1
|
Masum MHU, Mahdeen AA, Barua L, Parvin R, Heema HP, Ferdous J. Developing a chimeric multiepitope vaccine against Nipah virus (NiV) through immunoinformatics, molecular docking and dynamic simulation approaches. Microb Pathog 2024; 197:107098. [PMID: 39521154 DOI: 10.1016/j.micpath.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nipah virus (NiV) is a highly lethal zoonotic pathogen that poses a significant threat to human and animal health. Unfortunately, no effective treatments have been developed for this deadly zoonotic disease. Therefore, we designed a chimeric multiepitope vaccine targeting the Nipah virus (NiV) glycoprotein and fusion protein through immunoinformatic approaches. Therefore, the vaccine was developed by combining promising and potential antigenic MHC-I, MHC-II, and B-cell epitopes obtained from the selected proteins. When combined, the MHC-I and MHC-II epitopes offered 100 % global population coverage. The physicochemical characterization also exhibited favorable properties, including solubility and potential functional stability of the vaccine within the body (GRAVY score of -0.308). Structural analyses unveiled a well-stabilized secondary and tertiary structure with a Ramachandran score of 84.4 % and a Z score of -5.02. Findings from docking experiments with TLR-2 (-1089.3 kJ/mol) and TLR-4 (-1016.7 kJ/mol) showed a strong affinity of the vaccine towards the receptor. Molecular dynamics simulations revealed unique conformational dynamics among the "vaccine-apo," "vaccine-TLR-2," and "vaccine-TLR-4″ complexes. Consequently, the complexes exhibited significant compactness, flexibility, and exposure to solvents. The results of the codon optimization were remarkable, as the vaccine showed a significant amount of expression in the E. coli vector (GC content of 45.36 % and a CAI score of 1.0). The results of immune simulations, however, showed evidence of both adaptive and innate immune responses induced by the vaccine. Therefore, we highly recommend further research on this chimeric multiepitope vaccine to establish its efficacy and safety against the Nipah virus (NiV).
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh.
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Logon Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College Hospital, Chattogram, 4203, Bangladesh
| |
Collapse
|
2
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024:10.1007/s11684-024-1078-2. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
3
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024:1-26. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Singh M, Goldin K, Flagg M, Williamson BN, Lutterman T, Smith B, de Wit E. Intracranial inoculation rapidly induces Nipah virus encephalitis in Syrian hamsters. PLoS Negl Trop Dis 2024; 18:e0012635. [PMID: 39466844 PMCID: PMC11542853 DOI: 10.1371/journal.pntd.0012635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic Paramyxovirus associated with outbreaks in Malaysia, Bangladesh, and India with high mortality rates. NiV infection causes fatal respiratory and neurological disease. The majority of survivors suffer from long-term neurological sequelae or late onset and relapsed encephalitis. The pathogenesis of neurological disease is complex and has not been able to be studied in current animal models as they are skewed towards the development of lethal respiratory disease rather than neurological disease. Although NiV neurological disease can be observed in animal models, there is currently no model where the majority of animals consistently develop neurological disease. Here, we developed a new Syrian hamster (Mesocricetus auratus) model to mimic neurological disease in humans. Hamsters were inoculated intracranially in the cerebellomedullary cistern with different doses of NiV, strain Malaysia. Intracranial NiV inoculation in the cerebellomedullary cistern resulted in a rapid progression towards severe neurological disease requiring euthanasia. High Nipah viral loads were detected in the brains, and NiV spread from the CNS to the lungs. Histopathologic examination of the brain showed ischemic necrosis, often accompanied by marked edema and hemorrhage. NiV antigen was detected primarily in meninges and cerebellum, but rarely observed in brain parenchyma. These histological lesions were different from the typical lesions observed in NiV-infected humans. Thus, despite the consistent development of neurological disease, intracranial inoculation does not result in a model representative of NiV neurological disease.
Collapse
Affiliation(s)
- Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tessa Lutterman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
5
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Qiu X, Wang F, Sha A. Infection and transmission of henipavirus in animals. Comp Immunol Microbiol Infect Dis 2024; 109:102183. [PMID: 38640700 DOI: 10.1016/j.cimid.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.
Collapse
Affiliation(s)
- Xinyu Qiu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Feng Wang
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China.
| |
Collapse
|
7
|
Zeitlin L, Cross RW, Woolsey C, West BR, Borisevich V, Agans KN, Prasad AN, Deer DJ, Stuart L, McCavitt-Malvido M, Kim DH, Pettitt J, Crowe JE, Whaley KJ, Veesler D, Dimitrov A, Abelson DM, Geisbert TW, Broder CC. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci Transl Med 2024; 16:eadl2055. [PMID: 38569014 DOI: 10.1126/scitranslmed.adl2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Antony Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Pastor Y, Reynard O, Iampietro M, Surenaud M, Picard F, El Jahrani N, Lefebvre C, Hammoudi A, Dupaty L, Brisebard É, Reynard S, Moureaux É, Moroso M, Durand S, Gonzalez C, Amurri L, Gallouët AS, Marlin R, Baize S, Chevillard E, Raoul H, Hocini H, Centlivre M, Thiébaut R, Horvat B, Godot V, Lévy Y, Cardinaud S. A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease. Cell Rep Med 2024; 5:101467. [PMID: 38471503 PMCID: PMC10983108 DOI: 10.1016/j.xcrm.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.
