1
|
Teranishi M, Ito M, Huang Z, Nishiyama Y, Masuda A, Mino H, Tachibana M, Inada T, Ohno K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int J Mol Sci 2024; 25:11315. [PMID: 39457098 PMCID: PMC11508854 DOI: 10.3390/ijms252011315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Compromised mitochondrial electron transport chain (ETC) activities are associated with depression in humans and rodents. However, the effects of the enhancement of mitochondrial ETC activities on depression remain elusive. We recently reported that an extremely low-frequency electromagnetic field (ELF-EMF) of as low as 10 μT induced hormetic activation of mitochondrial ETC complexes in human/mouse cultured cells and mouse livers. Chronic social defeat stress (CSDS) for 10 consecutive days caused behavioral defects mimicking depression in mice, and using an ELF-EMF for two to six weeks ameliorated them. CSDS variably decreased the mitochondrial ETC proteins in the prefrontal cortex (PFC) in 10 days, which were increased by an ELF-EMF in six weeks. CSDS had no effect on the mitochondrial oxygen consumption rate in the PFC in 10 days, but using an ELF-EMF for six weeks enhanced it. CSDS inactivated SOD2 by enhancing its acetylation and increased lipid peroxidation in the PFC. In contrast, the ELF-EMF activated the Sirt3-FoxO3a-SOD2 pathway and suppressed lipid peroxidation. Furthermore, CSDS increased markers for mitophagy, which was suppressed by the ELF-EMF in six weeks. The ELF-EMF exerted beneficial hormetic effects on mitochondrial energy production, mitochondrial antioxidation, and mitochondrial dynamics in a mouse model of depression. We envisage that an ELF-EMF is a promising therapeutic option for depression.
Collapse
Affiliation(s)
- Masaki Teranishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Zhizhou Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Yuki Nishiyama
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan;
| | - Masako Tachibana
- Department of Psychiatry, Nagoya University Hospital, Nagoya 466-8560, Japan;
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
2
|
Gómez-Fernández D, Romero-González A, Suárez-Rivero JM, Cilleros-Holgado P, Álvarez-Córdoba M, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Ibáñez-Mico S, Castro de Oliveira M, Rodríguez-Sacristán A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. A Multi-Target Pharmacological Correction of a Lipoyltransferase LIPT1 Gene Mutation in Patient-Derived Cellular Models. Antioxidants (Basel) 2024; 13:1023. [PMID: 39199267 PMCID: PMC11351668 DOI: 10.3390/antiox13081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mutations in the lipoyltransferase 1 (LIPT1) gene are rare inborn errors of metabolism leading to a fatal condition characterized by lipoylation defects of the 2-ketoacid dehydrogenase complexes causing early-onset seizures, psychomotor retardation, abnormal muscle tone, severe lactic acidosis, and increased urine lactate, ketoglutarate, and 2-oxoacid levels. In this article, we characterized the disease pathophysiology using fibroblasts and induced neurons derived from a patient bearing a compound heterozygous mutation in LIPT1. A Western blot analysis revealed a reduced expression of LIPT1 and absent expression of lipoylated pyruvate dehydrogenase E2 (PDH E2) and alpha-ketoglutarate dehydrogenase E2 (α-KGDH E2) subunits. Accordingly, activities of PDH and α-KGDH were markedly reduced, associated with cell bioenergetics failure, iron accumulation, and lipid peroxidation. In addition, using a pharmacological screening, we identified a cocktail of antioxidants and mitochondrial boosting agents consisting of pantothenate, nicotinamide, vitamin E, thiamine, biotin, and α-lipoic acid, which is capable of rescuing LIPT1 pathophysiology, increasing the LIPT1 expression and lipoylation of mitochondrial proteins, improving cell bioenergetics, and eliminating iron overload and lipid peroxidation. Furthermore, our data suggest that the beneficial effect of the treatment is mainly mediated by SIRT3 activation. In conclusion, we have identified a promising therapeutic approach for correcting LIPT1 mutations.
Collapse
Affiliation(s)
- David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| | - Salvador Ibáñez-Mico
- Hospital Clínico Universitario Virgen de la Arrixaca, Servicio de Neuropediatría, 30120 Murcia, Spain;
| | - Marta Castro de Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
- Neuropediatria, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
| | - Andrés Rodríguez-Sacristán
- Neuropediatria, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría de la Facultad de Medicina de la Universidad de Sevilla, 41009 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.G.-F.); (A.R.-G.); (J.M.S.-R.); (P.C.-H.); (M.Á.-C.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.)
