1
|
Gateva P, Hristov M, Ivanova N, Vasileva D, Ivanova A, Sabit Z, Bogdanov T, Apostolova S, Tzoneva R. Antinociceptive Behavior, Glutamine/Glutamate, and Neopterin in Early-Stage Streptozotocin-Induced Diabetic Neuropathy in Liraglutide-Treated Mice under a Standard or Enriched Environment. Int J Mol Sci 2024; 25:10786. [PMID: 39409118 PMCID: PMC11477071 DOI: 10.3390/ijms251910786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard laboratory or enriched environment. With a single i.p. injection of streptozotocin 150 mg/kg, we induced murine diabetes. Liraglutide (0.4 mg/kg once daily, i.p. for ten days since the eighth post-streptozotocin day) failed to decrease the glycemia in the diabetic mice; however, it alleviated their antinociceptive behavior, as tested with formalin. The second phase of the formalin test had significantly lower results in liraglutide-treated mice reared in the enriched environment vs. liraglutide-treated mice under standard conditions [2.00 (0.00-11.00) vs. 29.00 (2.25-41.50) s, p = 0.016]. Liraglutide treatment, however, decreased the threshold of reactivity in the von Fray test. A significantly higher neopterin level was demonstrated in the diabetic control group compared to treatment-naïve controls and the liraglutide-treated diabetic mice (p < 0.001). The glutamine/glutamate ratio in both liraglutide-treated groups, either reared under standard conditions (p = 0.003) or an enriched environment (p = 0.002), was significantly higher than in the diabetic controls. This study demonstrates an early liraglutide effect on pain sensation in two streptozotocin-induced diabetes mouse models by reducing some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Pavlina Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Natasha Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Debora Vasileva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Alexandrina Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Todor Bogdanov
- Department of Medical Physics and Biophysics, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| |
Collapse
|
2
|
Khaledi N, Jeddi S, Abbasi S, Eftekharzadeh M, Khodadadi H, Namdari M, Noye Tuplin E. The impact of early-life exercise on CREB-signaling pathway and hippocampus neuroplasticity in diabetic adult male rats; the study of developmental model. Neurol Res 2024; 46:835-847. [PMID: 38808654 DOI: 10.1080/01616412.2024.2359265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Childhood exercise enhances brain structure, while diabetes detrimentally affects it. This study examines early-life exercise's influence on adult diabetic rats' memory and neuroplasticity. METHODS Male Wistar pups were divided into Control, Diabetes, Exercise Training, and Diabetes exercise groups. Diabetes was induced on day 23 with Alloxan (200 mg/kg). A 3-week regimen included aerobic and resistance training thrice weekly. The aerobic intensity was 70%, and resistance varied from 50% to 100% of the maximal carrying capacity (MCC). Following the last training sessions, spatial memory and retrieval tests were performed in infancy, childhood, and emerging adulthood using the Morris Water Maze test (MWM). The hippocampus was excised to measure protein and gene expression of brain-derived neurotrophic factor (BDNF), calmodulin-dependent protein kinase (CAMKII), N-methyl-D-aspartate receptors (NMDAR), and cAMP-response element-binding protein (CREB) by western blotting and reverse transcription-polymerase-chain reaction (RT-PCR) methods. Blood samples were collected during each developmental stage to measure glucose levels, at the study's conclusion, to assess Interleukin-1β levels using the ELISA method. The Nissel staining assessed dead hippocampal cells in CA1. RESULTS Post-natal exercise improved spatial memory (p < 0.05) and glucose levels (p < 0.05) in diabetic rats during adolescence and emerging adulthood. Despite reduced mRNA expression (NMDAR 40%, BDNF 62%, CREB 43%, CAMKII 66%), diabetic rats, by study end, showed increased BDNF, NMDARR, CAMKII, CREB protein/gene expression (p < 0.05) in emerging adulthood for both training groups. CONCLUSION Early-life exercise influenced hippocampal BDNF/NMDAR-CAMKII/CREB pathways in a diabetic rat model, highlighting post-natal exercise's role in neuroplasticity memory enhancement and improved glucose level.
Collapse
Affiliation(s)
- Neda Khaledi
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
- Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| | - Sajjad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Khodadadi
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
| | - Maryam Namdari
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
| | - Erin Noye Tuplin
- Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
4
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Lima OJF, Ribeiro JDS, Vasconcelos JDC, Ferraz MFI, Silva CEDMTDRE, Barros WMA, Vieira GR, David MCMM, Matos RJB. Environmental enrichment changes the effects of prenatal and postnatal undernutrition on memory, anxiety traits, Bdnf and TrkB expression in the hippocampus of male adult rats. Behav Brain Res 2024; 460:114817. [PMID: 38122904 DOI: 10.1016/j.bbr.2023.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.
Collapse
Affiliation(s)
- Odair José Farias Lima
- Physical Education and Sports Science Nucleus, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | | | | | | | | | - Waleska Maria Almeida Barros
- Multicenter Postgraduate Program in Physiological Sciences, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | - Gilberto Ramos Vieira
- Postgraduate Program in Physical Education, Health Sciences Center, Federal University of Pernambuco, Brazil
| | | | | |
Collapse
|
6
|
Petrović A, Madić V, Stojanović G, Zlatanović I, Zlatković B, Vasiljević P, Đorđević L. Antidiabetic effects of polyherbal mixture made of Centaurium erythraea, Cichorium intybus and Potentilla erecta. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117032. [PMID: 37582477 DOI: 10.1016/j.jep.2023.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polyherbal mixture made of Centaurium erythraea aerial parts and Cichorium intybus roots and Potentilla erecta rhizomes has been used for centuries to treat both the primary and secondary complications of diabetes. AIM OF THE STUDY As a continuation of our search for the most effective herbal mixture used as an ethnopharmacological remedy for diabetes, this study aimed to compare the in vitro biological activities of this polyherbal mixture and its individual ingredients, and, most importantly, to validate the ethnopharmacological value of the herbal mixture through evaluation of its phytochemical composition, its potential in vivo toxicity and its effect on diabetes complications. MATERIALS AND METHODS Phytochemical analysis was performed using HPLC-UV. Antioxidant activity was estimated via the DPPH test. Potential cytotoxicity/anticytotoxicity was assessed using an in vitro RBCs antihemolytic assay and an in vivo sub-chronic oral toxicity method. Antidiabetic activity was evaluated using an in vitro α-amylase inhibition assay and in vivo using a chemically induced diabetic rat model. RESULTS The HPLC-UV analysis revealed the presence of p-hydroxybenzoic acid, p-hydroxybenzoic acid derivative, catechin, five catechin derivatives, epicatechin, isoquercetin, hyperoside, rutin, four quercetin derivatives, caffeic acid, and four caffeic acid derivatives in the polyherbal mixture decoction. Treatment with the decoction has shown no toxic effects. The antioxidant and cytoprotective activities of the polyherbal mixture were higher than the reference's ones. Its antidiabetic activity was high in both in vitro and in vivo studies. Fourteen days of treatment with the decoction (15 g/kg) completely normalized blood glucose levels of diabetic animals, while treatments with insulin and glimepiride only slightly lowered glycemic values. In addition, lipid status of treated animals as well as levels of serum AST, ALT, ALP, creatinine, urea and MDA were completely normalized. In addition, the polyherbal mixture completely restored the histopathological changes of the liver, kidneys and all four Cornu ammonis regions of the hippocampus. CONCLUSIONS The polyherbal mixture was effective in the prevention of both primary and secondary diabetic complications such as hyperlipidemia, increased lipid peroxidation, non-alcoholic fatty liver disease, nephropathy and neurodegeneration.