Collapse
Affiliation(s)
- Yadira Pastor
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Surenaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Florence Picard
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Nora El Jahrani
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Cécile Lefebvre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Adele Hammoudi
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Léa Dupaty
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | | | - Stéphanie Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Marie Moroso
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Stéphanie Durand
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Claudia Gonzalez
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Sylvain Baize
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Hervé Raoul
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Hakim Hocini
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Mireille Centlivre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute (VRI), Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, Bordeaux, France; CHU Bordeaux, Department of Medical Information, Bordeaux, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Véronique Godot
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yves Lévy
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Sylvain Cardinaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France.
| |
Collapse
|
9
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
10
|
Diederich S, Babiuk S, Boshra H. A Survey of Henipavirus Tropism-Our Current Understanding from a Species/Organ and Cellular Level. Viruses 2023; 15:2048. [PMID: 37896825 PMCID: PMC10611353 DOI: 10.3390/v15102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Henipaviruses are single-stranded RNA viruses that have been shown to be virulent in several species, including humans, pigs, horses, and rodents. Isolated nearly 30 years ago, these viruses have been shown to be of particular concern to public health, as at least two members (Nipah and Hendra viruses) are highly virulent, as well as zoonotic, and are thus classified as BSL4 pathogens. Although only 5 members of this genus have been isolated and characterized, metagenomics analysis using animal fluids and tissues has demonstrated the existence of other novel henipaviruses, suggesting a far greater degree of phylogenetic diversity than is currently known. Using a variety of molecular biology techniques, it has been shown that these viruses exhibit varying degrees of tropism on a species, organ/tissue, and cellular level. This review will attempt to provide a general overview of our current understanding of henipaviruses, with a particular emphasis on viral tropism.
Collapse
Affiliation(s)
- Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E EM4, Canada;
| | - Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
11
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
12
|
Stevens CS, Lowry J, Juelich T, Atkins C, Johnson K, Smith JK, Panis M, Ikegami T, tenOever B, Freiberg AN, Lee B. Nipah Virus Bangladesh Infection Elicits Organ-Specific Innate and Inflammatory Responses in the Marmoset Model. J Infect Dis 2023; 228:604-614. [PMID: 36869692 PMCID: PMC10469344 DOI: 10.1093/infdis/jiad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is increasingly recognized as an ideal nonhuman primate (NHP) at high biocontainment due to its smaller size and relative ease of handling. Here, we evaluated the susceptibility and pathogenesis of Nipah virus Bangladesh strain (NiVB) infection in marmosets at biosafety level 4. Infection via the intranasal and intratracheal route resulted in fatal disease in all 4 infected marmosets. Three developed pulmonary edema and hemorrhage as well as multifocal hemorrhagic lymphadenopathy, while 1 recapitulated neurologic clinical manifestations and cardiomyopathy on gross pathology. Organ-specific innate and inflammatory responses were characterized by RNA sequencing in 6 different tissues from infected and control marmosets. Notably, a unique transcriptome was revealed in the brainstem of the marmoset exhibiting neurological signs. Our results provide a more comprehensive understanding of NiV pathogenesis in an accessible and novel NHP model, closely reflecting clinical disease as observed in NiV patients.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jake Lowry
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University, New York, New YorkUSA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Benjamin tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University, New York, New YorkUSA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Findlay-Wilson S, Flett L, Salguero FJ, Ruedas-Torres I, Fotheringham S, Easterbrook L, Graham V, Dowall S. Establishment of a Nipah Virus Disease Model in Hamsters, including a Comparison of Intranasal and Intraperitoneal Routes of Challenge. Pathogens 2023; 12:976. [PMID: 37623936 PMCID: PMC10458503 DOI: 10.3390/pathogens12080976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that can cause severe respiratory illness and encephalitis in humans. The main reservoir is fruit bats, distributed across a large geographical area that includes Australia, Southeast Asia, and Africa. Incursion into humans is widely reported through exposure of infected pigs, ingestion of contaminated food, or through contact with an infected person. With no approved treatments or vaccines, NiV poses a threat to human public health and has epidemic potential. To aid with the assessment of emerging interventions being developed, an expansion of preclinical testing capability is required. Given variations in the model parameters observed in different sites during establishment, optimisation of challenge routes and doses is required. Upon evaluating the hamster model, an intranasal route of challenge was compared with intraperitoneal delivery, demonstrating a more rapid dissemination to wider tissues in the latter. A dose effect was observed between those causing respiratory illness and those resulting in neurological disease. The data demonstrate the successful establishment of the hamster model of NiV disease for subsequent use in the evaluation of vaccines and antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (S.F.-W.); (L.F.); (F.J.S.); (I.R.-T.); (S.F.); (L.E.); (V.G.)
| |
Collapse
|
14
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
15
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
16
|
Becker N, Maisner A. Nipah Virus Impairs Autocrine IFN Signaling by Sequestering STAT1 and STAT2 into Inclusion Bodies. Viruses 2023; 15:554. [PMID: 36851768 PMCID: PMC9967463 DOI: 10.3390/v15020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism.