| |
Collapse
|
3
|
Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci 2024; 18:1434459. [PMID: 39157755 PMCID: PMC11327144 DOI: 10.3389/fncel.2024.1434459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria are responsible for maintaining cellular energy levels, and play a major role in regulating homeostasis, which ensures physiological function from the molecular to whole animal. Sirtuin 3 (SIRT3) is the major protein deacetylase of mitochondria. SIRT3 serves as a nutrient sensor; under conditions of mild metabolic stress, SIRT3 activity is increased. Within the mitochondria, SIRT3 regulates every complex of the electron transport chain, the tricarboxylic acid (TCA) and urea cycles, as well as the mitochondria membrane potential, and other free radical scavengers. This article reviews the role of SIRT3 in regulating homeostasis, and thus physiological function. We discuss the role of SIRT3 in regulating reactive oxygen species (ROS), ATP, immunological function and mitochondria dynamics.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Marie Kametani
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Joanne E. Nash
- Department of Biological Sciences, University of Toronto Scarborough Graduate Department of Cells Systems Biology, University of Toronto Cross-Appointment with Department of Psychology, University of Toronto Scarborough Scientist – KITE, Toronto, ON, Canada
| |
Collapse
|
4
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Thornton JA, Koc ZC, Sollars VE, Valentovic MA, Denvir J, Wilkinson J, Koc EC. Alcohol- and Low-Iron Induced Changes in Antioxidant and Energy Metabolism Associated with Protein Lys Acetylation. Int J Mol Sci 2024; 25:8344. [PMID: 39125916 PMCID: PMC11312970 DOI: 10.3390/ijms25158344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the role of iron in ethanol-derived hepatic stress could help elucidate the efficacy of dietary or clinical interventions designed to minimize liver damage from chronic alcohol consumption. We hypothesized that normal levels of iron are involved in ethanol-derived liver damage and reduced dietary iron intake would lower the damage caused by ethanol. We used a pair-fed mouse model utilizing basal Lieber-DeCarli liquid diets for 22 weeks to test this hypothesis. In our mouse model, chronic ethanol exposure led to mild hepatic stress possibly characteristic of early-stage alcoholic liver disease, seen as increases in liver-to-body weight ratios. Dietary iron restriction caused a slight decrease in non-heme iron and ferritin (FeRL) expression while it increased transferrin receptor 1 (TfR1) expression without changing ferroportin 1 (FPN1) expression. It also elevated protein lysine acetylation to a more significant level than in ethanol-fed mice under normal dietary iron conditions. Interestingly, iron restriction led to an additional reduction in nicotinamide adenine dinucleotide (NAD+) and NADH levels. Consistent with this observation, the major mitochondrial NAD+-dependent deacetylase, NAD-dependent deacetylase sirtuin-3 (SIRT3), expression was significantly reduced causing increased protein lysine acetylation in ethanol-fed mice at normal and low-iron conditions. In addition, the detection of superoxide dismutase 1 and 2 levels (SOD1 and SOD2) and oxidative phosphorylation (OXPHOS) complex activities allowed us to evaluate the changes in antioxidant and energy metabolism regulated by ethanol consumption at normal and low-iron conditions. We observed that the ethanol-fed mice had mild liver damage associated with reduced energy and antioxidant metabolism. On the other hand, iron restriction may exacerbate certain activities of ethanol further, such as increased protein lysine acetylation and reduced antioxidant metabolism. This metabolic change may prove a barrier to the effectiveness of dietary reduction of iron intake as a preventative measure in chronic alcohol consumption.
Collapse
Affiliation(s)
| | | | | | | | | | - John Wilkinson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA (V.E.S.)
| | - Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA (V.E.S.)
| |
Collapse
|
6
|
Shen Y, Wang X, Nan N, Fu X, Zeng R, Yang Y, Xian S, Shi J, Wu Q, Zhou S. SIRT3-Mediated Deacetylation of SDHA Rescues Mitochondrial Bioenergetics Contributing to Neuroprotection in Rotenone-Induced PD Models. Mol Neurobiol 2024; 61:4402-4420. [PMID: 38087172 DOI: 10.1007/s12035-023-03830-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/25/2023] [Indexed: 07/11/2024]
Abstract
Mitochondrial dysfunction is critically involved in the degeneration of dopamine (DA) neurons in the substantia nigra, a common pathological feature of Parkinson's disease (PD). Previous studies have demonstrated that the NAD+-dependent acetylase Sirtuin 3 (SIRT3) participates in maintaining mitochondrial function and is downregulated in aging-related neurodegenerative disorders. The exact mechanism of action of SIRT3 on mitochondrial bioenergetics in PD pathogenesis, however, has not been fully described. In this study, we investigated the regulatory role of SIRT3-mediated deacetylation of mitochondrial complex II (succinate dehydrogenase) subunit A (SDHA) and its effect on neuronal cell survival in rotenone (ROT)-induced rat and differentiated MN9D cell models. The results revealed that SIRT3 activity was suppressed in both in vivo and in vitro PD models. Accompanying this downregulation of SIRT3 was the hyperacetylation of SDHA, impaired activity of mitochondrial complex II, and decreased ATP production. It was found that the inhibition of SIRT3 activity was attributed to a reduction in the NAD+/NADH ratio caused by ROT-induced inhibition of mitochondrial complex I. Activation of SIRT3 by icariin and honokiol inhibited SDHA hyperacetylation and increased complex II activity, leading to increased ATP production and protection against ROT-induced neuronal damage. Furthermore, overexpression of SDHA also exerted potent protective benefits in cells treated with ROT. In addition, treatment of MN9D cells with the NAD+ precursor nicotinamide mononucleotide increased SIRT3 activity and complex II activity and promoted the survival of cells exposed to ROT. These findings unravel a regulatory SIRT3-SDHA axis, which may be closely related to PD pathology. Bioenergetic rescue through SIRT3 activation-dependent improvement of mitochondrial complex II activity may provide an effective strategy for protection from neurodegeneration.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xueting Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ru Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
7
|
Juszczak F, Arnould T, Declèves AE. The Role of Mitochondrial Sirtuins (SIRT3, SIRT4 and SIRT5) in Renal Cell Metabolism: Implication for Kidney Diseases. Int J Mol Sci 2024; 25:6936. [PMID: 39000044 PMCID: PMC11241570 DOI: 10.3390/ijms25136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61, Rue de Bruxelles, 5000 Namur, Belgium;
| | - Anne-Emilie Declèves
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| |
Collapse
|
8
|
Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. Crit Rev Biochem Mol Biol 2024; 59:199-220. [PMID: 38993040 DOI: 10.1080/10409238.2024.2377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, Ozzano Emilia, Italy
| | - Anna Spagnoletta
- Laboratory "Regenerative Circular Bioeconomy", ENEA-Trisaia Research Centre, Rotondella, Italy
| |
Collapse
|
9
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
10
|
Perico L, Remuzzi G, Benigni A. Sirtuins in kidney health and disease. Nat Rev Nephrol 2024; 20:313-329. [PMID: 38321168 DOI: 10.1038/s41581-024-00806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
11
|
Fehsel K, Bouvier ML, Capobianco L, Lunetti P, Klein B, Oldiges M, Majora M, Löffler S. Neuroreceptor Inhibition by Clozapine Triggers Mitohormesis and Metabolic Reprogramming in Human Blood Cells. Cells 2024; 13:762. [PMID: 38727298 PMCID: PMC11083702 DOI: 10.3390/cells13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marko Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marc Majora
- Leibniz Research Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany;
| | - Stefan Löffler
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, Starkenburgring 66, 63069 Offenbach, Germany;
| |
Collapse
|
12
|
Wang X, Li M, Wang F, Mao G, Wu J, Han R, Sheng R, Qin Z, Ni H. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic Biol Med 2024; 216:89-105. [PMID: 38494143 DOI: 10.1016/j.freeradbiomed.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei Li
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Fan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Institute of Heath Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science & Technology Tower, Hi-Tech Area, Suzhou, 215163, China.
