1
|
Brañes MC, Gillet R, Valenzuela R. Nuclear receptors behind the therapeutic effects of plant sterols on metabolism: A review. Lipids 2024; 59:169-180. [PMID: 39077818 DOI: 10.1002/lipd.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant sterols are known for their hypocholesterolemic action, and the molecular mechanisms behind this within the gut have been extensively discussed and demonstrated to the point that there is a degree of consensus. However, recent studies show that these molecules exert an additional umbrella of therapeutic effects in other tissues, which are related to immune function, lipid metabolism, and glucose metabolism. A strong hypothesis to explain these effects is the structural relationship between plant sterols and the ligands of a group of nuclear receptors. This review delves into the molecular aspects of therapeutic effects related with lipid and energy metabolism that have been observed and demonstrated for plant sterols, and turns the perspective to explore the involvement of nuclear receptors as part of these mechanisms.
Collapse
Affiliation(s)
| | | | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Shen M, Yuan L, Zhang J, Wang X, Zhang M, Li H, Jing Y, Zeng F, Xie J. Phytosterols: Physiological Functions and Potential Application. Foods 2024; 13:1754. [PMID: 38890982 PMCID: PMC11171835 DOI: 10.3390/foods13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary intake of natural substances to regulate physiological functions is currently regarded as a potential way of promoting health. As one of the recommended dietary ingredients, phytosterols that are natural bioactive compounds distributed in plants have received increasing attention for their health effects. Phytosterols have attracted great attention from scientists because of many physiological functions, for example, cholesterol-lowering, anticancer, anti-inflammatory, and immunomodulatory effects. In addition, the physiological functions of phytosterols, the purification, structure analysis, synthesis, and food application of phytosterols have been widely studied. Nowadays, many bioactivities of phytosterols have been assessed in vivo and in vitro. However, the mechanisms of their pharmacological activities are not yet fully understood, and in-depth investigation of the relationship between structure and function is crucial. Therefore, a contemporaneous overview of the extraction, beneficial properties, and the mechanisms, as well as the current states of phytosterol application, in the food field of phytosterols is provided in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (M.S.); (L.Y.); (J.Z.); (X.W.); (M.Z.); (H.L.); (Y.J.); (F.Z.)
| |
Collapse
|
3
|
Xu H, Xin Y, Wang J, Liu Z, Cao Y, Li W, Zhou Y, Wang Y, Liu P. The TICE Pathway: Mechanisms and Potential Clinical Applications. Curr Atheroscler Rep 2023; 25:653-662. [PMID: 37736845 DOI: 10.1007/s11883-023-01147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW Transintestinal cholesterol excretion (TICE) is a non-biliary pathway that excretes excess cholesterol from the body through feces. This article focuses on the research progress of the TICE pathway in the last few years, including the discovery process of the TICE pathway, its molecular mechanism, and potential clinical applications. RECENT FINDINGS Cholesterol homeostasis is vital for cardiovascular diseases, stroke, and neurodegenerative diseases. Beyond the cholesterol excretion via hepatobiliary pathway, TICE contributes significantly to reverse cholesterol transport ex vivo and in vivo. Nuclear receptors are ligand-activated transcription factors that regulate cholesterol metabolism. The farnesoid X receptor (FXR) and liver X receptor (LXR) activated, respectively, by oxysterols and bile acids promote intestinal cholesterol secretion through ABCG5/G8. Nutrient regulators and intestinal flora also modulate cholesterol secretion through the TICE pathway. TICE allows direct elimination of plasma cholesterol, which may provide an attractive therapeutic targets. TICE pathway may provide a potential target to stimulate cholesterol elimination and reduce the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Yiyang Xin
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Weiguo Li
- People's Hospital of Hebi, Henan University, Henan, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China.
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Peng Liu
- People's Hospital of Hebi, Henan University, Henan, China.
| |
Collapse
|
4
|
Barkas F, Bathrellou E, Nomikos T, Panagiotakos D, Liberopoulos E, Kontogianni MD. Plant Sterols and Plant Stanols in Cholesterol Management and Cardiovascular Prevention. Nutrients 2023; 15:2845. [PMID: 37447172 DOI: 10.3390/nu15132845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the major mortality cause in developed countries with hypercholesterolaemia being one of the primary modifiable causes. Lifestyle intervention constitutes the first step in cholesterol management and includes dietary modifications along with the use of functional foods and supplements. Functional foods enriched with plant sterols/stanols have become the most widely used nonprescription cholesterol-lowering approach, despite the lack of randomized trials investigating their long-term safety and cardiovascular efficacy. The cholesterol-lowering effect of plant-sterol supplementation is well-established and a potential beneficial impact on other lipoproteins and glucose homeostasis has been described. Nevertheless, experimental and human observational studies investigating the association of phytosterol supplementation or circulating plant sterols with various markers of atherosclerosis and ASCVD events have demonstrated controversial results. Compelling evidence from recent genetic studies have also linked elevated plasma concentrations of circulating plant sterols with ASCVD presence, thus raising concerns about the safety of phytosterol supplementation. Thus, the aim of this review is to provide up-to-date data on the effect of plant sterols/stanols on lipid-modification and cardiovascular outcomes, as well as to discuss any safety issues and practical concerns.
Collapse
Affiliation(s)
- Fotios Barkas
- Department of Hygiene & Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Bathrellou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Evangelos Liberopoulos
- 1st Propaedeutic Department of Medicine, General Hospital of Atherns 'Laiko', School of Medicine, National and Kapodistrιan University of Athens, 11527 Athens, Greece
| | - Meropi D Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| |
Collapse
|
5
|
Efficacy of Submicron Dispersible Free Phytosterols on Non-Alcoholic Fatty Liver Disease: A Pilot Study. J Clin Med 2023; 12:jcm12030979. [PMID: 36769628 PMCID: PMC9918217 DOI: 10.3390/jcm12030979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND No pharmacological treatment is yet approved for non-alcoholic fatty liver disease (NAFLD). Plant sterols have shown healthy properties beyond lowering LDL-cholesterol, including lowering triglycerides and lipoprotein plasma levels. Despite pre-clinical data suggesting their involvement in liver fat control, no clinical study has yet been successful. AIMS Testing a sub-micron, free, phytosterol dispersion efficacy on NAFLD. METHODS A prospective, uncontrolled pilot study was carried out on 26 patients with ≥17.4% liver steatosis quantified by magnetic resonance imaging. Subjects consumed daily a sub-micron dispersion providing 2 g of phytosterols. Liver fat, plasma lipids, lipoproteins, liver enzymes, glycemia, insulinemia, phytosterols, liposoluble vitamins and C-reactive protein were assessed at baseline and after one year of treatment. RESULTS Liver steatosis relative change was -19%, and 27% of patients reduced liver fat by more than 30%. Statistically and clinically significant improvements in plasma triglycerides, HDL-C, VLDL and HDL particle number and C-reactive protein were obtained, despite the rise of aspartate aminotransferase, glycemia and insulinemia. Though phytosterol plasma levels were raised by >30%, no adverse effects were presented, and even vitamin D increased by 23%. CONCLUSIONS Our results are the first evidence in humans of the efficacy of submicron dispersible phytosterols for the treatment of liver steatosis, dyslipidemia and inflammatory status in NAFLD.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The transintestinal cholesterol efflux (TICE) pathway is the second described route for plasma cholesterol fecal elimination. This article summarizes recent TICE research progresses, involving TICE inducers, molecular determinants of this pathway, and its role in lipoprotein metabolism. RECENT FINDINGS TICE is an active pathway in mice, rats, and humans. Kinetic measurements showed that under basal conditions, the relative contribution of TICE in fecal elimination of plasma cholesterol is quantitatively less important than the hepatobiliary pathway. However, the amplitude of TICE can be induced by numerous nutritional factors and pharmacological drugs. More importantly, by contrast with the stimulation of biliary cholesterol excretion that is associated with an increased risk of gallstone formation, TICE appears as a safer therapeutical target. Finally, several independent studies have demonstrated that TICE is actively contributing to the anti-atherogenic reverse cholesterol pathway reinforcing the interest to better understand its mode of action. The discovery of TICE and the understanding of its mode of action open new therapeutical perspectives for patients at high risk of cardiovascular diseases.
