1
|
Shaw EM, Tate AJ, Periasamy R, Lipinski DM. Characterization of drusen formation in a primary porcine tissue culture model of dry AMD. Mol Ther Methods Clin Dev 2024; 32:101331. [PMID: 39434920 PMCID: PMC11492580 DOI: 10.1016/j.omtm.2024.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled in vivo. In this study, we further characterize a "drusen-in-a-dish" primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.
Collapse
Affiliation(s)
- Erika M. Shaw
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander J. Tate
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Hyttinen JMT, Koskela A, Blasiak J, Kaarniranta K. Autophagy in drusen biogenesis secondary to age-related macular degeneration. Acta Ophthalmol 2024; 102:759-772. [PMID: 39087629 DOI: 10.1111/aos.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Age-related macular degeneration (AMD) is an emerging cause of blindness in aged people worldwide. One of the key signs of AMD is the degeneration of the retinal pigment epithelium (RPE), which is indispensable for the maintenance of the adjacent photoreceptors. Because of impaired energy metabolism resulting from constant light exposure, hypoxia, and oxidative stress, accumulation of drusen in AMD-affected eyes is observed. Drusen contain damaged cellular proteins, lipoprotein particles, lipids and carbohydrates and they are related to impaired protein clearance, inflammation, and extracellular matrix modification. When autophagy, a major cellular proteostasis pathway, is impaired, the accumulations of intracellular lipofuscin and extracellular drusen are detected. As these aggregates grow over time, they finally cause the disorganisation and destruction of the RPE and photoreceptors leading to visual loss. In this review, the role of autophagy in drusen biogenesis is discussed since impairment in removing cellular waste in RPE cells plays a key role in AMD progression. In the future, means which improve intracellular clearance might be of use in AMD therapy to slow the progression of drusen formation.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
3
|
Hass DT, Pandey K, Engel A, Horton N, Haydinger CD, Robbings BM, Lim RR, Sadilek M, Zhang Q, Gulette GA, Li A, Xu L, Miller JML, Chao JR, Hurley JB. Acetyl-CoA carboxylase inhibition increases retinal pigment epithelial cell fatty acid flux and restricts apolipoprotein efflux. J Biol Chem 2024; 300:107772. [PMID: 39276938 PMCID: PMC11490839 DOI: 10.1016/j.jbc.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Lipid-rich deposits called drusen accumulate under the retinal pigment epithelium (RPE) in the eyes of patients with age-related macular degeneration and Sorsby's fundus dystrophy (SFD). Drusen may contribute to photoreceptor degeneration in these blinding diseases. Stimulating β-oxidation of fatty acids could decrease the availability of lipid with which RPE cells generate drusen. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate β-oxidation and diminish lipid accumulation in fatty liver disease. In this report, we test the hypothesis that an ACC inhibitor, Firsocostat, can diminish lipid deposition by RPE cells. We probed metabolism and cellular function in mouse RPE-choroid tissue and human RPE cells. We used 13C6-glucose, 13C16-palmitate, and gas chromatography-linked mass spectrometry to monitor effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. We quantified lipid abundance, apolipoprotein E levels, and vascular endothelial growth factor release using liquid chromatography-mass spectrometry, ELISAs, and immunostaining. RPE barrier function was assessed by trans-epithelial electrical resistance (TEER). Firsocostat-mediated ACC inhibition increases β-oxidation, decreases intracellular lipid levels, diminishes lipoprotein release, and increases TEER. When human serum or outer segments are used to stimulate lipoprotein release, fewer lipoproteins are released in the presence of Firsocostat. In a culture model of SFD, Firsocostat stimulates fatty acid oxidation, increases TEER, and decreases apolipoprotein E release. We conclude that Firsocostat remodels RPE metabolism and can limit lipid deposition. This suggests that ACC inhibition could be an effective strategy for diminishing pathologic drusen in the eyes of patients with age-related macular degeneration or SFD.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| | - Kriti Pandey
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Abbi Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Hospital, Seattle, Washington, USA
| | - Noah Horton
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron D Haydinger
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian M Robbings
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Gillian A Gulette
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
4
|
Stark AK, Penn JS. Prostanoid signaling in retinal vascular diseases. Prostaglandins Other Lipid Mediat 2024; 174:106864. [PMID: 38955261 DOI: 10.1016/j.prostaglandins.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.
Collapse
Affiliation(s)
- Amy K Stark
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - John S Penn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
6
|
Faatz H, Lommatzsch A. Overview of the Use of Optical Coherence Tomography Angiography in Neovascular Age-Related Macular Degeneration. J Clin Med 2024; 13:5042. [PMID: 39274255 PMCID: PMC11396513 DOI: 10.3390/jcm13175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The aim of this review is to present and discuss the use of optical coherence tomography angiography (OCTA) in age-related macular degeneration (AMD). OCTA is a non-invasive imaging procedure that gives a detailed indirect view of physiological and pathological vessels in the retina and choroid membrane. Compared with dye-based imaging, OCTA provides a segmented presentation of the individual vascular layers and plexuses, thus enabling previously unattainable differentiation and classification of pathological vascular changes within or underneath the retina. In particular, OCTA facilitates early detection of exudative macular neovascularizations (MNV) so that treatment with anti-VEGF medication can be initiated. Moreover, in the context of both screening and therapy monitoring, it is hoped that OCTA can provide more detailed data to enable greater personalization of treatment and follow-up. The image quality of OCTA is, however, susceptible to artifacts, and validation of the results by studies is required. Recent developments have shown constant improvement both in the algorithms for image calculation and avoidance of artifacts and in image quality, so the scope of OCTA will certainly expand with time.
Collapse
Affiliation(s)
- Henrik Faatz
- Eye Center, St. Franziskus Hospital Münster, 48145 Münster, Germany
- Achim Wessing Institute for Imaging in Ophthalmology, University of Essen-Duisburg, 45147 Essen, Germany
- Department of Ophthalmology, University of Essen-Duisburg, 45147 Essen, Germany
| | - Albrecht Lommatzsch
- Eye Center, St. Franziskus Hospital Münster, 48145 Münster, Germany
- Achim Wessing Institute for Imaging in Ophthalmology, University of Essen-Duisburg, 45147 Essen, Germany
- Department of Ophthalmology, University of Essen-Duisburg, 45147 Essen, Germany
| |
Collapse
|
7
|
Terao R, Sohn BS, Yamamoto T, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Yamaguchi S, Yoshida M, Apte RS. Cholesterol Accumulation Promotes Photoreceptor Senescence and Retinal Degeneration. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39167399 PMCID: PMC11343002 DOI: 10.1167/iovs.65.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Dysregulated cholesterol metabolism is critical in the pathogenesis of AMD. Cellular senescence contributes to the development of numerous age-associated diseases. In this study, we investigated the link between cholesterol burden and the cellular senescence of photoreceptors. Methods Retinas from rod-specific ATP binding cassette subfamily A member 1 (Abca1) and G member 1 (Abcg1) (Abca1/g1-rod/-rod) knockout mice fed with a high-fat diet were analyzed for the signs of cellular senescence. Real-time quantitative PCR and immunofluorescence were used to characterize the senescence profile of the retina and cholesterol-treated photoreceptor cell line (661W). Inducible elimination of p16(Ink4a)-positive senescent cells (INK-ATTAC) mice or the administration of senolytic drugs (dasatinib and quercetin: D&Q) were used to examine the impact of senolytics on AMD-like phenotypes in Abca1/g1-rod/-rod retina. Results Increased accumulation of senescent cells as measured by markers of cellular senescence was found in Abca1/g1-rod/-rod retina. Exogenous cholesterol also induced cellular senescence in 661W cells. Selective elimination of senescent cells in Abca1/g1-rod/-rod;INK-ATTAC mice or by administration of D&Q improved visual function, lipid accumulation in retinal pigment epithelium, and Bruch's membrane thickening. Conclusions Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Brian S. Sohn
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Taku Yamamoto
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Charles W. Pfeifer
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shinobu Yamaguchi
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitsukuni Yoshida
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
8
|
Jonas JB, Panda-Jonas S, Jonas RA. Drusen in the macula and parapapillary region. Graefes Arch Clin Exp Ophthalmol 2024; 262:2503-2513. [PMID: 38472430 DOI: 10.1007/s00417-024-06438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE To examine histological characteristics and differences between drusen beneath the retinal pigment epithelium (small hard drusen) located in the macula and located in the parapapillary region. METHODS We histomorphometrically examined human eyes enucleated due to uveal melanomas or secondary angle-closure glaucoma. RESULTS The study included 106 eyes (age, 62.6 ± 15.2 years) with macular drusen (n = 7 globes) or parapapillary drusen (n = 29 eyes) and 70 eyes without drusen. In all drusen, periodic-acid-Schiff-positive material was located between the RPE basal membrane and the inner collagenous layer of Bruch's membrane (BM). Macular drusen as compared with parapapillary drusen had lower height (15.2 ± 10.1 µm versus 34.3 ± 19.8 µm; P = 0.003), while both groups did not differ significantly in basal drusen width (74.0 ± 36.3 µm versus 108.7 ± 101.0 µm; P = 0.95). Eyes with macular drusen and eyes without drusen did not differ significantly in BM thickness (2.74 ± 0.44 µm versus 2.55 ± 0.88 µm; P = 0.57) or in RPE cell density (35.4 ± 10.4 cells/480 µm versus 32.8 ± 7.5 cells/480 µm; P = 0.53), neither in the drusen region nor in the drusen vicinity, while BM thickness (4.60 ± 1.490 µm; P < 0.001) and RPE cell density (56.9 ± 26.8 cells/480 µm; P = 0.005) were higher at the parapapillary drusen. Eyes with macular drusen, eyes with parapapillary drusen, and eyes without drusen did not differ significantly in choriocapillaris density (all P > 0.10) and thickness (all P > 0.35). Limitations of the study, among others, were a small number and size of drusen examined, diseases leading to enucleation, lack of serial sections, limited resolution of light microscopy, and enucleation-related and histological preparation-associated artefacts. CONCLUSIONS The findings of this study, also taking into account its methodological limitations, suggest that macular drusen and parapapillary drusen shared the morphological feature of periodic-acid-Schiff-positive material between the RPE basal membrane and BM and that they did not vary significantly in choriocapillaris thickness and density. RPE cell density and BM thickness were higher in parapapillary drusen than in macular drusen.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Singapore Eye Research Institute, Singapore, Singapore.