| | - Hong Ni
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
13
|
Gindri Dos Santos B, Maciel August P, Santos Rocha D, Mesquita I, Menegotto M, Stone V, Matté C. Late pregnancy maternal naringin supplementation affects the mitochondria in the cerebellum of Wistar rat offspring via sirtuin 3 and AKT. Int J Dev Neurosci 2024; 84:122-133. [PMID: 38238938 DOI: 10.1002/jdn.10313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 04/04/2024] Open
Abstract
Dietary polyphenol consumption is associated with a wide range of neuroprotective effects by improving mitochondrial function and signaling. Consequently, the use of polyphenol supplementation has been investigated as an approach to prevent neurodevelopmental diseases during gestation; however, the data obtained are still very inconclusive, mostly because of the difficulty of choosing the correct doses and period of administration to properly prevent neurodegenerative diseases without undermining normal brain development. Thus, we aimed to evaluate the effect of naringin supplementation during the third week of gestation on mitochondrial health and signaling in the cerebellum of 21-day-old offspring. The offspring born to naringin-supplemented dams displayed higher mitochondrial mass, membrane potential, and superoxide content in the cerebellum without protein oxidative damage. Such alterations were associated with dynamin-related protein 1 (DRP1) and phosphorylated AKT (p-AKT) downregulation, whereas the sirtuin 3 (SIRT3) levels were strongly upregulated. Our findings suggest that high dietary polyphenol supplementation during gestation may reduce mitochondrial fission and affect mitochondrial dynamics even 3 weeks after delivery via SIRT3 and p-AKT. Although the offspring born to naringin dams did not present neurobehavioral defects, the mitochondrial alterations elicited by naringin may potentially interfere during neurodevelopment and need to be further investigated.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pauline Maciel August
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Débora Santos Rocha
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ismael Mesquita
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manuela Menegotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinícius Stone
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Chang HW, Park JJ, Lee WH, Kim SH, Lee JC, Nam HY, Kim MR, Han MW, Lee YS, Kim SY, Kim SW. Enhancer of zeste homolog 2 (EZH2)-dependent sirtuin-3 determines sensitivity to glucose starvation in radioresistant head and neck cancer cells. Cell Signal 2024; 115:111029. [PMID: 38163576 DOI: 10.1016/j.cellsig.2023.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Sirtuin 3 (SIRT3) regulates mitochondrial function as a mitochondrial deacetylase during oxidative stress. However, the specific regulatory mechanism and function of SIRT3 in radioresistant cancer cells are unclear. In this study, we aim to investigate how SIRT3 determines the susceptibility to glucose deprivation and its regulation in p53-based radioresistant head and neck cancer cells. We observed mitochondrial function using two established isogenic radioresistant subclones (HN3R-A [p53 null] and HN3R-B [p53 R282W]) with intratumoral p53 heterogeneity. Cell counting analysis was performed to evaluate cell proliferation and cell death. The correlation between the regulation of SIRT3 and enhancer of zeste homolog 2 (EZH2) was confirmed by immunoblotting and chromatin immunoprecipitation assay. p53-deficient radioresistant cells (HN3R-A) expression reduced SIRT3 levels and increased sensitivity to glucose deprivation due to mitochondrial dysfunction compared to other cells. In these cells, activation of SIRT3 significantly prevented glucose deprivation-induced cell death, whereas the loss of SIRT3 increased the susceptibility to glucose deficiency. We discovered that radiation-induced EZH2 directly binds to the SIRT3 promoter and represses the expression. Conversely, inhibiting EZH2 increased the expression of SIRT3 through epigenetic changes. Our findings indicate that p53-deficient radioresistant cells with enhanced EZH2 exhibit increased sensitivity to glucose deprivation due to SIRT3 suppression. The regulation of SIRT3 by EZH2 plays a critical role in determining the cell response to glucose deficiency in radioresistant cancer cells. Therefore, EZH2-dependent SIRT3 could be used as a predictive biomarker to select treatment options for patients with radiation-resistance.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Je Park
- Department of Otolaryngology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Hyeok Lee
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Song Hee Kim
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jong Cheol Lee
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Hae Yun Nam
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Ra Kim
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Myung Woul Han
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yoon Se Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Lambona C, Zwergel C, Valente S, Mai A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J Med Chem 2024; 67:1662-1689. [PMID: 38261767 PMCID: PMC10859967 DOI: 10.1021/acs.jmedchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sirtuins catalyze deacetylation of lysine residues with a NAD+-dependent mechanism. In mammals, the sirtuin family is composed of seven members, divided into four subclasses that differ in substrate specificity, subcellular localization, regulation, as well as interactions with other proteins, both within and outside the epigenetic field. Recently, much interest has been growing in SIRT3, which is mainly involved in regulating mitochondrial metabolism. Moreover, SIRT3 seems to be protective in diseases such as age-related, neurodegenerative, liver, kidney, heart, and metabolic ones, as well as in cancer. In most cases, activating SIRT3 could be a promising strategy to tackle these health problems. Here, we summarize the main biological functions, substrates, and interactors of SIRT3, as well as several molecules reported in the literature that are able to modulate SIRT3 activity. Among the activators, some derive from natural products, others from library screening, and others from the classical medicinal chemistry approach.
