and
| | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine
| | - William J Murphy
- Department of Dermatology
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA
| |
Collapse
|
11
|
Cichon I, Ortmann W, Kolaczkowska E. Metabolic Pathways Involved in Formation of Spontaneous and Lipopolysaccharide-Induced Neutrophil Extracellular Traps (NETs) Differ in Obesity and Systemic Inflammation. Int J Mol Sci 2021; 22:ijms22147718. [PMID: 34299338 PMCID: PMC8303382 DOI: 10.3390/ijms22147718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity manifests itself with low-grade chronic inflammation that shapes immune responses during infection. Albeit obese individuals are at risk of higher mortality due to comorbidities, they are better protected from systemic inflammation. Recently, we showed that in the vasculature of obese mice kept on high-fat diet (HFD), neutrophils produce less neutrophil extracellular traps (NETs) than in lean controls (normal diet, ND). NETs are used by neutrophils to counteract severe infection, but they also cause collateral damage. Hardly anything is known about metabolic requirements for their formation, especially in the context of obesity and/or sepsis. Thus, we aimed to study the immunometabolism of NET formation by application of ex vivo neutrophil analyses (Seahorse analyzer, selective inhibitors, confocal imaging) and intravital microscopy. The obtained data show that glycolysis and/or pentose phosphate pathway are involved in NETs release by ND neutrophils in both physiological and inflammatory conditions. In contrast, such cells of septic HFD mice utilize these routes only to spontaneously cast NETs, while after secondary ex vivo activation they exhibit so called "exhausted phenotype", which manifests itself in diminished NET release despite high glycolytic potential and flexibility to oxidize fatty acids. Moreover, impact of ATP synthase inhibition on NET formation is revealed. Overall, the study shows that the neutrophil potential to cast NETs depends on both the metabolic and inflammatory state of the individual.
Collapse
|
12
|
Khuat LT, Le CT, Pai CCS, Shields-Cutler RR, Holtan SG, Rashidi A, Parker SL, Knights D, Luna JI, Dunai C, Wang Z, Sturgill IR, Stoffel KM, Merleev AA, More SK, Maverakis E, Raybould HE, Chen M, Canter RJ, Monjazeb AM, Dave M, Ferrara JLM, Levine JE, Longo DL, Abedi M, Blazar BR, Murphy WJ. Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Sci Transl Med 2021; 12:12/571/eaay7713. [PMID: 33239390 DOI: 10.1126/scitranslmed.aay7713] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/22/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by acute and chronic graft-versus-host disease (GVHD). The impact of obesity on allo-HSCT outcomes is poorly understood. Here, we report that obesity had a negative and selective impact on acute gut GVHD after allo-HSCT in mice with diet-induced obesity (DIO). These animals exhibited increased gut permeability, endotoxin translocation across the gut, and radiation-induced gastrointestinal damage after allo-HSCT. After allo-HSCT, both male and female DIO mouse recipients showed increased proinflammatory cytokine production and expression of the GVHD marker ST2 (IL-33R) and MHC class II molecules; they also exhibited decreased survival associated with acute severe gut GVHD. This rapid-onset, obesity-associated gut GVHD depended on donor CD4+ T cells and occurred even with a minor MHC mismatch between donor and recipient animals. Retrospective analysis of clinical cohorts receiving allo-HSCT transplants from unrelated donors revealed that recipients with a high body mass index (BMI, >30) had reduced survival and higher serum ST2 concentrations compared with nonobese transplant recipients. Assessment of both DIO mice and allo-HSCT recipients with a high BMI revealed reduced gut microbiota diversity and decreased Clostridiaceae abundance. Prophylactic antibiotic treatment protected DIO mouse recipients from endotoxin translocation across the gut and increased inflammatory cytokine production, as well as gut pathology and mortality, but did not protect against later development of chronic skin GVHD. These results suggest that obesity-induced alterations of the gut microbiota may affect GVHD after allo-HSCT in DIO mice, which could be ameliorated by prophylactic antibiotic treatment.
Collapse
Affiliation(s)
- Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Catherine T Le
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | | - Shernan G Holtan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Armin Rashidi
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah L Parker
- Department of Internal Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Knights
- Department of Computer Science and Engineering, Biotechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesus I Luna
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ziming Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ian R Sturgill
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kevin M Stoffel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Alexander A Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Shyam K More
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - James L M Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan L Longo
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA. .,Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Ando Y, Kuroda A, Kusama K, Matsutani T, Matsuda A, Tamura K. Impact of serine protease inhibitor alpha1-antitrypsin on expression of endoplasmic reticulum stress-induced proinflammatory factors in adipocytes. Biochem Biophys Rep 2021; 26:100967. [PMID: 33732904 PMCID: PMC7937654 DOI: 10.1016/j.bbrep.2021.100967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity-induced endoplasmic reticulum (ER) stress contributes to low-grade chronic inflammation in adipose tissue and may cause metabolic disorders such as diabetes mellitus and dyslipidemia. Identification of high serpina A1 (alpha-1 antitrypsin, A1AT) expression in mouse adipose tissue and adipocytes prompted us to explore the role of A1AT in the inflammatory response of adipocytes under ER stress. We aimed to determine the role of A1AT expression in adipocytes with ER stress during regulation of adipocyte homeostasis and inflammation. To this end, we chemically induced ER stress in A1AT small interfering RNA-transfected differentiating adipocytes using thapsigargin. Induction of CCAAT-enhancer-binding protein homologous protein (CHOP), an ER stress marker, by thapsigargin was lower in A1AT-deficient SW872 adipocytes. Thapsigargin or the proinflammatory cytokine tumor necrosis factor (TNF)α increased basal expression of cytokines such as interleukin (IL)-1β and IL-8 in both SW872 and primary omental adipocytes. This thapsigargin- or TNFα-induced expression of proinflammatory genes was increased by A1AT deficiency. These findings indicate that adipose A1AT may suppress the ER stress response to block excessive expression of proinflammatory factors, which suggests that A1AT protects against adipose tissue dysfunction associated with ER stress activation. Bip and CHOP expression responded to chemical ER stressor fluctuates in A1AT-silenced adipocytes. Chemical ER stressor- and TNFα-induced proinflammatory factor expression is increased by silencing of adipose A1AT expression. A1AT may protect against adipose tissue dysfunction through ER stress activation.
Collapse
Affiliation(s)
- Yukari Ando
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Akito Kuroda
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Takeshi Matsutani
- Department of Gastrointestinal Surgery, Nihon Medical School, Musashi Kosugi Hospital, 1-396, Nakahara, Kawasaki, Kanagawa, 211-8533, Japan
| | - Akihisa Matsuda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5, Bunkyo, Tokyo, 113-8603, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
14
|
Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat Immunol 2021; 22:287-300. [PMID: 33574617 DOI: 10.1038/s41590-021-00867-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/29/2020] [Indexed: 01/28/2023]
Abstract
Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries.
Collapse
|
15
|
Huizinga GP, Singer BH, Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology 2020; 161:bqaa154. [PMID: 32880654 PMCID: PMC7499583 DOI: 10.1210/endocr/bqaa154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight, and diabetes status. Numerous endocrine changes might drive these varied responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in the development of severe COVID-19 and impair viral clearance.