Collapse
Affiliation(s)
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| |
Collapse
|
17
|
Woolsey C, Borisevich V, Fears AC, Agans KN, Deer DJ, Prasad AN, O’Toole R, Foster SL, Dobias NS, Geisbert JB, Fenton KA, Cross RW, Geisbert TW. Recombinant vesicular stomatitis virus-vectored vaccine induces long-lasting immunity against Nipah virus disease. J Clin Invest 2023; 133:e164946. [PMID: 36445779 PMCID: PMC9888376 DOI: 10.1172/jci164946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alyssa C. Fears
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N. Agans
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J. Deer
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N. Prasad
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel O’Toole
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie L. Foster
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S. Dobias
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A. Fenton
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W. Cross
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
18
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
19
|
Mire CE, Satterfield BA, Geisbert TW. Nonhuman Primate Models for Nipah and Hendra Virus Countermeasure Evaluation. Methods Mol Biol 2023; 2682:159-173. [PMID: 37610581 DOI: 10.1007/978-1-0716-3283-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra and Nipah viruses are henipaviruses that have caused lethal human disease in Australia and Malaysia, Bangladesh, India, and the Philippines, respectively. These viruses are considered Category C pathogens by the US Centers for Disease Control. Nipah virus was recently placed on the World Health Organization Research and Development Blueprint Roadmaps for vaccine and therapeutic development. Given the infrequent and unpredictable nature of henipavirus outbreaks licensure of vaccines and therapeutics will likely require an animal model to demonstrate protective efficacy against henipavirus disease. Studies have shown that nonhuman primates are the most accurate model of human henipavirus disease and would be an important component of any application for licensure of a vaccine or antiviral drug under the US FDA Animal Rule. Nonhuman primate model selection and dosing are discussed regarding vaccine and therapeutic studies against henipaviruses.
Collapse
Affiliation(s)
- Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculutre, Manhattan, NY, USA.
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Juelich T, Smith J, Freiberg AN. Syrian Golden Hamster Model for Nipah Virus Infection. Methods Mol Biol 2023; 2682:219-229. [PMID: 37610585 DOI: 10.1007/978-1-0716-3283-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Small rodent animal models that recapitulate the symptomology and pathology of the human disease caused by Nipah virus (NiV) are crucial not only to study virus-induced disease but also a critical component for the development of vaccine and therapeutic candidates. The Syrian golden hamster is the most commonly used small animal model for NiV and develops clinical symptoms and pathologies that closely resemble NiV disease in humans. In this chapter, we describe standard techniques used to infect hamsters and conduct evaluation of therapeutics and vaccine candidates.
Collapse
Affiliation(s)
- Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
21
|
Rockx B, Mire CE. Ferret Models for Henipavirus Infection. Methods Mol Biol 2023; 2682:205-217. [PMID: 37610584 DOI: 10.1007/978-1-0716-3283-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Henipaviruses are emerging zoonotic viruses that can cause outbreaks of severe respiratory and neurological disease in humans and animals such as horses. The mechanism by which these viruses can cause disease remain largely unknown and to date there are no therapeutics or vaccines approved for use in humans. Nipah virus is listed on the World Health Organization R & D Blueprint list of epidemic threats. In order to advance the availability of effective therapeutics and vaccines and medicines that can be used to save lives and avert large scale crises, animal models are required which recapitulate the disease progression in humans. Ferrets are highly susceptible to infection with henipaviruses and develop both severe respiratory and neurological disease. Therefore, the ferret model is highly suitable for studies into both the pathogenesis of henipaviruses, as well as pre-clinical evaluation of intervention strategies.
Collapse
Affiliation(s)
- Barry Rockx
- Wageningen Bioveterinary Institute, Lelystad and Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Lackemeyer MG, Bohannon JK, Holbrook MR. Nipah Virus Aerosol Challenge of Three Distinct Particle Sizes in Nonhuman Primates. Methods Mol Biol 2023; 2682:175-189. [PMID: 37610582 DOI: 10.1007/978-1-0716-3283-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aerosol and inhalational studies of high-consequence pathogens allow researchers to study the disease course and effects of biologicals transmitted through aerosol in a laboratory-controlled environment. Inhalational studies involving Nipah virus with small (1-3 μm), intermediate (6-8 μm), and large particles (10-14 μm) were explored in African green nonhuman primates to determine if the subsequent disease course more closely recapitulated what is observed in Nipah virus human disease. The aerosol procedures outlined describe the different equipment/techniques used to generate the three particle sizes and control the site of particle deposition within this animal model.