Collapse
Affiliation(s)
- Aleksandra Petrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Višnja Madić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ivana Zlatanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Bojan Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ljubiša Đorđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
7
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. Cereb Cortex 2024; 34:bhad431. [PMID: 37997361 PMCID: PMC10793573 DOI: 10.1093/cercor/bhad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- Institute for Brain Science and Intelligent Technology, Southeast University (SEU), Biomedical engineering, Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University (SEU), Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Avda. Diagonal, 643 Edifici Prevosti, planta -108028, Barcelona, Spain
| | - Thomas Gener
- Advanced Electronic Materials and Devices Group (AEMD), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, UAB Campus, Bellaterra Barcelona 08193, Spain
| | - Inmaculada Ballesteros-Yañez
- Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla- La Mancha, Camino de Moledores, 13071, Ciudad Real, Spain
| | - María Martínez de Lagrán
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), v. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
8
|
Fuentes-Verdugo E, López-Tolsa GE, Pascual R, Pellón R. Environmental enrichment accelerates the acquisition of schedule-induced drinking in rats. Behav Processes 2023; 212:104934. [PMID: 37659684 DOI: 10.1016/j.beproc.2023.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Environmental enrichment (EE) provides an improvement in the housing conditions of experimental animals, such as laboratory rats, with greater physical and social stimulation through toys and company in the home cages. Its use is known to influence performance of experimental protocols, but these effects have not been well determined in the schedule-induced drinking (SID) procedure. The main goal of this study was to investigate the effects of EE on the acquisition of SID in 24 12-week-old male Wistar rats, divided into two groups, a group with EE housed with toys and companions, and a group without enrichment in individual housing conditions without toys (social isolation and no environmental enrichment, INEE). A total of 25 sessions, under a fixed time 30 s food reinforcement schedule and with access to water in the experimental chambers were carried out. Sessions lasted 30 min. The results showed that the EE group developed faster the excessive drinking pattern of SID, and drank to higher levels, than the INEE group. The greater development of SID in the EE group contradicts the view of schedule-induced behavior as linked to stress reduction and better suits with the conception of induction related to positive reinforcement.
Collapse
Affiliation(s)
- Esmeralda Fuentes-Verdugo
- Animal Learning and Behavior Laboratory, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Gabriela E López-Tolsa
- Animal Learning and Behavior Laboratory, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel Pascual
- Animal Learning and Behavior Laboratory, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ricardo Pellón
- Animal Learning and Behavior Laboratory, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
9
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531874. [PMID: 36945607 PMCID: PMC10028951 DOI: 10.1101/2023.03.09.531874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Abnormal dendritic arbors, dendritic spine "dysgenesis" and excitation inhibition imbalance are main traits assumed to underlie impaired cognition and behavioral adaptation in intellectual disability. However, how these modifications actually contribute to functional properties of neuronal networks, such as signal integration or storage capacity is unknown. Here, we used a mouse model overexpressing Dyrk1A (Dual-specificity tyrosine [Y]-regulated kinase), one of the most relevant Down syndrome (DS) candidate genes, to gather quantitative data regarding hippocampal neuronal deficits produced by the overexpression of Dyrk1A in mice (TgDyrk1A; TG). TG mice showed impaired hippocampal recognition memory, altered excitation-inhibition balance and deficits in hippocampal CA1 LTP. We also detected for the first time that deficits in dendritic arborization in TG CA1 pyramidal neurons are layer-specific, with a reduction in the width of the stratum radiatum, the postsynaptic target site of CA3 excitatory neurons, but not in the stratum lacunosum-moleculare, which receives temporo-ammonic projections. To interrogate about the functional impact of layer-specific TG dendritic deficits we developed tailored computational multicompartmental models. Computational modelling revealed that neuronal microarchitecture alterations in TG mice lead to deficits in storage capacity, altered the integration of inputs from entorhinal cortex and hippocampal CA3 region onto CA1 pyramidal cells, important for coding place and temporal context and on connectivity and activity dynamics, with impaired the ability to reach high γ oscillations. Contrary to what is assumed in the field, the reduced network activity in TG is mainly contributed by the deficits in neuronal architecture and to a lesser extent by over-inhibition. Finally, given that therapies aimed at improving cognition have also been tested for their capability to recover dendritic spine deficits and excitation-inhibition imbalance, we also tested the short- and long-term changes produced by exposure to environmental enrichment (EE). Exposure to EE normalized the excitation inhibition imbalance and LTP, and had beneficial effects on short-term recognition memory. Importantly, it produced massive but transient dendritic remodeling of hippocampal CA1, that led to recovery of high γ oscillations, the main readout of synchronization of CA1 neurons, in our simulations. However, those effects where not stable and were lost after EE discontinuation. We conclude that layer-specific neuromorphological disturbances produced by Dyrk1A overexpression impair coding place and temporal context. Our results also suggest that treatments targeting structural plasticity, such as EE, even though hold promise towards improved treatment of intellectual disabilities, only produce temporary recovery, due to transient dendritic remodeling.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- SEU-Allen Joint Center, Institute for Brain and Intelligence, Southeast University (SEU), China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Inmaculada Ballesteros-Yañez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain (UCLM), CRIB, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
11
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
12
|
Vaquero-Rodríguez A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched environment as a nonpharmacological neuroprotective strategy. Exp Biol Med (Maywood) 2023; 248:553-560. [PMID: 37309729 PMCID: PMC10350798 DOI: 10.1177/15353702231171915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
The structure and functions of the central nervous system are influenced by environmental stimuli, which also play an important role in brain diseases. Enriched environment (EE) consists of producing modifications in the environment of standard laboratory animals to induce an improvement in their biological conditions. This paradigm promotes transcriptional and translational effects that result in ameliorated motor, sensory, and cognitive stimulation. EE has been shown to enhance experience-dependent cellular plasticity and cognitive performance in animals housed under these conditions compared with animals housed under standard conditions. In addition, several studies claim that EE induces nerve repair by restoring functional activities through morphological, cellular, and molecular adaptations in the brain that have clinical relevance in neurological and psychiatric disorders. In fact, the effects of EE have been studied in different animal models of psychiatric and neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, ischemic brain injury, or traumatic brain injury, delaying the onset and progression of a wide variety of symptoms of these disorders. In this review, we analyze the action of EE focused on diseases of the central nervous system and the translation to humans to develop a bridge to its application.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
13
|
Saadati H, Ghaheri S, Sadegzadeh F, Sakhaie N, Abdollahzadeh M. Beneficial effects of enriched environment on behavior, cognitive functions, and hippocampal brain-derived neurotrophic factor level following postnatal serotonin depletion in male rats. Int J Dev Neurosci 2023; 83:67-79. [PMID: 36342785 DOI: 10.1002/jdn.10238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) is one of the most important modulators of neural circuitry and has a critical role in neural development and functions. Previous studies indicated that changes in serotonergic system signaling in early life critically impact mental health, behavior, the morphology of hippocampal neurons, and cognitive functions across the lifespan. The enriched environment (EE) has indicated beneficial effects on behavior and cognitive functions in the developmental period of life, but its impacts on cognitive impairments and behavioral changes following postnatal serotonin depletion are unknown. Therefore, the present study aimed to evaluate the influences of the EE housing (postnatal days [PNDs] 21-60) following postnatal serotonin depletion (by para-chlorophenylalanine [PCPA], 100 mg/kg, s.c, in PNDs 10-20) on anxiety-related behaviors, cognitive functions, and brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus of male rats. Memory and behavioral parameters were examined in early adulthood and after that, the hippocampi of rats were removed to determine the BDNF mRNA expression by PCR (PNDs 60-70). The findings of the present work indicated that adolescent EE exposure alleviated memory impairment, decreased BDNF levels, and anxiety disorders induced by experimental depletion of serotonin. Overall, these results indicate that serotonergic system dysregulation during the developmental periods can be alleviated by adolescent EE exposure.