Collapse
Affiliation(s)
- Gabrielle P Huizinga
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Integrative Research in Critical Care, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kanakadurga Singer
- Department of Pediatrics and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Beglaibter N, Zelekha O, Keinan-Boker L, Sakran N, Mahajna A. Practices and attitudes of bariatric surgeons in Israel during the first phase of the COVID-19 pandemic. Isr J Health Policy Res 2020; 9:59. [PMID: 33126921 PMCID: PMC7596618 DOI: 10.1186/s13584-020-00420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023] Open
Abstract
Introduction Israel ranks very high globally in performing bariatric surgery (BS) per capita. In the first phase of the COVID-19 pandemic the bariatric surgeons’ community faced many concerns and challenges, especially in light of a decree issued by the Ministry of Health (MOH) on March 22nd, to ban all elective surgery in public hospitals. The aim of this study is to portray the practices and attitudes of Israeli bariatric surgeons in the first phase of the pandemic. Methods Anonymous web-based questionnaire sent to all active bariatric surgeons in Israel. Statistical analysis was performed using SAS software package. Results 53 out of 63 (84%) active surgeons responded to the survey. 18% practice in the public sector only, 4% in the private sector only and 78% in both sectors. 76% practice BS for more than 10 years and 68% perform more than 100 procedures a year. Almost all the surgeons (98%) experienced a tremendous decrease in operations. Nevertheless, there were substantial differences by sectors. In the public sector, 86% of the surgeons ceased to operate while 14% did not comply with the government’s decree. In the public sector 69% of the surgeons were instructed by the administrators to stop operating. The majority of surgeons who continued to operate (77%) changed nothing in the indications or contra-indications for surgery. Among the surgeons who opted to refrain from operating on special sub-groups, the most frequent reasons were pulmonary disease (82%), age above 60 (64%), Ischemic heart disease (55%) and living in heavily affected communities. Roughly only half (57%) of the surgeons implemented changes in informed consent and operating room (OR) measures, contrary to guidelines and recommendations by leading professional societies. When asked about future conditions for reestablishing elective procedures, the reply frequencies were as follows: no special measures - 40%; PCR negativity - 27%; IgG positivity - 15%; waiting until the end of the pandemic- 9%. Conclusions We showed in this nation-wide survey that the variance between surgeons, regarding present and future reactions to the COVID-19 pandemic, is high. There were substantial differences between the private and the public sectors. Although the instructions given by the MOH for the public sector were quite clear, the compliance by surgeons and administrators was far from complete. The administrators in the public sector, but more so in the private sector were ambiguous in instructing staff, leading surgeons to a more “personal non-structured” practice in the first phase of the pandemic. These facts must be considered by regulators, administrators and surgeons when planning for reestablishing elective BS or in case a second wave of the pandemic is on its way.
Collapse
Affiliation(s)
- Nahum Beglaibter
- Department of Surgery, Hadassah Mount Scopus Medical Center, Jerusalem, Israel
| | - Orly Zelekha
- Israel Center for Disease Control, Ministry of Health, Jerusalem, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Ministry of Health, Jerusalem, Israel.,School of Public Health, University of Haifa, Haifa, Israel
| | - Nasser Sakran
- Department of Surgery, Haemek medical center, Afulah, Israel
| | - Ahmad Mahajna
- Department of Surgery, Rambam Medical Center, P.O. Box 9602, 31096, Haifa, Israel.
| |
Collapse
|
17
|
Tsigalou C, Konstantinidis T, Paraschaki A, Stavropoulou E, Voidarou C, Bezirtzoglou E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020; 8:E201. [PMID: 32650619 PMCID: PMC7400632 DOI: 10.3390/biomedicines8070201] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Since ancient times, the quality of nourishment is a milestone for the maintenance of health and as it is stated 'prevention is better than cure', amongst the so-called 'healthy' diets Mediterranean diet (MD) claims the lion's share. It stands in good stead because of a variety of valuable macro- and micronutrients. So, adherence to a MD is associated with the reduction of inflammation and non-communicable (NCD) OR chronic diseases. Numerous studies try to scrutinize the role of MD components as regards reducing inflammation, lowering rate, and mortality for disorders and illnesses, and preventing NCD. MD regime of the inhabitants of the Mediterranean basin includes a variety of ethnic nutritional habits and regulates an array of effects and epigenetic changes that affect human wellbeing. The research is still ongoing and endeavors to elucidate every aspect of this issue. This review focuses on the impact of MD on inflammation highlights positive results regarding NCD and indicates the need for more high-quality experiments and trials in order to overcome any discrepancies.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece; (T.K.); (A.P.)
| | - Theocharis Konstantinidis
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece; (T.K.); (A.P.)
| | - Afroditi Paraschaki
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece; (T.K.); (A.P.)
| | - Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, Vaud, CH-1011 Lausanne, Switzerland;
| | | | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece;
| |
Collapse
|
18
|
A High-Fat Diet Exacerbates the Course of Experimental Trypanosoma cruzi Infection That Can Be Mitigated by Treatment with Simvastatin. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1230461. [PMID: 32596277 PMCID: PMC7298325 DOI: 10.1155/2020/1230461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
The protozoan Trypanosoma cruzi is responsible for triggering a damage immune response in the host cardiovascular system. This parasite has a high affinity for host lipoproteins and uses the low-density lipoprotein (LDL) receptor for its invasion. Assuming that the presence of LDL cholesterol in tissues could facilitate T. cruzi proliferation, dietary composition may affect the parasite-host relationship. Therefore, the aim of this study was to evaluate myocarditis in T. cruzi-infected C57BL/6 mice-acute phase-fed a high-fat diet and treated with simvastatin, a lipid-lowering medication. Animals (n = 10) were infected with 5 × 103 cells of the VL-10 strain of T. cruzi and treated or untreated daily with 20 mg/kg simvastatin, starting 24 h after infection and fed with a normolipidic or high-fat diet. Also, uninfected mice, treated or not with simvastatin and fed with normolipidic or high-fat diet, were evaluated as control groups. Analyses to measure the production of chemokine (C-C motif) ligand 2 (CCL2), interferon- (IFN-) γ, interleukin- (IL-) 10, and tumor necrosis factor (TNF); total hepatic lipid dosage; cholesterol; and fractions, as well as histopathological analysis, were performed on day 30 using cardiac and fat tissues. Our results showed that the high-fat diet increased (i) parasite replication, (ii) fat accumulation in the liver, (iii) total cholesterol and LDL levels, and (iv) the host inflammatory state through the production of the cytokine TNF. However, simvastatin only reduced the production of CCL2 but not that of other inflammatory mediators or biochemical parameters. Together, our data suggest that the high-fat diet may have worsened the biochemical parameters of the uninfected and T. cruzi-infected animals, as well as favored the survival of circulating parasites.
Collapse
|
19
|
Ding Z, Wang X, Liu S, Zhou S, Kore RA, Mu S, Deng X, Fan Y, Mehta JL. NLRP3 inflammasome via IL-1β regulates PCSK9 secretion. Theranostics 2020; 10:7100-7110. [PMID: 32641981 PMCID: PMC7330863 DOI: 10.7150/thno.45939] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Both PCSK9 and NLRP3 inflammasome play important roles in atherogenesis. This study was designed to test the hypothesis that NLRP3 inflammasome via IL-1β induces PCSK9 secretion. The inter-twined relationship between NLRP3 inflammasome, IL-1β and PCSK9 may be relevant in atherogenesis. Methods: We studied NLRP3 inflammasome-mediated PCSK9 secretion in mouse peritoneal macrophages and in a variety of tissues, such as liver, kidney and small intestine. Macrophages were derived from wild-type (WT) and a variety of gene deletion mice to define the mechanistic basis of NLRP3 inflammasome -mediated PCSK9 secretion. Additional studies were performed in high-fat diet fed mice. Results: We observed that NLRP3 and its downstream signals ASC, Caspase-1, IL-18, and IL-1β all participate in PCSK9 secretion. IL-1β seems to be more important than IL-18 in the induction of PCSK9 secretion. Further, there appears to be significant involvement of MAPKs in this process. Lastly, we observed that mice fed high fat diet have high expression of NLRP3 and a greater secretion of PCSK9 than mice fed a standard diet, and this increased secretion of PCSK9 in high fat diet-fed mice was attenuated in IL-1β-/- mice. Conclusions: This study based on extensive in vitro and in vivo data provides evidence that NLRP3 inflammasome via IL-1β plays an important role in determining PCSK9 secretion, particularly in the presence of high-fat diet.