Collapse
Affiliation(s)
| | - J Kyle Bohannon
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, USA
| | | |
Collapse
|
23
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
24
|
Quarleri J, Galvan V, Delpino MV. Henipaviruses: an expanding global public health concern? GeroScience 2022; 44:2447-2459. [PMID: 36219280 PMCID: PMC9550596 DOI: 10.1007/s11357-022-00670-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 01/18/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Verónica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veterans Affairs, Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Mashin VV, Sergeev AN, Martynova NN, Sergeev AA, Lys’ko KA, Raikov AO, Kataeva VV, Zagidullin NV. Viral Safety Issues in the Production and Manufacturing of Human Immunoglobulin Preparations from Equine Plasma/Serum. Pharm Chem J 2022; 56:532-537. [PMID: 35845147 PMCID: PMC9274627 DOI: 10.1007/s11094-022-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/11/2022]
Abstract
The current Russian and foreign pharmacopoeias either do not provide any information about existing types of viral diseases in horses or do not present it in full. Data of modern domestic and foreign literature was used to prepare the most complete list of viruses that cause equine diseases including 36 infectious agents, 25 of which are pathogenic for humans, 13 of the 25 of which are widespread throughout Russia. Information is provided on the magnitudes of the disease incubation periods (which are most often within one month), the external clinical signs of these diseases (which can also be asymptomatic), and the maximum possible concentrations of viruses in the blood of horses with these diseases (which can reach 8 log conventional units/mL of blood). This information is offered for use in critical production stages of heterologous immunoglobulin drugs for medical use to assure viral safety.
Collapse
Affiliation(s)
- V. V. Mashin
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| | - A. N. Sergeev
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| | - N. N. Martynova
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| | - A. A. Sergeev
- Moscow Office of AVVA Pharmaceuticals Ltd., 4/3 Aviamotornaya St., Office 8, Moscow, 111116 Russia
| | - K. A. Lys’ko
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| | - A. O. Raikov
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| | - V. V. Kataeva
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| | - N. V. Zagidullin
- Joint Stock Company Microgen Scientific Industrial Company for Immunobiological Medicines, 10 2nd Volkonskii Per., Moscow, 127473 Russia
| |
Collapse
|
26
|
Ang LT, Nguyen AT, Liu KJ, Chen A, Xiong X, Curtis M, Martin RM, Raftry BC, Ng CY, Vogel U, Lander A, Lesch BJ, Fowler JL, Holman AR, Chai T, Vijayakumar S, Suchy FP, Nishimura T, Bhadury J, Porteus MH, Nakauchi H, Cheung C, George SC, Red-Horse K, Prescott JB, Loh KM. Generating human artery and vein cells from pluripotent stem cells highlights the arterial tropism of Nipah and Hendra viruses. Cell 2022; 185:2523-2541.e30. [PMID: 35738284 DOI: 10.1016/j.cell.2022.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/26/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Alana T Nguyen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Liu
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthew Curtis
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Renata M Martin
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Brian C Raftry
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Chun Yi Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Uwe Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Angelika Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Benjamin J Lesch
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jonas L Fowler
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Alyssa R Holman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Siva Vijayakumar
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Fabian P Suchy
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Kristy Red-Horse
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany.
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Ong KC, Ng KY, Ng CW, Tan SH, Teo WL, Karim N, Kumar S, Wong KT. Neuronal infection is a major pathogenetic mechanism and cause of fatalities in human acute Nipah virus encephalitis. Neuropathol Appl Neurobiol 2022; 48:e12828. [PMID: 35689364 DOI: 10.1111/nan.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Acute Nipah (NiV) encephalitis is characterised by a dual pathogenetic mechanism of neuroglial infection and ischaemia-microinfarction associated with vasculitis-induced thrombotic occlusion. We investigated the contributions of these two mechanisms in fatal cases. MATERIALS AND METHODS We analysed brain tissues (cerebrum, brainstem and cerebellum) from 15 autopsies using light microscopy, immunohistochemistry (IHC), in situ hybridisation and quantitative methods. RESULTS Three types of discrete plaque-like parenchymal lesions were identified: Type 1 with neuroglial IHC positivity for viral antigens and minimal or no necrosis; Type 2 with neuroglial immunopositivity and necrosis; and Type 3 with necrosis but no viral antigens. Most viral antigen/RNA-positive cells were neurons. Cerebral glial immunopositivity was rare, suggesting that microinfarction played a more important role in white matter injury. Type 1 lesions were also detected in the brainstem and cerebellum, but the differences between cerebral cortex and these two regions were not statistically significant. In the cerebral cortex, Type 1 lesions overwhelmingly predominated, and only 14% Type 1 vs 69% Type 2 lesions were associated with thrombosis. This suggests that neuronal infection as a mechanism of pathogenesis was more important than microinfarction, both in general and in Type 1 lesions in particular. Between the 'early' group (<8-day fever) and the 'late' group (≥8-day fever), there was a decrease of Type 1 and Type 2 lesions with a concomitant increase of Type 3 lesions, suggesting the latter possibly represented late-stage microinfarction and/or neuronal infection. CONCLUSION Neuronal infection appears to play a more important role than vasculopathy-induced microinfarction in acute NiV encephalitis.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khong Ying Ng
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chiu Wan Ng
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Woon Li Teo
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norain Karim
- Faculty of Medicine, University Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Shalini Kumar
- Department of Pathology, Selayang Hospital, Selayang, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
29
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
30
|
A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proc Natl Acad Sci U S A 2022; 119:e2200065119. [PMID: 35286211 PMCID: PMC8944267 DOI: 10.1073/pnas.2200065119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Concern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge. Nipah virus (NiV) is an emerging highly lethal zoonotic disease that, like SARS-CoV-2, can be transmitted via respiratory droplets. Single-injection vaccines that rapidly control NiV outbreaks are needed. To assess the ability of a vaccine to induce fast-acting protection, we immunized African green monkeys with a recombinant vesicular stomatitis virus (VSV) expressing the Bangladesh strain glycoprotein (NiVBG) of NiV (rVSV-ΔG-NiVBG). Monkeys were challenged 3 or 7 d later with a lethal dose of NiVB. All monkeys vaccinated with rVSV-ΔG-NiVBG 7 d prior to NiVB exposure were protected from lethal disease, while 67% of animals vaccinated 3 d before NiVB challenge survived. Vaccine protection correlated with natural killer cell and cytotoxic T cell transcriptional signatures, whereas lethality was linked to sustained interferon signaling. NiV G-specific antibodies in vaccinated survivors corroborated additional transcriptomic findings, supporting activation of humoral immunity. This study demonstrates that rVSV-based vaccines may have utility in rapidly protecting humans against NiV infection.