Collapse
Affiliation(s)
- Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
14
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
15
|
Yao Y, Ren Z, Yang R, Mei Y, Dai Y, Cheng Q, Xu C, Xu X, Wang S, Kim KM, Noh JH, Zhu J, Zhao N, Liu YU, Mao G, Sima J. Salidroside reduces neuropathology in Alzheimer’s disease models by targeting NRF2/SIRT3 pathway. Cell Biosci 2022; 12:180. [PMCID: PMC9636768 DOI: 10.1186/s13578-022-00918-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neurite dystrophy is a pathologic hallmark of Alzheimer’s disease (AD). However, drug discovery targeting neurite protection in AD remains largely unexplored. Methods Aβ-induced neurite and mitochondrial damage assays were used to evaluate Aβ toxicity and the neuroprotective efficacy of a natural compound salidroside (SAL). The 5×FAD transgenic mouse model of AD was used to study the neuroprotective function of SAL. To verify the direct target of SAL, we used surface plasmon resonance and cellular thermal shift assays to analyze the drug-protein interaction. Results SAL ameliorates Aβ-mediated neurite damage in cell culture. We further reveal that SAL represses mitochondrial damage in neurites by promoting mitophagy and maintaining mitochondrial homeostasis, dependent on an NAD-dependent deacetylase SIRT3. In AD mice, SAL protects neurite morphology, mitigates Aβ pathology, and improves cognitive function, which are all SIRT3-dependent. Notably, SAL directly binds to transcription factor NRF2, inhibits its degradation by blocking its interaction with KEAP1 ubiquitin ligase, and then advances NRF2-mediated SIRT3 transcription. Conclusions Overall, we demonstrate that SAL, a potential anti-aging drug candidate, attenuates AD pathology by targeting NRF2/SIRT3 pathway for mitochondrial and neurite protection. Drug discovery strategies focusing on SAL may thus provide promising therapeutics for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00918-z.
Collapse
Affiliation(s)
- Yuyuan Yao
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Zhichu Ren
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Ruihan Yang
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yilan Mei
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yuying Dai
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Cheng
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Chong Xu
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiaogang Xu
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Sanying Wang
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Kyoung Mi Kim
- grid.254230.20000 0001 0722 6377Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Korea
| | - Ji Heon Noh
- grid.254230.20000 0001 0722 6377Department of Biochemistry, Chungnam National University, Daejeon, 34134 Korea
| | - Jian Zhu
- grid.255392.a0000 0004 1936 7777Department of Psychology, Eastern Illinois University, Charleston, IL 61920 USA
| | - Ningwei Zhao
- China Exposomics Institute, 781 Cai Lun Road, Shanghai, 200120 China
| | - Yong U. Liu
- grid.79703.3a0000 0004 1764 3838Laboratory for Neuroscience in Health and Disease, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180 China
| | - Genxiang Mao
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Jian Sima
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
16
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
17
|
Ghaheri S, Panahpour H, Abdollahzadeh M, Saadati H. Adolescent enriched environment exposure alleviates cognitive impairment in sleep-deprived male rats: Role of hippocampal BDNF. Int J Dev Neurosci 2021; 82:133-145. [PMID: 34937120 DOI: 10.1002/jdn.10165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/07/2022] Open
Abstract
Developmental life experience has long-lasting influences on the brain and behavior. The present study aims to examine the long-term effects of the enriched environment (EE), which was imposed during the adolescence period of life, on their passive avoidance and recognition memories as well as anxiety-like behaviors and hippocampal brain-derived neurotrophic factor (BDNF) levels, in sleep-deprived male rats. In the present study, the male pups were separated from their mothers in postnatal day 21 (PND21) and were housed in the standard or EE for 40 days. In PND 61, the rats were allocated in four groups: control, SD (sleep deprivation), EE, and EE+SD groups. Sleep deprivation was induced in rats by a modified multiple platform model for 24 hours. Open field, novel object recognition memory, and passive avoidance memory tests were used to examine behavior and cognitive ability. The expression of hippocampal BDNF levels was determined by PCR. The results revealed that SD increased anxiety-like behaviors and impaired cognitive ability, while adolescent EE housing alleviated these changes. In addition, EE reversed SD-induced changes in hippocampal BDNF level. We also demonstrated that EE not only has beneficial effects on the cognitive functions of normal rats but also declined memory deficits induced by sleep deprivation. In conclusion, our results suggest that housing in EE during the adolescence period of life reduces cognitive impairment induced by SD. The increase of the BDNF level in the hippocampus is a possible mechanism to alleviate cognitive performance in sleep-deprived rats.
Collapse
Affiliation(s)
- Safa Ghaheri
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
18
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Landry T, Huang H. Mini review: The relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett 2021; 765:136261. [PMID: 34562518 DOI: 10.1016/j.neulet.2021.136261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The ability to generate new hippocampal neurons throughout adulthood and successfully integrate them into existing neural networks is critical to cognitive function, while disordered regulation of this process results in neurodegenerative or psychiatric disease. Consequently, identifying the molecular mechanisms promoting homeostatic hippocampal neurogenesis in adults is essential to understanding the etiologies of these disorders and developing therapeutic interventions. For example, recent evidence identifies a strong association between metabolic function and adult hippocampal neurogenesis. Hippocampal neural stem cell (NSC) fate dynamically fluctuates with changes in substrate availability and energy status (AMP/ATP and NAD+/NADH ratios). Furthermore, many metabolic hormones, such as insulin, insulin-like growth factors, and leptin exhibit dual functions also modulating hippocampal neurogenesis and neuron survivability. These diverse metabolic inputs to NSC's from various tissues seemingly suggest the existence of a system in which energy status can finely modulate hippocampal neurogenesis. Supporting this hypothesis, interventions promoting energy balance, such as caloric restriction, intermittent fasting, and exercise, have shown encouraging potential enhancing hippocampal neurogenesis and cognitive function. Overall, there is a clear relationship between whole body energy status, adult hippocampal neurogenesis, and neuron survival; however, the molecular mechanisms underlying this phenomenon are multifaceted. Thus, the aim of this review is to analyze the literature investigating energy status-mediated regulation of adult neurogenesis in the hippocampus, highlight the neurocircuitry and intracellular signaling involved, and propose impactful future directions in the field.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA.
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
20
|
IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Mol Neurobiol 2021; 58:6186-6202. [PMID: 34463925 DOI: 10.1007/s12035-021-02545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The hippocampus is implicated in the generation of memory and learning, processes which involve extensive neuroplasticity. The generation of hippocampal adult-born neurons is particularly regulated by glial cells of the neurogenic niche and the surrounding microenvironment. Interestingly, recent evidence has shown that spinal cord injury (SCI) in rodents leads to hippocampal neuroinflammation, neurogenesis reduction, and cognitive impairments. In this scenario, the aim of this work was to evaluate whether an adenoviral vector expressing IGF1 could reverse hippocampal alterations and cognitive deficits after chronic SCI. SCI caused neurogenesis reduction and impairments of both recognition and working memories. We also found that SCI increased the number of hypertrophic arginase-1 negative microglia concomitant with the decrease of the number of ramified surveillance microglia in the hilus, molecular layer, and subgranular zone of the dentate gyrus. RAd-IGF1 treatment restored neurogenesis and improved recognition and working memory impairments. In addition, RAd-IGF1 gene therapy modulated differentially hippocampal regions. In the hilus and molecular layer, IGF1 gene therapy recovered the number of surveillance microglia coincident with a reduction of hypertrophic microglia cell number. However, in the neurogenic niche, IGF1 reduced the number of ramified microglia and increased the number of hypertrophic microglia, which as a whole expressed arginase-1. In summary, RAd-IGF1 gene therapy might surge as a new therapeutic strategy for patients with hippocampal microglial alterations and cognitive deficits such as those with spinal cord injury and other neurodegenerative diseases.