Collapse
|
20
|
Gálvez I, Martín-Cordero L, Hinchado MD, Ortega E. β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Circulating Monocytes: Influence of Obesity and Exercise. Nutrients 2020; 12:nu12051438. [PMID: 32429330 PMCID: PMC7284544 DOI: 10.3390/nu12051438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/14/2023] Open
Abstract
Obese individuals present anomalous immune/inflammatory responses with dysregulations in neuroendocrine responses and immune/stress feedback mechanisms. In this context, exercise and β2 adrenergic activation present monocyte-mediated anti-inflammatory effects that are modulated by obesity. However, these anti-inflammatory effects could immunocompromise the monocyte-mediated innate response against a pathogen challenge. Thus, the objective of this work was to evaluate the effect of obesity, and exercise in this condition, on the β2 adrenergic regulation of the phagocytic and microbicide capacity of circulating monocytes. C57BL/6J mice were allocated to different sedentary or exercised, lean or obese groups. Obese mice showed a lower monocyte-mediated innate response than that of lean mice. Globally, selective β2 adrenergic receptor agonist terbutaline decreased the innate response of monocytes from lean and obese sedentary animals, whereas exercise stimulated it. Exercise modulates β2 adrenergic regulation of the innate response in lean and obese animals, with a global stimulatory or neutral effect, thus abolishing the inhibitory effect of terbutaline occurring in sedentary animals. These effects cannot be explained only by changes in the surface expression of toll-like receptors. Therefore, in general, terbutaline does not hinder the effects of regular exercise, but regular exercise does abolish the effects of terbutaline in sedentary individuals.
Collapse
Affiliation(s)
- Isabel Gálvez
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Facultad de Medicina, Universidad de Extremadura, 06071 Badajoz, Spain;
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
| | - Leticia Martín-Cordero
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600 Plasencia, Spain
| | - María Dolores Hinchado
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300
| |
Collapse
|
21
|
Huang HC, Tsai MH, Lee FY, Lin TY, Chang CC, Chuang CL, Hsu SJ, Hou MC, Huang YH. NAFLD Aggravates Septic Shock Due to Inadequate Adrenal Response and 11β-HSDs Dysregulation in Rats. Pharmaceutics 2020; 12:pharmaceutics12050403. [PMID: 32354071 PMCID: PMC7285211 DOI: 10.3390/pharmaceutics12050403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is linked with metabolic syndrome. Previous studies showed that obesity may disrupt adrenal function and adversely affect its counter-regulations against shock. This study hence evaluated adrenal function abnormalities in NAFLD with shock. Methods: Sprague-Dawley rats were fed with regular chow-diet (control) or high fat diet (HFD, 60% energy derived from fat). Blood tests were performed at the end of the 4th, 6th and 8th week, respectively. Experiments were performed at the end of the 8th week. Results: HFD rats developed NAFLD. HFD rats had 27% and 51% increase in plasma corticosterone at the 6th and 8th week in usual status. However, HFD rats had 5 times more reduction of mean arterial pressure in response to lipopolysaccharide-induced sepsis as compared to control rats. The corticosterone increment ratio was also lower in HFD rats, even after ACTH administration. 11β-HSD system tended to generate more corticosterone in HFD rats under hemodynamic stable status without shock and the trend was lost in HFD rats with septic shock. Conclusion: Rats with NAFLD had profound septic shock due to inadequate corticosterone response. This is, at least partly, due to 11β-HSDs dysregulation in sepsis.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ming-Hung Tsai
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 320-338, Taiwan;
| | - Fa-Yauh Lee
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Te-Yueh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Ching-Chih Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Correspondence: ; Tel.: +886-2-28712121 (ext. 2014)
| | - Ming-Chih Hou
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yi-Hsiang Huang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 100, Taiwan; (H.-C.H.); (F.-Y.L.); (C.-C.C.); (C.-L.C.); (M.-C.H.); (Y.-H.H.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| |
Collapse
|
22
|
Ortega E, Gálvez I, Martín-Cordero L. Adrenergic Regulation of Macrophage-Mediated Innate/Inflammatory Responses in Obesity and Exercise in this Condition: Role of β2 Adrenergic Receptors. Endocr Metab Immune Disord Drug Targets 2020; 19:1089-1099. [PMID: 30727934 PMCID: PMC7046986 DOI: 10.2174/1871530319666190206124520] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Background:
The effects of exercise on the innate/inflammatory immune responses are crucially mediated by catecholamines and adrenoreceptors; and mediations in both stimulatory and anti-inflammatory responses have been attributed to them. Obesity and metabolic syndrome are included among low-grade chronic inflammatory pathologies; particularly because patients have a dysregulation of the inflammatory and stress responses, which can lead to high levels of inflammatory cytokines that induce insulin resistance, contributing to the onset or exacerbation of type 2 diabetes. Macrophages play a crucial role in this obesity-induced inflammation. Although most of the anti-inflammatory effects of catecholamines are mediated by β adrenergic receptors (particularly β2), it is not known whether in altered homeostatic conditions, such as obesity and during exercise, innate/inflammatory responses of macrophages to β2 adrenergic stimulation are similar to those in cells of healthy organisms at baseline. Objective: This review aims to emphasize that there could be possible different responses to β2 adrenergic stimulation in obesity, and exercise in this condition. Methods: A revision of the literature based on the hypothesis that obesity affects β2 adrenergic regulation of macrophage-mediated innate/inflammatory responses, as well as the effect of exercise in this context. Conclusion: The inflammatory responses mediated by β2 adrenoreceptors are different in obese individuals with altered inflammatory states at baseline compared to healthy individuals, and exercise can also interfere with these responses. Nevertheless, it is clearly necessary to develop more studies that contribute to widening the knowledge of the neuroimmune regulation process in obesity, particularly in this context.
Collapse
Affiliation(s)
- Eduardo Ortega
- Department of Physiology (Immunophysiology Research Group), Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Isabel Gálvez
- Department of Physiology (Immunophysiology Research Group), Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Leticia Martín-Cordero
- Department of Nursing (Immunophysiology Research Group), University Center of Plasencia, University of Extremadura, Plasencia, Spain
| |
Collapse
|
23
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
24
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. Selenium Compounds in Redox Regulation of Inflammation and Apoptosis. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819040085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Martín-Cordero L, Gálvez I, Hinchado MD, Ortega E. β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Macrophages from Obese and Lean Mice: Effects of Exercise. Nutrients 2019; 11:nu11112721. [PMID: 31717554 PMCID: PMC6893822 DOI: 10.3390/nu11112721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages are crucial in the inflammation associated with obesity. Exercise is the main non-pharmacological strategy against obesity, not only for improving metabolic impairment, but also because of its anti-inflammatory effects, particularly those mediated by β2 adrenergic receptors (β2-AR). Nevertheless, these anti-inflammatory effects could immunocompromise the innate response against pathogen challenge. Thus, the objective of this work was to evaluate the effect of obesity, and of exercise in this condition, on the β2 adrenergic regulation of the innate function of macrophages. High fat diet-induced obese C57BL/6J mice were used to evaluate the effects of acute and regular exercise on the phagocytic and microbicide capacities of peritoneal macrophages. Selective β2-AR agonist terbutaline (1 µM) decreased the phagocytic and microbicide activities of macrophages from control lean and obese sedentary animals. While acute exercise did not modify the inhibitory capacity of terbutaline, regular exercise abolished this inhibitory effect. These effects cannot be explained only by changes in the surface expression of β2-AR. In conclusion, (1) obesity does not alter the β2-AR-mediated decrease of the innate response of macrophages and (2) regular exercise can revert the inhibitory effect of terbutaline on the phagocytic activity of macrophages, although obesity seems to hinder this immunophysiological adaptation.