Collapse
|
31
|
Cline C, Bell TM, Facemire P, Zeng X, Briese T, Lipkin WI, Shamblin JD, Esham HL, Donnelly GC, Johnson JC, Hensley LE, Honko AN, Johnston SC. Detailed analysis of the pathologic hallmarks of Nipah virus (Malaysia) disease in the African green monkey infected by the intratracheal route. PLoS One 2022; 17:e0263834. [PMID: 35143571 PMCID: PMC8830707 DOI: 10.1371/journal.pone.0263834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures. Here we provide detailed organ system-specific pathologic findings following exposure of four African green monkeys to 2.41×105 pfu of the Malaysian strain of Nipah virus. Our results further substantiate the African green monkey as a model of human Nipah virus disease, by demonstrating both the respiratory and neurologic components of disease. Additionally, we demonstrate that a chronic phase of disease exists in this model, that may provide an important opportunity to study the enigmatic late onset and relapse encephalitis as it is described in human disease.
Collapse
Affiliation(s)
- Curtis Cline
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd M. Bell
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Paul Facemire
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Thomas Briese
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Joshua D. Shamblin
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Heather L. Esham
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Ginger C. Donnelly
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Joshua C. Johnson
- Infectious Disease Research Portfolio, Strategy & Operations, Moderna, Boston, Massachusetts, United States of America
| | - Lisa E. Hensley
- Office of the Chief Scientist, National Institute of Allergy and Infectious Disease Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Anna N. Honko
- Nonclinical Studies Unit, Boston University School of Medicine National Emerging Infectious Diseases Laboratories, Boston, Massachusetts, United States of America
| | - Sara C. Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
32
|
Enchéry F, Dumont C, Iampietro M, Pelissier R, Aurine N, Bloyet LM, Carbonnelle C, Mathieu C, Journo C, Gerlier D, Horvat B. Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response. Commun Biol 2021; 4:1292. [PMID: 34785771 PMCID: PMC8595879 DOI: 10.1038/s42003-021-02797-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis. We report here that NiV inhibits the canonical NF-κB pathway via its nonstructural W protein. Translocation of the W protein into the nucleus causes nuclear accumulation of the cellular scaffold protein 14-3-3 in both African green monkey and human cells infected by NiV. Excess of 14-3-3 in the nucleus was associated with a reduction of NF-κB p65 subunit phosphorylation and of its nuclear accumulation. Importantly, W-S449A substitution impairs the binding of the W protein to 14-3-3 and the subsequent suppression of NF-κB signaling, thus restoring the production of proinflammatory cytokines. Our data suggest that the W protein increases the steady-state level of 14-3-3 in the nucleus and consequently enhances 14-3-3-mediated negative feedback on the NF-κB pathway. These findings provide a mechanistic model of W-mediated disruption of the host inflammatory response, which could contribute to the high severity of NiV infection.