Collapse
|
21
|
Rico-Barrio I, Peñasco S, Lekunberri L, Serrano M, Egaña-Huguet J, Mimenza A, Soria-Gomez E, Ramos A, Buceta I, Gerrikagoitia I, Mendizabal-Zubiaga J, Elezgarai I, Puente N, Grandes P. Environmental Enrichment Rescues Endocannabinoid-Dependent Synaptic Plasticity Lost in Young Adult Male Mice after Ethanol Exposure during Adolescence. Biomedicines 2021; 9:825. [PMID: 34356889 PMCID: PMC8301393 DOI: 10.3390/biomedicines9070825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Binge drinking (BD) is a serious health concern in adolescents as high ethanol (EtOH) consumption can have cognitive sequelae later in life. Remarkably, an enriched environment (EE) in adulthood significantly recovers memory in mice after adolescent BD, and the endocannabinoid, 2-arachydonoyl-glycerol (2-AG), rescues synaptic plasticity and memory impaired in adult rodents upon adolescent EtOH intake. However, the mechanisms by which EE improves memory are unknown. We investigated this in adolescent male C57BL/6J mice exposed to a drinking in the dark (DID) procedure four days per week for a duration of 4 weeks. After DID, the mice were nurtured under an EE for 2 weeks and were subjected to the Barnes Maze Test performed the last 5 days of withdrawal. The EE rescued memory and restored the EtOH-disrupted endocannabinoid (eCB)-dependent excitatory long-term depression at the dentate medial perforant path synapses (MPP-LTD). This recovery was dependent on both the cannabinoid CB1 receptor and group I metabotropic glutamate receptors (mGluRs) and required 2-AG. Also, the EE had a positive effect on mice exposed to water through the transient receptor potential vanilloid 1 (TRPV1) and anandamide (AEA)-dependent MPP long-term potentiation (MPP-LTP). Taken together, EE positively impacts different forms of excitatory synaptic plasticity in water- and EtOH-exposed brains.
Collapse
Affiliation(s)
- Irantzu Rico-Barrio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Sara Peñasco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Leire Lekunberri
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Ianire Buceta
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Juan Mendizabal-Zubiaga
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
22
|
Docrat TF, Nagiah S, Chuturgoon AA. Metformin protects against neuroinflammation through integrated mechanisms of miR-141 and the NF-ĸB-mediated inflammasome pathway in a diabetic mouse model. Eur J Pharmacol 2021; 903:174146. [PMID: 33961875 DOI: 10.1016/j.ejphar.2021.174146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023]
Abstract
The brain responds to diabetic stress by inducing the inflammatory response. Under normal circumstances this process is tightly regulated. However, uncontrolled inflammatory responses lead to compromised function and eventual neurodegeneration. The microRNA (miR)-200 family, specifically miR-141, is differentially expressed in diseased states including cognitive decline, thereby triggering changes in downstream genes. We hypothesised that Metformin (MF) regulates the miR-141/protein phosphatase 2A (PP2A) axis, and associated NF-ĸB-mediated inflammasome expression in diabetic mice brain. Diabetes was induced by intraperitoneal injection of Streptozotocin (STZ), thereafter mice were treated with MF (20 mg/kg BW). Whole brain tissue was harvested for further analysis. In silico analysis showed that Sirt1 and PP2A are prediction targets of miR-141. Selected protein and gene expressions were established through western blotting and qPCR, respectively. Diabetic mice brain tissue demonstrated overexpression of miR-141 and related pro-inflammatory factors as well as decreased PP2A gene expression. MF was able to counteract this by regulating expression of miR-141, PP2A, and p-tau at Ser396 protein expressions. Further experimentation revealed MF's inhibitory action on the inflammasome system by regulating the expression of the upstream controller NLRP3, related cytokines and NF-κB signalling pathway. Collectively, we demonstrate that MF promotes neuroprotection in diabetic mice by dampening inflammatory responses through its inhibitory effects on various signalling pathways. CATEGORIES: Inflammation and Immunopharmacology, Metabolic Disorders and Endocrinology, Neuropharmacology.
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
23
|
Rosell-Valle C, Pedraza C, Manuel I, Moreno-Rodríguez M, Rodríguez-Puertas R, Castilla-Ortega E, Caramés JM, Gómez Conde AI, Zambrana-Infantes E, Ortega-Pinazo J, Serrano-Castro PJ, Chun J, Rodríguez De Fonseca F, Santín LJ, Estivill-Torrús G. Chronic central modulation of LPA/LPA receptors-signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110156. [PMID: 33152386 DOI: 10.1016/j.pnpbp.2020.110156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain; Unidad de Producción de Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Iván Manuel
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Marta Moreno-Rodríguez
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José María Caramés
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Ana I Gómez Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro J Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fernando Rodríguez De Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain.
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
24
|
Ding Y, Liu H, Cen M, Tao Y, Lai C, Tang Z. Rapamycin Ameliorates Cognitive Impairments and Alzheimer's Disease-Like Pathology with Restoring Mitochondrial Abnormality in the Hippocampus of Streptozotocin-Induced Diabetic Mice. Neurochem Res 2021; 46:265-275. [PMID: 33140268 DOI: 10.1007/s11064-020-03160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) and diabetes mellitus (DM) share common pathophysiological findings, in particular, the mammalian target of rapamycin (mTOR) has been strongly implied to link to AD, while it also plays a key role in the insulin signaling pathway. However, the mechanism of how DM and AD is coupled remains elusive. In the present study, we found that streptozotocin (STZ)-induced DM mice significantly increased the levels P-mTOR Ser2448, P-p70S6K Thr389, P-tau Ser356 and Aβ levels (Aβ oligomer/monomer), as well as the levels of Drp1 and p-Drp1 S616 (mitochondrial fission proteins) are increased, whereas no change was found in the expression of Opa1, Mfn1 and Mfn2 (mitochondrial fusion proteins) compared with control mice. Moreover, the expression of 4-HNE and 8-OHdG showed an aberrant increase in the hippocampus of STZ-induced DM mice that is associated with a decreased capacity of spatial memory and a loss of synapses. Rapamycin, an inhibitor of mTOR, rescued the STZ-induced increases in mTOR/p70S6K activities, tau phosphorylation and Aβ levels, as well as mitochondria abnormality and cognitive impairment in mice. These findings imply that rapamycin prevents cognitive impairment and protects hippocampus neurons from AD-like pathology and mitochondrial abnormality, and also that rapamycin treatment could normalize these STZ-induced alterations by decreasing hippocampus mTOR/p70S6K hyperactivity.
Collapse
Affiliation(s)
- Yuanting Ding
- Department of Clinical Research Center, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Baoshan Road No.71, Guiyang, 550001, Guizhou, China
| | - Heng Liu
- Department of Anesthesiology, Tongren Municipal People's Hospital, Tongren, 554300, Guizhou, China
| | - Mofei Cen
- Department of Clinical Research Center, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Baoshan Road No.71, Guiyang, 550001, Guizhou, China
| | - Yuxiang Tao
- Department of Clinical Research Center, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Baoshan Road No.71, Guiyang, 550001, Guizhou, China
| | - Chencen Lai
- Department of Clinical Research Center, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Baoshan Road No.71, Guiyang, 550001, Guizhou, China
| | - Zhi Tang
- Department of Clinical Research Center, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Baoshan Road No.71, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
25
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
26
|
Enriched Environment Minimizes Anxiety/Depressive-Like Behavior in Rats Exposed to Immobilization Stress and Augments Hippocampal Neurogenesis (In Vitro). J Mol Neurosci 2021; 71:2071-2084. [PMID: 33492617 DOI: 10.1007/s12031-021-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Chronic exposure to stress disturbs the homeostasis of the brain, thus, deleteriously affecting the neurological circuits. In literature, there are investigations about the stress-related alterations in behavioral response and adult neurogenesis; however, an effective combating strategy to evade stress is still at stake. Hence, the present study is designed to investigate the effect of an enriched environment in alleviating the anxiety/depressive-like behavioral response and enhancing the adult neurogenesis in the hippocampal region of rats exposed to chronic immobilization stress. The rats were exposed to chronic immobilization stress (IS) for 4 h/day followed by the enriched environment (EE) for 2 h/day for 28 days, and finally, the hippocampal region was dissected out after the behavioral analyses. IS group showed increased behavioral despair to tail suspension test, decrement in the activity for light/dark box test, and less grooming activity towards splash test. In contrast, IS + EE rats exhibited a decrease in the activity of tail suspension test and an increase in the behavioral response to light/dark box test and splash test. The in vitro assessment of primary cultures of neurospheres from the IS group resulted in decreased levels of proliferation in the cell number and metabolic activity of both MTT assay and lactate levels. IS + EE group revealed an increase in the growth curve of neurospheres and higher metabolic activities of MTT and lactate. The IS cultures had reduced neurite length, while the neurite outgrowths were increased in IS + EE group. The IS group showed significant reduction in the protein and mRNA levels of nestin, GFAP, CD11b, MOG, and synaptophysin, whereas the IS + EE cultures exhibited significant increase in the levels of these stem cell markers. Our data highlight the positive impact of EE against stress-related behavioral changes in rats exposed to chronic immobilization stress perhaps by interfering with the differentiation of neurospheres and neurogenesis.