| | | | - Rahul A Jonas
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Wagner N, Tsai T, Reinehr S, Theile J, Dick HB, Joachim SC. Retinal debris triggers cytotoxic damage in cocultivated primary porcine RPE cells. Front Neurosci 2024; 18:1401571. [PMID: 39114482 PMCID: PMC11303199 DOI: 10.3389/fnins.2024.1401571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction One of the most common causes of vision loss in the elderly population worldwide is age-related macular degeneration (AMD). Subsequently, the number of people affected by AMD is estimated to reach approximately 288 million by the year 2040. The aim of this study was to develop an ex vivo model that simulates various aspects of the complex AMD pathogenesis. Methods For this purpose, primary porcine retinal pigment epithelial cells (ppRPE) were isolated and cultured. One group was exposed to medium containing sodium iodate (NaIO3) to induce degeneration. The others were exposed to different supplemented media, such as bovine serum albumin (BSA), homogenized porcine retinas (HPR), or rod outer segments (ROOS) for eight days to promote retinal deposits. Then, these ppRPE cells were cocultured with porcine neuroretina explants for another eight days. To assess the viability of ppRPE cells, live/dead assay was performed at the end of the study. The positive RPE65 and ZO1 area was evaluated by immunocytochemistry and the expression of RLBP1, RPE65, and TJP1 was analyzed by RT-qPCR. Additionally, drusen (APOE), inflammation (ITGAM, IL6, IL8, NLRP3, TNF), oxidative stress (NFE2L2, SOD1, SOD2), and hypoxia (HIF1A) markers were investigated. The concentration of the inflammatory cytokines IL-6 and IL-8 was determined in medium supernatants from day 16 and 24 via ELISA. Results Live/dead assay suggests that especially exposure to NaIO3 and HPR induced damage to ppRPE cells, leading in a significant ppRPE cell loss. All supplemented media resulted in decreased RPE-characteristic markers (RPE65; ZO-1) and gene expression like RLBP1 and RPE65 in the cultured ppRPE cells. Besides, some inflammatory, oxidative as well as hypoxic stress markers were altered in ppRPE cells cultivated with NaIO3. The application of HPR induced an enhanced APOE expression. Pre-exposure of the ppRPE cells led to a diminished number of cones in all supplemented media groups compared to controls. Discussion Overall, this novel coculture model represents an interesting initial approach to incorporating deposits into coculture to mimic AMD pathogenesis. Nevertheless, the effects of the media used need to be investigated in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Amer R, Koriat A. Aqueous humor perturbations in chronic smokers: a proteomic study. Sci Rep 2024; 14:11279. [PMID: 38760463 PMCID: PMC11101467 DOI: 10.1038/s41598-024-62039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
The detrimental effects of smoking are multisystemic and its effects on the eye health are significant. Smoking is a strong risk factor for age-related nuclear cataract, age-related macular degeneration, glaucoma, delayed corneal epithelial healing and increased risk of cystoid macular edema in patients with intermediate uveitis among others. We aimed to characterize the aqueous humor (AH) proteome in chronic smokers to gain insight into its perturbations and to identify potential biomarkers for smoking-associated ocular pathologies. Compared to the control group, chronic smokers displayed 67 (37 upregulated, 30 downregulated) differentially expressed proteins (DEPs). Analysis of DEPs from the biological point of view revealed that they were proteins involved in complement activation, lymphocyte mediated immunity, innate immune response, cellular oxidant detoxification, bicarbonate transport and platelet degranulation. From the molecular function point of view, DEPs were involved in oxygen binding, oxygen carrier activity, hemoglobin binding, peptidase/endopeptidase/cysteine-type endopeptidase inhibitory activity. Several of the upregulated proteins were acute phase reactant proteins such as clusterin, alpha-2-HS-glycoprotein, fibrinogen, alpha-1-antitrypsin, C4b-binding protein and serum amyloid A-2. Further research should confirm if these proteins might serve as biomarkers or therapeutic target for smoking-associated ocular diseases.
Collapse
Affiliation(s)
- Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Adi Koriat
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Ban N, Shinojima A, Negishi K, Kurihara T. Drusen in AMD from the Perspective of Cholesterol Metabolism and Hypoxic Response. J Clin Med 2024; 13:2608. [PMID: 38731137 PMCID: PMC11084323 DOI: 10.3390/jcm13092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.
Collapse
Affiliation(s)
- Norimitsu Ban
- Laboratory of Aging and Retinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Ari Shinojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
13
|
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics (Basel) 2024; 14:764. [PMID: 38611677 PMCID: PMC11011935 DOI: 10.3390/diagnostics14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The imagistic evaluation of non-neovascular age-related macular degeneration (AMD) is crucial for diagnosis, monitoring progression, and guiding management of the disease. Dry AMD, characterized primarily by the presence of drusen and retinal pigment epithelium atrophy, requires detailed visualization of the retinal structure to assess its severity and progression. Several imaging modalities are pivotal in the evaluation of non-neovascular AMD, including optical coherence tomography, fundus autofluorescence, or color fundus photography. In the context of emerging therapies for geographic atrophy, like pegcetacoplan, it is critical to establish the baseline status of the disease, monitor the development and expansion of geographic atrophy, and to evaluate the retina's response to potential treatments in clinical trials. The present review, while initially providing a comprehensive description of the pathophysiology involved in AMD, aims to offer an overview of the imaging modalities employed in the evaluation of non-neovascular AMD. Special emphasis is placed on the assessment of progression biomarkers as discerned through optical coherence tomography. As the landscape of AMD treatment continues to evolve, advanced imaging techniques will remain at the forefront, enabling clinicians to offer the most effective and tailored treatments to their patients.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Ana Cristina Ghita
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Larisa Adriana Ilie
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
| | - Aida Geamanu
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| | - Aurelian Mihai Ghita
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| |
Collapse
|
14
|
Lim RR, Shirali S, Rowlan J, Engel AL, Nazario, M, Gonzalez K, Tong A, Neitz J, Neitz M, Chao JR. CFH Haploinsufficiency and Complement Alterations in Early-Onset Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 38683564 PMCID: PMC11059804 DOI: 10.1167/iovs.65.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.