Collapse
Affiliation(s)
- Leticia Martín-Cordero
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600 Plasencia, Spain;
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
| | - Isabel Gálvez
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - María Dolores Hinchado
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300
| |
Collapse
|
26
|
Adams RCM, Smith C. Chronic Gestational Inflammation: Transfer of Maternal Adaptation over Two Generations of Progeny. Mediators Inflamm 2019; 2019:9160941. [PMID: 31582905 PMCID: PMC6754931 DOI: 10.1155/2019/9160941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Changes in the in utero environment result in generational transfer of maladapted physiology in the context of conditions such as stress, obesity, and anxiety. Given the significant contribution of noncommunicable diseases-which are characterised by chronic inflammation-to population mortality, the potential for chronic maternal inflammation mediating foetal programming is a growing concern. The extent of generational transfer in terms of immune functionality and leukocyte glucocorticoid sensitivity was investigated over two generations of offspring (F1 and F2) in a model of chronic LPS-induced maternal inflammation in C57/BL/6 mice. Maternal inflammation resulted in glucocorticoid hypersensitivity (increased glucocorticoid receptor expression levels) in the majority of leukocyte subpopulations in both F1 and F2 offspring. Furthermore, splenocytes stimulated with LPS in vitro exhibited exacerbated inflammatory cytokine responses, which were even more prominent in F2 than F1; this effect could be ascribed to NLRP3 inflammasome hyperactivity in F1 but not F2. Current data illustrates that parental chronic inflammation may mediate the inflammatory profile in offspring, potentially propagating a maladapted proinflammatory phenotype in subsequent generations.
Collapse
Affiliation(s)
- R. C. M. Adams
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
- Fluorescence Microscopy Unit, Central Analytical Facilities, Stellenbosch University, South Africa
| | - C. Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
| |
Collapse
|
27
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. [Selenium compounds in redox regulation of inflammation and apoptosis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:165-179. [PMID: 31258141 DOI: 10.18097/pbmc20196503165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.
Collapse
Affiliation(s)
- N Y Rusetskaya
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - I V Fedotov
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - V A Koftina
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - V B Borodulin
- Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
28
|
Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Yoon Y. Vitamin E (α-tocopherol) consumption influences gut microbiota composition. Int J Food Sci Nutr 2019; 71:221-225. [PMID: 31298050 DOI: 10.1080/09637486.2019.1639637] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study evaluated if vitamin E consumption affects gut microbiota. Mice were grouped into control, low vitamin E (LV), and high vitamin E (HV). LV and HV were fed DL-α-tocopherol at 0.06 mg/20 g and 0.18 mg/20 g of body weight per day, respectively, for 34 days. Body weight of mice was measured before and after vitamin E treatment. Animals were sacrificed, liver, spleen, small intestine and large intestine collected, and weight and length were measured. Composition of gut microbiota was determined by microbiome analysis. Spleen weight index of LV was the highest. However, liver weight indices and intestinal lengths were not different. Body weights of LV group were higher than those of control. Ratio of Firmicutes to Bacteroidetes was different in LV compared to control and HV. These results indicate that low-level consumption of vitamin E increases spleen and body weight, and changes gut microbiota.
Collapse
Affiliation(s)
- Yukyung Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Jeeyeon Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| | - Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea.,Risk Analysis Research Center, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
29
|
Guerrero-Ros I, Clement CC, Reynolds CA, Patel B, Santambrogio L, Cuervo AM, Macian F. The negative effect of lipid challenge on autophagy inhibits T cell responses. Autophagy 2019; 16:223-238. [PMID: 30982401 DOI: 10.1080/15548627.2019.1606635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity is associated with changes in the immune system that significantly hinder its ability to mount efficient immune responses. Previous studies have reported a dysregulation of immune responses caused by lipid challenge; however, the mechanisms underlying that dysregulation are still not completely understood. Autophagy is an essential catabolic process through which cellular components are degraded by the lysosomal machinery. In T cells, autophagy is an actively regulated process necessary to sustain homeostasis and activation. Here, we report that CD4+ T cell responses are inhibited when cells are challenged with increasing concentrations of fatty acids. Furthermore, analysis of T cells from diet-induced obese mice confirms that high lipid load inhibits activation-induced responses in T cells. We have found that autophagy is inhibited in CD4+ T cells exposed in vitro or in vivo to lipid stress, which causes decreased autophagosome formation and degradation. Supporting that inhibition of autophagy caused by high lipid load is a key mechanism that accounts for the effects on T cell function of lipid stress, we found that ATG7 (autophagy-related 7)-deficient T cells, unable to activate autophagy, did not show additional inhibitory effects on their responses to activation when subjected to lipid challenge. Our results indicate, thus, that increased lipid load can dysregulate autophagy and cause defective T cell responses, and suggest that inhibition of autophagy may underlie some of the characteristic obesity-associated defects in the T cell compartment.Abbreviations: ACTB: actin, beta; ATG: autophagy-related; CDKN1B: cyclin-dependent kinase inhibitor 1B; HFD: high-fat diet; IFNG: interferon gamma; IL: interleukin; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MAPK8/JNK: mitogen-activated protein kinase 8; LC3-I: non-conjugated form of MAP1LC3B; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3B; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; NFATC2: nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2; NLRP3: NLR family, pyrin domain containing 3; OA: oleic acid; PI: propidium iodide; ROS: reactive oxygen species; STAT5A: signal transducer and activator of transcription 5A; TCR: T cell receptor; TH1: T helper cell type 1.
Collapse
Affiliation(s)
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cara A Reynolds
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana M Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
30
|
Dietary supplementation with blueberry partially restores T-cell-mediated function in high-fat-diet-induced obese mice. Br J Nutr 2019; 119:1393-1399. [PMID: 29845904 DOI: 10.1017/s0007114518001034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blueberry, rich in antioxidant and anti-inflammatory phytochemicals, has been demonstrated to lower inflammatory status in adipose induced by high-fat diet (HFD) and obesity. The effect of blueberry on systemic immune functions has not been examined. C57BL/6 mice were randomised to one of three diets - low-fat diet (LFD), HFD and HFD plus 4 % (w/w) blueberry (HFD+B) - for 8 or 12 weeks. Ex vivo T-cell mitogens (concanavalin A (Con A); phytohaemagglutinin), T-cell antibody (anti-CD3; anti-CD3/CD28)-stimulated T-cell proliferation and cytokine production were assessed. After 8 weeks, both HFD groups weighed more (>4 g) than the LFD group; after 12 weeks, HFD+B-fed mice weighed more (>6 g) and had 41 % more adipose tissue than HFD-fed mice (P<0·05). After 12 weeks, T-cell proliferation was less in both HFD groups, compared with the LFD group. HFD-associated decrements in T-cell proliferation were partially (10-50 %) prevented by blueberry supplementation. At 12 weeks, splenocytes from HFD mice, but not from HFD+B mice, produced 51 % less IL-4 (CD3/CD28) and 57 % less interferon-γ (Con A) compared with splenocytes from LFD mice (P<0·05). In response to lipopolysaccharide challenge, splenocytes from both HFD groups produced 24-30 % less IL-6 and 27-33 % less TNF-α compared with splenocytes from LFD mice (P<0·05), indicating impaired acute innate immune response. By demonstrating deleterious impacts of HFD feeding on T-cell proliferation and splenocyte immune responses, our results provide insights into how HFD/obesity can disrupt systemic immune function. The protective effects of blueberry suggest that dietary blueberry can buttress T-cell and systemic immune function against HFD-obesity-associated insults.