Collapse
Affiliation(s)
- Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
17
|
Zhang T, Wang L, Duan X, Niu Y, Li M, Yun L, Sun H, Ma Y, Guo Y. Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol (Lausanne) 2024; 14:1281213. [PMID: 38264287 PMCID: PMC10805026 DOI: 10.3389/fendo.2023.1281213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
Mitochondria plays a role in cell differentiation and apoptosis processes. Maintaining mitochondrial function is critical, and this involves various aspects of mitochondrial quality control such as protein homeostasis, biogenesis, dynamics, and mitophagy. Osteoporosis, a metabolic bone disorder, primarily arises from two factors: the dysregulation between lipogenic and osteogenic differentiation of aging bone marrow mesenchymal stem cells, and the imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Mitochondrial quality control has the potential to mitigate or even reverse the effects. Among the Sirtuin family, consisting of seven Sirtuins (SIRT1-7), SIRT1-SIRT6 play a crucial role in maintaining mitochondrial quality control. Additionally, SIRT1, SIRT3, SIRT6, and SIRT7 are directly involved in normal bone development and homeostasis by modulating bone cells. However, the precise mechanism by which these Sirtuins exert their effects remains unclear. This article reviews the impact of various aspects of mitochondrial quality control on osteoporosis, focusing on how SIRT1, SIRT3, and SIRT6 can improve osteoporosis by regulating mitochondrial protein homeostasis, biogenesis, and mitophagy. Furthermore, we provide an overview of the current state of clinical and preclinical drugs that can activate Sirtuins to improve osteoporosis. Specific Sirtuin-activating compounds are effective, but further studies are needed. The findings of this study may offer valuable insights for future research on osteoporosis and the development of clinical prevention and therapeutic target strategies.
Collapse
Affiliation(s)
- Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiping Duan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Yun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic, Wuxi Huishan District People’s Hospital, Wuxi, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Sanz-Alcázar A, Britti E, Delaspre F, Medina-Carbonero M, Pazos-Gil M, Tamarit J, Ros J, Cabiscol E. Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models. Cell Mol Life Sci 2023; 81:12. [PMID: 38129330 PMCID: PMC10739563 DOI: 10.1007/s00018-023-05064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXNI151F mouse model, frataxin deficiency resulted in lower activity and levels of the electron transport complexes, mainly complexes I and II. In addition, altered mitochondrial morphology, indicative of degeneration was observed in DRGs from FXNI151F mice. Moreover, the NAD+/NADH ratio was reduced and sirtuin activity was impaired. We identified alpha tubulin as the major acetylated protein from DRG homogenates whose levels were increased in FXNI151F mice compared to WT mice. In the mitochondria, superoxide dismutase (SOD2), a SirT3 substrate, displayed increased acetylation in frataxin-deficient DRG neurons. Since SOD2 acetylation inactivates the enzyme, and higher levels of mitochondrial superoxide anion were detected, oxidative stress markers were analyzed. Elevated levels of hydroxynonenal bound to proteins and mitochondrial Fe2+ accumulation was detected when frataxin decreased. Honokiol, a SirT3 activator, restores mitochondrial respiration, decreases SOD2 acetylation and reduces mitochondrial superoxide levels. Altogether, these results provide data at the molecular level of the consequences of electron transport chain dysfunction, which starts negative feedback, contributing to neuron lethality. This is especially important in sensory neurons which have greater susceptibility to frataxin deficiency compared to other tissues.
Collapse
Affiliation(s)
- Arabela Sanz-Alcázar
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elena Britti
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Marta Medina-Carbonero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Maria Pazos-Gil
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
19
|
Santos L, Benitez-Rosendo A, Bresque M, Camacho-Pereira J, Calliari A, Escande C. Sirtuins: The NAD +-Dependent Multifaceted Modulators of Inflammation. Antioxid Redox Signal 2023; 39:1185-1208. [PMID: 37767625 DOI: 10.1089/ars.2023.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Significance: Sirtuins are NAD+-dependent histone deacetylases regulating important processes in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis. Recent Advances: Despite initially being discovered to regulate transcription and life span via histone deacetylase activities, emerging data continually uncover new targets and propose additional roles. Due to the outstanding importance of the sirtuins in the control of the inflammatory response, their roles in the pathogenesis of several inflammatory-based diseases have become an area of intense research. Although sirtuins have been traditionally regarded as anti-inflammatory players, several recent findings suggest that their role in inflammation is complex and that in some cases sirtuins can indeed promote inflammation. Critical Issues: In this article, we provide an update on the latest findings concerning the new mechanisms of action and concepts about the role of sirtuins during inflammation. We focus on the impact that inflammatory-based processes exert on the liver, adipose tissue, and nervous system as well as on macrophage function and activation. Also, we discuss available data pointing to the dual role that, in particular contexts, sirtuins may have on inflammation control. Future Directions: Since the knowledge of sirtuin impact on metabolism is continually expanding, new venues of research arise. Besides become being regarded as candidates of therapeutic targets, posttranscriptional control of sirtuin expression by means of microRNAs challenges our traditional concepts of sirtuin regulation; importantly, the emerging role of NAD+ metabolism in aging and longevity has added a new dimension to the interest in sirtuin function. Antioxid. Redox Signal. 39, 1185-1208.