Collapse
|
7
|
Yang JW, Ji HF. Phytosterols as bioactive food components against nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34871105 DOI: 10.1080/10408398.2021.2006137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phytosterols are bioactive food components widely present in cell membranes of plants, especially in nuts and oilseeds. In recent years, many studies have shown that phytosterols possess therapeutic potentials for nonalcoholic fatty liver disease (NAFLD). This review summarizes the effects of phytosterols from in vitro and in vivo studies to lower the levels of total cholesterol (TC) and triglycerides (TG), and the evidence supporting the potential of phytosterols against NAFLD. The potential mechanisms by which phytosterols improve NAFLD may include (i) competition with cholesterol; (ii) regulation of key factors involved in cholesterol and TG metabolism; and (iii) inhibition of liver inflammation and (iv) regulation of liver fatty acid composition. In summary, phytosterols are potential natural ingredients with good safety profile against NAFLD, which deserve more future studies.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| |
Collapse
|
8
|
Jayaraman S, Roy A, Vengadassalapathy S, Sekar R, Veeraraghavan VP, Rajagopal P, Rengasamy G, Mukherjee R, Sekar D, Manjunathan R. An Overview on the Therapeutic Function of Foods Enriched with Plant Sterols in Diabetes Management. Antioxidants (Basel) 2021; 10:antiox10121903. [PMID: 34943006 PMCID: PMC8750040 DOI: 10.3390/antiox10121903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is one of the most significant health issues across the world. People identified with diabetes are more vulnerable to various infections and are at a greater risk of developing cardiovascular diseases. The plant-based food we consume often contains many sterol-based bioactive compounds. It is well documented that these compounds could effectively manage the processes of insulin metabolism and cholesterol regulation. Insulin resistance followed by hyperglycemia often results in oxidative stress level enhancement and increased reactive oxygen species production. At the molecular level, these changes induce apoptosis in pancreatic cells and hence lead to insulin insufficiency. Studies have proved that plant sterols can lower inflammatory and oxidative stress damage connected with DNA repair mechanisms. The effective forms of phyto compounds are polyphenols, terpenoids, and thiols abundant in vegetables, fruits, nuts, and seeds. The available conventional drug-based therapies for the prevention and management of diabetes are time-consuming, costly, and with life-threatening side effects. Thereby, the therapeutic management of diabetes with plant sterols available in our daily diet is highly welcome as there are no side effects. This review intends to offer an overview of the present scenario of the anti-diabetic compounds from food ingredients towards the therapeutic beneficial against diabetes.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 602105, India
| | - Ramya Sekar
- Department of Oral Pathology, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Raktim Mukherjee
- Shree PM Patel Institute of PG Studies and Research in Science, Sardar Patel University, Anand 388001, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Reji Manjunathan
- Multi-Disciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu 60300, India
| |
Collapse
|
9
|
de Boer JF, de Vries HD, Palmiotti A, Li R, Doestzada M, Hoogerland JA, Fu J, La Rose AM, Westerterp M, Mulder NL, Hovingh MV, Koehorst M, Kloosterhuis NJ, Wolters JC, Bloks VW, Haas JT, Dombrowicz D, Staels B, van de Sluis B, Kuipers F. Cholangiopathy and Biliary Fibrosis in Cyp2c70-Deficient Mice Are Fully Reversed by Ursodeoxycholic Acid. Cell Mol Gastroenterol Hepatol 2020; 11:1045-1069. [PMID: 33309945 PMCID: PMC7898074 DOI: 10.1016/j.jcmgh.2020.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Bile acids (BAs) aid intestinal fat absorption and exert systemic actions by receptor-mediated signaling. BA receptors have been identified as drug targets for liver diseases. Yet, differences in BA metabolism between humans and mice hamper translation of pre-clinical outcomes. Cyp2c70-ablation in mice prevents synthesis of mouse/rat-specific muricholic acids (MCAs), but potential (patho)physiological consequences of their absence are unknown. We therefore assessed age- and gender-dependent effects of Cyp2c70-deficiency in mice. METHODS The consequences of Cyp2c70-deficiency were assessed in male and female mice at different ages. RESULTS Cyp2c70-/- mice were devoid of MCAs and showed high abundances of chenodeoxycholic and lithocholic acids. Cyp2c70-deficiency profoundly impacted microbiome composition. Bile flow and biliary BA secretion were normal in Cyp2c70-/- mice of both sexes. Yet, the pathophysiological consequences of Cyp2c70-deficiency differed considerably between sexes. Three-week old male Cyp2c70-/- mice showed high plasma BAs and transaminases, which spontaneously decreased thereafter to near-normal levels. Only mild ductular reactions were observed in male Cyp2c70-/- mice up to 8 months of age. In female Cyp2c70-/- mice, plasma BAs and transaminases remained substantially elevated with age, gut barrier function was impaired and bridging fibrosis was observed at advanced age. Addition of 0.1% ursodeoxycholic acid to the diet fully normalized hepatic and intestinal functions in female Cyp2c70-/- mice. CONCLUSION Cyp2c70-/- mice show transient neonatal cholestasis and develop cholangiopathic features that progress to bridging fibrosis in females only. These consequences of Cyp2c70-deficiency are restored by treatment with UDCA, indicating a role of BA hydrophobicity in disease development.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Hilde D de Vries
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; University of Groningen, Campus Fryslân, Leeuwarden, the Netherlands
| | - Anna Palmiotti
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Rumei Li
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marwah Doestzada
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Genetics University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joanne A Hoogerland
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Genetics University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niels L Mulder
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Milaine V Hovingh
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, F-59000 Lille, France
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; iPSC/CRISPR Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Ibrahim A, Shafie NH, Mohd Esa N, Shafie SR, Bahari H, Abdullah MA. Mikania micrantha Extract Inhibits HMG-CoA Reductase and ACAT2 and Ameliorates Hypercholesterolemia and Lipid Peroxidation in High Cholesterol-Fed Rats. Nutrients 2020; 12:nu12103077. [PMID: 33050310 PMCID: PMC7599693 DOI: 10.3390/nu12103077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to determine the effect of an ethyl acetate extract of Mikania micrantha stems (EAMMS) in hypercholesterolemia-induced rats. Rats were divided into a normal group (NC) and hypercholesterolemia induced groups: hypercholesterolemia control group (PC), simvastatin group (SV) (10 mg/kg) and EAMMS extract groups at different dosages of 50, 100 and 200 mg/kg, respectively. Blood serum and tissues were collected for haematological, biochemical, histopathological, and enzyme analysis. Total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, malondialdehyde (MDA) level, as well as enzymes of HMG-CoA reductase (HMGCR) and acetyl-CoA acetyltransferase 2 (ACAT2), were measured. Feeding rats with high cholesterol diet for eight weeks resulted in a significantly (p < 0.05) increased of TC, TG, LDL-C, AST, ALT and MDA levels. Meanwhile, the administration of EAMMS extract (50, 100 and 200 mg/kg) and simvastatin (10 mg/kg) significantly reduced (p < 0.05) the levels of TC, TG, LDL-C and MDA compared to rats in the PC group. Furthermore, all EAMMS and SV-treated groups showed a higher HDL-C level compared to both NC and PC groups. No significant difference was found in the level of ALT, AST, urea and creatinine between the different dosages in EAMMS extracts. Treatment with EAMMS also exhibited the highest inhibition activity of enzyme HMGCR and ACAT2 as compared to the control group. From the histopathological examination, liver tissues in the PC group showed severe steatosis than those fed with EAMMS and normal diet. Treatment with EAMMS extract ameliorated and reduced the pathological changes in the liver. No morphological changes showed in the kidney structure of both control and treated groups. In conclusion, these findings demonstrated that EAMMS extract has anti-hypercholesterolemia properties and could be used as an alternative treatment for this disorder.
Collapse
Affiliation(s)
- Azlinda Ibrahim
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.); (N.M.E.); (S.R.S.)
| | - Nurul Husna Shafie
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.); (N.M.E.); (S.R.S.)
- Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-2470
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.); (N.M.E.); (S.R.S.)
| | - Siti Raihanah Shafie
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.); (N.M.E.); (S.R.S.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Vitamin D Status of Mice Deficient in Scavenger Receptor Class B Type 1, Cluster Determinant 36 and ATP-Binding Cassette Proteins G5/G8. Nutrients 2020; 12:nu12082169. [PMID: 32707802 PMCID: PMC7469065 DOI: 10.3390/nu12082169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Classical lipid transporters are suggested to modulate cellular vitamin D uptake. This study investigated the vitamin D levels in serum and tissues of mice deficient in SR-B1 (Srb1-/-), CD36 (Cd36-/-) and ABC-G5/G8 (Abcg5/g8-/-) and compared them with corresponding wild-type (WT) mice. All mice received triple-deuterated vitamin D3 (vitamin D3-d3) for six weeks. All knockout mice vs. WT mice showed specific alterations in their vitamin D concentrations. Srb1-/- mice had higher levels of vitamin D3-d3 in the serum, adipose tissue, kidney and heart, whereas liver levels of vitamin D3-d3 remained unaffected. Additionally, Srb1-/- mice had lower levels of deuterated 25-hydroxyvitamin D3 (25(OH)D3-d3) in the serum, liver and kidney compared to WT mice. In contrast, Cd36-/- and WT mice did not differ in the serum and tissue levels of vitamin D3-d3, but Cd36-/- vs. WT mice were characterized by lower levels of 25(OH)D3-d3 in the serum, liver and kidney. Finally, Abcg5/g8-/- mice tended to have higher levels of vitamin D3-d3 in the serum and liver. Major alterations in Abcg5/g8-/- mice were notably higher levels of 25(OH)D3-d3 in the serum and kidney, accompanied by a higher hepatic mRNA abundance of Cyp27a1 hydroxylase. To conclude, the current data emphasize the significant role of lipid transporters in the uptake, tissue distribution and activation of vitamin D.
Collapse
|
12
|
Feng S, Belwal T, Li L, Limwachiranon J, Liu X, Luo Z. Phytosterols and their derivatives: Potential health‐promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 2020; 19:1243-1267. [DOI: 10.1111/1541-4337.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- College of Food Science and TechnologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light IndustryZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Xingquan Liu
- School of Agriculture and Food SciencesZhejiang Agriculture and Forestry University Hangzhou 311300 People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Ningbo Research InstituteZhejiang University Ningbo 315100 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
13
|
Scolaro B, de Andrade LF, Castro IA. Cardiovascular Disease Prevention: The Earlier the Better? A Review of Plant Sterol Metabolism and Implications of Childhood Supplementation. Int J Mol Sci 2019; 21:ijms21010128. [PMID: 31878116 PMCID: PMC6981772 DOI: 10.3390/ijms21010128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the underlying cause of major cardiovascular events. The development of atherosclerotic plaques begins early in life, indicating that dietary interventions in childhood might be more effective at preventing cardiovascular disease (CVD) than treating established CVD in adulthood. Although plant sterols are considered safe and consistently effective in lowering plasma cholesterol, the health effects of early-life supplementation are unclear. Studies suggest there is an age-dependent effect on plant sterol metabolism: at a younger age, plant sterol absorption might be increased, while esterification and elimination might be decreased. Worryingly, the introduction of low-cholesterol diets in childhood may unintentionally favor a higher intake of plant sterols. Although CVD prevention should start as early as possible, more studies are needed to better elucidate the long-term effects of plant sterol accumulation and its implication on child development.
Collapse
|
14
|
Cedó L, Farràs M, Lee-Rueckert M, Escolà-Gil JC. Molecular Insights into the Mechanisms Underlying the Cholesterol- Lowering Effects of Phytosterols. Curr Med Chem 2019; 26:6704-6723. [DOI: 10.2174/0929867326666190822154701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 01/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
Dietary phytosterols, which comprise plant sterols and stanols, reduce plasma Low-Density Lipoprotein-Cholesterol (LDL-C) levels when given 2 g/day. Since this dose has not been reported to cause health-related side effects in long-term human studies, food products containing these plant compounds are used as potential therapeutic dietary options to reduce LDL-C and cardiovascular disease risk. Several mechanisms have been proposed to explain the cholesterol-lowering action of phytosterols. They may compete with dietary and biliary cholesterol for micellar solubilization in the intestinal lumen, impairing intestinal cholesterol absorption. Recent evidence indicates that phytosterols may also regulate other pathways. Impaired intestinal cholesterol absorption is usually associated with reduced cholesterol transport to the liver, which may reduce the incorporation of cholesterol into Very-Low- Density Lipoprotein (VLDL) particles, thereby lowering the rate of VLDL assembly and secretion. Impaired liver VLDL production may reduce the rate of LDL production. On the other hand, significant evidence supports a role for plant sterols in the Transintestinal Cholesterol Excretion (TICE) pathway, although the exact mechanisms by which they promote the flow of cholesterol from the blood to enterocytes and the intestinal lumen remains unknown. Dietary phytosterols may also alter the conversion of bile acids into secondary bile acids, and may lower the bile acid hydrophobic/hydrophilic ratio, thereby reducing intestinal cholesterol absorption. This article reviews the progress to date in research on the molecular mechanisms underlying the cholesterol-lowering effects of phytosterols.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomediques (IIB) Sant Pau, Barcelona, Spain
| | - Marta Farràs
- Integrative Systems Medicine and Digestive Disease Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
15
|
Zhu H, Chen J, He Z, Hao W, Liu J, Kwek E, Ma KY, Bi Y. Plasma Cholesterol-Lowering Activity of Soybean Germ Phytosterols. Nutrients 2019; 11:nu11112784. [PMID: 31731675 PMCID: PMC6893772 DOI: 10.3390/nu11112784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Soybean germ phytosterols (SGP) largely exist in soybean germ oil. Our previous study demonstrated that soybean germ oil was effective in reducing plasma cholesterol. However, it remains unknown if its phytosterols are the active ingredients responsible for the plasma cholesterol-lowering activity. The present study aimed to test the effect of SGP on plasma cholesterol and to investigate its associated underlying mechanisms using hamsters as animal model. Male hamsters (n = 40) were randomly divided into five groups (n = 8/group) and fed one of the five diets: a non-cholesterol diet (NCD), a high cholesterol diet (HCD), a HCD diet containing 0.5% cholestyramine (PC), and two HCD diets containing 0.1% (LP) and 0.2% (HP) SGP, respectively, for six weeks. Results showed that SPG reduced plasma cholesterol level in a dose-dependent manner, whereas it dose-dependently increased the excretion of both fecal neutral and acidic sterols. SGP was also effective in displacing cholesterol from micelles. It was concluded that SGP possessed hypocholesterolemic activity, likely by inhibiting cholesterol absorption in the intestine and promoting fecal sterol excretion.
Collapse
Affiliation(s)
- Hanyue Zhu
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; (H.Z.); (Z.H.); (W.H.); (J.L.); (E.K.); (K.Y.M.)
| | - Jingnan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450000, China;
- Correspondence: ; Fax: +86-371-6775-8022
| | - Zouyan He
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; (H.Z.); (Z.H.); (W.H.); (J.L.); (E.K.); (K.Y.M.)
| | - Wangjun Hao
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; (H.Z.); (Z.H.); (W.H.); (J.L.); (E.K.); (K.Y.M.)
| | - Jianhui Liu
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; (H.Z.); (Z.H.); (W.H.); (J.L.); (E.K.); (K.Y.M.)
| | - Erika Kwek
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; (H.Z.); (Z.H.); (W.H.); (J.L.); (E.K.); (K.Y.M.)
| | - Ka Ying Ma
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; (H.Z.); (Z.H.); (W.H.); (J.L.); (E.K.); (K.Y.M.)
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450000, China;
| |
Collapse
|
16
|
Lifsey HC, Kaur R, Thompson BH, Bennett L, Temel RE, Graf GA. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J Nutr Biochem 2019; 76:108263. [PMID: 31759199 DOI: 10.1016/j.jnutbio.2019.108263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 02/09/2023]
Abstract
Despite advances in healthcare, cardiovascular disease (CVD) remains the leading cause of death in the United States. Elevated levels of plasma cholesterol are highly predictive of CVD and stroke and are the principal driver of atherosclerosis. Unfortunately, current cholesterol lowering agents, such as statins, are not known to reverse atherosclerotic disease once it has been established. In preclinical models, agonists of nuclear receptor, LXR, have been shown to reduce and reverse atherosclerosis. Phytosterols are bioactive non-cholesterol sterols that act as LXR agonists and regulate cholesterol metabolism and transport. We hypothesized that stigmasterol would act as an LXR agonist and alter intestinal cholesterol secretion to promote cholesterol elimination. Mice were fed a control diet, or a diet supplemented with stigmasterol (0.3% w/w) or T0901317 (0.015% w/w), a known LXR agonist. In this experiment we analyzed the sterol content of bile, intestinal perfusate, plasma, and feces. Additionally, the liver and small intestine were analyzed for relative levels of transcripts known to be regulated by LXR. We observed that T0901317 robustly promoted cholesterol elimination and acted as a strong LXR agonist. Stigmasterol promoted transintestinal cholesterol secretion through an LXR-independent pathway.