Collapse
Affiliation(s)
- François Enchéry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Noémie Aurine
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Louis-Marie Bloyet
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Caroline Carbonnelle
- INSERM- Laboratoire P4 Jean Mérieux, 21 Avenue Tony Garnier, 69365, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Chloé Journo
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Denis Gerlier
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
33
|
Wang S, Li L, Yan F, Gao Y, Yang S, Xia X. COVID-19 Animal Models and Vaccines: Current Landscape and Future Prospects. Vaccines (Basel) 2021; 9:1082. [PMID: 34696190 PMCID: PMC8537799 DOI: 10.3390/vaccines9101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) has become an unprecedented challenge to global public health. With the intensification of the COVID-19 epidemic, the development of vaccines and therapeutic drugs against the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also widespread. To prove the effectiveness and safety of these preventive vaccines and therapeutic drugs, available animal models that faithfully recapitulate clinical hallmarks of COVID-19 are urgently needed. Currently, animal models including mice, golden hamsters, ferrets, nonhuman primates, and other susceptible animals have been involved in the study of COVID-19. Moreover, 117 vaccine candidates have entered clinical trials after the primary evaluation in animal models, of which inactivated vaccines, subunit vaccines, virus-vectored vaccines, and messenger ribonucleic acid (mRNA) vaccines are promising vaccine candidates. In this review, we summarize the landscape of animal models for COVID-19 vaccine evaluation and advanced vaccines with an efficacy range from about 50% to more than 95%. In addition, we point out future directions for COVID-19 animal models and vaccine development, aiming at providing valuable information and accelerating the breakthroughs confronting SARS-CoV-2.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao 266000, China;
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| |
Collapse
|
34
|
Gamble A, Yeo YY, Butler AA, Tang H, Snedden CE, Mason CT, Buchholz DW, Bingham J, Aguilar HC, Lloyd-Smith JO. Drivers and Distribution of Henipavirus-Induced Syncytia: What Do We Know? Viruses 2021; 13:1755. [PMID: 34578336 PMCID: PMC8472861 DOI: 10.3390/v13091755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Syncytium formation, i.e., cell-cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Yao Yu Yeo
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - Aubrey A. Butler
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Hubert Tang
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Celine E. Snedden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Christian T. Mason
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - David W. Buchholz
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - John Bingham
- CSIRO Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia;
| | - Hector C. Aguilar
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| |
Collapse
|
35
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
36
|
Live Viral Vaccine Neurovirulence Screening: Current and Future Models. Vaccines (Basel) 2021; 9:vaccines9070710. [PMID: 34209433 PMCID: PMC8310194 DOI: 10.3390/vaccines9070710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Live viral vaccines are one of the most successful methods for controlling viral infections but require strong evidence to indicate that they are properly attenuated. Screening for residual neurovirulence is an important aspect for live viral vaccines against potentially neurovirulent diseases. Approximately half of all emerging viral diseases have neurological effects, so testing of future vaccines will need to be rapid and accurate. The current method, the monkey neurovirulence test (MNVT), shows limited translatability for human diseases and does not account for different viral pathogenic mechanisms. This review discusses the MNVT and potential alternative models, including in vivo and in vitro methods. The advantages and disadvantages of these methods are discussed, and there are promising data indicating high levels of translatability. There is a need to investigate these models more thoroughly and to devise more accurate and rapid alternatives to the MNVT.
Collapse
|
37
|
DeBuysscher BL, Scott DP, Rosenke R, Wahl V, Feldmann H, Prescott J. Nipah Virus Efficiently Replicates in Human Smooth Muscle Cells without Cytopathic Effect. Cells 2021; 10:cells10061319. [PMID: 34070626 PMCID: PMC8228331 DOI: 10.3390/cells10061319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic virus with a broad species tropism, originating in pteropid bats. Human outbreaks of NiV disease occur almost annually, often with high case-fatality rates. The specific events that lead to pathogenesis are not well defined, but the disease has both respiratory and encephalitic components, with relapsing encephalitis occurring in some cases more than a year after initial infection. Several cell types are targets of NiV, dictated by the expression of the ephrin-B2/3 ligand on the cell's outer membrane, which interact with the NiV surface proteins. Vascular endothelial cells (ECs) are major targets of infection. Cytopathic effects (CPE), characterized by syncytia formation and cell death, and an ensuing vasculitis, are a major feature of the disease. Smooth muscle cells (SMCs) of the tunica media that line small blood vessels are infected in humans and animal models of NiV disease, although pathology or histologic changes associated with antigen-positive SMCs have not been reported. To gain an understanding of the possible contributions that SMCs might have in the development of NiV disease, we investigated the susceptibility and potential cytopathogenic changes of human SMCs to NiV infection in vitro. SMCs were permissive for NiV infection and resulted in high titers and prolonged NiV production, despite a lack of cytopathogenicity, and in the absence of detectable ephrin-B2/3. These results indicate that SMC might be important contributors to disease by producing progeny NiV during an infection, without suffering cytopathogenic consequences.
Collapse
Affiliation(s)
- Blair L. DeBuysscher
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA;
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109-1024, USA
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA; (D.P.S.); (R.R.)
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA; (D.P.S.); (R.R.)
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Department of Homeland Security, Frederick, MD 21702, USA;
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA;
- Correspondence: (H.F.); (J.P.)
| | - Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA;
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
- Correspondence: (H.F.); (J.P.)