Collapse
Affiliation(s)
- Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Sharlene Shirali
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jessica Rowlan
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Abbi L. Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Institute, Seattle, Washington, United States
| | - Marcos Nazario,
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Kelie Gonzalez
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Aspen Tong
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
15
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
16
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Lima LH, Braga JPR, Melo GB, Cella WP, Brandão ASL, Meirelles RL, Zett C, Cyrino FVR, Jorge R. Serous maculopathy with absence of retinal pigment epithelium (SMARPE) associated with large drusen. Int J Retina Vitreous 2024; 10:8. [PMID: 38254230 PMCID: PMC10802009 DOI: 10.1186/s40942-024-00529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE To describe the association of serous maculopathy with absence of retinal pigment epithelium (SMARPE) and large drusen in patients with non-neovascular age-related macular degeneration (AMD). METHODS A retrospective study of ophthalmic examination and multimodal imaging data of individuals with SMARPE and large drusen observed over a period of 12-month was accomplished. SMARPE was defined as subretinal accumulation of fluid within the macular area due to retinal pigment epithelium (RPE) aperture. Large drusen were identified by the presence of sub-RPE deposits using multimodal imaging analysis (color fundus photography, fundus autofluorescence, and spectral-domain optical coherence tomography). RESULTS Twelve eyes of 7 white patients with a mean age of 77 years were observed to have SMARPE associated with large drusen. The median visual acuity was 20/100. Bilateral SMARPE lesions were observed in 71% of study patients. All SMARPE lesions were hypoautofluorescent, located in the subretinal space between the RPE and the ellipsoid zone, and presented as complete or incomplete RPE apertures associated with subretinal fluid. The SMARPE in this study had coincident multimodal imaging features as the SMARPE described in other reports in the literature. CONCLUSIONS Bilateral SMARPE can occur in association with typical AMD large drusen. Anomalisms resulting in drusen biogenesis or mechanisms that act alongside to these may be related to SMARPE development.
Collapse
Affiliation(s)
- Luiz H Lima
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 821, Vila Clementino, São Paulo, 04023-062, Brazil.
| | - João Pedro Romero Braga
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo B Melo
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 821, Vila Clementino, São Paulo, 04023-062, Brazil
| | - Wener P Cella
- Hospital de Referência Oftalmológica, São Luís, Maranhão, Brazil
| | - Adam S L Brandão
- Hospital de Referência Oftalmológica, São Luís, Maranhão, Brazil
| | - Rodrigo L Meirelles
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 821, Vila Clementino, São Paulo, 04023-062, Brazil
| | - Claudio Zett
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francyne V R Cyrino
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo Jorge
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
El-Darzi N, Mast N, Li Y, Pikuleva IA. APOB100 transgenic mice exemplify how the systemic circulation content may affect the retina without altering retinal cholesterol input. Cell Mol Life Sci 2024; 81:52. [PMID: 38253888 PMCID: PMC10803575 DOI: 10.1007/s00018-023-05056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024]
Abstract
Apolipoprotein B (APOB) is a constituent of unique lipoprotein particles (LPPs) produced in the retinal pigment epithelium (RPE), which separates the neural retina from Bruch's membrane (BrM) and choroidal circulation. These LPPs accumulate with age in BrM and contribute to the development of age-related macular degeneration, a major blinding disease. The APOB100 transgenic expression in mice, which unlike humans lack the full-length APOB100, leads to lipid deposits in BrM. Herein, we further characterized APOB100 transgenic mice. We imaged mouse retina in vivo and assessed chorioretinal lipid distribution, retinal sterol levels, retinal cholesterol input, and serum content as well as tracked indocyanine green-bound LPPs in mouse plasma and retina after an intraperitoneal injection. Retinal function and differentially expressed proteins were also investigated. APOB100 transgenic mice had increased serum LDL content and an additional higher density HDL subpopulation; their retinal cholesterol levels (initially decreased) became normal with age. The LPP cycling between the RPE and choroidal circulation was increased. Yet, LPP trafficking from the RPE to the neural retina was limited, and total retinal cholesterol input did not change. There were lipid deposits in the RPE and BrM, and retinal function was impaired. Retinal proteomics provided mechanistic insights. Collectively, our data suggested that the serum LDL/HDL ratio may not affect retinal pathways of cholesterol input as serum LPP load is mainly handled by the RPE, which offloads LPP excess to the choroidal circulation rather than neural retina. Different HDL subpopulations should be considered in studies linking serum LPPs and age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong Li
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Sonntag SR, Klein B, Brinkmann R, Grisanti S, Miura Y. Fluorescence Lifetime Imaging Ophthalmoscopy of Mouse Models of Age-related Macular Degeneration. Transl Vis Sci Technol 2024; 13:24. [PMID: 38285461 PMCID: PMC10829802 DOI: 10.1167/tvst.13.1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose To investigate fluorescence lifetime of mouse models of age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO). Methods Two AMD mouse models, apolipoprotein E knockout (ApoE-/-) mice and NF-E2-related factor-2 knockout (Nrf2-/-) mice, and their wild-type mice underwent monthly ophthalmic examinations including FLIO from 3 months of age. After euthanasia at the age of 6 or 11 months, blood plasma was collected to determine total antioxidant capacity and eyes were enucleated for Oil red O (ORO) lipid staining of chorioretinal tissue. Results In FLIO, the mean fluorescence lifetime (τm) of wild type shortened with age in both spectral channels. In short spectral channel, τm shortening was observed in both AMD models as well, but its rate was more pronounced in ApoE-/- mice and significantly different from the other strains as months of age progressed. In contrast, in long spectral channel, both model strains showed completely opposite trends, with τm becoming shorter in ApoE-/- and longer in Nrf2-/- mice than the others. Oil red O staining at Bruch's membrane was significantly stronger in ApoE-/- mice at 11 months than the other strains. Plasma total antioxidant capacity was highest in ApoE-/- mice at both 6 and 11 months. Conclusions The two AMD mouse models exhibited largely different fundus fluorescence lifetime, which might be related to the different systemic metabolic state. FLIO might be able to indicate different metabolic states of eyes at risk for AMD. Translational Relevance This animal study may provide new insights into the relationship between early AMD-associated metabolic changes and FLIO findings.
Collapse
Affiliation(s)
- Svenja Rebecca Sonntag
- Department of Ophthalmology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Britta Klein
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck, Lübeck, Germany
| | - Ralf Brinkmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck, Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Yoko Miura
- Department of Ophthalmology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Guo H, Li J, Lu P. Systematic review and meta-analysis of mass spectrometry proteomics applied to ocular fluids to assess potential biomarkers of age-related macular degeneration. BMC Ophthalmol 2023; 23:507. [PMID: 38087257 PMCID: PMC10717315 DOI: 10.1186/s12886-023-03237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a significant cause of severe vision loss. The main purpose of this study was to identify mass spectrometry proteomics-based potential biomarkers of AMD that contribute to understanding the mechanisms of disease and aiding in early diagnosis. METHODS This study retrieved studies that aim to detect differences relate to proteomics in AMD patients and healthy control groups by mass spectrometry (MS) proteomics approaches. The search process was accord with PRISMA guidelines (PROSPERO database: CRD42023388093). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes Pathway Analysis (KEGG) were performed on differentially expressed proteins (DEPs) in the included articles using the DAVID database. DEPs were included in a meta-analysis when their effect size could be computed in at least two research studies. The effect size of measured proteins was transformed to the log2-fold change. Protein‒protein interaction (PPI) analysis was conducted on proteins that were statistically significant in the meta-analysis using the String online database. RESULTS Eleven studies fulfilled the inclusion criteria, and 161 DEPs were identified. The GO analysis showed that AMD is significantly related to proteolysis, extracellular exosome and protein binding. In KEGG, the most significant pathway was the complement and coagulation cascades. Meta-analysis results suggested that eight proteins were statistically significant, and according to PPI results, the most significant four proteins were serotransferrin (TF), apolipoprotein A1 (APOA1), complement C3 (C3) and lipocalin-1 (LCN1). CONCLUSIONS Four possible biomarkers, TF, APOA1, C3 and LCN1, were found to be significant in the pathogenesis of AMD and need to be further validated. Further studies should be performed to evaluate diagnostic and therapeutic value of these proteins.