Collapse
Affiliation(s)
| | - Rupinder Kaur
- Department of Pharmaceutical Sciences, College of Pharmacy
| | | | - Lisa Bennett
- Department of Pharmaceutical Sciences, College of Pharmacy
| | - Ryan E Temel
- Department of Physiology, College of Medicine, University of Kentucky; Saha Cardiovascular Research Center
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, College of Pharmacy; Saha Cardiovascular Research Center; Barnstable Brown Diabetes and Obesity Center.
| |
Collapse
|
17
|
Li J, Pijut SS, Wang Y, Ji A, Kaur R, Temel RE, van der Westhuyzen DR, Graf GA. Simultaneous Determination of Biliary and Intestinal Cholesterol Secretion Reveals That CETP (Cholesteryl Ester Transfer Protein) Alters Elimination Route in Mice. Arterioscler Thromb Vasc Biol 2019; 39:1986-1995. [PMID: 31462090 PMCID: PMC6761010 DOI: 10.1161/atvbaha.119.312952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/13/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Determine the impact of CETP (cholesteryl ester transfer protein) on the route of cholesterol elimination in mice. Approach and Results: We adapted our protocol for biliary cholesterol secretion with published methods for measuring transintestinal cholesterol elimination. Bile was diverted and biliary lipid secretion maintained by infusion of bile acid. The proximal small bowel was perfused with bile acid micelles. In high-fat, high-cholesterol-fed mice, the presence of a CETP transgene increased biliary cholesterol secretion at the expense of transintestinal cholesterol elimination. The increase in biliary cholesterol secretion was not associated with increases in hepatic SR-BI (scavenger receptor BI) or ABCG5 (ATP-binding cassette G5) ABCG8. The decline in intestinal cholesterol secretion was associated with an increase in intestinal Niemann-Pick disease, type C1, gene-like 1 mRNA. Finally, we followed the delivery of HDL (high-density lipoprotein) or LDL (low-density lipoprotein) cholesteryl esters (CE) from plasma to bile and intestinal perfusates. HDL-CE favored the biliary pathway. Following high-fat feeding, the presence of CETP directed HDL-CE away from the bile and towards the intestine. The presence of CETP increased LDL-CE delivery to bile, whereas the appearance of LDL-CE in intestinal perfusate was near the lower limit of detection. CONCLUSIONS Biliary and intestinal cholesterol secretion can be simultaneously measured in mice and used as a model to examine factors that alter cholesterol elimination. Plasma factors, such as CETP, alter the route of cholesterol elimination from the body. Intestinal and biliary cholesterol secretion rates are independent of transhepatic or transintestinal delivery of HDL-CE, whereas LDL-CE was eliminated almost exclusively in the hepatobiliary pathway.
Collapse
Affiliation(s)
- Jianing Li
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Sonja S Pijut
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY
| | - Yuhuan Wang
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY
| | - Ailing Ji
- Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Rupinder Kaur
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY
| | - Ryan E Temel
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Deneys R van der Westhuyzen
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
- Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Gregory A Graf
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Barnstable Brown Center for Diabetes and Obesity, University of Kentucky, Lexington, KY
| |
Collapse
|
18
|
van de Peppel IP, Bertolini A, van Dijk TH, Groen AK, Jonker JW, Verkade HJ. Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. J Lipid Res 2019; 60:1562-1572. [PMID: 31324653 PMCID: PMC6718438 DOI: 10.1194/jlr.m094607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Indexed: 11/20/2022] Open
Abstract
Transintestinal cholesterol excretion (TICE) is a major route for eliminating cholesterol from the body and a potential therapeutic target for hypercholesterolemia. The underlying mechanism, however, is largely unclear, and its contribution to cholesterol disposal from the body is obscured by the counteracting process of intestinal cholesterol reabsorption. To determine the quantity of TICE independent from its reabsorption, we studied two models of decreased intestinal cholesterol absorption. Cholesterol absorption was inhibited either by ezetimibe or, indirectly, by the genetic inactivation of the intestinal apical sodium-dependent bile acid transporter (ASBT; SLC10A2). Both ezetimibe treatment and Asbt inactivation virtually abrogated fractional cholesterol absorption (from 46% to 4% and 6%, respectively). In both models, fecal neutral sterol excretion and net intestinal cholesterol balance were considerably higher than in control mice (5- and 7-fold, respectively), suggesting that, under physiological conditions, TICE is largely reabsorbed. In addition, the net intestinal cholesterol balance was increased to a similar extent but was not further increased when the models were combined, suggesting that the effect on cholesterol reabsorption was already maximal under either condition alone. On the basis of these findings, we hypothesize that the inhibition of cholesterol (re)absorption combined with stimulating TICE will be most effective in increasing cholesterol disposal.
Collapse
Affiliation(s)
- Ivo P van de Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Bertolini
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Laboratory of Experimental Vascular Medicine University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Grefhorst A, Verkade HJ, Groen AK. The TICE Pathway: Mechanisms and Lipid-Lowering Therapies. Methodist Debakey Cardiovasc J 2019; 15:70-76. [PMID: 31049152 DOI: 10.14797/mdcj-15-1-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the well-known hepatobiliary pathway of cholesterol excretion into the feces, transintestinal cholesterol excretion (TICE) is a second major pathway through which cholesterol is disposed from the body. In the process of TICE, cholesterol is taken up from lipoprotein particles at the basolateral side of the enterocyte and translocates towards the apical side of the enterocyte. At the apical side, the ATP-binding cassette transporters G5 and G8 form a heterodimer that transports cholesterol into the intestinal lumen. A substantial amount of the secreted cholesterol is likely reabsorbed by the cholesterol influx transporter Niemann-Pick C1-Like 1 (NPC1L1) since recent data indicate that inhibition of NPC1L1 increases the efficacy of TICE for disposal of cholesterol via the feces. The pathways and proteins involved in intracellular cholesterol trafficking in the enterocyte have not yet been identified. Therefore, in addition to discussing known mediators of TICE, this review will also examine potential candidates involved in cholesterol translocation in the enterocyte. Both the cholesterol reuptake and efflux pathways can be influenced by pharmaceutical means; thus, the TICE pathway is a very attractive target to increase cholesterol excretion from the body and prevent or mitigate atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Aldo Grefhorst
- AMSTERDAM UNIVERSITY MEDICAL CENTERS, AMSTERDAM, THE NETHERLANDS
| | - Henkjan J Verkade
- UNIVERSITY MEDICAL CENTER GRONINGEN, UNIVERSITY OF GRONINGEN, GRONINGEN, THE NETHERLANDS
| | - Albert K Groen
- AMSTERDAM UNIVERSITY MEDICAL CENTERS, AMSTERDAM, THE NETHERLANDS.,UNIVERSITY MEDICAL CENTER GRONINGEN, UNIVERSITY OF GRONINGEN, GRONINGEN, THE NETHERLANDS
| |
Collapse
|
20
|