Collapse
|
27
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
29
|
Lazarov O, Minshall RD, Bonini MG. Harnessing neurogenesis in the adult brain-A role in type 2 diabetes mellitus and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:235-269. [PMID: 32854856 DOI: 10.1016/bs.irn.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Some metabolic disorders, such as type 2 diabetes mellitus (T2DM) are risk factors for the development of cognitive deficits and Alzheimer's disease (AD). Epidemiological studies suggest that in people with T2DM, the risk of developing dementia is 2.5 times higher than that in the non-diabetic population. The signaling pathways that underlie the increased risk and facilitate cognitive deficits are not fully understood. In fact, the cause of memory deficits in AD is not fully elucidated. The dentate gyrus of the hippocampus plays an important role in memory formation. Hippocampal neurogenesis is the generation of new neurons and glia in the adult brain throughout life. New neurons incorporate in the granular cell layer of the dentate gyrus and play a role in learning and memory and hippocampal plasticity. A large body of studies suggests that hippocampal neurogenesis is impaired in mouse models of AD and T2DM. Recent evidence shows that hippocampal neurogenesis is also impaired in human patients exhibiting mild cognitive impairment or AD. This review discusses the role of hippocampal neurogenesis in the development of cognitive deficits and AD, and considers inflammatory and endothelial signaling pathways in T2DM that may compromise hippocampal neurogenesis and cognitive function, leading to AD.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.
| | - Richard D Minshall
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, United States; Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Marcelo G Bonini
- Department of Medicine (Hematology/Oncology), Feinberg School of Medicine of Northwestern University and Basic Sciences Research, Robert H. Lurie Comprehensive Cancer Centre, Chicago, IL, United States
| |
Collapse
|
30
|
Sakhaie N, Sadegzadeh F, Mohammadnia A, Dadkhah M, Saadati H. Sex-dependent effects of postweaning exposure to an enriched environment on novel objective recognition memory and anxiety-like behaviors: The role of hippocampal BDNF level. Int J Dev Neurosci 2020; 80:396-408. [PMID: 32416621 DOI: 10.1002/jdn.10038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to enriched environment (EE) has been indicated to enhance cognitive functions, hippocampal neural plasticity, neurogenesis, long-term potentiation, and levels of the brain-derived neurotrophic factor (BDNF) in laboratory animals. Also, studies on the sex-dependent effects of exposure to EE during adolescence on adult cognitive functions are less. This is important because the beneficial effects of EE may be predominant in the adolescence stage. Therefore, the present study was designed to compare the effects of EE during adolescence (PND21-PND60) on novel objective recognition memory (NORM), anxiety-like behaviors, and hippocampal BDNF mRNA level in the adult male and female rats. Assessment of NORM and anxiety-like behaviors has been done by novel objective recognition task, open field (OF), and elevated plus maze (EPM), respectively. The expression of BDNF mRNA level was also evaluated by quantitative RT-PCR. Our findings demonstrated that housing in the EE during adolescence improves NORM in adult male rats. Also, exposure to EE during adolescence had a different effect on anxiety-like behaviors in both sexes. Additionally, our results indicated an augmented BDNF level in the hippocampus of male and female rats. In conclusion, adolescent exposure to EE has sex-dependent effects on cognitive functions and anxiety-like behaviors and increases BDNF mRNA expression in the hippocampus of both male and female rats; thus, BDNF is an important factor that can mediate the beneficial effects of EE and running exercise on cognitive functions and psychiatric traits.
Collapse
Affiliation(s)
- Nona Sakhaie
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Faculty of Medicine, Department of Basic Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoumeh Dadkhah
- Pharmaceutical Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Faculty of Medicine, Department of Physiology, Ardabil University of Medical Sciences, Ardabil, Iran
- Physiological Studies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
31
|
Wang P, Liang Y, Chen K, Yau SY, Sun X, Cheng KKY, Xu A, So KF, Li A. Potential Involvement of Adiponectin Signaling in Regulating Physical Exercise-Elicited Hippocampal Neurogenesis and Dendritic Morphology in Stressed Mice. Front Cell Neurosci 2020; 14:189. [PMID: 32774242 PMCID: PMC7381385 DOI: 10.3389/fncel.2020.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Adiponectin, a cytokine secreted by mature adipocytes, proves to be neuroprotective. We have previously reported that running triggers adiponectin up-regulation which subsequently promotes generation of hippocampal neurons and thereby alleviates depression-like behaviors in non-stressed mice. However, under the stressing condition, whether adiponectin could still exert antidepressant-like effects following exercise remained unexplored. In this study, by means of repeated corticosterone injections to mimic stress insult and voluntary wheel running as physical exercise intervention, we examined whether exercise-elicited antidepressive effects might involve adiponectin's regulation on hippocampal neurogenesis and dendritic plasticity in stressed mice. Here we show that repeated injections of corticosterone inhibited hippocampal neurogenesis and impaired dendritic morphology of neurons in the dentate gyrus of both wild-type and adiponectin-knockout mice comparably, which subsequently evoked depression-like behaviors. Voluntary wheel running attenuated corticosterone-suppressed neurogenesis and enhanced dendritic plasticity in the hippocampus, ultimately reducing depression-like behaviors in wild-type, but not adiponectin-knockout mice. We further demonstrate that such proneurogenic effects were potentially achieved through activation of the AMP-dependent kinase (AMPK) pathway. Our study provides the first evidence that adiponectin signaling is essential for physical exercise-triggered effects on stress-elicited depression by retaining the normal proliferation of neural progenitors and dendritic morphology of neurons in the hippocampal dentate gyrus, which may depend on activation of the AMPK pathway.
Collapse
Affiliation(s)
- Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Yiyao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kai Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
32
|
Effects of exposure to enriched environment during adolescence on passive avoidance memory, nociception, and prefrontal BDNF level in adult male and female rats. Neurosci Lett 2020; 732:135133. [DOI: 10.1016/j.neulet.2020.135133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022]
|
33
|
Chawana R, Patzke N, Bhagwandin A, Kaswera-Kyamakya C, Gilissen E, Bertelsen MF, Hemingway J, Manger PR. Adult hippocampal neurogenesis in Egyptian fruit bats from three different environments: Are interpretational variations due to the environment or methodology? J Comp Neurol 2020; 528:2994-3007. [PMID: 32112418 DOI: 10.1002/cne.24895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023]
Abstract
We quantified both proliferative (Ki-67 immunohistochemistry) and immature (doublecortin immunohistochemistry) cells within the dentate gyrus of adult Egyptian fruit bats from three distinct environments: (a) primary rainforest, (b) subtropical woodland, and (c) fifth-generation captive-bred. We used four different previously reported methods to assess the effect of the environment on proliferative and immature cells: (a) the comparison of raw totals of proliferative and immature cells; (b) these totals standardized to brain mass; (c) these totals expressed as a density using the volume of the granular cell layer (GCLv) for standardization; and (d) these totals expressed as a percentage of the total number of granule cells. For all methods, the numbers of proliferative cells did not differ statistically among the three groups, indicating that the rate of proliferation, while malleable to experimental manipulation or transiently in response to events of importance in the natural habitat, appears to occur, for the most part, at a predetermined rate within a species. For the immature cells, raw numbers and standardizations to brain mass and GCLv revealed no difference between the three groups studied; however, standardization to total granule cell numbers indicated that the two groups of wild-caught bats had significantly higher numbers of immature neurons than the captive-bred bats. These contrasting results indicate that the interpretation of the effect of the environment on the numbers of immature neurons appears method dependent. It is possible that current methods are not sensitive enough to reveal the effect of different environments on proliferative and immature cells.