Collapse
Affiliation(s)
- Leonardo Santos
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Andrés Benitez-Rosendo
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Mariana Bresque
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Juliana Camacho-Pereira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aldo Calliari
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
20
|
Benzoni P, Da Dalt L, Elia N, Popolizio V, Cospito A, Giannetti F, Dell’Era P, Olesen MS, Bucchi A, Baruscotti M, Norata GD, Barbuti A. PITX2 gain-of-function mutation associated with atrial fibrillation alters mitochondrial activity in human iPSC atrial-like cardiomyocytes. Front Physiol 2023; 14:1250951. [PMID: 38028792 PMCID: PMC10679737 DOI: 10.3389/fphys.2023.1250951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; however, the underlying causes of AF initiation are still poorly understood, particularly because currently available models do not allow in distinguishing the initial causes from maladaptive remodeling that induces and perpetuates AF. Lately, the genetic background has been proven to be important in the AF onset. iPSC-derived cardiomyocytes, being patient- and mutation-specific, may help solve this diatribe by showing the initial cell-autonomous changes underlying the development of the disease. Transcription factor paired-like homeodomain 2 (PITX2) has been identified as a key regulator of atrial development/differentiation, and the PITX2 genomic locus has the highest association with paroxysmal AF. PITX2 influences mitochondrial activity, and alterations in either its expression or function have been widely associated with AF. In this work, we investigate the activity of mitochondria in iPSC-derived atrial cardiomyocytes (aCMs) obtained from a young patient (24 years old) with paroxysmal AF, carrying a gain-of-function mutation in PITX2 (rs138163892) and from its isogenic control (CTRL) in which the heterozygous point mutation has been reverted to WT. PITX2 aCMs show a higher mitochondrial content, increased mitochondrial activity, and superoxide production under basal conditions when compared to CTRL aCMs. However, increasing mitochondrial workload by FCCP or β-adrenergic stimulation allows us to unmask mitochondrial defects in PITX2 aCMs, which are incapable of responding efficiently to the higher energy demand, determining ATP deficiency.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Noemi Elia
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Cell Factory, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vera Popolizio
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Cospito
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Milano, Italy
| | - Patrizia Dell’Era
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Morten S. Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Department of Cardiology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
21
|
Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, Zou X, Liu J, Feng Z. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med 2023; 207:247-259. [PMID: 37490987 DOI: 10.1016/j.freeradbiomed.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Mitochondrial succinate dehydrogenase (SDH), also known as electron transport chain (ETC) Complex II, is the only enzyme complex engaged in both oxidative phosphorylation and the tricarboxylic acid (TCA) cycle. SDH has received increasing attention due to its crucial role in regulating mitochondrial metabolism and human health. Despite having the fewest subunits among the four ETC complexes, functional SDH is formed via a sequential and well-coordinated assembly of subunits. Along with the discovery of subunit-specific assembly factors, the dynamic involvement of the SDH assembly process in a broad range of diseases has been revealed. Recently, we reported that perturbation of SDH assembly in different tissues leads to interesting and distinct pathophysiological changes in mice, indicating a need to understand the intricate SDH assembly process in human health and diseases. Thus, in this review, we summarize recent findings on SDH pathogenesis with respect to disease and a focus on SDH assembly.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
22
|
O'Brien C, Ling T, Berman JM, Culp-Hill R, Reisz JA, Rondeau V, Jahangiri S, St-Germain J, Macwan V, Astori A, Zeng A, Hong JY, Li M, Yang M, Jana S, Gamboni F, Tsao E, Liu W, Dick JE, Lin H, Melnick A, Tikhonova A, Arruda A, Minden MD, Raught B, D'Alessandro A, Jones CL. Simultaneous inhibition of Sirtuin 3 and cholesterol homeostasis targets acute myeloid leukemia stem cells by perturbing fatty acid β-oxidation and inducing lipotoxicity. Haematologica 2023; 108:2343-2357. [PMID: 37021547 PMCID: PMC10483359 DOI: 10.3324/haematol.2022.281894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.
Collapse
Affiliation(s)
- Cristiana O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tianyi Ling
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacob M Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rachel Culp-Hill
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Soheil Jahangiri
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Vinitha Macwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andy Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Meng Li
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sadhan Jana
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fabia Gamboni
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Weiyi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Anastasia Tikhonova
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andrea Arruda
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Angelo D'Alessandro
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney L Jones
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
23
|
Garcia Castro DR, Mazuk JR, Heine EM, Simpson D, Pinches RS, Lozzi C, Hoffman K, Morrin P, Mathis D, Lebedev MV, Nissley E, Han KH, Farmer T, Merry DE, Tong Q, Pennuto M, Montie HL. Increased SIRT3 combined with PARP inhibition rescues motor function of SBMA mice. iScience 2023; 26:107375. [PMID: 37599829 PMCID: PMC10433013 DOI: 10.1016/j.isci.2023.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 07/08/2023] [Indexed: 08/22/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD+-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA. However, increasing diminished SIRT3 in AR100Q mice failed to reduce acetylation of the SIRT3 target/antioxidant, SOD2, and had no effect on increased total acetylated peptides in quadriceps. Yet, overexpressing SIRT3 resulted in a trend of motor recovery, and corrected TCA cycle activity by decreasing acetylation of SIRT3 target proteins. We sought to boost blunted SIRT3 activity by replenishing diminished NAD+ with PARP inhibition. Although NAD+ was not affected, overexpressing SIRT3 with PARP inhibition fully restored hexokinase activity, correcting the glycolytic pathway in AR100Q quadriceps, and rescued motor endurance of SBMA mice. These data demonstrate that targeting metabolic anomalies can restore motor function downstream of polyQ-expanded AR.