Collapse
Affiliation(s)
- Hanmu Guo
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianqing Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Shwani T, Zhang C, Owen LA, Shakoor A, Vitale AT, Lillvis JH, Barr JL, Cromwell P, Finley R, Husami N, Au E, Zavala RA, Graves EC, Zhang SX, Farkas MH, Ammar DA, Allison KM, Tawfik A, Sherva RM, Li M, Stambolian D, Kim IK, Farrer LA, DeAngelis MM. Patterns of Gene Expression, Splicing, and Allele-Specific Expression Vary among Macular Tissues and Clinical Stages of Age-Related Macular Degeneration. Cells 2023; 12:2668. [PMID: 38067097 PMCID: PMC10705168 DOI: 10.3390/cells12232668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, and elucidating its underlying disease mechanisms is vital to the development of appropriate therapeutics. We identified differentially expressed genes (DEGs) and differentially spliced genes (DSGs) across the clinical stages of AMD in disease-affected tissue, the macular retina pigment epithelium (RPE)/choroid and the macular neural retina within the same eye. We utilized 27 deeply phenotyped donor eyes (recovered within a 6 h postmortem interval time) from Caucasian donors (60-94 years) using a standardized published protocol. Significant findings were then validated in an independent set of well-characterized donor eyes (n = 85). There was limited overlap between DEGs and DSGs, suggesting distinct mechanisms at play in AMD pathophysiology. A greater number of previously reported AMD loci overlapped with DSGs compared to DEGs between disease states, and no DEG overlap with previously reported loci was found in the macular retina between disease states. Additionally, we explored allele-specific expression (ASE) in coding regions of previously reported AMD risk loci, uncovering a significant imbalance in C3 rs2230199 and CFH rs1061170 in the macular RPE/choroid for normal eyes and intermediate AMD (iAMD), and for CFH rs1061147 in the macular RPE/choroid for normal eyes and iAMD, and separately neovascular AMD (NEO). Only significant DEGs/DSGs from the macular RPE/choroid were found to overlap between disease states. STAT1, validated between the iAMD vs. normal comparison, and AGTPBP1, BBS5, CERKL, FGFBP2, KIFC3, RORα, and ZNF292, validated between the NEO vs. normal comparison, revealed an intricate regulatory network with transcription factors and miRNAs identifying potential upstream and downstream regulators. Findings regarding the complement genes C3 and CFH suggest that coding variants at these loci may influence AMD development via an imbalance of gene expression in a tissue-specific manner. Our study provides crucial insights into the multifaceted genomic underpinnings of AMD (i.e., tissue-specific gene expression changes, potential splice variation, and allelic imbalance), which may open new avenues for AMD diagnostics and therapies specific to iAMD and NEO.
Collapse
Affiliation(s)
- Treefa Shwani
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Leah A. Owen
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
| | - Albert T. Vitale
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Julie L. Barr
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Parker Cromwell
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Robert Finley
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Nadine Husami
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Elizabeth Au
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Rylee A. Zavala
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Elijah C. Graves
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Sarah X. Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Michael H. Farkas
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - David A. Ammar
- Lion’s Eye Institute for Transplant & Research, Tampa, FL 33605, USA;
| | - Karen M. Allison
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA;
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA;
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Richard M. Sherva
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (R.M.S.); (L.A.F.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (R.M.S.); (L.A.F.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
22
|
Hass DT, Pandey K, Engel A, Horton N, Robbings BM, Lim R, Sadilek M, Zhang Q, Autterson GA, Miller JML, Chao JR, Hurley JB. Acetyl-CoA carboxylase Inhibition increases RPE cell fatty acid oxidation and limits apolipoprotein efflux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566117. [PMID: 37986876 PMCID: PMC10659357 DOI: 10.1101/2023.11.07.566117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Purpose In age-related macular degeneration (AMD) and Sorsby's fundus dystrophy (SFD), lipid-rich deposits known as drusen accumulate under the retinal pigment epithelium (RPE). Drusen may contribute to photoreceptor and RPE degeneration in AMD and SFD. We hypothesize that stimulating β-oxidation in RPE will reduce drusen accumulation. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate β-oxidation and diminish lipid accumulation in fatty liver disease. In this report we test the hypothesis that an ACC inhibitor, Firsocostat, limits the accumulation of lipid deposits in cultured RPE cells. Methods We probed metabolism and cellular function in mouse RPE-choroid, human fetal- derived RPE cells, and induced pluripotent stem cell-derived RPE cells. We used 13 C6-glucose and 13 C16-palmitate to determine the effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. 13 C labeling of metabolites in these pathways were analyzed using gas chromatography-linked mass spectrometry. We quantified ApoE and VEGF release using enzyme-linked immunosorbent assays. Immunostaining of sectioned RPE was used to visualize ApoE deposits. RPE function was assessed by measuring the trans-epithelial electrical resistance (TEER). Results ACC inhibition with Firsocostat increases fatty acid oxidation and remodels lipid composition, glycolytic metabolism, lipoprotein release, and enhances TEER. When human serum is used to induce sub-RPE lipoprotein accumulation, fewer lipoproteins accumulate with Firsocostat. In a culture model of Sorsby's fundus dystrophy, Firsocostat also stimulates fatty acid oxidation, improves morphology, and increases TEER. Conclusions Firsocostat remodels intracellular metabolism and improves RPE resilience to serum-induced lipid deposition. This effect of ACC inhibition suggests that it could be an effective strategy for diminishing drusen accumulation in the eyes of patients with AMD.
Collapse
|
23
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
24
|
Zhang Y, Huang J, Liang Y, Huang J, Fu Y, Chen N, Lu B, Zhao C. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy 2023; 19:2668-2681. [PMID: 37266932 PMCID: PMC10472852 DOI: 10.1080/15548627.2023.2220540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly, and there is currently no clinical treatment targeting the primary impairment of AMD. The earliest clinical hallmark of AMD is drusen, which are yellowish spots mainly composed of lipid droplets (LDs) accumulated under the retinal pigment epithelium (RPE). However, the potential pathogenic role of this excessive LD accumulation in AMD is yet to be determined, partially due to a lack of chemical tools to manipulate LDs specifically. Here, we employed our recently developed Lipid Droplets·AuTophagy Tethering Compounds (LD∙ATTECs) to degrade LDs and to evaluate its consequence on the AMD-like phenotypes in apoe-/- (apolipoprotein E; B6/JGpt-Apoeem1Cd82/Gpt) mouse model. apoe-/- mice fed with high-fat diet (apoe-/--HFD) exhibited excessive LD accumulation in the retina, particularly with AMD-like phenotypes including RPE degeneration, Bruch's membrane (BrM) thickening, drusen-like deposits, and photoreceptor dysfunction. LD·ATTEC treatment significantly cleared LDs in RPE/choroidal tissues without perturbing lipid synthesis-related proteins and rescued RPE degeneration and photoreceptor dysfunction in apoe-/--HFD mice. This observation implied a causal relationship between LD accumulation and AMD-relevant phenotypes. Mechanically, the apoe-/--HFD mice exhibited elevated oxidative stress and inflammatory signals, both of which were mitigated by the LD·ATTEC treatment. Collectively, this study demonstrated that LD accumulation was a trigger for the process of AMD and provided entry points for the treatment of the initial insult of AMD by degrading LDs.Abbreviations: AMD: age-related macular degeneration; APOE: apolipoprotein E; ATTECs: autophagy-tethering compounds; BODIPY: boron-dipyrromethene; BrM: Bruch's membrane; ERG: electroretinogram; HFD: high-fat diet; LD·ATTECs: Lipid Droplets·AuTophagy Tethering Compounds; LDs: lipid droplets; OA: oleic acid; OPL: outer plexiform layer; ROS: reactive oxygen species; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Yuelu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiancheng Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ningxie Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Shughoury A, Sevgi DD, Ciulla TA. The complement system: a novel therapeutic target for age-related macular degeneration. Expert Opin Pharmacother 2023; 24:1887-1899. [PMID: 37691588 DOI: 10.1080/14656566.2023.2257604] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION With the recent FDA approvals of pegcetacoplan (SYFOVRE, Apellis Pharmaceuticals) and avacincaptad pegol (IZERVAY, Astellas Pharmaceuticals), modulation of the complement system has emerged as a promising therapeutic approach for slowing progression of geographic atrophy (GA) in AMD. AREAS COVERED This article reviews the current understanding of the complement system, its role in AMD, and the various complement-targeting therapies in development for the treatment of GA, including monoclonal antibodies, aptamers, protein analogs, and gene therapies. Approved and investigational agents have largely focused on interfering with the activity of complement components 3 and 5, owing to their central roles in the classical, lectin, and alternative complement pathways. Other investigational therapies have targeted formation of membrane attack complex (a terminal step in the complement cascade which leads to cell lysis), complement factors H and I (which serve regulatory functions in the alternative pathway), complement factors B and D (within the alternative pathway), and complement component 1 (within the classical pathway). Clinical trials investigating these agents are summarized, and the potential benefits and limitations of these therapies are discussed. EXPERT OPINION Targeting the complement system is a promising therapeutic approach for slowing the progression of GA in AMD, potentially improving visual outcomes. However, increased risk of exudative conversion must be considered, and further research is required to identify clinical criteria and best practices for initiating complement inhibitor therapy for GA.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Duriye D Sevgi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Clearside Biomedical, Inc, Alpharetta, GA, USA
- Midwest Eye Institute, Carmel, IN, USA
| |
Collapse
|
26
|
Ganesh D, Chiang JN, Corradetti G, Zaitlen N, Halperin E, Sadda SR. Effect of statins on the age of onset of age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2023; 261:2245-2255. [PMID: 36917316 DOI: 10.1007/s00417-023-06017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND This study evaluated the relationship between statin use and the age of onset of age-related macular degeneration (AMD). METHODS Electronic Health Records from 52,840 patients evaluated at University of California Los Angeles (UCLA) Ophthalmology Clinics and 9,977 patients evaluated at University of California San Francisco (UCSF) Ophthalmology Clinics were screened. Survival analysis was performed using Cox proportional hazards regression models and visualized using Kaplan Meier survival curves, with the following covariates-sex, ethnicity, smoking history, fluoxetine use, obesity, diabetes mellitus, and hypertension. RESULTS 5,498 of 52,840 patients at UCLA were diagnosed with AMD. Statin use was associated with a later AMD onset (HR = 0.8823, p < 0.0001), while female sex (HR = 1.0852, p= 00,035), obesity (HR = 1.4555, p < 0.0001), and fluoxetine (HR = 1.3797, p= 0.0003) were associated with an earlier AMD onset. Non-hispanic black (HR = 0.5687, p < 0.0001) and hispanic ethnicities (HR = 0.8269, p= 0.0028) were associated with a later AMD onset. When stratifying for ethnicity, statins, fluoxetine, sex, and obesity were significant only within non-hispanic white subjects. Statin use was significant among patients with dry AMD (HR = 0.8410, p= 0.0001) but not wet AMD (0.9188, p= 0.0351). In the replication cohort, 526 of 9,977 patients at UCSF had AMD. Associations between statins (HR = 0.7643, p= 0.0033), non-hispanic black ethnicity (HR = 0.5043, p= 0.0035), and obesity (HR = 1.9602, p < 0.0001) on AMD onset were confirmed. CONCLUSIONS In both cohorts, statin use and non-hispanic black ethnicity are associated with a later AMD onset, while obesity with an earlier AMD onset.