Collapse
Affiliation(s)
- Richard Chawana
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium.,Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
34
|
Music exposure attenuates anxiety- and depression-like behaviors and increases hippocampal spine density in male rats. Behav Brain Res 2019; 372:112023. [DOI: 10.1016/j.bbr.2019.112023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/18/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023]
|
35
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Hannan AJ, Baune BT. The effects of short-term and long-term environmental enrichment on locomotion, mood-like behavior, cognition and hippocampal gene expression. Behav Brain Res 2019; 368:111917. [DOI: 10.1016/j.bbr.2019.111917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
|
36
|
Gregosa A, Vinuesa Á, Todero MF, Pomilio C, Rossi SP, Bentivegna M, Presa J, Wenker S, Saravia F, Beauquis J. Periodic dietary restriction ameliorates amyloid pathology and cognitive impairment in PDAPP-J20 mice: Potential implication of glial autophagy. Neurobiol Dis 2019; 132:104542. [PMID: 31351172 DOI: 10.1016/j.nbd.2019.104542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Dietary restriction promotes cell regeneration and stress resistance in multiple models of human diseases. One of the conditions that could potentially benefit from this strategy is Alzheimer's disease, a chronic, progressive and prevalent neurodegenerative disease. Although there are no effective pharmacological treatments for this pathology, lifestyle interventions could play therapeutic roles. Our objectives were 1) to evaluate the effects of dietary restriction on cognition, hippocampal amyloid deposition, adult neurogenesis and glial reactivity and autophagy in a mouse model of familial Alzheimer's disease, and 2) to analyze the role of glial cells mediating the effects of nutrient restriction in an in vitro model. Therefore, we established a periodic dietary restriction protocol in adult female PDAPP-J20 transgenic mice for 6 weeks. We found that dietary restriction, not involving overall caloric restriction, attenuated cognitive deficits, amyloid pathology and microglial reactivity in transgenic mice when compared with ad libitum-fed transgenic animals. Also, transgenic mice showed an increase in the astroglial positive signal for LC3, an autophagy-associated protein. In parallel, hippocampal adult neurogenesis was decreased in transgenic mice whereas dietary-restricted transgenic mice showed a neurogenic status similar to controls. In vitro experiments showed that nutrient restriction decreased astroglial and, indirectly, microglial NFκB activation in response to amyloid β peptides. Furthermore, nutrient restriction was able to preserve astroglial autophagic flux and to decrease intracellular amyloid after exposure to amyloid β peptides. Our results suggest neuroprotective effects of nutrient restriction in Alzheimer's disease, with modulation of glial activation and autophagy being potentially involved pathways.
Collapse
Affiliation(s)
- Amal Gregosa
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Ángeles Vinuesa
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - María Florencia Todero
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carlos Pomilio
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Soledad P Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Melisa Bentivegna
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Jessica Presa
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Shirley Wenker
- Fundación Instituto Leloir-IIBA, CONICET, Buenos Aires, Argentina
| | - Flavia Saravia
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Juan Beauquis
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
37
|
Lakstygal AM, de Abreu MS, Lifanov DA, Wappler-Guzzetta EA, Serikuly N, Alpsyshov ET, Wang D, Wang M, Tang Z, Yan D, Demin KA, Volgin AD, Amstislavskaya TG, Wang J, Song C, Alekseeva P, Kalueff AV. Zebrafish models of diabetes-related CNS pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:48-58. [PMID: 30476525 DOI: 10.1016/j.pnpbp.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.
Collapse
Affiliation(s)
- Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Dmitry A Lifanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; School of Pharmacy, Southwest University, Chongqing, China
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Polina Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Ural Federal University, Ekaterinburg, Russia; Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; ZENEREI Research Center, Slidell, LA, USA.
| |
Collapse
|
38
|
Thamizhoviya G, Vanisree AJ. Enriched environment modulates behavior, myelination and augments molecules governing the plasticity in the forebrain region of rats exposed to chronic immobilization stress. Metab Brain Dis 2019; 34:875-887. [PMID: 30604029 DOI: 10.1007/s11011-018-0370-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/11/2018] [Indexed: 01/10/2023]
Abstract
Recently, several reports on chronic stress have shown that prolonged exposure to stress contributes to psychological and neurological complications. However, the impact of stress-induced alterations in myelination remains to be unexplored. Therefore, in the current study, the rats were subjected to immobilization stress (IS) followed by enriched environment (EE) and the behavioral, neurochemical changes pertaining to neuronal survival pathway, in addition, to the ultrastructural changes in myelin in forebrain (FB) region of rats were analyzed. Immobilization stress-exposed rats (4 h/day IS, for 28 days) exhibited increased anhedonia, anxiety, immobility, and reduced social interaction, which could be reflected in increased levels of corticosterone. In contrast, exposure to EE (4 h IS+2 h EE/day, for 28 days) was found to minimize anhedonic state, supress the depressive-like features, enhance social interaction and also reduce the levels of corticosterone. The ultrastructural changes in the FB region of the brain revealed that IS group showed enhanced g-ratio indicating decreased myelin thickness, while EE group exhibited reduced g-ratio manifesting increased myelination. Further, the study revealed that IS exposed group showed decreased levels of NGF, TrkA, PI3K, AKT, ERK, CREB, and MBP in FB regions whereas EE group could preserve normal protein and mRNA levels of these neuronal survival molecules. The results from this study suggest that EE exerts a positive impact by improving myelination in rats exposed to chronic immobilization stress.
Collapse
|
39
|
Giacobbo BL, de Freitas BS, Vedovelli K, Schlemmer LM, Pires VN, Antoniazzi V, Santos CDSD, Paludo L, Borges JV, de Lima DB, Schröder N, de Vries EFJ, Bromberg E. Long-term environmental modifications affect BDNF concentrations in rat hippocampus, but not in serum. Behav Brain Res 2019; 372:111965. [PMID: 31125621 DOI: 10.1016/j.bbr.2019.111965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
The role of mBDNF on the beneficial effects of cognitive stimulation on the brain remains controversial, as well as the potential of peripheral mBDNF as a biomarker of environmental effects on its central status. We investigated the effect of different environmental conditions on recognition memory, proBDNF, mBDNF and synaptophysin levels in the hippocampus, and on mBDNF levels in blood. Male Wistar rats (6 and 17 months-old) were assigned to cognitively enriched (EE), standard (SE) and impoverished (IE) environmental conditions for twelve weeks. Novel object recognition was performed at week 10. When the animals were 9 and 20-months old, hippocampus was collected for mBDNF, proBDNF and synaptophysin analysis; serum was analyzed for mBDNF levels. The cognitively EE improved recognition memory, resulted in a trend to increased hippocampal mBDNF and augmented synaptophysin levels. Accordingly, hippocampal mBDNF, proBDNF and synaptophysin were significantly higher in EE than IE animals. Hippocampal mBDNF was positively correlated to proBDNF, cellular and behavioral plasticity markers. No effect of age was seen on the studied variables. Moreover, no significant effects of EE or IE on serum mBDNF were observed. Serum mBDNF also failed to correlate with hippocampal mBDNF, proBDNF and with the cellular and behavioral plasticity markers. These findings indicate that mBDNF is involved in neuronal and behavioral plasticity mechanisms induced by cognitively enriched environments, and that peripheral mBDNF may not always be a reliable biomarker of the effects of environmental settings on central mBDNF and plasticity, which is of special interest from a translational research perspective.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, the Netherlands
| | - Betânia Souza de Freitas
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Kelem Vedovelli
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000, Porto Alegre, Brazil
| | - Lívia Machado Schlemmer
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Vinicius Antoniazzi
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Cristophod de Souza Dos Santos
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Leticia Paludo
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Juliano Viana Borges
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Daiane Borba de Lima
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, 90050-170 Porto Alegre, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, the Netherlands
| | - Elke Bromberg
- Laboratory of Biology and Development of the Nervous System, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900, Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
40
|
Short-Term Exposure to Enriched Environment in Adult Rats Restores MK-801-Induced Cognitive Deficits and GABAergic Interneuron Immunoreactivity Loss. Mol Neurobiol 2019; 55:26-41. [PMID: 28822057 DOI: 10.1007/s12035-017-0715-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.