Collapse
|
31
|
Souza ACP, Souza CM, Amaral CL, Lemes SF, Santucci LF, Milanski M, Torsoni AS, Torsoni MA. Short-Term High-Fat Diet Consumption Reduces Hypothalamic Expression of the Nicotinic Acetylcholine Receptor α7 Subunit (α7nAChR) and Affects the Anti-inflammatory Response in a Mouse Model of Sepsis. Front Immunol 2019; 10:565. [PMID: 30967878 PMCID: PMC6438922 DOI: 10.3389/fimmu.2019.00565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is one of the leading causes of death in hospitalized patients and the chronic and low-grade inflammation observed in obesity seems to worsen susceptibility and morbidity of infections. However, little is known with respect to a short-term high-fat diet (HFD) and its role in the development of sepsis. Here, we show for the first time, that short-term HFD consumption impairs early nicotinic acetylcholine receptor α7 subunit (α7nAChR)- mediated signaling, one of the major components of the cholinergic anti-inflammatory pathway, with a focus on hypothalamic inflammation and innate immune response. Mice were randomized to a HFD or standard chow (SC) for 3 days, and sepsis was subsequently induced by a lethal intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) or by cecal ligation and puncture (CLP) surgery. In a separate experiment, both groups received LPS (i.p.) or LPS (i.p.) in conjunction with the selective α7nAChR agonist, PNU-282987 (i.p. or intracerebroventricular; i.c.v.), and were sacrificed 2 h after the challenge. Short-term HFD consumption significantly reduced the α7nAChR mRNA and protein levels in the hypothalamus and liver (p < 0.05). Immunofluorescence microscopy demonstrated lower cholinergic receptor nicotinic α7 subunit (α7nAChR)+ cells in the arcuate nucleus (ARC) (α7nAChR+ cells in SC = 216 and HFD = 84) and increased F4/80+ cells in the ARC (2.6-fold) and median eminence (ME) (1.6-fold), which can contribute to neuronal damage. Glial fibrillary acidic protein (GFAP)+ cells and neuronal nuclear antigen (NeuN)+ cells were also increased following consumption of HFD. The HFD-fed mice died quickly after a lethal dose of LPS or following CLP surgery (2-fold compared with SC). The LPS challenge raised most cytokine levels in both groups; however, higher levels of TNF-α (Spleen and liver), IL-1β and IL-6 (in all tissues evaluated) were observed in HFD-fed mice. Moreover, PNU-282987 administration (i.p. or i.c.v.) reduced the levels of inflammatory markers in the hypothalamus following LPS injection. Nevertheless, when the i.c.v. injection of PNU-282987 was performed the anti-inflammatory effect was much smaller in HFD-fed mice than SC-fed mice. Here, we provide evidence that a short-term HFD impairs early α7nAChR expression in central and peripheral tissues, contributing to a higher probability of death in sepsis.
Collapse
Affiliation(s)
- Anelise Cristina Parras Souza
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Camilla Mendes Souza
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Camila Libardi Amaral
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Simone Ferreira Lemes
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Leticia Foglia Santucci
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Marciane Milanski
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Adriana Souza Torsoni
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Marcio Alberto Torsoni
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| |
Collapse
|
32
|
Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc Natl Acad Sci U S A 2019; 116:3688-3694. [PMID: 30808756 DOI: 10.1073/pnas.1814273116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a deleterious immune response to infection that leads to organ failure and is the 11th most common cause of death worldwide. Despite plaguing humanity for thousands of years, the host factors that regulate this immunological response and subsequent sepsis severity and outcome are not fully understood. Here we describe how the Western diet (WD), a diet high in fat and sucrose and low in fiber, found rampant in industrialized countries, leads to worse disease and poorer outcomes in an LPS-driven sepsis model in WD-fed mice compared with mice fed standard fiber-rich chow (SC). We find that WD-fed mice have higher baseline inflammation (metaflammation) and signs of sepsis-associated immunoparalysis compared with SC-fed mice. WD mice also have an increased frequency of neutrophils, some with an "aged" phenotype, in the blood during sepsis compared with SC mice. Importantly, we found that the WD-dependent increase in sepsis severity and higher mortality is independent of the microbiome, suggesting that the diet may be directly regulating the innate immune system through an unknown mechanism. Strikingly, we could predict LPS-driven sepsis outcome by tracking specific WD-dependent disease factors (e.g., hypothermia and frequency of neutrophils in the blood) during disease progression and recovery. We conclude that the WD is reprogramming the basal immune status and acute response to LPS-driven sepsis and that this correlates with alternative disease paths that lead to more severe disease and poorer outcomes.
Collapse
|
33
|
Aberrant Periodontal and Systemic Immune Response of Overweight Rodents to Periodontal Infection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9042542. [PMID: 30719451 PMCID: PMC6335672 DOI: 10.1155/2019/9042542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022]
Abstract
This study aimed to explore periodontal and systemic immune response of overweight hosts to periodontitis. Forty C57 BL/6J male mice were divided into high (HF) or low fat (LF) diet groups and fed with the two diets, respectively, for 8 weeks. Each diet group was then divided into periodontitis (P) or control (C) groups (n = 10 per group) for 10-day ligation or sham-ligation. Overweight-related parameters including body weight were measured. Alveolar bone loss (ABL) was morphometrically analyzed and periodontal osteoclasts were stained. Periodontal immune response including leukocyte and macrophage number and inflammatory cytokines were analyzed by histology and quantitative PCR. Serum cytokine and lipid levels were quantified using electrochemiluminescence immunoassays, enzyme-linked immunosorbent assays, and biochemistry. It was found that HF group had 14.4% body weight gain compared with LF group (P < 0.01). ABL and periodontal osteoclast, leukocyte, and macrophage number were higher in P group than C group regardless of diet (P < 0.05). ABL and periodontal osteoclast number were not affected by diet regardless of ligation or sham-ligation. Leukocyte and macrophage number and protein level of tumor necrosis factor α (TNF-α) in periodontium and serum interleukin-6 level were downregulated by HF diet in periodontitis mice (P < 0.05). Periodontal protein level of TNF-α was highly correlated with serum interleukin-6 and low-density lipoprotein cholesterol levels (P < 0.01). These findings indicated that impaired immune response occurs both periodontally and systemically in preobesity overweight individuals. Given a well-reported exacerbating effect of obesity on periodontitis, overweight, if let uncontrolled, might place the individuals at potential risk for future periodontal tissue damage.
Collapse
|
34
|
Frydrych LM, Bian G, Fattahi F, Morris SB, O'Rourke RW, Lumeng CN, Kunkel SL, Ward PA, Delano MJ. GM-CSF Administration Improves Defects in Innate Immunity and Sepsis Survival in Obese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:931-942. [PMID: 30578307 DOI: 10.4049/jimmunol.1800713] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Sepsis is the leading cause of death in the intensive care unit with an overall mortality rate of 20%. Individuals who are obese and have type 2 diabetes have increased recurrent, chronic, nosocomial infections that worsen the long-term morbidity and mortality from sepsis. Additionally, animal models of sepsis have shown that obese, diabetic mice have lower survival rates compared with nondiabetic mice. Neutrophils are essential for eradication of bacteria, prevention of infectious complications, and sepsis survival. In diabetic states, there is a reduction in neutrophil chemotaxis, phagocytosis, and reactive oxygen species (ROS) generation; however, few studies have investigated the extent to which these deficits compromise infection eradication and mortality. Using a cecal ligation and puncture model of sepsis in lean and in diet-induced obese mice, we demonstrate that obese diabetic mice have decreased "emergency hematopoiesis" after an acute infection. Additionally, both neutrophils and monocytes in obese, diabetic mice have functional defects, with decreased phagocytic ability and a decreased capacity to generate ROS. Neutrophils isolated from obese diabetic mice have decreased transcripts of Axl and Mertk, which partially explains the phagocytic dysfunction. Furthermore, we found that exogenous GM-CSF administration improves sepsis survival through enhanced neutrophil and monocytes phagocytosis and ROS generation abilities in obese, diabetic mice with sepsis.