Collapse
Affiliation(s)
- Durga Ganesh
- David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Pasadena, CA, USA
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Computational Medicine, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California - Los Angeles, Los Angeles, CA, USA
| | - Eran Halperin
- Department of Computational Medicine, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Anesthesiology, David Geffen School of Medicine at University of California - Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA.
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Li FF, Wang Y, Chen L, Chen C, Chen Q, Xiang L, Rao FQ, Shen LJ, Zheng QX, Yi Q, Huang XF. Causal effects of serum lipid biomarkers on early age-related macular degeneration using Mendelian randomization. GENES & NUTRITION 2023; 18:11. [PMID: 37479984 PMCID: PMC10362672 DOI: 10.1186/s12263-023-00730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/18/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is one of the major causes of vision loss. Early AMD needs to be taken seriously, but the causal effects of lipid biomarkers on early AMD remain unclear. METHODS In this study, two-sample Mendelian randomization (MR) analysis was performed to systematically assess the causal relationships between seven serum lipid biomarkers (apolipoprotein A (ApoA), apolipoprotein B (ApoB), total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), direct low-density lipoprotein cholesterol (LDL-C), lipoprotein A [Lp(a)], and triglycerides (TG)) and risk of early AMD. In total, 14,034 cases and 91,214 controls of European ancestry were included in the analysis (number of SNPs = 11,304,110). RESULTS MR estimates revealed that a higher HDL-C level is strongly associated with increased risk of early AMD (OR = 1.25, 95% CI: 1.15-1.35, P = 2.61 × 10-8). In addition, level of ApoA is also positively associated with risk of early AMD (OR = 2.04, 95% CI: 1.50-2.77, P = 6.27 × 10-6). Conversely, higher levels of TG significantly decrease the risk of early AMD (OR = 0.77, 95% CI: 0.71-0.84, P = 5.02 × 10-10). Sensitivity analyses further supported these associations. Moreover, multivariable MR analyses, adjusted for the effects of correlated lipid biomarkers, yielded similar results. CONCLUSION This study identifies causal relationships between elevated circulating HDL-C/ApoA levels and increased risk of early AMD, in addition to finding that TG specifically reduces the risk of early AMD. These findings contribute to a better understanding of the role of lipid metabolism in drusen formation, particularly in early AMD development.
Collapse
Affiliation(s)
- Fen-Fen Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuqin Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lishuang Chen
- The Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| | - Chong Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Qin Rao
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Li-Jun Shen
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qin-Xiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- The Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China.
| | - Quanyong Yi
- The Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China.
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
28
|
Chaudhuri M, Hassan Y, Bakka Vemana PPS, Bellary Pattanashetty MS, Abdin ZU, Siddiqui HF. Age-Related Macular Degeneration: An Exponentially Emerging Imminent Threat of Visual Impairment and Irreversible Blindness. Cureus 2023; 15:e39624. [PMID: 37388610 PMCID: PMC10300666 DOI: 10.7759/cureus.39624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is a significant cause of blindness globally. With the exponential rise in the aging population, AMD is the third leading cause of visual impairment worldwide. Neovascular AMD (nAMD; Wet AMD) and geographical atrophy (GA, late-stage dry AMD) are the advanced AMD accountable for substantial cases of visual deterioration among the elderly. Our review of the literature depicted that notable risk factors include cigarette smoking, nutritional elements, cardiovascular disorders, and genetic markers, including genes regulating complement, lipid, and angiogenic pathways. Some studies have suggested a relative decline in the proportion of AMD cases in the last two decades attributable to novel diagnostic and therapeutic modalities. Accurate diagnosis is the result of a combination of clinical examination and imaging techniques, including retinal photography, angiography, and optical coherence tomography. The incorporation of dietary antioxidant supplements, explicitly lutein, slows the progression of the disease in advanced stages. The induction of vascular endothelial growth factor (VEGF) inhibitors in the treatment of neovascular AMD, often combined with other modalities, has shown an immensely favorable prognosis. Research to integrate gene therapy and regenerative techniques using stem cells is underway to further mitigate AMD-associated morbidity. It is imperative to establish screening and therapeutic guidelines for AMD to curtail the future social and financial burden and improve the diminishing quality of life among the elderly.
Collapse
Affiliation(s)
- Madhurima Chaudhuri
- Department of Ophthalmology, Medical College and Hospital, Kolkata, IND
- Ophthalmology, University of Illinois at Chicago, Chicago, USA
| | - Yusra Hassan
- Department of Ophthalmology, Mayo Hospital Lahore, Lahore, PAK
| | | | | | - Zain U Abdin
- Department of Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | - Humza F Siddiqui
- Department of Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
29
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|
31
|
Hypoxia-induced transcriptional differences in African and Asian versus European diabetic cybrids. Sci Rep 2023; 13:3818. [PMID: 36882486 PMCID: PMC9992459 DOI: 10.1038/s41598-023-30518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common diabetic microvascular complication and cause of blindness in adults under the age of 65. Our results suggest that, when comparing transcriptomes of cultures grown in hypoxic conditions versus room-air, cybrids containing mitochondria from African and Asian diabetic subjects ([Afr + Asi]/DM) have some uniquely different transcriptome profiles compared to European/diabetic (Euro/DM) cybrids (e.g., fatty acid metabolism: EnrichR rank 10 in [Afr + Asi]/DM, rank 85 in Euro/DM; Endocytosis: rank 25 in [Afr + Asi]/DM, rank 5 in Euro/DM; Ubiquitin Mediated Proteolysis: rank 34 in [Afr + Asi]/DM, rank 7 in Euro/DM). As determined by both RNA-seq and qRT-PCR results, transcription of the gene encoding oleoyl-ACP hydrolase (OLAH) was significantly increased in [Afr + Asi]/DM cybrids compared to Euro/DM cybrids in hypoxic conditions. Additionally, our results show that in hypoxic conditions, Euro/DM cybrids and [Afr + Asi]/DM cybrids show similar decreases in ROS production. All cybrids showed decreased ZO1-minus protein levels, but their phagocytic functions were not significantly altered in hypoxic conditions. In conclusion, our findings suggest that the "molecular memory" imparted by [Afr + Asi]/DM mtDNA may act through one of the molecular pathways seen in transcriptome analysis, such as fatty acid metabolism, without significantly changing essential RPE functions.