| |
Collapse
|
38
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Gurley ES, Spiropoulou CF, de Wit E. Twenty Years of Nipah Virus Research: Where Do We Go From Here? J Infect Dis 2021; 221:S359-S362. [PMID: 32392321 DOI: 10.1093/infdis/jiaa078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Emmie de Wit
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
40
|
Prasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, Lawrence WS, Fenton KA, Geisbert TW. A Lethal Aerosol Exposure Model of Nipah Virus Strain Bangladesh in African Green Monkeys. J Infect Dis 2021; 221:S431-S435. [PMID: 31665351 DOI: 10.1093/infdis/jiz469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Satheesh K Sivasubramani
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad E Mire
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S Lawrence
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
41
|
Prasad AN, Woolsey C, Geisbert JB, Agans KN, Borisevich V, Deer DJ, Mire CE, Cross RW, Fenton KA, Broder CC, Geisbert TW. Resistance of Cynomolgus Monkeys to Nipah and Hendra Virus Disease Is Associated With Cell-Mediated and Humoral Immunity. J Infect Dis 2021; 221:S436-S447. [PMID: 32022850 DOI: 10.1093/infdis/jiz613] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease. METHODS The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses. RESULTS In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1. CONCLUSION The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
42
|
Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ Vaccines 2021; 6:23. [PMID: 33558494 PMCID: PMC7870971 DOI: 10.1038/s41541-021-00284-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Nipah and Hendra viruses are highly pathogenic bat-borne paramyxoviruses recently included in the WHO Blueprint priority diseases list. A fully registered horse anti-Hendra virus subunit vaccine has been in use in Australia since 2012. Based on the same immunogen, the Hendra virus attachment glycoprotein ectodomain, a subunit vaccine formulation for use in people is now in a Phase I clinical trial. We report that a single dose vaccination regimen of this human vaccine formulation protects against otherwise lethal challenges of either Hendra or Nipah virus in a nonhuman primate model. The protection against the Nipah Bangladesh strain begins as soon as 7 days post immunization with low dose of 0.1 mg protein subunit. Our data suggest this human vaccine could be utilized as efficient emergency vaccine to disrupt potential spreading of Nipah disease in an outbreak setting.
Collapse
Affiliation(s)
- Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hao Yu
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | | | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Antony S Dimitrov
- Profectus BioSciences, Inc., Baltimore, MD, USA. .,Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
43
|
Thakur N, Conceicao C, Isaacs A, Human S, Modhiran N, McLean RK, Pedrera M, Tan TK, Rijal P, Townsend A, Taylor G, Young PR, Watterson D, Chappell KJ, Graham SP, Bailey D. Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell-cell fusion. J Gen Virol 2021; 102:jgv001506. [PMID: 33054904 PMCID: PMC8116787 DOI: 10.1099/jgv.0.001506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ariel Isaacs
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Stacey Human
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Naphak Modhiran
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Rebecca K McLean
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Paul R Young
- University of Queensland, Brisbane, Queensland 4071, Australia
| | | | | | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
44
|
Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ, Dobias NS, Heymann JC, Foster SL, Levine CB, Medina L, Melody K, Geisbert JB, Fenton KA, Geisbert TW, Cross RW. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat Immunol 2021; 22:86-98. [PMID: 33235385 PMCID: PMC7790436 DOI: 10.1038/s41590-020-00835-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - John C Heymann
- Department of Radiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephanie L Foster
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Corri B Levine
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Liana Medina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin Melody
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
45
|
Munis AM, Bentley EM, Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin Biol Ther 2020; 20:1187-1201. [PMID: 32602788 DOI: 10.1080/14712598.2020.1787981] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Vesicular stomatitis virus (VSV) has long been a useful research tool in virology and recently become an essential part of medicinal products. Vesiculovirus research is growing quickly following its adaptation to clinical gene and cell therapy and oncolytic virotherapy. AREAS COVERED This article reviews the versatility of VSV as a research tool and biological reagent, its use as a viral and vaccine vector delivering therapeutic and immunogenic transgenes and an oncolytic virus aiding cancer treatment. Challenges such as the immune response against such advanced therapeutic medicinal products and manufacturing constraints are also discussed. EXPERT OPINION The field of in vivo gene and cell therapy is advancing rapidly with VSV used in many ways. Comparison of VSV's use as a versatile therapeutic reagent unveils further prospects and problems for each application. Overcoming immunological challenges to aid repeated administration of viral vectors and minimizing harmful host-vector interactions remains one of the major challenges. In the future, exploitation of reverse genetic tools may assist the creation of recombinant viral variants that have improved onco-selectivity and more efficient vaccine vector activity. This will add to the preferential features of VSV as an excellent advanced therapy medicinal product (ATMP) platform.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford, UK.,Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control , South Mimms, UK
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK.,Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
46
|
Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ, Dobias NS, Heymann JC, Foster SL, Levine CB, Medina L, Melody K, Geisbert JB, Fenton KA, Geisbert TW, Cross RW. Establishment of an African green monkey model for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.17.100289. [PMID: 32511377 PMCID: PMC7263506 DOI: 10.1101/2020.05.17.100289] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen candidate vaccines and treatments. Nonhuman primates (NHP) are considered the gold standard model for many infectious pathogens as they usually best reflect the human condition. Here, we show that African green monkeys support a high level of SARS-CoV-2 replication and develop pronounced respiratory disease that may be more substantial than reported for other NHP species including cynomolgus and rhesus macaques. In addition, SARS-CoV-2 was detected in mucosal samples of all animals including feces of several animals as late as 15 days after virus exposure. Importantly, we show that virus replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other NHP studies.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abhishek N. Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N. Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daniel J. Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalie S. Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John C. Heymann
- Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie L. Foster
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Corri B. Levine
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Liana Medina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kevin Melody
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karla A. Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
47
|
Lee JH, Hammoud DA, Cong Y, Huzella LM, Castro MA, Solomon J, Laux J, Lackemeyer M, Bohannon JK, Rojas O, Byrum R, Adams R, Ragland D, St Claire M, Munster V, Holbrook MR. The Use of Large-Particle Aerosol Exposure to Nipah Virus to Mimic Human Neurological Disease Manifestations in the African Green Monkey. J Infect Dis 2020; 221:S419-S430. [PMID: 31687756 PMCID: PMC7368178 DOI: 10.1093/infdis/jiz502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nipah virus (NiV) is an emerging virus associated with outbreaks of acute respiratory disease and encephalitis. To develop a neurological model for NiV infection, we exposed 6 adult African green monkeys to a large-particle (approximately 12 μm) aerosol containing NiV (Malaysian isolate). Brain magnetic resonance images were obtained at baseline, every 3 days after exposure for 2 weeks, and then weekly until week 8 after exposure. Four of six animals showed abnormalities reminiscent of human disease in brain magnetic resonance images. Abnormalities ranged from cytotoxic edema to vasogenic edema. The majority of lesions were small infarcts, and a few showed inflammatory or encephalitic changes. Resolution or decreased size in some lesions resembled findings reported in patients with NiV infection. Histological lesions in the brain included multifocal areas of encephalomalacia, corresponding to known ischemic foci. In other regions of the brain there was evidence of vasculitis, with perivascular infiltrates of inflammatory cells and rare intravascular fibrin thrombi. This animal model will help us better understand the acute neurological features of NiV infection and develop therapeutic approaches for managing disease caused by NiV infection.