Nakano T, Inoue I, Murakoshi T. A Newly Integrated Model for Intestinal Cholesterol Absorption and Efflux Reappraises How Plant Sterol Intake Reduces Circulating Cholesterol Levels. Nutrients 2019; 11:nu11020310. [PMID: 30717222 PMCID: PMC6412963 DOI: 10.3390/nu11020310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cholesterol homeostasis is maintained through a balance of de novo synthesis, intestinal absorption, and excretion from the gut. The small intestine contributes to cholesterol homeostasis by absorbing and excreting it, the latter of which is referred to as trans-intestinal cholesterol efflux (TICE). Because the excretion efficiency of endogenous cholesterol is inversely associated with the development of atherosclerosis, TICE provides an attractive therapeutic target. Thus, elucidation of the mechanism is warranted. We have shown that intestinal cholesterol absorption and TICE are inversely correlated in intestinal perfusion experiments in mice. In this review, we summarized 28 paired data sets for absorption efficiency and fecal neutral sterol excretion, a surrogate marker of TICE, obtained from 13 available publications in a figure, demonstrating the inverse correlation were nearly consistent with the assumption. We then offer a bidirectional flux model that accommodates absorption and TICE occurring in the same segment. In this model, the brush border membrane (BBM) of intestinal epithelial cells stands as the dividing ridge for cholesterol fluxes, making the opposite fluxes competitive and being coordinated by shared BBM-localized transporters, ATP-binding cassette G5/G8 and Niemann-Pick C1-like 1. Furthermore, the idea is applied to address how excess plant sterol/stanol (PS) intake reduces circulating cholesterol level, because the mechanism is still unclear. We propose that unabsorbable PS repeatedly shuttles between the BBM and lumen and promotes concomitant cholesterol efflux. Additionally, PSs, which are chemically analogous to cholesterol, may disturb the trafficking machineries that transport cholesterol to the cell interior.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
21
|
Nakano T, Inoue I, Takenaka Y, Ikegami Y, Kotani N, Shimada A, Noda M, Murakoshi T. Luminal plant sterol promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. J Clin Biochem Nutr 2018; 63:102-105. [PMID: 30279620 PMCID: PMC6160726 DOI: 10.3164/jcbn.17-116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022] Open
Abstract
Plant sterols are used as food additives to reduce intestinal cholesterol absorption. They also increase fecal neutral sterol (FNS) excretion irrespective of the absorption inhibition. Intestine-mediated reverse cholesterol transport, or trans-intestinal cholesterol efflux (TICE), provides the major part of the increase of FNS excretion. However, it is unknown whether plant sterols stimulate TICE or not. We have shown previously that TICE can be evaluated by brush border membrane (BBM)-to-lumen cholesterol efflux. Thus, we examined whether luminal plant sterols stimulate BBM-to-lumen cholesterol efflux in the intestinal tract or not in mice. Cannulated upper jejunum that had been pre-labeled with orally given 3H-cholesterol, was flushed and perfused to collect 3H-cholesterol effluxed back into the lumen from the BBM to estimate the efflux efficiency. Adding 0.5 mg/ml of plant sterols, but not cholesterol, in the perfusion solution doubled the efflux. Plant sterols enter the BBM and are effluxed back to the lumen rapidly, in which process cholesterol transporters in the BBM are involved. We thus speculate that phytosterols alter cholesterol flux in the BBM; thereby, increases BBM-to-lumen cholesterol efflux, resulting in the increased TICE.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Iruma, Saitama 350-0495, Japan
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama 350-0495, Japan
| | - Yasuhiro Takenaka
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuichi Ikegami
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Norihiro Kotani
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Iruma, Saitama 350-0495, Japan
| | - Akira Shimada
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama 350-0495, Japan
| | - Mitsuhiko Noda
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama 350-0495, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Iruma, Saitama 350-0495, Japan
| |
Collapse
|
22
|
de Boer JF, Kuipers F, Groen AK. Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends Endocrinol Metab 2018; 29:123-133. [PMID: 29276134 DOI: 10.1016/j.tem.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are a subject of intense investigation and are being unraveled in increasing detail. In addition, insight into the complex interactions between cholesterol and bile acid metabolism has increased considerably in the last couple of years. This review provides an overview of the mechanisms involved in cholesterol uptake and excretion, with a particular emphasis on the most recent progress in this field. Special attention is given to the transintestinal cholesterol excretion (TICE) pathway, which was recently demonstrated to have a remarkably high transport capacity and to be sensitive to pharmacological modulation.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Vascular Medicine, University of Amsterdam Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Cedó L, Santos D, Ludwig IA, Silvennoinen R, García-León A, Kaipiainen L, Carbó JM, Valledor AF, Gylling H, Motilva MJ, Kovanen PT, Lee-Rueckert M, Blanco-Vaca F, Escolà-Gil JC. Phytosterol-mediated inhibition of intestinal cholesterol absorption in mice is independent of liver X receptor. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
| | - David Santos
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
| | - Iziar A. Ludwig
- Food Technology Department, UTPV-XaRTA, Agrotecnio Center; University of Lleida; Lleida Spain
| | | | - Annabel García-León
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Leena Kaipiainen
- University of Helsinki and Helsinki University Central Hospital; Department of Internal Medicine; Helsinki Finland
| | - José M. Carbó
- Department of Cellular Biology, Physiology and Immunology; School of Biology, University of Barcelona; Barcelona Spain
| | - Annabel F. Valledor
- Department of Cellular Biology, Physiology and Immunology; School of Biology, University of Barcelona; Barcelona Spain
| | - Helena Gylling
- University of Helsinki and Helsinki University Central Hospital; Department of Internal Medicine; Helsinki Finland
| | - Maria-José Motilva
- Food Technology Department, UTPV-XaRTA, Agrotecnio Center; University of Lleida; Lleida Spain
| | | | | | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
24
|
de Boer JF, Schonewille M, Dikkers A, Koehorst M, Havinga R, Kuipers F, Tietge UJ, Groen AK. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats—Brief Report. Arterioscler Thromb Vasc Biol 2017; 37:643-646. [DOI: 10.1161/atvbaha.116.308558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 11/16/2022]
Abstract
Objective—
Reverse cholesterol transport comprises efflux of cholesterol from macrophages and its subsequent removal from the body with the feces and thereby protects against formation of atherosclerotic plaques. Because of lack of suitable animal models that allow for evaluation of the respective contributions of biliary cholesterol secretion and transintestinal cholesterol excretion (TICE) to macrophage reverse cholesterol transport under physiological conditions, the relative importance of both pathways in this process has remained controversial.
Approach and Results—
To separate cholesterol traffic via the biliary route from TICE, bile flow was mutually diverted between rats, continuously, for 3 days. Groups of 2 weight-matched rats were designated as a pair, and both rats were equipped with cannulas in the bile duct and duodenum. Bile from rat 1 was diverted to the duodenum of rat 2, whereas bile from rat 2 was rerouted to the duodenum of rat 1. Next, rat 1 was injected with [
3
H]cholesterol-loaded macrophages. [
3
H]Cholesterol secreted via the biliary route was consequently diverted to rat 2 and could thus be quantified from the feces of that rat. On the other hand, [
3
H]cholesterol tracer in the feces of rat 1 reflected macrophage-derived cholesterol excreted via TICE. Using this setup, we found that 63% of the label secreted with the fecal neutral sterols had travelled via the biliary route, whereas 37% was excreted via TICE.
Conclusions—
TICE and biliary cholesterol secretion contribute to macrophage reverse cholesterol transport in rats. The majority of macrophage-derived cholesterol is however excreted via the hepatobiliary route.