Collapse
Affiliation(s)
- David R. Garcia Castro
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Joseph R. Mazuk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Erin M. Heine
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Daniel Simpson
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - R. Seth Pinches
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Caroline Lozzi
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Kathryn Hoffman
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Phillip Morrin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dylan Mathis
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Maria V. Lebedev
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Elyse Nissley
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Kang Hoo Han
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Tyler Farmer
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiang Tong
- USDA/ARS Children’s Nutrition Research Center, Departments of Pediatrics, Medicine, Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Heather L. Montie
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| |
Collapse
|
24
|
Wu KK. Extracellular Succinate: A Physiological Messenger and a Pathological Trigger. Int J Mol Sci 2023; 24:11165. [PMID: 37446354 DOI: 10.3390/ijms241311165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
When tissues are under physiological stresses, such as vigorous exercise and cold exposure, skeletal muscle cells secrete succinate into the extracellular space for adaptation and survival. By contrast, environmental toxins and injurious agents induce cellular secretion of succinate to damage tissues, trigger inflammation, and induce tissue fibrosis. Extracellular succinate induces cellular changes and tissue adaptation or damage by ligating cell surface succinate receptor-1 (SUCNR-1) and activating downstream signaling pathways and transcriptional programs. Since SUCNR-1 mediates not only pathological processes but also physiological functions, targeting it for drug development is hampered by incomplete knowledge about the characteristics of its physiological vs. pathological actions. This review summarizes the current status of extracellular succinate in health and disease and discusses the underlying mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
25
|
Forteza MJ, Berg M, Edsfeldt A, Sun J, Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S, Vuckovic I, Dzeja PP, Polyzos KA, Gisterå A, Trauelsen M, Schwartz TW, Dib L, Herrmann J, Monaco C, Matic L, Gonçalves I, Ketelhuth DFJ. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc Res 2023; 119:1524-1536. [PMID: 36866436 PMCID: PMC10318388 DOI: 10.1093/cvr/cvad038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
AIMS Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque. CONCLUSIONS We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.
Collapse
Affiliation(s)
- Maria J Forteza
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Martin Berg
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
| | - Jangming Sun
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Roland Baumgartner
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ilona Kareinen
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Petras P Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Konstantinos A Polyzos
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lea Dib
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Isabel Gonçalves
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws vej 21, 5000 Odense, Denmark
| |
Collapse
|
26
|
Izadpanah A, Mudd JC, Garcia JGN, Srivastav S, Abdel-Mohsen M, Palmer C, Goldman AR, Kolls JK, Qin X, Rappaport J. SARS-CoV-2 infection dysregulates NAD metabolism. Front Immunol 2023; 14:1158455. [PMID: 37457744 PMCID: PMC10344451 DOI: 10.3389/fimmu.2023.1158455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities. Methods RNAsequencing of lungs from transgenic mice expressing human ACE2 (K18-hACE2) challenged with SARS-CoV-2 revealed upregulation of NAD biosynthetic enzymes, including NAPRT1, NMNAT1, NAMPT, and IDO1 6 days post-infection. Results Our data also demonstrate increased gene expression of NAD consuming enzymes: PARP 9,10,14 and CD38. At the same time, SIRT1, a protein deacetylase (requiring NAD as a cofactor and involved in control of inflammation) is downregulated. We confirmed our findings by mining sequencing data from lungs of patients that died from SARS-CoV-2 infection. Our validated findings demonstrating increased NAD turnover in SARS-CoV-2 infection suggested that modulating NAD pathways may alter disease progression and may offer therapeutic benefits. Specifically, we hypothesized that treating K18-hACE2 mice with nicotinamide riboside (NR), a potent NAD precursor, may mitigate lethality and improve recovery from SARS-CoV-2 infection. We also tested the therapeutic potential of an anti- monomeric NAMPT antibody using the same infection model. Treatment with high dose anti-NAMPT antibody resulted in significantly decreased body weight compared to control, which was mitigated by combining HD anti-NAMPT antibody with NR. We observed a significant increase in lipid metabolites, including eicosadienoic acid, oleic acid, and palmitoyl carnitine in the low dose antibody + NR group. We also observed significantly increased nicotinamide related metabolites in NR treated animals. Discussion Our data suggest that infection perturbs NAD pathways, identify novel mechanisms that may explain some pathophysiology of CoVID-19 and suggest novel strategies for both treatment and prevention.
Collapse
Affiliation(s)
- Amin Izadpanah
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Joseph C. Mudd
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Sudesh Srivastav
- Biostatistics and Data Science, Tulane University School of Public Health, New Orleans, LA, United States
| | | | - Clovis Palmer
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Aaron R. Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, PA, United States
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, LA, United States
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| |
Collapse
|
27
|
Casas-Benito A, Martínez-Herrero S, Martínez A. Succinate-Directed Approaches for Warburg Effect-Targeted Cancer Management, an Alternative to Current Treatments? Cancers (Basel) 2023; 15:2862. [PMID: 37345199 DOI: 10.3390/cancers15102862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Approximately a century ago, Otto Warburg discovered that cancer cells use a fermentative rather than oxidative metabolism even though the former is more inefficient in terms of energy production per molecule of glucose. Cancer cells increase the use of this fermentative metabolism even in the presence of oxygen, and this process is called aerobic glycolysis or the Warburg effect. This alternative metabolism is mainly characterized by higher glycolytic rates, which allow cancer cells to obtain higher amounts of total ATP, and the production of lactate, but there are also an activation of protumoral signaling pathways and the generation of molecules that favor cancer progression. One of these molecules is succinate, a Krebs cycle intermediate whose concentration is increased in cancer and which is considered an oncometabolite. Several protumoral actions have been associated to succinate and its role in several cancer types has been already described. Despite playing a major role in metabolism and cancer, so far, the potential of succinate as a target in cancer prevention and treatment has remained mostly unexplored, as most previous Warburg-directed anticancer strategies have focused on other intermediates. In this review, we aim to summarize succinate's protumoral functions and discuss the use of succinate expression regulators as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Adrian Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Sonia Martínez-Herrero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
28
|
Park JW, Tyl MD, Cristea IM. Orchestration of Mitochondrial Function and Remodeling by Post-Translational Modifications Provide Insight into Mechanisms of Viral Infection. Biomolecules 2023; 13:biom13050869. [PMID: 37238738 DOI: 10.3390/biom13050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.