Collapse
|
41
|
Murueta-Goyena A, Morera-Herreras T, Miguelez C, Gutiérrez-Ceballos A, Ugedo L, Lafuente JV, Bengoetxea H. Effects of adult enriched environment on cognition, hippocampal-prefrontal plasticity and NMDAR subunit expression in MK-801-induced schizophrenia model. Eur Neuropsychopharmacol 2019; 29:590-600. [PMID: 30926324 DOI: 10.1016/j.euroneuro.2019.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a mental disorder characterized by psychosis, negative symptoms and cognitive impairment. Cognitive deficits are enduring and represent the most disabling symptom but are currently poorly treated. N-methyl D-aspartate receptor (NMDAR) hypofunction hypothesis has been notably successful in explaining the pathophysiological findings and symptomatology of schizophrenia. Thereby, NMDAR blockade in rodents represents a useful tool to identify new therapeutic approaches. In this regard, enriched environment (EE) could play an essential role. Using a multilevel approach of behavior, electrophysiology and protein analysis, we showed that a short-term exposure to EE in adulthood ameliorated spatial learning and object-place associative memory impairment observed in postnatally MK-801-treated Long Evans rats. Moreover, EE in adult life restored long-term potentiation (LTP) in hippocampal-medial prefrontal pathway abolished by MK-801 treatment. EE in adulthood also induced a set of modifications in the expression of proteins related to glutamatergic neurotransmission. Taken together, these findings shed new light on the neurobiological effects of EE to reverse the actions of MK-801 and offer a preclinical testing of a therapeutic strategy that may be remarkably effective for managing cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Deparment of Neuroscience, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Bizkaia, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Teresa Morera-Herreras
- Deparment of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Deparment of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Luisa Ugedo
- Deparment of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José Vicente Lafuente
- Deparment of Neuroscience, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Bizkaia, Spain; Nanoneurosurgery Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain; Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | - Harkaitz Bengoetxea
- Deparment of Neuroscience, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Bizkaia, Spain
| |
Collapse
|
42
|
Moreno-Jiménez EP, Jurado-Arjona J, Ávila J, Llorens-Martín M. The Social Component of Environmental Enrichment Is a Pro-neurogenic Stimulus in Adult c57BL6 Female Mice. Front Cell Dev Biol 2019; 7:62. [PMID: 31080799 PMCID: PMC6497743 DOI: 10.3389/fcell.2019.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
In rodents, the hippocampal dentate gyrus gives rise to newly generated dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis (AHN), converges in the functional integration of mature DGCs into the trisynaptic hippocampal circuit. Environmental enrichment (EE) is one of the most potent positive regulators of AHN. This paradigm includes the combination of three major stimulatory components, namely increased physical activity, constant cognitive stimulation, and higher social interaction. In this regard, the pro-neurogenic effects of physical activity and cognitive stimulation have been widely addressed in adult rodents. However, the pro-neurogenic potential of the social aspect of EE has been less explored to date. Here we tackled this question by specifically focusing on the effects of a prolonged period of social enrichment (SE) in adult female C57BL6 mice. To this end, 7-week-old mice were housed in groups of 12 per cage for 8 weeks. These mice were compared with others housed under control housing (2–3 mice per cage) or EE (12 mice per cage plus running wheels and toys) conditions during the same period. We analyzed the number and morphology of Doublecortin-expressing (DCX+) cells. Moreover, using RGB retroviruses that allowed the labeling of three populations of newborn DGCs of different ages in the same mouse, we performed morphometric, immunohistochemical, and behavioral determinations. Both SE and EE increased the number and maturation of DCX+ cells, and caused an increase in dendritic maturation in certain populations of newborn DGCs. Moreover, both manipulations increased exploratory behavior in the Social Interaction test. Unexpectedly, our data revealed the potent neurogenesis-stimulating potential of SE in the absence of any further cognitive stimulation or increase in physical activity. Given that an increase in physical activity is strongly discouraged under certain circumstances, our findings may be relevant in the context of enhancing AHN via physical activity-independent mechanisms.
Collapse
Affiliation(s)
- Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jerónimo Jurado-Arjona
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
43
|
Rossetti MF, Schumacher R, Lazzarino GP, Gomez AL, Varayoud J, Ramos JG. The impact of sensory and motor enrichment on the epigenetic control of steroidogenic-related genes in rat hippocampus. Mol Cell Endocrinol 2019; 485:44-53. [PMID: 30721712 DOI: 10.1016/j.mce.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
In the present study, we analyzed the effects of a short-term environmental enrichment on the mRNA expression and DNA methylation of steroidogenic enzymes in the hippocampus. Thus, young adult (80-day-old) and middle-aged (350-day-old) Wistar female rats were exposed to sensory (SE) or motor (ME) enrichment during 10 days and compared to animals housed under standard conditions. SE was provided by an assortment of objects that included plastic tubes and toys; for ME, rodent wheels were provided. In young adult animals, SE and ME increased the mRNA expression of cytochrome P450 17α-hydroxylase/c17,20-lyase, steroid 5α-reductase type 1 (5αR-1) and 3α-hydroxysteroid dehydrogenase and decreased the methylation levels of 5αR-1 gene. In middle-aged rats, ME and SE upregulated the gene expression of aldosterone synthase and decreased the methylation state of its promoter. These results propose that SE and ME differentially regulate the transcription of neurosteroidogenic enzymes through epigenetic mechanisms in young and aged rats.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Ayelen Luciana Gomez
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
44
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
45
|
Flores-Gómez AA, de Jesús Gomez-Villalobos M, Flores G. Consequences of diabetes mellitus on neuronal connectivity in limbic regions. Synapse 2018; 73:e22082. [PMID: 30457679 DOI: 10.1002/syn.22082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is characterized by high levels of blood glucose. In recent years, its prevalence has increased, which was 422 million in the world in 2014. In elderly patients, DM is associated with deficits in memory and learning processes. The cognitive deficits lead to dementia. With the development of animal models in DM, it has been possible to better understand quantitative morphological changes in numerous neuronal structures belonging to the limbic system, such as the prefrontal cortex (PFC), the hippocampus and basolateral amygdala (BLA). These structures are in close relationship with processes of memory and learning. Several reports have demonstrated that chronic hyperglycemia reduces spinogenesis and dendritic arborization in the aforementioned regions along with a decline in memory and learning processes, especially in streptozotocin (STZ)-induced diabetic rats. In the present review, we discuss animal models, the effects of chronic hyperglycemia on dendritic morphology of limbic regions and memory and learning processes, the effect on neural transmission in these regions, the pathologic mechanisms involved, and the relevance of dendritic morphology in diabetes. All of this information can help us to have a better understanding of dementia in diabetes mellitus and propose strategies for its prevention and treatment.