Collapse
Affiliation(s)
- Jan Freark de Boer
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marleen Schonewille
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Arne Dikkers
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Martijn Koehorst
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rick Havinga
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Folkert Kuipers
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Uwe J.F. Tietge
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Albert K. Groen
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
25
|
de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, van Dijk TH, Jurdzinski A, Boverhof R, Wolters JC, Kuivenhoven JA, van Deursen JM, Oude Elferink RPJ, Moschetta A, Kremoser C, Verkade HJ, Kuipers F, Groen AK. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice. Gastroenterology 2017; 152:1126-1138.e6. [PMID: 28065787 DOI: 10.1053/j.gastro.2016.12.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway, however, are poorly understood. We aimed to identify mechanisms that regulate and stimulate TICE. METHODS We performed studies with C57Bl/6J mice, as well as with mice with intestine-specific knockout of the farnesoid X receptor (FXR), mice that express an FXR transgene specifically in the intestine, and ABCG8-knockout mice. Mice were fed a control diet or a diet supplemented with the FXR agonist PX20606, with or without the cholesterol absorption inhibitor ezetimibe. Some mice with intestine-specific knockout of FXR were given daily injections of fibroblast growth factor (FGF)19. To determine fractional cholesterol absorption, mice were given intravenous injections of cholesterol D5 and oral cholesterol D7. Mice were given 13C-acetate in drinking water for measurement of cholesterol synthesis. Bile cannulations were performed and biliary cholesterol secretion rates were assessed. In a separate set of experiments, bile ducts of male Wistar rats were exteriorized, allowing replacement of endogenous bile by a model bile. RESULTS In mice, we found TICE to be regulated by intestinal FXR via induction of its target gene Fgf15 (FGF19 in rats and human beings). Stimulation of this pathway caused mice to excrete up to 60% of their total cholesterol content each day. PX20606 and FGF19 each increased the ratio of muricholate:cholate in bile, inducing a more hydrophilic bile salt pool. The altered bile salt pool stimulated robust secretion of cholesterol into the intestinal lumen via the sterol-exporting heterodimer adenosine triphosphate binding cassette subfamily G member 5/8 (ABCG5/G8). Of note, the increase in TICE induced by PX20606 was independent of changes in cholesterol absorption. CONCLUSIONS Hydrophilicity of the bile salt pool, controlled by FXR and FGF15/19, is an important determinant of cholesterol removal via TICE. Strategies that alter bile salt pool composition might be developed for the prevention of cardiovascular disease. Transcript profiling: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=irsrayeohfcntqx&acc=GSE74101.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Marleen Schonewille
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marije Boesjes
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henk Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Trijnie Bos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Angelika Jurdzinski
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Renze Boverhof
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan A Kuivenhoven
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari, IRCCS Istituto Tumori "Giovanni Paolo II," Bari, Italy
| | | | - Henkjan J Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Dugardin C, Briand O, Touche V, Schonewille M, Moreau F, Le May C, Groen AK, Staels B, Lestavel S. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetol 2017; 54:191-199. [PMID: 27796655 DOI: 10.1007/s00592-016-0936-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
AIMS The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE. METHODS Differentiated Caco-2/TC7 cells were grown on transwells and incubated basolaterally (blood side) with human plasma and apically (luminal side) with lipid micelles. Radioactive and fluorescent cholesterol tracers were used to investigate cholesterol uptake at the basolateral membrane, intracellular distribution and apical excretion. RESULTS Our results show that cholesterol is taken up at the basolateral membrane, accumulates intracellularly as lipid droplets and undergoes a cholesterol acceptor-facilitated and progressive excretion through the apical membrane of enterocytes. The overall process is abolished at 4 °C, suggesting a biologically active phenomenon. Moreover, this trans-enterocytic retrograde cholesterol transport displays some TICE features like modulation by PCSK9 and an ABCB1 inhibitor. Finally, we highlight the involvement of microtubules in the transport of plasma cholesterol from basolateral to apical pole of enterocytes. CONCLUSIONS The human Caco-2/TC7 cell line appears a good in vitro model to investigate the enterocytic molecular mechanisms of TICE, which may help to identify intestinal molecular targets to enhance reverse cholesterol transport and fight against dyslipidemia.
Collapse
Affiliation(s)
- Camille Dugardin
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| | - Olivier Briand
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| | - Véronique Touche
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| | - Marleen Schonewille
- University Medical Center Groningen, Department of Pediatrics, University of Groningen, Groningen, The Netherlands
| | | | - Cédric Le May
- INSERM, UMR 1087, CNRS UMR 6291, 44000, Nantes, France
| | - Albert K Groen
- University Medical Center Groningen, Department of Pediatrics, University of Groningen, Groningen, The Netherlands
- Academic Medical Center, Amsterdam, The Netherlands
| | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France.
| | - Sophie Lestavel
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| |
Collapse
|
27
|
Stöger JL, Boshuizen MCS, Brufau G, Gijbels MJJ, Wolfs IMJ, van der Velden S, Pöttgens CCH, Vergouwe MN, Wijnands E, Beckers L, Goossens P, Kerksiek A, Havinga R, Müller W, Lütjohann D, Groen AK, de Winther MPJ. Deleting myeloid IL-10 receptor signalling attenuates atherosclerosis in LDLR-/- mice by altering intestinal cholesterol fluxes. Thromb Haemost 2016; 116:565-77. [PMID: 27358035 DOI: 10.1160/th16-01-0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022]
Abstract
Inflammatory responses and cholesterol homeostasis are interconnected in atherogenesis. Interleukin (IL)-10 is an important anti-inflammatory cytokine, known to suppress atherosclerosis development. However, the specific cell types responsible for the atheroprotective effects of IL-10 remain to be defined and knowledge on the actions of IL-10 in cholesterol homeostasis is scarce. Here we investigated the functional involvement of myeloid IL-10-mediated atheroprotection. To do so, bone marrow from IL-10 receptor 1 (IL-10R1) wild-type and myeloid IL-10R1-deficient mice was transplanted to lethally irradiated female LDLR-/- mice. Hereafter, mice were given a high cholesterol diet for 10 weeks after which atherosclerosis development and cholesterol metabolism were investigated. In vitro, myeloid IL-10R1 deficiency resulted in a pro-inflammatory macrophage phenotype. However, in vivo significantly reduced lesion size and severity was observed. This phenotype was associated with lower myeloid cell accumulation and more apoptosis in the lesions. Additionally, a profound reduction in plasma and liver cholesterol was observed upon myeloid IL-10R1 deficiency, which was reflected in plaque lipid content. This decreased hypercholesterolaemia was associated with lowered very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) levels, likely as a response to decreased intestinal cholesterol absorption. In addition, IL-10R1 deficient mice demonstrated substantially higher faecal sterol loss caused by increased non-biliary cholesterol efflux. The induction of this process was linked to impaired ACAT2-mediated esterification of liver and plasma cholesterol. Overall, myeloid cells do not contribute to IL-10-mediated atheroprotection. In addition, this study demonstrates a novel connection between IL-10-mediated inflammation and cholesterol homeostasis in atherosclerosis. These findings make us reconsider IL-10 as a beneficial influence on atherosclerosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Biological Transport, Active
- Cholesterol/metabolism
- Cholesterol, Dietary/administration & dosage
- Disease Models, Animal
- Female
- Hypercholesterolemia/prevention & control
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Intestinal Mucosa/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Knockout
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, Interleukin-10/deficiency
- Receptors, Interleukin-10/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Menno P J de Winther
- Prof. M. P. J. de Winther, PhD, Experimental Vascular Biology, Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands, Tel.: +31 20 5666762, E-mail:
| |
Collapse
|
28
|
Horikawa K, Hashimoto C, Kikuchi Y, Makita M, Fukudome SI, Okita K, Wada N, Oishi K. Wheat alkylresorcinols reduce micellar solubility of cholesterol in vitro and increase cholesterol excretion in mice. Nat Prod Res 2016; 31:578-582. [PMID: 27312999 DOI: 10.1080/14786419.2016.1198347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiological studies have shown that the consumption of whole grains can reduce risk for metabolic disorders. We recently showed that chronic supplementation with wheat alkylresorcinols (ARs) prevents glucose intolerance and insulin resistance with hepatic lipid accumulation induced in mice by a high-fat high-sucrose diet (HFHSD). This study examines the effects of ARs on the micellar solubility of cholesterol in vitro, as well as the effects of transient AR supplementation on faecal lipid excretion and plasma lipid levels in mice. We found that ARs formed bile micelles with taurocholate independently of phospholipids, and dose-dependently decreased the micellar solubility of cholesterol in a biliary micelle model. Transient AR supplementation with HFHSD increased faecal cholesterol and triglyceride contents and decreased plasma cholesterol concentrations. These suggest that one underlying mechanism through which ARs suppress diet-induced obesity is by interfering with the micellar cholesterol solubilisation in the digestive tract, which subsequently decreases cholesterol absorption.
Collapse
Affiliation(s)
- Kazumasa Horikawa
- a Biological Clock Research Group , Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Chiaki Hashimoto
- a Biological Clock Research Group , Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan.,b Faculty of Science and Technology, Department of Applied Biological Science , Tokyo University of Science , Noda, Chiba , Japan
| | - Yosuke Kikuchi
- c Quality Assurance Division, Research Center for Basic Science, Research and Development , Nisshin Seifun Group Inc. , Fujimino, Saitama , Japan
| | - Miki Makita
- c Quality Assurance Division, Research Center for Basic Science, Research and Development , Nisshin Seifun Group Inc. , Fujimino, Saitama , Japan
| | - Shin-Ichi Fukudome
- c Quality Assurance Division, Research Center for Basic Science, Research and Development , Nisshin Seifun Group Inc. , Fujimino, Saitama , Japan
| | - Kimiko Okita
- d Yeast Function Development Unit , Oriental Yeast Co., Ltd. , Itabashi , Japan
| | - Naoyuki Wada
- b Faculty of Science and Technology, Department of Applied Biological Science , Tokyo University of Science , Noda, Chiba , Japan
| | - Katsutaka Oishi
- a Biological Clock Research Group , Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan.,e Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences , The University of Tokyo , Kashiwa, Chiba , Japan.,f Department of Applied Biological Science, Graduate School of Science and Technology , Tokyo University of Science , Noda, Chiba , Japan
| |
Collapse
|
29
|
Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, Yu L, Fogelman S, Volpe C, Bensinger SJ, Anantharamaiah GM, Shechter I, Fogelman AM, Reddy ST. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res 2016; 57:1175-93. [PMID: 27199144 DOI: 10.1194/jlr.m067025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/28/2023] Open
Abstract
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol.