Collapse
Affiliation(s)
- Ji Hyun Lee
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Yu Cong
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Louis M Huzella
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Marcelo A Castro
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Joseph Laux
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Matthew Lackemeyer
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - J Kyle Bohannon
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Oscar Rojas
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Russ Byrum
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Ricky Adams
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Danny Ragland
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Marisa St Claire
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| | - Vincent Munster
- Virus Ecology Unit, Laboratory of Virology, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Ft Detrick, Frederick, Maryland, USA
| |
Collapse
|
48
|
Geisbert JB, Borisevich V, Prasad AN, Agans KN, Foster SL, Deer DJ, Cross RW, Mire CE, Geisbert TW, Fenton KA. An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys. J Infect Dis 2020; 221:S414-S418. [PMID: 31665362 PMCID: PMC7213566 DOI: 10.1093/infdis/jiz391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Due to the difficulty in conducting clinical trials for vaccines and treatments against Nipah virus (NiV), licensure will likely require animal models, most importantly non-human primates (NHPs). The NHP models of infection have primarily relied on intratracheal instillation or small particle aerosolization of NiV. However, neither of these routes adequately models natural mucosal exposure to NiV. To develop a more natural NHP model, we challenged African green monkeys with the Bangladesh strain of NiV by the intranasal route using the laryngeal mask airway (LMA) mucosal atomization device (MAD). LMA MAD exposure resulted in uniformly lethal disease that accurately reflected the human condition.
Collapse
Affiliation(s)
- Joan B Geisbert
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Abhishek N Prasad
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Stephanie L Foster
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Daniel J Deer
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Robert W Cross
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Chad E Mire
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Karla A Fenton
- Galveston National Laboratory, Galveston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
49
|
Seifert SN, Letko MC, Bushmaker T, Laing ED, Saturday G, Meade-White K, van Doremalen N, Broder CC, Munster VJ. Rousettus aegyptiacus Bats Do Not Support Productive Nipah Virus Replication. J Infect Dis 2020; 221:S407-S413. [PMID: 31682727 PMCID: PMC7199784 DOI: 10.1093/infdis/jiz429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nipah virus (NiV) is a bat-borne zoonotic pathogen that can cause severe respiratory distress and encephalitis upon spillover into humans. NiV is capable of infecting a broad range of hosts including humans, pigs, ferrets, dogs, cats, hamsters, and at least 2 genera of bats. Little is known about the biology of NiV in the bat reservoir. In this study, we evaluate the potential for the Egyptian fruit bat (EFB), Rousettus aegyptiacus, to serve as a model organism for studying NiV in bats. Our data suggest that NiV does not efficiently replicate in EFBs in vivo. Furthermore, we show no seroconversion against NiV glycoprotein and a lack of viral replication in primary and immortalized EFB-derived cell lines. Our data show that despite using a conserved target for viral entry, NiV replication is limited in some bat species. We conclude that EFBs are not an appropriate organism to model NiV infection or transmission in bats.
Collapse
Affiliation(s)
- Stephanie N Seifert
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Michael C Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Eric D Laing
- Uniformed Services University, Bethesda, Maryland, USA
| | - Greg Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
50
|
Abstract
Nipah virus (NiV) infection is a newly emerging zoonosis that causes severe disease in humans. Nipah virus is one of the lesser studied of the WHO emerging pathogens for which research is a priority. Survival and persistence data is important for risk management and understanding the hazard of the virus for laboratory and health care workers that may work with the virus and we present some initial findings on the survival of Nipah virus in blood and tissue culture media under different conditions. The titre of Nipah virus in blood or media at two different temperatures and exposed or sealed to the atmosphere was measured every day for three days and after a week. Nipah virus was very stable in blood in closed tubes held at room temperature with minimal decay over seven days. Decay was observed in all the other conditions tested and was more rapid in samples exposed to the atmosphere. Persistence data is useful for safety planning and risk management.
Collapse
|