Collapse
Affiliation(s)
- Ji Woo Park
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Matthew D Tyl
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Szabo L, Grimm A, García-León JA, Verfaillie CM, Eckert A. Genetically Engineered Triple MAPT-Mutant Human-Induced Pluripotent Stem Cells (N279K, P301L, and E10+16 Mutations) Exhibit Impairments in Mitochondrial Bioenergetics and Dynamics. Cells 2023; 12:1385. [PMID: 37408218 DOI: 10.3390/cells12101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.
Collapse
Affiliation(s)
- Leonora Szabo
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Juan Antonio García-León
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
30
|
Sawant Dessai A, Kalhotra P, Novickis AT, Dasgupta S. Regulation of tumor metabolism by post translational modifications on metabolic enzymes. Cancer Gene Ther 2023; 30:548-558. [PMID: 35999357 PMCID: PMC9947196 DOI: 10.1038/s41417-022-00521-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer development, progression, and metastasis. Several metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, lipid metabolism, and glutamine catabolism are frequently altered to support cancer growth. Importantly, the activity of the rate-limiting metabolic enzymes in these pathways are specifically modulated in cancer cells. This is achieved by transcriptional, translational, and post translational regulations that enhance the expression, activity, stability, and substrate sensitivity of the rate-limiting enzymes. These mechanisms allow the enzymes to retain increased activity supporting the metabolic needs of rapidly growing tumors, sustain their survival in the hostile tumor microenvironments and in the metastatic lesions. In this review, we primarily focused on the post translational modifications of the rate-limiting enzymes in the glucose and glutamine metabolism, TCA cycle, and fatty acid metabolism promoting tumor progression and metastasis.
Collapse
Affiliation(s)
- Abhisha Sawant Dessai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Poonam Kalhotra
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Aaron T Novickis
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
31
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Impairment of electron transport chain and induction of apoptosis by chrysin nanoparticles targeting succinate-ubiquinone oxidoreductase in pancreatic and lung cancer cells. GENES & NUTRITION 2023; 18:4. [PMID: 36906524 PMCID: PMC10008604 DOI: 10.1186/s12263-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/25/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Flavonoids may help ameliorate the incidence of the major causes of tumor-related mortality, such as pancreatic ductal adenocarcinoma (PDAC) and lung cancer, which are predicted to steadily increase between 2020 to 2030. Here we compared the effect of chrysin and chrysin nanoparticles (CCNPs) with 5-fluorouracil (5-FLU) on the activity and expression of mitochondrial complex II (CII) to induce apoptosis in pancreatic (PANC-1) and lung (A549) cancer cells. METHODS Chrysin nanoparticles (CCNPs) were synthesized and characterized, and the IC50 was evaluated in normal, PANC-1, and A549 cell lines using the MTT assay. The effect of chrysin and CCNPs on CΙΙ activity, superoxide dismutase activity, and mitochondria swelling were evaluated. Apoptosis was assessed using flow cytometry, and expression of the C and D subunits of SDH, sirtuin-3 (SIRT-3), and hypoxia-inducible factor (HIF-1α) was evaluated using RT-qPCR. RESULTS The IC50 of CII subunit C and D binding to chrysin was determined and used to evaluate the effectiveness of treatment on the activity of SDH with ubiquinone oxidoreductase. Enzyme activity was significantly decreased (chrysin < CCNPs < 5-FLU and CCNPs < chrysin < 5-FLU, respectively), which was confirmed by the significant decrease of expression of SDH C and D, SIRT-3, and HIF-1α mRNA (CCNPs < chrysin < 5-FLU). There was also a significant increase in the apoptotic effects (CCNPs > chrysin > 5-FLU) in both PANC-1 and A549 cells and a significant increase in mitochondria swelling (CCNPs < chrysin < 5-FLU and CCNPs > chrysin > 5-FLU, respectively) than that in non-cancerous cells. CONCLUSION Treatment with CCNPs improved the effect of chrysin on succinate-ubiquinone oxidoreductase activity and expression and therefore has the potential as a more efficient formulation than chemotherapy to prevent metastasis and angiogenesis by targeting HIF-1α in PDAC and lung cancer.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
32
|
Liu X, Xie X, Li D, Liu Z, Zhang B, Zang Y, Yuan H, Shen C. Sirt3-dependent regulation of mitochondrial oxidative stress and apoptosis contributes to the dysfunction of pancreatic islets after severe burns. Free Radic Biol Med 2023; 198:59-67. [PMID: 36738799 DOI: 10.1016/j.freeradbiomed.2023.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Severe burns are often complicated with hyperglycemia caused by mitochondrial oxidative stress-related pancreatic islet dysfunction. Silent information regulator of transcription 3 (Sirt3) can regulate mitochondrial oxidative stress. However, the role and mechanism of Sirt3 on islet function after severe burns remain unclear. Therefore, this study aimed to investigate whether Sirt3 played a role in both mitochondrial oxidative stress in islets and mediating islet function post severe burns. METHODS A mouse model of 30% total body surface area full-thickness burn and an in vitro MIN6 cell hypoxia model were established. Sirt3 KO mice were used to demonstrate further the role of Sirt3 in maintaining redox homeostasis and regulating islet function. Fasting blood glucose and glucose-stimulated insulin secretion (GSIS) were detected to assess the islet function. The levels of mitochondrial ROS and deacetylation, and the activities of Mn-SOD and IDH2 were measured to evaluate oxidative stress. The mitochondrial membrane potential (MMP)was detected and the apoptosis rate measured. RESULTS In vitro MIN6 cells, the hypoxia treatment significantly reduced Sirt3 expression, resulting in increased deacetylation of Mn-SOD and IDH2, which further led to a higher level of mitochondrial ROS. In addition, hypoxia reduced MMP and increased apoptosis rate, which impaired GSIS eventually. Knockdown of Sirt3 caused similar alterations. The hypoxia-induced high level of mitochondrial ROS and apoptosis and impaired GSIS could be reversed by overexpression of Sirt3. Similarly, after severe burns, the expression of Sirt3 in islets decreased significantly with a high level of deacetylation of Mn-SOD, IDH2, mitochondrial ROS and apoptosis, and islet dysfunction. Oxidative stress and apoptosis also occurred in islets of Sirt3 KO mice, accompanied by islet dysfunction. CONCLUSIONS Sirt3 and downstream signalling are critical in modulating the islet function post severe burns by regulating mitochondrial oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Xinzhu Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Xiaoye Xie