Collapse
Affiliation(s)
- David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA
| | - Alan Wagner
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Izumi Kaji
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kevin J Williams
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Spencer Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Carmen Volpe
- Division of Laboratory Animal Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven J Bensinger
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ishaiahu Shechter
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
30
|
Zhao D. Challenges associated with elucidating the mechanisms of the hypocholesterolaemic activity of saponins. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Nakano T, Inoue I, Takenaka Y, Ono H, Katayama S, Awata T, Murakoshi T. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine. PLoS One 2016; 11:e0152207. [PMID: 27023132 PMCID: PMC4811413 DOI: 10.1371/journal.pone.0152207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
- * E-mail:
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Yasuhiro Takenaka
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Hiraku Ono
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Shigehiro Katayama
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Takuya Awata
- Department of Diabetes, Endocrinology and Metabolism, International University of Health and Welfare Hospital, Nasushiobara-shi, Tochigi, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| |
Collapse
|
32
|
Rideout TC, Marinangeli CPF, Harding SV. Triglyceride-Lowering Response to Plant Sterol and Stanol Consumption. J AOAC Int 2015; 98:707-715. [PMID: 25941890 DOI: 10.5740/jaoacint.sgerideout] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phytosterols (PS) have long been recognized for their cholesterol-lowering action, however, recent work has highlighted triglyceride (TG)-lowering responses to PS that may have been overlooked in previous human interventions and mechanistic animal model studies. This review assesses the current state of knowledge regarding the effect of dietary PS supplementation on blood TG concentrations by examining the average therapeutic response, potential mechanisms, and metabolic and genetic factors that may contribute to inter-individual variability. Data from human intervention trials demonstrates that, compared to baseline concentrations, PS supplementation results in a variable TG-lowering response ranging from 0.8 to 28%. It is evident that hypertriglyceridemic individuals (>1.7 mmol/L) have a greater TG-lowering response to PS (11-28%) than subjects with normal plasma TG concentrations (0.8-7%). Although a genetic basis for the variable TG-lowering effects of PS is probable, there are only limited studies to draw on. The available data suggest that polymorphisms in the apolipoprotein E (apoE) gene may affect responsiveness, with PS-induced reductions in TG more readily evident in apoE2 than apoE3 or E4 subjects. Although only a minimal number of animal model studies have been conducted to specifically examine the mechanisms whereby PS may reduce blood TG concentrations, it appears that there may be multiple mechanisms involved including interruption of intestinal fatty acid absorption and modulation of hepatic lipogenesis and very low density lipoprotein packaging and secretion. In summary, the available data suggest that PS may be an effective therapy to lower blood TG, particularly in hypertriglyceridemic individuals. However, before PS can be widely recommended as a TG-lowering therapy, studies that are specifically powered and designed to fully access therapeutic responses and the mechanisms involved are required.
Collapse
Affiliation(s)
- Todd C Rideout
- University at Buffalo, School of Public Health and Health Professions, Department of Exercise and Nutrition Sciences, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
33
|
Acute intake of plant stanol esters induces changes in lipid and lipoprotein metabolism-related gene expression in the liver and intestines of mice. Lipids 2015; 50:529-41. [PMID: 25931382 PMCID: PMC4445258 DOI: 10.1007/s11745-015-4020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/04/2015] [Indexed: 11/01/2022]
Abstract
The kinetics of plant stanol uptake and routing in 8-week-old C57BL/6J mice were determined after a plant stanol ester gavage. In addition, acute changes in intestinal and hepatic gene expression were investigated. Mice were fed a plant sterol/stanol poor diet from weaning. At the age of 8 weeks, they received an oral gavage consisting of 0.25 mg cholesterol + 50 mg plant stanol esters dissolved in olive oil. Animals were euthanized at different time points. In a second comparable set-up, mesenteric lymph-cannulated versus sham-operated mice received the same oral gavage, which was now deuterium labeled. Intestinal and hepatic sitostanol concentrations increased within 15 min post-gavage. This rapid hepatic appearance was absent in lymph-cannulated mice, suggesting a very fast lymph-mediated uptake. Hepatic mRNA expression of SREBP2 and its target genes rapidly decreased, whereas expression of LXR target genes increased. The intestinal SREBP2 pathway was increased, whereas the expression of LXR target genes hardly changed. The fivefold and sixfold increased expression of intestinal LDLr and PCSK9 is suggestive of TICE activation. We conclude that in C57BL/6J mice plant stanol kinetics are fast, and affect intestinal and hepatic gene expression within 15 min postprandial after lymph-mediated uptake.
Collapse
|
34
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
35
|
Borrell‐Pages M, Carolina Romero J, Badimon L. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes. Immunol Cell Biol 2015; 93:653-61. [DOI: 10.1038/icb.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/05/2015] [Accepted: 01/28/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Maria Borrell‐Pages
- Cardiovascular Research Center, CSIC‐ICCC, Hospital de la Santa Creu i Sant Pau, IIB‐Sant Pau Barcelona Spain
- Cardiovascular Research Chair, UAB Barcelona Spain
| | - July Carolina Romero
- Cardiovascular Research Center, CSIC‐ICCC, Hospital de la Santa Creu i Sant Pau, IIB‐Sant Pau Barcelona Spain
- Cardiovascular Research Chair, UAB Barcelona Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC‐ICCC, Hospital de la Santa Creu i Sant Pau, IIB‐Sant Pau Barcelona Spain
- Cardiovascular Research Chair, UAB Barcelona Spain
| |
Collapse
|
36
|
An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers. Br J Nutr 2015; 113:794-802. [DOI: 10.1017/s000711451400350x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant sterols and stanols inhibit intestinal cholesterol absorption and consequently lower serum LDL-cholesterol (LDL-C) concentrations. The underlying mechanisms are not yet known. In vitro and animal studies have suggested that changes in intestinal sterol metabolism are attributed to the LDL-C-lowering effects of plant stanol esters. However, similar studies in human subjects are lacking. Therefore, we examined the effects of an acute intake of plant stanol esters on gene expression profiles of the upper small intestine in healthy volunteers. In a double-blind cross-over design, fourteen healthy subjects (eight female and six male; age 21–55 years), with a BMI ranging from 21 to 29 kg/m2, received in random order a shake with or without plant stanol esters (4 g). At 5 h after consumption of the shake, biopsies were taken from the duodenum (around the papilla of Vater) and from the jejunum (20 cm distal from the papilla of Vater). Microarray analysis showed that the expression profiles of genes involved in sterol metabolism were not altered. Surprisingly, the pathways involved in T-cell functions were down-regulated in the jejunum. Furthermore, immunohistochemical analysis showed that the number of CD3 (cluster of differentiation number 3), CD4 (cluster of differentiation number 4) and Foxp3+ (forkhead box P3-positive) cells was reduced in the plant stanol ester condition compared with the control condition, which is in line with the microarray data. The physiological and functional consequences of the plant stanol ester-induced reduction of intestinal T-cell-based immune activity in healthy subjects deserve further investigation.
Collapse
|
37
|
Schonewille M, Brufau G, Shiri-Sverdlov R, Groen AK, Plat J. Serum TG-lowering properties of plant sterols and stanols are associated with decreased hepatic VLDL secretion. J Lipid Res 2014; 55:2554-61. [PMID: 25348863 DOI: 10.1194/jlr.m052407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant sterols and stanols are structurally similar to cholesterol and when added to the diet they are able to reduce serum total- and LDL-cholesterol concentrations. They also lower serum triglyceride concentrations in humans, particularly under conditions of hypertriglyceridemia. The aim of this study was to unravel the mechanism by which plant sterols and stanols reduce serum triglyceride concentrations in high-fat diet (HFD) fed mice. Male C57BL/6J mice were fed HFD for 4 weeks. Subsequently, they received HFD, HFD supplemented with 3.1% plant sterol ester (PSE) or HFD supplemented with 3.1% plant stanol ester (PSA) for another three weeks. Both PSE and PSA feeding resulted in decreased plasma triglyceride concentrations compared with HFD, while plasma cholesterol levels were unchanged. Interestingly, hepatic cholesterol levels were decreased in the PSE/PSA groups compared with HFD and no differences were found in hepatic triglyceride levels between groups. To investigate the mechanism underlying the hypotriglyceridemic effects from PSE/PSA feeding, we measured chylomicron and VLDL secretion. PSE and PSA feeding resulted in reduced VLDL secretion, while no differences were found between groups in chylomicron secretion. In conclusion, our data indicate that plasma triglyceride-lowering resulting from PSE and PSA feeding is associated with decreased hepatic VLDL secretion.