Collapse
|
32
|
Emri E, Cappa O, Kelly C, Kortvely E, SanGiovanni JP, McKay BS, Bergen AA, Simpson DA, Lengyel I. Zinc Supplementation Induced Transcriptional Changes in Primary Human Retinal Pigment Epithelium: A Single-Cell RNA Sequencing Study to Understand Age-Related Macular Degeneration. Cells 2023; 12:773. [PMID: 36899910 PMCID: PMC10000409 DOI: 10.3390/cells12050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
| | - Oisin Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Caoimhe Kelly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Elod Kortvely
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - John Paul SanGiovanni
- Biosciences Research Laboratories, BIO5 Institute, University of Arizona, 1230 North Cherry Avenue, Tucson, AZ 85724, USA
| | - Brian S. McKay
- Department of Ophthalmology and Vision Science, University of Arizona, 1656 E. Mabel Street, Tucson, AZ 85724, USA
| | - Arthur A. Bergen
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), 1105AZ Amsterdam, The Netherlands
| | - David A. Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| |
Collapse
|
33
|
Liu CH, Yemanyi F, Bora K, Kushwah N, Blomfield AK, Kamenecka TM, SanGiovanni JP, Sun Y, Solt LA, Chen J. Genetic deficiency and pharmacological modulation of RORα regulate laser-induced choroidal neovascularization. Aging (Albany NY) 2023; 15:37-52. [PMID: 36626253 PMCID: PMC9876633 DOI: 10.18632/aging.204480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Choroidal neovascularization (CNV) causes acute vision loss in neovascular age-related macular degeneration (AMD). Genetic variations of the nuclear receptor RAR-related orphan receptor alpha (RORα) have been linked with neovascular AMD, yet its specific role in pathological CNV development is not entirely clear. In this study, we showed that Rora was highly expressed in the mouse choroid compared with the retina, and genetic loss of RORα in Staggerer mice (Rorasg/sg) led to increased expression levels of Vegfr2 and Tnfa in the choroid and retinal pigment epithelium (RPE) complex. In a mouse model of laser-induced CNV, RORα expression was highly increased in the choroidal/RPE complex post-laser, and loss of RORα in Rorasg/sg eyes significantly worsened CNV with increased lesion size and vascular leakage, associated with increased levels of VEGFR2 and TNFα proteins. Pharmacological inhibition of RORα also worsened CNV. In addition, both genetic deficiency and inhibition of RORα substantially increased vascular growth in isolated mouse choroidal explants ex vivo. RORα inhibition also promoted angiogenic function of human choroidal endothelial cell culture. Together, our results suggest that RORα negatively regulates pathological CNV development in part by modulating angiogenic response of the choroidal endothelium and inflammatory environment in the choroid/RPE complex.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neetu Kushwah
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - John Paul SanGiovanni
- BIO5 Institute and Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura A. Solt
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
35
|
Choudhary M, Malek G. CD68: Potential Contributor to Inflammation and RPE Cell Dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:207-213. [PMID: 37440035 DOI: 10.1007/978-3-031-27681-1_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly in developed countries. It is a complex, multifactorial, progressive disease with diverse molecular pathways, including inflammation, regulating its pathogenesis. The myeloid marker CD68 is a protein highly expressed in circulating and tissue macrophages. Recent observations of immune markers in human AMD tissues have varied with some finding ectopic RPE cells in advanced AMD and others noting negligible numbers of CD68-positive cells. Additionally, animal models of retinal degeneration have shown upregulation of CD68, in a protective population of retinal microglia. Herein, we review the potential role of CD68 in regulating RPE health and inflammation in the sub-retinal space and discuss observations on its localization in a mouse model that presents with AMD-like features.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Albert Eye Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Department of Ophthalmology, Albert Eye Research Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Albert Eye Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
36
|
Álvarez-Barrios A, Álvarez L, Artime E, García M, Lengyel I, Pereiro R, González-Iglesias H. Altered zinc homeostasis in a primary cell culture model of the retinal pigment epithelium. Front Nutr 2023; 10:1124987. [PMID: 37139441 PMCID: PMC10149808 DOI: 10.3389/fnut.2023.1124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·μg-1 at 10 days to 0.062 ± 0.043 ng·μg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Lydia Álvarez,
| | - Enol Artime
- Fundación de Investigación Oftalmológica, Oviedo, Spain
| | | | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- *Correspondence: Héctor González-Iglesias,
| |
Collapse
|
37
|
Li J, Li C, Huang Y, Guan P, Huang D, Yu H, Yang X, Liu L. Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. J Transl Med 2022; 20:621. [PMID: 36572895 PMCID: PMC9793675 DOI: 10.1186/s12967-022-03822-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
Ophthalmic epidemiology is concerned with the prevalence, distribution and other factors relating to human eye disease. While observational studies cannot avoid confounding factors from interventions, human eye composition and structure are unique, thus, eye disease pathogenesis, which greatly impairs quality of life and visual health, remains to be fully explored. Notwithstanding, inheritance has had a vital role in ophthalmic disease. Mendelian randomization (MR) is an emerging method that uses genetic variations as instrumental variables (IVs) to avoid confounders and reverse causality issues; it reveals causal relationships between exposure and a range of eyes disorders. Thus far, many MR studies have identified potentially causal associations between lifestyles or biological exposures and eye diseases, thus providing opportunities for further mechanistic research, and interventional development. However, MR results/data must be interpreted based on comprehensive evidence, whereas MR applications in ophthalmic epidemiology have some limitations worth exploring. Here, we review key principles, assumptions and MR methods, summarise contemporary evidence from MR studies on eye disease and provide new ideas uncovering aetiology in ophthalmology.
Collapse
Affiliation(s)
- Jiaxin Li
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Cong Li
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Yu Huang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China ,grid.413405.70000 0004 1808 0686Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peng Guan
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Desheng Huang
- grid.412449.e0000 0000 9678 1884Department of Mathematics, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning China
| | - Honghua Yu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Xiaohong Yang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Lei Liu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| |
Collapse
|
38
|
Sreekumar PG, Su F, Spee C, Araujo E, Nusinowitz S, Reddy ST, Kannan R. Oxidative Stress and Lipid Accumulation Augments Cell Death in LDLR-Deficient RPE Cells and Ldlr-/- Mice. Cells 2022; 12:43. [PMID: 36611838 PMCID: PMC9818299 DOI: 10.3390/cells12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid peroxidation from oxidative stress is considered a major contributor to age-related macular degeneration (AMD). The retina is abundant with circulating low-density lipoproteins (LDL), which are taken up by LDL receptor (LDLR) in the RPE and Müller cells. The purpose of this study is to investigate the role of LDLR in the NaIO3-induced model of dry AMD. Confluent primary human RPE (hRPE) and LDLR-silenced ARPE-19 cells were stressed with 150 µM tert-butyl hydroperoxide (tBH) and caspase 3/7 activation was determined. WT and Ldlr-/- mice were administered NaIO3 (20 mg/kg) intravenously. On day 7, fundus imaging, OCT, ERG, and retinal thickness were measured. Histology, TUNEL, cleaved caspase 3 and lipid accumulation were assessed. Treatment of hRPE with tBH markedly decreased LDLR expression. Caspase 3/7 activation was significantly increased in LDLR-silenced ARPE-19 cells treated with tBH. In Ldlr-/- mice, NaIO3 administration resulted in significant (a) retinal thinning, (b) compromised photoreceptor function, (c) increased percentage of cleaved caspase 3 positive and apoptotic cells, and (d) increased lipid droplet accumulation in the RPE, Bruch membrane, choroid, and sclera, compared to WT mice. Our findings imply that LDLR loss leads to lipid accumulation and impaired retinal function, which may contribute to the development of AMD.
Collapse
Affiliation(s)
| | - Feng Su
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - Eduardo Araujo
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
40
|
Hwang S, Kang SW, Choi J, Son KY, Lim DH, Shin DW, Kim K, Kim SJ. Lipid profile and future risk of exudative age-related macular degeneration development: a nationwide cohort study from South Korea. Sci Rep 2022; 12:18777. [PMID: 36335257 PMCID: PMC9637211 DOI: 10.1038/s41598-022-23607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
This nationwide population-based cohort study evaluated the association between lipid profiles and the future risk of exudative age-related macular degeneration (AMD) using authorized clinical data provided by the Korean National Health Insurance Service. A total of 6,129,616 subjects over 50 years of age who participated in the Korean National Health Screening Program in 2013 or 2014 were included. Data on risk factors, including age, sex, comorbidities, behavioral factors, and baseline lipid profiles, including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels were collected. Patients were followed-up patients until December 2018, and incident cases of exudative AMD were identified using registered diagnostic codes. During an average follow-up period of 4.91 years, 18,803 patients were newly diagnosed with exudative AMD. Compared to the lowest HDL cholesterol quartile group, the highest HDL cholesterol quartile group had a greater risk of future exudative AMD development with a hazard ratio (95% confidence interval) of 1.13 (1.08-1.18) in the fully adjusted model. The highest TG quartile group had a lower risk of exudative AMD than the lowest TG quartile group, with a hazard ratio (95% confidence interval) of 0.84 (0.81-0.88). High HDL cholesterol and low TG levels were prospectively associated with exudative AMD incidence.