Collapse
Affiliation(s)
- Lynn M Frydrych
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Guowu Bian
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Michigan Medicine, and Ann Arbor Veterans Administration Hospital, Ann Arbor, MI 48105; and
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew J Delano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
35
|
Adherence to Mediterranean-style diet and risk of sepsis in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Br J Nutr 2018; 120:1415-1421. [PMID: 30375291 PMCID: PMC6753832 DOI: 10.1017/s0007114518002866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sepsis – syndrome of infection complicated by organ dysfunction – is responsible for over 750 000 hospitalisations and 200 000 deaths in the USA annually. Despite potential nutritional benefits, the association of diet and sepsis is unknown. Therefore, we sought to determine the association between adherence to a Mediterranean-style diet (Med-style diet) and long-term risk of sepsis in the REasons for Geographic Differences in Stroke (REGARDS) cohort. We analysed data from REGARDS, a population-based cohort of 30 239 community-dwelling adults age ≥45 years. We determined dietary patterns from a baseline FFQ. We defined Med-style diet as a high consumption of fruit, vegetables, legumes, fish, cereal and low consumption of meat, dairy products, fat and alcohol categorising participants into Med-style diet tertiles (low: 0–3, moderate: 4–5, high: 6–9). We defined sepsis events as hospital admission for serious infection and at least two systematic inflammatory response syndrome criteria. We used Cox proportional hazard models to determine the association between Med-style diet tertiles and first sepsis events, adjusting for socio-demographics, lifestyle factors, and co-morbidities. We included 21 256 participants with complete dietary data. Dietary patterns were: low Med-style diet 32⋅0%, moderate Med-style diet 42⋅1% and high Med-style diet 26⋅0%. There were f 109 (5⋅2%) first sepsis events. High Med-style diet was independently associated with sepsis risk; low Med-style diet referent, moderate Med-style diet adjusted hazard ratio (HR) 0⋅93 (95% CI 0⋅81, 1⋅08), high Med-style diet adjusted HR=0⋅74 (95% CI 0⋅61, 0⋅88). High Med-style diet adherence is associated with lower risk of sepsis. Dietary modification may potentially provide an option for reducing sepsis risk.
Collapse
|
36
|
Diet-induced obese mice exhibit altered immune responses to early Salmonella Typhimurium oral infection. J Microbiol 2018; 56:673-682. [PMID: 30141160 DOI: 10.1007/s12275-018-8083-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a chronic disease associated with different metabolic diseases as well as alterations in immune cell function. It is characterized by a chronic systemic low grade inflammation. There are several studies demonstrating the influence of obesity on the impaired immune response to infection. However, it is not completely clear whether the obese environment influences the development or maintenance of the immune response against infections. The aim of this study was to determine how obesity induced by a high-fat diet affects the immune response to an early oral Salmonella infection. Four groups of mice were kept in separate cages. Two of these designated as controls, fed with a normal diet; whereas other two groups were fed with a high fat diet for 10 weeks. Some mice were used for Salmonella oral infection. After 7 days of oral infection with S. Thypimurium the proportions of spleen cell subsets expressing activation markers in normal diet and HFD obese mice were stained with monoclonal antibodies and analyzed by flow cytometry. Also, mRNA levels of different cytokines were quantified by RT-PCR. It was found that obesity affects the function of the immune system against an early oral Salmonella infection, decreasing NK cells, altering the expression of activation molecules as well as cytokines mRNA levels. Interestingly, the expression some activation molecules on T lymphocytes was reestablished after Salmonella infection, but not the CD25 expression. Immune alterations could lead to immunosuppression or increased susceptibility to infections in HFD obese mice.
Collapse
|
37
|
Farnsworth CW, Schott EM, Benvie A, Zukoski J, Kates SL, Schwarz EM, Gill SR, Zuscik MJ, Mooney RA. Obesity/type 2 diabetes increases inflammation, periosteal reactive bone formation, and osteolysis during Staphylococcus aureus implant-associated bone infection. J Orthop Res 2018; 36:1614-1623. [PMID: 29227579 PMCID: PMC5995608 DOI: 10.1002/jor.23831] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/29/2017] [Indexed: 02/04/2023]
Abstract
Obese and type 2 diabetic (T2D) patients have a fivefold increased rate of infection following placement of an indwelling orthopaedic device. Though implant infections are associated with inflammation, periosteal reactive bone formation, and osteolysis, the effect of obesity/T2D on these complicating factors has not been studied. To address this question, C57BL/6J mice were fed a high fat diet (60% Kcal from fat) to induce obesity/T2D, or a control diet (10% Kcal from fat) for 3 months, and challenged with a transtibial pin coated with a bioluminescent USA300 strain of S. aureus. In the resulting infected bone, obesity/T2D was associated with increased S. aureus proliferation and colony forming units. RNA sequencing of the infected tibiae on days 7 and 14 revealed an increase in 635 genes in obese/T2D mice relative to controls. Pathways associated with ossification, angiogenesis, and immunity were enriched. MicroCT and histology on days 21 and 35 demonstrated significant increased periosteal reactive bone formation in infected obese/T2D mice versus infected controls (p < 0.05). The enhanced periosteal bone formation was associated with increased osteoblastic activity and robust endochondral ossification, with persistant cartilage on day 21 that was only observed in infected obesity/T2D. Osteolysis and osteoclast numbers in obesity/T2D were also significantly increased versus infected controls (p < 0.05). Consistent with an up-regulated immune transcriptome, macrophages were more abundant within both the periosteum and the new reactive bone of obese/T2D mice. In conclusion, we find that implant-associated S. aureus osteomyelitis in obesity/T2D is associated with increased inflammation, reactive bone formation, and osteolysis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1614-1623, 2018.