Collapse
Affiliation(s)
- Marleen Schonewille
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma Brufau
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Albert K Groen
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
38
|
Blanchard C, Moreau F, Cariou B, Le May C. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion]. Med Sci (Paris) 2014; 30:896-901. [PMID: 25311025 DOI: 10.1051/medsci/20143010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.
Collapse
Affiliation(s)
- Claire Blanchard
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| | - François Moreau
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| | - Bertrand Cariou
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| | - Cédric Le May
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| |
Collapse
|
39
|
De Smet E, Mensink RP, Lütjohann D, Plat J. Acute effects of plant stanol esters on postprandial metabolism and its relation with changes in serum lipids after chronic intake. Eur J Clin Nutr 2014; 69:127-33. [DOI: 10.1038/ejcn.2014.200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 01/25/2023]
|
40
|
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res 2014; 56:1262-70. [PMID: 25070952 DOI: 10.1194/jlr.r052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
41
|
Andersson AA, Dimberg L, Åman P, Landberg R. Recent findings on certain bioactive components in whole grain wheat and rye. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol Aspects Med 2014; 37:77-88. [PMID: 24560594 DOI: 10.1016/j.mam.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/04/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review.
Collapse
|
43
|
Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta 2014; 428:82-8. [DOI: 10.1016/j.cca.2013.11.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/23/2022]
|
44
|
Dietary phytosterol does not accumulate in the arterial wall and prevents atherosclerosis of LDLr-KO mice. Atherosclerosis 2013; 231:442-7. [PMID: 24267264 DOI: 10.1016/j.atherosclerosis.2013.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
SCOPE There have been conflicting reports on the usefulness of phytosterols (PS) in preventing atherosclerosis. We evaluated the effects of dietary PS supplementation in LDLr-KO male mice on the plasma and aorta sterol concentrations and on atherosclerotic lesion development. METHODS AND RESULTS Mice were fed a high fat diet (40% of energy) supplemented with or without PS (2% w/w, n = 10). Plasma and arterial wall cholesterol and PS concentrations, lesion area, macrophage infiltration, and mRNA expression from LOX-1, CD36, ABCA1 and ABCG1 in peritoneal macrophages were measured. After 16 weeks, the plasma cholesterol concentration in PS mice was lower than that in the controls (p = 0.02) and in the arterial wall (p = 0.03). Plasma PS concentrations were higher in PS-fed animals than in controls (p < 0.0001); however, the arterial wall PS concentration did not differ between groups. The atherosclerotic lesion area in the PS group (n = 5) was smaller than that in controls (p = 0.0062) and the macrophage area (p = 0.0007). PS correlates negatively with arterial lipid content and macrophage (r = -0.76; p < 0.05). PS supplementation induced lower ABCG1 mRNA expression (p < 0.05). CONCLUSIONS Despite inducing an increase in PS plasma concentration, PS supplementation is not associated with its accumulation in the arterial wall and prevents atherosclerotic lesion development.
Collapse
|
45
|
Tietge UJF, Groen AK. Role the TICE?: advancing the concept of transintestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2013; 33:1452-3. [PMID: 23766383 DOI: 10.1161/atvbaha.113.301562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
The role of the gut in reverse cholesterol transport--focus on the enterocyte. Prog Lipid Res 2013; 52:317-28. [PMID: 23608233 DOI: 10.1016/j.plipres.2013.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 11/20/2022]
Abstract
In the arterial intima, macrophages become cholesterol-enriched foam cells and atherosclerotic lesions are generated. This atherogenic process can be attenuated, prevented, or even reversed by HDL particles capable of initiating a multistep pathway known as the macrophage-specific reverse cholesterol transport. The macrophage-derived cholesterol released to HDL is taken up by the liver, secreted into the bile, and ultimately excreted in the feces. Importantly, the absorptive epithelial cells lining the lumen of the small intestine, the enterocytes, express several membrane-associated proteins which mediate the influx of luminal cholesterol and its subsequent efflux at their apical and basolateral sides. Moreover, generation of intestinal HDL and systemic effects of the gut microbiota recently revealed a direct link between the gut and the cholesterol cargo of peripheral macrophages. This review summarizes experimental evidence establishing that the reverse cholesterol transport pathway which initiates in macrophages is susceptible to modulation in the small intestine. We also describe four paths which govern cholesterol passage across the enterocyte and define a role for the gut in the regulation of reverse cholesterol transport. Understanding the concerted function of these paths may be useful when designing therapeutic strategies aimed at removing cholesterol from the foam cells which occupy atherosclerotic lesions.
Collapse
|
47
|
van der Wulp MYM, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol 2013; 368:1-16. [PMID: 22721653 DOI: 10.1016/j.mce.2012.06.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/17/2012] [Accepted: 06/11/2012] [Indexed: 12/28/2022]
Abstract
Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.
Collapse
|
48
|
Zhao J, Gershkovich P, Wasan KM. Evaluation of the effect of plant sterols on the intestinal processing of cholesterol using an in vitro lipolysis model. Int J Pharm 2012; 436:707-10. [PMID: 22850295 DOI: 10.1016/j.ijpharm.2012.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/06/2012] [Accepted: 07/22/2012] [Indexed: 10/28/2022]
Abstract
An in vitro lipolysis model was utilized to study the effect of stigmastanol (lipophilic phytosterol) and disodium ascorbyl phytostanol phosphate (DAPP) (modified hydrophilic phytostanol) on intestinal processing of cholesterol to gain further understanding of their cholesterol lowering mechanism. Lipolysis results showed that stigmastanol, if given in powder alone, had no effect on cholesterol processing probably due to its poor solubility. Stigmastanol suspension formulation re-distributed cholesterol from aqueous phase to oil and sediment phases. The water soluble DAPP has changed cholesterol distribution even more significantly by transferring cholesterol from aqueous phase to sediment phase. Moreover, the results provided evidence that DAPP inhibited triglyceride digestion in vitro. Considering DAPP as a surfactant with the same lipophilic sterol ring as bile salt, its ability to inhibit triglyceride lipolysis may be due to its competition with bile salt for the substrate surface, thereby hindering the lipolysis of triglyceride and inhibiting cholesterol solubilization with the lipolysis products. It can be speculated that the cholesterol lowering mechanism of DAPP during intestinal digestion is related to its ability to act as a surfactant closely resembling bile salt.
Collapse
Affiliation(s)
- Jinying Zhao
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3.
| | | | | |
Collapse
|
49
|
Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis 2012; 222:382-9. [DOI: 10.1016/j.atherosclerosis.2012.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/02/2012] [Accepted: 02/10/2012] [Indexed: 11/18/2022]
|
50
|
De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 2012; 56:1058-72. [PMID: 22623436 DOI: 10.1002/mnfr.201100722] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/27/2012] [Accepted: 04/03/2012] [Indexed: 11/07/2022]
Abstract
Plant sterols and stanols are natural food ingredients found in plants. It was already shown in 1950 that they lower serum low-density lipoprotein cholesterol (LDL-C) concentrations. Meta-analysis has reported that a daily intake of 2.5 g plant sterols/stanols reduced serum LDL-C concentrations up to 10%. Despite many studies, the underlying mechanism remains to be elucidated. Therefore, the proposed mechanisms that have been presented over the past decades will be described and discussed in the context of the current knowledge. In the early days, it was suggested that plant sterols/stanols compete with intestinal cholesterol for incorporation into mixed micelles as well as into chylomicrons. Next, the focus shifted toward cellular processes. In particular, a role for sterol transporters localized in the membranes of enterocytes was suggested. All these processes ultimately lowered intestinal cholesterol absorption. More recently, the existence of a direct secretion of cholesterol from the circulation into the intestinal lumen was described. First results in animal studies suggested that plant sterols/stanols activate this pathway, which also explains the increased fecal neutral sterol content and as such could explain the cholesterol-lowering activity of plant sterols/stanols.
Collapse
Affiliation(s)
- Els De Smet
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|