Collapse
Affiliation(s)
- Sungsoon Hwang
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Se Woong Kang
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Jaehwan Choi
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Ki Young Son
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Dong Hui Lim
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong Wook Shin
- grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea ,grid.414964.a0000 0001 0640 5613Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyunga Kim
- grid.264381.a0000 0001 2181 989XDepartment of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea ,grid.414964.a0000 0001 0640 5613Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Jin Kim
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| |
Collapse
|
41
|
Choudhary M, Tayyari F, Handa JT, Malek G. Characterization and identification of measurable endpoints in a mouse model featuring age-related retinal pathologies: a platform to test therapies. J Transl Med 2022; 102:1132-1142. [PMID: 36775353 PMCID: PMC10041606 DOI: 10.1038/s41374-022-00795-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Apolipoprotein B100 (apoB100) is the structural protein of cholesterol carriers including low-density lipoproteins. It is a constituent of sub-retinal pigment epithelial (sub-RPE) deposits and pro-atherogenic plaques, hallmarks of early dry age-related macular degeneration (AMD), an ocular neurodegenerative blinding disease, and cardiovascular disease, respectively. Herein, we characterized the retinal pathology of transgenic mice expressing mouse apoB100 in order to catalog their functional and morphological ocular phenotypes as a function of age and establish measurable endpoints for their use as a mouse model to test potential therapies. ApoB100 mice were found to exhibit an age-related decline in retinal function, as measured by electroretinogram (ERG) recordings of their scotopic a-wave, scotopic b-wave; and c-wave amplitudes. ApoB100 mice also displayed a buildup of the cholesterol carrier, apolipoprotein E (apoE) within and below the supporting extracellular matrix, Bruch's membrane (BrM), along with BrM thickening, and accumulation of thin diffuse electron-dense sub-RPE deposits, the severity of which increased with age. Moreover, the combination of apoB100 and advanced age were found to be associated with RPE morphological changes and the presence of sub-retinal immune cells as visualized in RPE-choroid flatmounts. Finally, aged apoB100 mice showed higher levels of circulating and ocular pro-inflammatory cytokines, supporting a link between age and increased local and systemic inflammation. Collectively, the data support the use of aged apoB100 mice as a platform to evaluate potential therapies for retinal degeneration, specifically drugs intended to target removal of lipids from Bruch's membrane and/or alleviate ocular inflammation.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Faryan Tayyari
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
42
|
Chen L, Yang P, Curcio CA. Visualizing lipid behind the retina in aging and age-related macular degeneration, via indocyanine green angiography (ASHS-LIA). Eye (Lond) 2022; 36:1735-1746. [PMID: 35314773 PMCID: PMC9391351 DOI: 10.1038/s41433-022-02016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Age-related macular degeneration (AMD) causes legal blindness in older adults worldwide. Soft drusen are the most extensively documented intraocular risk factor for progression to advanced AMD. A long-standing paradox in AMD pathophysiology has been the vulnerability of Asian populations to polypoidal choroidal vasculopathy (PCV) in the presence of relatively few drusen. Age-related scattered hypofluorescent spots on late phase indocyanine green angiography (ASHS-LIA) was recently proposed as precursors of PCV. Herein, we offer a resolution to the paradox by reviewing evidence that ASHS-LIA indicates the diffuse form of lipoprotein-related lipids accumulating in Bruch's membrane (BrM) throughout adulthood. Deposition of these lipids leads to soft drusen and basal linear deposit (BLinD), a thin layer of soft drusen material in AMD; Pre-BLinD is the precursor. This evidence includes: 1. Both ASHS-LIA and pre-BLinD/BLinD accumulate in older adults and start under the macula; 2. ASHS-LIA shares hypofluorescence with soft drusen, known to be physically continuous with pre-BLinD/BLinD. 3. Model system studies illuminated a mechanism for indocyanine green uptake by retinal pigment epithelium. 4. Neither ASHS-LIA nor pre-BLinD/ BLinD are visible by multimodal imaging anchored on current optical coherence tomography, as confirmed with direct clinicopathologic correlation. To contextualize ASHS-LIA, we also summarize angiographic characteristics of different drusen subtypes in AMD. As possible precursors for PCV, lipid accumulation in forms beyond soft drusen may contribute to the pathogenesis of this prevalent disease in Asia. ASHS-LIA also might help identify patients at risk for progression, of value to clinical trials for therapies targeting early or intermediate AMD.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
43
|
Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, Ronco C, Benhida R. Recent Advances in Age-Related Macular Degeneration Therapies. Molecules 2022; 27:molecules27165089. [PMID: 36014339 PMCID: PMC9414333 DOI: 10.3390/molecules27165089] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible.
Collapse
Affiliation(s)
- Marie Fabre
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Lou Mateo
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Diana Lamaa
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, 30 Avenue De La Voie Romaine, 06000 Nice, France
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), UMR 7284 and INSERM U 1081, Université Côte d’Azur, CNRS 28 Avenue de Valombrose, 06107 Nice, France
| | - Luc Demange
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Cyril Ronco
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Rachid Benhida
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Department of Chemical and Biochemical Sciences-Green Process Engineering (CBS-GPE), Mohamed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Correspondence: (L.D.); (C.R.); (R.B.)
| |
Collapse
|
44
|
Senabouth A, Daniszewski M, Lidgerwood GE, Liang HH, Hernández D, Mirzaei M, Keenan SN, Zhang R, Han X, Neavin D, Rooney L, Lopez Sanchez MIG, Gulluyan L, Paulo JA, Clarke L, Kearns LS, Gnanasambandapillai V, Chan CL, Nguyen U, Steinmann AM, McCloy RA, Farbehi N, Gupta VK, Mackey DA, Bylsma G, Verma N, MacGregor S, Watt MJ, Guymer RH, Powell JE, Hewitt AW, Pébay A. Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration. Nat Commun 2022; 13:4233. [PMID: 35882847 PMCID: PMC9325891 DOI: 10.1038/s41467-022-31707-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.
Collapse
Affiliation(s)
- Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Grace E Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Helena H Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ran Zhang
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Louise Rooney
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Lerna Gulluyan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | | | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Uyen Nguyen
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Angela M Steinmann
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Rachael A McCloy
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Guy Bylsma
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Nitin Verma
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia.
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
45
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
46
|
Wilson MR, Satapathy S, Jeong S, Fini ME. Clusterin, other extracellular chaperones, and eye disease. Prog Retin Eye Res 2022; 89:101032. [PMID: 34896599 PMCID: PMC9184305 DOI: 10.1016/j.preteyeres.2021.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases" are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.
Collapse
Affiliation(s)
- Mark R Wilson
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Sandeep Satapathy
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1333 San Pablo Street., Los Angeles, CA, 90033, USA.
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine; Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
47
|
High-Fat Diet Alters the Retinal Pigment Epithelium and Choroidal Transcriptome in the Absence of Gut Microbiota. Cells 2022; 11:cells11132076. [PMID: 35805160 PMCID: PMC9266037 DOI: 10.3390/cells11132076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Relationships between retinal disease, diet, and the gut microbiome have started to emerge. In particular, high-fat diets (HFDs) are associated with the prevalence and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR). These effects are thought to be partly mediated by the gut microbiome, which modulates interactions between diet and host homeostasis. Nevertheless, the effects of HFDs on the retina and adjacent retinal pigment epithelium (RPE) and choroid at the transcriptional level, independent of gut microbiota, are not well-understood. In this study, we performed the high-throughput RNA-sequencing of germ-free (GF) mice to explore the transcriptional changes induced by HFD in the RPE/choroid. After filtering and cleaning the data, 649 differentially expressed genes (DEGs) were identified, with 616 genes transcriptionally upregulated and 33 genes downregulated by HFD compared to a normal diet (ND). Enrichment analysis for gene ontology (GO) using the DEGs was performed to analyze over-represented biological processes in the RPE/choroid of GF-HFD mice relative to GF-ND mice. GO analysis revealed the upregulation of processes related to angiogenesis, immune response, and the inflammatory response. Additionally, molecular functions that were altered involved extracellular matrix (ECM) binding, ECM structural constituents, and heparin binding. This study demonstrates novel data showing that HFDs can alter RPE/choroid tissue transcription in the absence of the gut microbiome.