Collapse
Affiliation(s)
- Christopher W Farnsworth
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester New York, USA,Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| | - Eric M Schott
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester New York, USA,Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| | - Abigail Benvie
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester New York, USA,Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| | - Jacob Zukoski
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester New York, USA,Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| | - Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond Virginia, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester New York, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| | - Robert A Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester New York, USA,Center for Musculoskeletal Research, University of Rochester, Rochester New York, USA
| |
Collapse
|
38
|
Liu T, Yang T, Pan T, Liu C, Li S. Effect of Low-Selenium/High-Fat Diet on Pig Peripheral Blood Lymphocytes: Perspectives from Selenoproteins, Heat Shock Proteins, and Cytokines. Biol Trace Elem Res 2018; 183:102-113. [PMID: 28812292 DOI: 10.1007/s12011-017-1122-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/04/2017] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to clarify the effect of low selenium (Se)/high fat on the mRNA expression of selenoproteins, heat shock proteins (HSPs) and cytokines in pig peripheral blood lymphocytes. Forty crossbred boar piglets with healthy lean body weights of 10 kg were randomly divided into four treatment groups (group C, group L-Se, group H-fat, and group L-Se-H-fat) (n = 10/group) and fed with the corresponding diet for 16 weeks. The pig peripheral blood lymphocytes were extracted, and the mRNA expression of selenoproteins, HSPs, and cytokines was measured. Most mRNA levels for selenoproteins decreased in group L-Se, group H-fat, and group L-Se-H-fat, except Gpx1, Gpx2, Selt, and Selm, which were elevated in group H-fat. At the same time, low-Se/high-fat diet increased the expression of HSPs (HSP40, HSP60, HSP70, and HSP90) and inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-9, iNOS, COX-2, NF-κB, and TNF-α) in group L-Se, group H-fat, and group L-Se-H-fat, and genes in group L-Se-H-fat showed greater increases. Also, low-Se/high-fat diet inhibits the expression of TGF-β1 and IFN-γ. In summary, a low-Se/high-fat diet can cause relevant selenoprotein expression changes and promote the expression of pro-inflammatory factors and HSPs, and low Se enhances the expression of HSPs and inflammation factors induced by high fat. This information is helpful for understanding the effects of low-Se and high-fat diet on pig peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianshu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
39
|
Bone marrow lympho-myeloid malfunction in obesity requires precursor cell-autonomous TLR4. Nat Commun 2018; 9:708. [PMID: 29453396 PMCID: PMC5816016 DOI: 10.1038/s41467-018-03145-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity, a prevalent condition in adults and children, impairs bone marrow (BM) function. However, the underlying mechanisms are unclear. Here, we show that obese mice exhibit poor emergency immune responses in a toll-like receptor 4 (TLR4)-dependent manner. Canonical myeloid genes (Csf1r, Spi1, Runx1) are enhanced, and lymphoid genes (Flt3, Tcf3, Ebf1) are reduced. Using adoptive transfer and mixed BM chimera approaches we demonstrate that myeloid>lymphoid bias arises after 6 weeks of high-fat diet and depends on precursor cell-autonomous TLR4. Further, lean mice exposed to the TLR4 ligand lipopolysaccharide (LPS) at doses similar to that detectable in obese serum recapitulates BM lympho-myeloid alterations. Together, these results establish a mechanistic contribution of BM cell-intrinsic TLR4 to obesity-driven BM malfunction and demonstrate the importance of LPS. Our findings raises important questions about the impact of maternal obesity and endotoxemia to fetal hematopoiesis, as fetal immune precursors are also sensitive to TLR4 signals. Obesity can affect bone marrow cell differentiation and the generation of myeloid and lymphoid cells. Here, the authors show that diet and obesity, as well as low-dose lipopolysaccharide, can alter Toll-like receptor 4 signaling bone marrow cells to skew the myeloid-lymphoid homeostasis in mice.
Collapse
|
40
|
Abstract
Sepsis is a life-threatening organ dysfunction caused by a deregulated host response to infection. This inappropriate response to micro-organism invasion is characterized by an overwhelmed systemic inflammatory response and cardiovascular collapse that culminate in high mortality and morbidity in critical care units. The occurrence of sepsis in diabetes mellitus (DM) patients has become more frequent, as the prevalence of DM has increased dramatically worldwide. These two important diseases represent a global public health concern and highlight the importance of increasing our knowledge of the key elements of the immune response related to both conditions. In this context, it is well established that the cells taking part in the innate and adaptive immune responses in diabetic patients have compromised function. These altered responses favor micro-organism growth, a process that contributes to sepsis progression. The present review provides an update on the characteristics of the immune system in diabetic and septic subjects. We also explore the beneficial effects of insulin on the immune response in a glycemic control-dependent and independent manner.
Collapse
|
41
|
Could diet composition modulate pathological outcomes in schistosomiasis mansoni? A systematic review of in vivo preclinical evidence. Parasitology 2018; 145:1127-1136. [DOI: 10.1017/s0031182018000057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractSchistosomiasis and malnutrition are often overlapped in poor communities, resulting in disproportionately high mortality rates. Currently, fragmented data make it difficult to define the relationship between diet and schistosomiasis. Thus, we systematically review the preclinical evidence on the impact of diet in Schistosoma mansoni infection. From a structured search, we recovered 27 original articles. All studies used mice and most of them investigated hypoproteic (70.37%), hyperlipidic (22.22%) or vitamin-deficient (7.41%) diets. Diets based on carbohydrate, zinc or milk supplementation were investigated at a reduced frequency (3.70% each). Hypoproteic diets attenuated parasitic load and granulomatous inflammation, but also reduced host resistance to S. mansoni infection, determining higher mortality rates. By stimulating steatohepatitis, parasitic load and granulomatous inflammation, hyperlipidic diets increase organ damage and mortality in infected animals. Although a high-sugar diet and vitamin restriction potentiate and zinc supplementation attenuates S. mansoni infection, the current evidence for these diets remains inconclusive. Analysis of methodological quality indicated that the current evidence is at high risk of bias due to incomplete characterization of the experimental design, diet composition and treatment protocols. From the bias analysis, we report methodological limitations that should be considered to avoid systematic reproduction of inconsistent and poorly reproducible experimental designs.
Collapse
|
42
|
Dietary Supplementation With Nonfermentable Fiber Alters the Gut Microbiota and Confers Protection in Murine Models of Sepsis. Crit Care Med 2017; 45:e516-e523. [PMID: 28252538 DOI: 10.1097/ccm.0000000000002291] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Links between microbial alterations and systemic inflammation have been demonstrated in chronic disease, but little is known about these interactions during acute inflammation. This study investigates the effect of dietary supplementation with cellulose, a nonfermentable fiber, on the gut microbiota, inflammatory markers, and survival in two murine models of sepsis. DESIGN Prospective experimental study. SETTING University laboratory. SUBJECTS Six-week-old male C57BL/6 wild-type mice. INTERVENTIONS Mice were assigned to low-fiber, normal-fiber, or high-fiber diets with or without antibiotics for 2 weeks and then subjected to sepsis by cecal ligation and puncture or endotoxin injection. Fecal samples were collected for microbiota analyses before and after dietary interventions. MEASUREMENTS AND MAIN RESULTS Mice that received a high-fiber diet demonstrated increased survival after cecal ligation and puncture relative to mice receiving low-fiber or normal-fiber diets. The survival benefit was associated with decreased serum concentration of pro-inflammatory cytokines, reduced neutrophil infiltration in the lungs, and diminished hepatic inflammation. The high-fiber diet also increased survival after endotoxin injection. Bacterial 16S ribosomal RNA gene sequences from each sample were amplified, sequenced, and analyzed. Fiber supplementation yielded an increase in relative abundance of the genera Akkermansia and Lachnospiraceae, taxa commonly associated with metabolic health. Administration of antibiotics to mice on the high-fiber diet negated the enrichment of Akkermansia species and the survival benefit after cecal ligation and puncture. CONCLUSION Dietary supplementation with cellulose offers a microbe-mediated survival advantage in murine models of sepsis. Improved understanding of the link between diet, the microbiota, and systemic illness may yield new therapeutic strategies for patients with sepsis.
Collapse
|
43
|
Yang T, Zhao Z, Liu T, Zhang Z, Wang P, Xu S, Lei XG, Shan A. Oxidative stress induced by Se-deficient high-energy diet implicates neutrophil dysfunction via Nrf2 pathway suppression in swine. Oncotarget 2017; 8:13428-13439. [PMID: 28077800 PMCID: PMC5355109 DOI: 10.18632/oncotarget.14550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
The mechanism of the interaction between Se deficiency and high energy remains limited. The aim of the current study was to identify whether Se-deficient, high-energy diet can induce oxidative stress, and downregulate the Nrf2 pathway and phagocytic dysfunction of neutrophils. We detected the phagocytic activity, ROS production, protein levels of Nrf2 and Nrf2 downstream target genes, and the mRNA levels of 25 selenoproteins, heat shock proteins, and cytokines in neutrophils. Cytokine ELISA kits were used to measure the serum cytokines. The concentration of ROS was elevated (P < 0.05) in obese swine fed on a low Se diet (less than 0.03 mg/kg Se) compared to control swine. The protein levels of Nrf2 and its downstream target genes were depressed during Se deficiency and high-energy intake. The mRNA levels of 16 selenoproteins were significantly decreased (P < 0.05) in the Se-deficient group and Se-deficient, high-energy group compared to the control group. However, the mRNA levels of 13 selenoproteins in peripheral blood neutrophils were upregulated in high energy group, except TrxR1, SelI and SepW. In summary, these data indicated that a Se-deficient, high-energy diet inhibits the Nrf2 pathway and its regulation of oxidative stress, and prompted a pleiotropic mechanism that suppresses phagocytosis.