Collapse
Affiliation(s)
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
46
|
Kang S, Lee S, Kim J, Kim JC, Kim SH, Son Y, Shin T, Youn B, Kim JS, Wang H, Yang M, Moon C. Chronic Treatment with Combined Chemotherapeutic Agents Affects Hippocampal Micromorphometry and Function in Mice, Independently of Neuroinflammation. Exp Neurobiol 2018; 27:419-436. [PMID: 30429651 PMCID: PMC6221841 DOI: 10.5607/en.2018.27.5.419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapeutic agents induce long-term side effects, including cognitive impairment and mood disorders, particularly in breast cancer survivors who have undergone chemotherapy. However, the precise mechanisms underpinning chemotherapy-induced hippocampal dysfunction remain unknown. In this study, we investigated the detrimental effects of chronic treatment with a combination of adriamycin and cyclophosphamide (AC) on the neuronal architecture and functions of the hippocampi of female C57BL/6 mice. After chronic AC administration, mice showed memory impairment (measured using a novel object recognition memory task) and depression-like behavior (measured using the tail suspension test and forced swim test). According to Golgi staining, chronic AC treatment significantly reduced the total dendritic length, ramification, and complexity as well as spine density and maturation in hippocampal neurons in a sub-region-specific manner. Additionally, the AC combination significantly reduced adult neurogenesis, the extent of the vascular network, and the levels of hippocampal angiogenesis-related factors. However, chronic AC treatment did not increase the levels of inflammation-related signals (microglial or astrocytic distribution, or the levels of pro-inflammatory cytokines or M1/M2 macrophage markers). Thus, chronic AC treatment changed the neuronal architecture of the adult hippocampus, possibly by reducing neurogenesis and the extent of the vasculature, independently of neuroinflammation. Such detrimental changes in micromorphometric parameters may explain the hippocampal dysfunction observed after cancer chemotherapy.
Collapse
Affiliation(s)
- Sohi Kang
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| | - Sueun Lee
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| | - Juhwan Kim
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| | - Yeonghoon Son
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea.,Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56216, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Joong-Sun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, MI 48824, USA
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
47
|
Kubota K, Nakano M, Kobayashi E, Mizue Y, Chikenji T, Otani M, Nagaishi K, Fujimiya M. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells. PLoS One 2018; 13:e0204252. [PMID: 30240403 PMCID: PMC6150479 DOI: 10.1371/journal.pone.0204252] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that an enriched environment (EE) ameliorates cognitive impairment by promoting repair of brain damage. However, the mechanisms by which this occurs have not been determined. To address this issue, we investigated whether an EE enhanced the capability of endogenous bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to prevent hippocampal damage due to diabetes by focusing on miRNA carried in BM-MSC-derived exosomes. In diabetic streptozotocin (STZ) rats housed in an EE (STZ/EE), cognitive impairment was significantly reduced, and both neuronal and astroglial damage in the hippocampus was alleviated compared with STZ rats housed in conventional cages (STZ/CC). BM-MSCs isolated from STZ/CC rats had functional and morphological abnormalities that were not detected in STZ/EE BM-MSCs. The miR-146a levels in exosomes in conditioned medium of cultured BM-MSCs and serum from STZ/CC rats were decreased compared with non-diabetic rats, and the level was restored in STZ/EE rats. Thus, the data suggest that increased levels of miR-146a in sera were derived from endogenous BM-MSCs in STZ/EE rats. To examine the possibility that increased miR-146a in serum may exert anti-inflammatory effects on astrocytes in diabetic rats, astrocytes transfected with miR-146a were stimulated with advanced glycation end products (AGEs) to mimic diabetic conditions. The expression of IRAK1, NF-κB, and tumor necrosis factor-α was significantly higher in AGE-stimulated astrocytes, and these factors were decreased in miR-146a-transfected astrocytes. These results suggested that EEs stimulate up-regulation of exosomal miR-146a secretion by endogenous BM-MSCs, which exerts anti-inflammatory effects on damaged astrocytes and prevents diabetes-induced cognitive impairment.
Collapse
Affiliation(s)
- Kenta Kubota
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
- Department of Physical Therapy, Hokkaido Chitose Rehabilitation University, Chitose, Hokkaido, Japan
| | - Masako Nakano
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Eiji Kobayashi
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuka Mizue
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Takako Chikenji
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Miho Otani
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Kanna Nagaishi
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
48
|
Yuan ZY, Yang J, Ma XW, Wang YY, Wang MW. Enriched environment elevates expression of growth associated protein-43 in the substantia nigra of SAMP8 mice. Neural Regen Res 2018; 13:1988-1994. [PMID: 30233074 PMCID: PMC6183044 DOI: 10.4103/1673-5374.239447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43 (GAP-43) is closely associated with neurite outgrowth and axon regeneration during neural development. We speculate that an enriched environment can reduce damage to dopaminergic neurons by affecting the expression of GAP-43. This study is designed to test this hypothesis. Three-month-old female senescence-accelerated mouse prone 8 (SAMP8) mice were housed for 3 months in an enriched environment or a standard environment. These mice were then subcutaneously injected in the abdomen with 14 mg/kg MPTP four times at 2-hour intervals. Morris water maze testing demonstrated that learning and memory abilities were better in the enriched environment group than in the standard environment group. Reverse-transcription polymerase chain reaction, immunohistochemistry and western blot assays showed that mRNA and protein levels of GAP-43 in the substantia nigra were higher after MPTP application in the enriched environment group compared with the standard environment group. These findings indicate that an enriched environment can increase GAP-43 expression in SAMP8 mice. The upregulation of GAP-43 may be a mechanism by which an enriched environment protects against MPTP-induced neuronal damage.
Collapse
Affiliation(s)
- Zhen-Yun Yuan
- The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Jie Yang
- The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Xiao-Wei Ma
- The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Yan-Yong Wang
- The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Ming-Wei Wang
- The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei Province, China
| |
Collapse
|
49
|
Kirschen GW, Kéry R, Ge S. The Hippocampal Neuro-Glio-Vascular Network: Metabolic Vulnerability and Potential Neurogenic Regeneration in Disease. Brain Plast 2018; 3:129-144. [PMID: 30151338 PMCID: PMC6091038 DOI: 10.3233/bpl-170055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain metabolism is a fragile balance between nutrient/oxygen supply provided by the blood and neuronal/glial demand. Small perturbations in these parameters are necessary for proper homeostatic functioning and information processing, but can also cause significant damage and cell death if dysregulated. During embryonic and early post-natal development, massive neurogenesis occurs, a process that continues at a limited rate in adulthood in two neurogenic niches, one in the lateral ventricle and the other in the hippocampal dentate gyrus. When metabolic demand does not correspond with supply, which can occur dramatically in the case of hypoxia or ischemia, or more subtly in the case of neuropsychiatric or neurodegenerative disorders, both of these neurogenic niches can respond—either in a beneficial manner, to regenerate damaged or lost tissue, or in a detrimental fashion—creating aberrant synaptic connections. In this review, we focus on the complex relationship that exists between the cerebral vasculature and neurogenesis across development and in disease states including hypoxic-ischemic injury, hypertension, diabetes mellitus, and Alzheimer’s disease. Although there is still much to be elucidated, we are beginning to appreciate how neurogenesis may help or harm the metabolically-injured brain, in the hopes that these insights can be used to tailor novel therapeutics to regenerate damaged tissue after injury.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Rachel Kéry
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
50
|
Bayne K. Environmental enrichment and mouse models: Current perspectives. Animal Model Exp Med 2018; 1:82-90. [PMID: 30891552 PMCID: PMC6388067 DOI: 10.1002/ame2.12015] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022] Open
Abstract
The provision of environmental enrichment to numerous species of laboratory animals is generally considered routine husbandry. However, mouse enrichment has proven to be very complex due to the often contradictory outcomes (animal health and welfare, variability in scientific data, etc.) associated with strain, age of the animal when enrichment is provided, gender of the animal, scientific use of the animal, and other housing attributes. While this has led to some suggesting that mice should not be provided enrichment, more recently opinion is trending toward acknowledging that enrichment actually normalizes the animal and data obtained from a mouse living in a barren environment are likely not to be representative or even reliable. This article offers an overview of the types of impact enrichment can have on various strains of mice and demonstrates that enrichment not only has a role in mouse husbandry, but also can lead to new areas of scientific enquiry in a number of different fields.
Collapse
|