Collapse
|
48
|
Mallik S, Grodstein F, Bennett DA, Vavvas DG, Lemos B. Novel Epigenetic Clock Biomarkers of Age-Related Macular Degeneration. Front Med (Lausanne) 2022; 9:856853. [PMID: 35783640 PMCID: PMC9244395 DOI: 10.3389/fmed.2022.856853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 01/05/2023] Open
Abstract
Age-Related Macular Degeneration (AMD) is a bilateral ocular condition resulting in irreversible vision impairment caused by the progressive loss of photoreceptors in the macula, a region at the center of the retina. The progressive loss of photoreceptor is a key feature of dry AMD but not always wet AMD, though both forms of AMD can lead to loss of vision. Regression-based biological age clocks are one of the most promising biomarkers of aging but have not yet been used in AMD. Here we conducted analyses to identify regression-based biological age clocks for the retina and explored their use in AMD using transcriptomic data consisting of a total of 453 retina samples including 105 Minnesota Grading System (MGS) level 1 samples, 175 MGS level 2, 112 MGS level 3 and 61 MGS level 4 samples, as well as 167 fibroblast samples. The clocks yielded good separation among AMD samples with increasing severity score viz., MGS1-4, regardless of whether clocks were trained in retina tissue, dermal fibroblasts, or in combined datasets. Clock application to cultured fibroblasts, embryonic stem cells, and induced Pluripotent Stem Cells (iPSCs) were consistent with age reprograming in iPSCs. Moreover, clock application to in vitro neuronal differentiation suggests broader applications. Interesting, many of the age clock genes identified include known targets mechanistically linked to AMD and aging, such as GDF11, C16ORF72, and FBN2. This study provides new observations for retina age clocks and suggests new applications for monitoring in vitro neuronal differentiation. These clocks could provide useful markers for AMD monitoring and possible intervention, as well as potential targets for in vitro screens.
Collapse
Affiliation(s)
- Saurav Mallik
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Fran Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Demetrios G. Vavvas
- Ines and Frederick Yeatts Retina Research Laboratory, Retina Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
49
|
Zekavat SM, Sekimitsu S, Ye Y, Raghu V, Zhao H, Elze T, Segrè AV, Wiggs JL, Natarajan P, Del Priore L, Zebardast N, Wang JC. Photoreceptor Layer Thinning Is an Early Biomarker for Age-Related Macular Degeneration: Epidemiologic and Genetic Evidence from UK Biobank OCT Data. Ophthalmology 2022; 129:694-707. [PMID: 35149155 PMCID: PMC9134644 DOI: 10.1016/j.ophtha.2022.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Despite widespread use of OCT, an early-stage imaging biomarker for age-related macular degeneration (AMD) has not been identified. Pathophysiologically, the timing of drusen accumulation in relationship to photoreceptor degeneration in AMD remains unclear, as are the inherited genetic variants contributing to these processes. Herein, we jointly analyzed OCT, electronic health record data, and genomic data to characterize the time sequence of changes in retinal layer thicknesses in AMD, as well as epidemiologic and genetic associations between retinal layer thicknesses and AMD. DESIGN Cohort study. PARTICIPANTS Forty-four thousand eight hundred twenty-three individuals from the UK Biobank (enrollment age range, 40-70 years; 54% women; median follow-up, 10 years). METHODS The Topcon Advanced Boundary Segmentation algorithm was used for retinal layer segmentation. We associated 9 retinal layer thicknesses with prevalent AMD (present at enrollment) in a logistic regression model and with incident AMD (diagnosed after enrollment) in a Cox proportional hazards model. Next, we associated AMD-associated genetic alleles, individually and as a polygenic risk score (PRS), with retinal layer thicknesses. All analyses were adjusted for age, age-squared (age2), sex, smoking status, and principal components of ancestry. MAIN OUTCOME MEASURES Prevalent and incident AMD. RESULTS Photoreceptor segment (PS) thinning was observed throughout the lifespan of individuals analyzed, whereas retinal pigment epithelium (RPE) and Bruch's membrane (BM) complex thickening started after 57 years of age. Each standard deviation (SD) of PS thinning and RPE-BM complex thickening was associated with incident AMD (PS: hazard ratio [HR], 1.35; 95% confidence interval [CI], 1.23-1.47; P = 3.7 × 10-11; RPE-BM complex: HR, 1.14; 95% CI, 1.06-1.22; P = 0.00024). The AMD PRS was associated with PS thinning (β, -0.21 SD per twofold genetically increased risk of AMD; 95% CI, -0.23 to -0.19; P = 2.8 × 10-74), and its association with RPE-BM complex was U-shaped (thinning with AMD PRS less than the 92nd percentile and thickening with AMD PRS more than the 92nd percentile). The loci with strongest support for genetic correlation were AMD risk-raising variants Complement Factor H (CFH):rs570618-T, CFH:rs10922109-C, and Age-Related Maculopathy Susceptibility 2 (ARMS2)/High-Temperature Requirement Serine Protease 1 (HTRA1):rs3750846-C on PS thinning and SYN3/Tissue Inhibitor of Metalloprotease 3 (TIMP3):rs5754227-T on RPE-BM complex thickening. CONCLUSIONS Epidemiologically, PS thinning precedes RPE-BM complex thickening by decades and is the retinal layer most strongly predictive of future AMD risk. Genetically, AMD risk variants are associated with decreased PS thickness. Overall, these findings support PS thinning as an early-stage biomarker for future AMD development.
Collapse
Affiliation(s)
- Seyedeh Maryam Zekavat
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut; Computational Biology & Bioinformatics Program, Yale University, New Haven, Connecticut; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Yixuan Ye
- Computational Biology & Bioinformatics Program, Yale University, New Haven, Connecticut
| | - Vineet Raghu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hongyu Zhao
- Computational Biology & Bioinformatics Program, Yale University, New Haven, Connecticut; School of Public Health, Yale University, New Haven, Connecticut
| | - Tobias Elze
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucian Del Priore
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jay C Wang
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut; Northern California Retina Vitreous Associates, Mountain View, California.
| |
Collapse
|
50
|
Keeling E, Lynn SA, Koh YM, Scott JA, Kendall A, Gatherer M, Page A, Cagampang FR, Lotery AJ, Ratnayaka JA. A High Fat "Western-style" Diet Induces AMD-Like Features in Wildtype Mice. Mol Nutr Food Res 2022; 66:e2100823. [PMID: 35306732 PMCID: PMC9287010 DOI: 10.1002/mnfr.202100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/01/2022] [Indexed: 12/20/2022]
Abstract
Scope The intake of a “Western‐style” diet rich in fats is linked with developing retinopathies including age‐related macular degeneration (AMD). Wildtype mice are given a high fat diet (HFD) to determine how unhealthy foods can bring about retinal degeneration. Methods and results Following weaning, female C57BL/6 mice are maintained on standard chow (7% kcal fat, n = 29) or a HFD (45% kcal fat, n = 27) for 12 months. Animals were sacrificed following electroretinography (ERG) and their eyes analyzed by histology, confocal immunofluorescence, and transmission electron microscopy. HFD mice become obese, but showed normal retinal function compared to chow‐fed controls. However, diminished β3tubulin labeling of retinal cross‐sections indicated fewer/damaged neuronal processes in the inner plexiform layer. AMD‐linked proteins clusterin and TIMP3 accumulated in the retinal pigment epithelium (RPE) and Bruch's membrane (BrM). Neutral lipids also deposited in the outer retinae of HFD mice. Ultrastructural analysis revealed disorganized photoreceptor outer segments, collapsed/misaligned RPE microvilli, vacuoles, convoluted basolateral RPE infolds and BrM changes. Basal laminar‐like deposits were also present alongside abnormal choroidal endothelial cells. Conclusions We show that prolonged exposure to an unhealthy “Western‐style” diet alone can recapitulate early‐intermediate AMD‐like features in wildtype mice, highlighting the importance of diet and nutrition in the etiology of sight‐loss.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Yen Min Koh
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Jenny A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Aaron Kendall
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Maureen Gatherer
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton, SO16 6YD, UK
| | - Felino R Cagampang
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK.,Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|