Collapse
Affiliation(s)
- Tianshu Yang
- Northeast Agricultural University, Harbin, P. R. China
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tianqi Liu
- Northeast Agricultural University, Harbin, P. R. China
| | - Ziwei Zhang
- Northeast Agricultural University, Harbin, P. R. China
| | - Pengzu Wang
- Northeast Agricultural University, Harbin, P. R. China
| | - Shiwen Xu
- Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Anshan Shan
- Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
44
|
Abstract
Critical illness is a major cause of morbidity and mortality around the world. While obesity is often detrimental in the context of trauma, it is paradoxically associated with improved outcomes in some septic patients. The reasons for these disparate outcomes are not well understood. A number of animal models have been used to study the obese response to various forms of critical illness. Just as there have been many animal models that have attempted to mimic clinical conditions, there are many clinical scenarios that can occur in the highly heterogeneous critically ill patient population that occupies hospitals and intensive care units. This poses a formidable challenge for clinicians and researchers attempting to understand the mechanisms of disease and develop appropriate therapies and treatment algorithms for specific subsets of patients, including the obese. The development of new, and the modification of existing animal models, is important in order to bring effective treatments to a wide range of patients. Not only do experimental variables need to be matched as closely as possible to clinical scenarios, but animal models with pre-existing comorbid conditions need to be studied. This review briefly summarizes animal models of hemorrhage, blunt trauma, traumatic brain injury, and sepsis. It also discusses what has been learned through the use of obese models to study the pathophysiology of critical illness in light of what has been demonstrated in the clinical literature.
Collapse
|
45
|
Kaplan JM, Nowell M, Lahni P, Shen H, Shanmukhappa SK, Zingarelli B. Obesity enhances sepsis-induced liver inflammation and injury in mice. Obesity (Silver Spring) 2016; 24:1480-8. [PMID: 27172993 PMCID: PMC4925204 DOI: 10.1002/oby.21504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE How obesity affects the response to sepsis was not completely understood. It was hypothesized that obesity alters adipose and hepatic tissue inflammation through signal transducer and activator of transcription (STAT3) activation. METHODS Male C57BL/6 mice at 6 weeks of age were randomized to a high-fat diet (60% kcal fat) or normal diet (16% kcal fat) for 6 to 7 weeks. Sepsis was then induced by cecal ligation and puncture, and animals were monitored for survival or sacrificed and tissue collected. RESULTS High-fat diet-fed mice gained more weight, had increased fat mass, and were glucose intolerant compared with normal diet-fed mice. Obesity increased hepatic neutrophil infiltration and injury after sepsis. Mice with obesity had higher plasma leptin levels compared with mice without obesity. Adipose tissue expression of adiponectin receptor 2, tumor necrosis factor-α, and peroxisome proliferator activated receptor gamma was altered during sepsis and affected by obesity, but the greatest change in adipose tissue expression was in leptin. Septic mice with obesity had lower plasma interleukin-17a, interleukin-23, and tumor necrosis factor-α levels and increased hepatic STAT3 and activator protein-1 activation compared with septic mice without obesity. Ultimately, mice with obesity had a lower probability of survival following sepsis. CONCLUSIONS Mice with obesity are more susceptible to sepsis and have higher mortality, in part, through activation of the STAT3 signaling pathway and through activator protein-1 activation.
Collapse
Affiliation(s)
- Jennifer M Kaplan
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marchele Nowell
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick Lahni
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hui Shen
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shiva K Shanmukhappa
- Department of Pathology, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Basilia Zingarelli
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 662] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
47
|
Svahn SL, Väremo L, Gabrielsson BG, Peris E, Nookaew I, Grahnemo L, Sandberg AS, Wernstedt Asterholm I, Jansson JO, Nielsen J, Johansson ME. Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids. PLoS One 2016; 11:e0155099. [PMID: 27166587 PMCID: PMC4864434 DOI: 10.1371/journal.pone.0155099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/25/2016] [Indexed: 01/24/2023] Open
Abstract
Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ.
Collapse
Affiliation(s)
- Sara L Svahn
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Leif Väremo
- Dept. of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt G Gabrielsson
- Dept. of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eduard Peris
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Intawat Nookaew
- Dept. of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Louise Grahnemo
- Dept. of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Dept. of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - John-Olov Jansson
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Jens Nielsen
- Dept. of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Maria E Johansson
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| |
Collapse
|
48
|
Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis. Infect Immun 2016; 84:1205-1213. [PMID: 26857576 DOI: 10.1128/iai.01391-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.
Collapse
|
49
|
Rummel C, Bredehöft J, Damm J, Schweighöfer H, Peek V, Harden LM. Obesity Impacts Fever and Sickness Behavior During Acute Systemic Inflammation. Physiology (Bethesda) 2016; 31:117-30. [PMID: 26889017 DOI: 10.1152/physiol.00049.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obesity is reaching dramatic proportions in humans and is associated with a higher risk for cardiovascular disease, diabetes, and cognitive alterations, and a higher mortality during infection and inflammation. The focus of the present review is on the influence of obesity on the presentation of fever, sickness behavior, and inflammatory responses during acute systemic inflammation.
Collapse
Affiliation(s)
- Christoph Rummel
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Janne Bredehöft
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Jelena Damm
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Hanna Schweighöfer
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Verena Peek
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Lois M Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
50
|
van den Berg SM, Seijkens TTP, Kusters PJH, Beckers L, den Toom M, Smeets E, Levels J, de Winther MPJ, Lutgens E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J 2016; 30:1779-88. [PMID: 26813974 DOI: 10.1096/fj.201500175] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
Obesity is associated with chronic low-grade inflammation, characterized by leukocytosis and inflammation in the adipose tissue. Continuous activation of the immune system is a stressor for hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Here we studied how diet-induced obesity (DIO) affects HSPC population dynamics in the BM. Eight groups of age-matched C57Bl/6 mice received a high-fat diet (45% kilocalories from fat) ranging from 1 d up to 18 wk. The obesogenic diet caused decreased proliferation of lineage(-)Sca-1(+)c-Kit(+) (LSK) cells in the BM and a general suppression of progenitor cell populations including common lymphoid progenitors and common myeloid progenitors. Within the LSK population, DIO induced a shift in stem cells that are capable of self-renewal toward maturing multipotent progenitor cells. The higher differentiation potential resulted in increased lymphoid and myeloid ex vivo colony-forming capacity. In a competitive BM transplantation, BM from obese animals showed impaired multilineage reconstitution when transplanted into chow-fed mice. Our data demonstrate that obesity stimulates the differentiation and reduces proliferation of HSPCs in the BM, leading to a decreased HSPC population. This implies that the effects of obesity on HSPCs hampers proper functioning of the immune system.-Van den Berg, S. M., Seijkens, T. T. P., Kusters, P. J. H., Beckers, L., den Toom, M., Smeets, E., Levels, J., de Winther, M. P. J., Lutgens, E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow.
Collapse
Affiliation(s)
- Susan M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Smeets
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Levels
- Department of Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Menno P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention, Ludwig Maximillians University, Munich, Germany
| |
Collapse
|