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Dawei Li
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Zhaoxing Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Bohan Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yu Zang
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Huageng Yuan
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Chuan'an Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
33
|
Jiao Y, Wang S, Wang X, Yin L, Zhang YH, Li YZ, Yu YH. The m 6A reader YTHDC2 promotes SIRT3 expression by reducing the stabilization of KDM5B to improve mitochondrial metabolic reprogramming in diabetic peripheral neuropathy. Acta Diabetol 2023; 60:387-399. [PMID: 36574062 DOI: 10.1007/s00592-022-01990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 12/28/2022]
Abstract
AIMS Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Aberrant mitochondrial function causes neurodegeneration under hyperglycemia-induced metabolic stress, which in turn results in DPN progression. m6A and m6A reader (YTHDC2) are closely related to diabetes and diabetes complications, while the role of YTHDC2 in regulating mitochondrial metabolism in DPN needs to be further probed. METHODS For HG treatment, Schwann cells (RSC96) were subjected to D-glucose for 72 h. db/db mice were used as the diabetic mouse model. Me-RIP assay was performed to evaluate KDM5B m6A level. RNA degradation assay was conducted to examine KDM5B mRNA stability. In addition, OCR and ECAR were examined by XF96 Analyzer. Moreover, the content of ATP and PDH activity in RSC96 cells were detected using kits, and the level of ROS was detected using MitoSOX staining. RIP, RNA pull-down and dual-luciferase reporter gene assays were carried out to verify the binding relationships between YTHDC2, KDM5B and SIRT3. RESULTS We first observed that KDM5B expression and KDM5B mRNA stabilization were significantly increased in DPN. The m6A reader YTHDC2 was lowly expressed in DPN. Meanwhile, YTHDC2 over expression decreased KDM5B mRNA stability in an m6A-dependent manner. Our results also revealed that YTHDC2 overexpression resulted in reduced ROS level and increased ATP level, PDH activity, OCR and ECAR in HG-treated Schwann cells, while these effects were reversed by KDM5B overexpression. Additionally, SIRT3 served as the target of YTHDC2/KDM5B axis in regulating mitochondrial metabolism in DPN. CONCLUSIONS Taken together, YTHDC2 promoted SIRT3 expression by reducing the stabilization of KDM5B to improve mitochondrial metabolic reprogramming in DPN.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, Tianjin, People's Republic of China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, Tianjin, People's Republic of China
| | - Shu Wang
- Department of Extracorporeal Circulation, Tianjin Chest Hospital, Tianjin, 300222, Tianjin, People's Republic of China
| | - Xin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, Tianjin, People's Republic of China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, Tianjin, People's Republic of China
| | - Ling Yin
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, Tianjin, People's Republic of China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, Tianjin, People's Republic of China
| | - Yue-Hua Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, Tianjin, People's Republic of China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, Tianjin, People's Republic of China
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, Tianjin, People's Republic of China.
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, Tianjin, People's Republic of China.
| | - Yong-Hao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, Tianjin, People's Republic of China.
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, Tianjin, People's Republic of China.
| |
Collapse
|
34
|
Magrì A, Lipari CLR, Risiglione P, Zimbone S, Guarino F, Caccamo A, Messina A. ERK1/2-dependent TSPO overactivation associates with the loss of mitophagy and mitochondrial respiration in ALS. Cell Death Dis 2023; 14:122. [PMID: 36792609 PMCID: PMC9931716 DOI: 10.1038/s41419-023-05643-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Mitochondrial dysfunction and the loss of mitophagy, aimed at recycling irreversibly damaged organelles, contribute to the onset of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting spinal cord motor neurons. In this work, we showed that the reduction of mitochondrial respiration, exactly oxygen flows linked to ATP production and maximal capacity, correlates with the appearance of the most common ALS motor symptoms in a transgenic mouse model expressing SOD1 G93A mutant. This is the result of the equal inhibition in the respiration linked to complex I and II of the electron transport chain, but not their protein levels. Since the overall mitochondrial mass was unvaried, we investigated the expression of the Translocator Protein (TSPO), a small mitochondrial protein whose overexpression was recently linked to the loss of mitophagy in a model of Parkinson's disease. Here we clearly showed that levels of TSPO are significantly increased in ALS mice. Mechanistically, this increase is linked to the overactivation of ERK1/2 pathway and correlates with a decrease in the expression of the mitophagy-related marker Atg12, indicating the occurrence of impairments in the activation of mitophagy. Overall, our work sets out TSPO as a key regulator of mitochondrial homeostasis in ALS.
Collapse
Affiliation(s)
- Andrea Magrì
- grid.8158.40000 0004 1757 1969Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy ,we.MitoBiotech S.R.L., C.so Italia 172, Catania, Italy
| | - Cristiana Lucia Rita Lipari
- grid.8158.40000 0004 1757 1969Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierpaolo Risiglione
- grid.8158.40000 0004 1757 1969Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefania Zimbone
- grid.5326.20000 0001 1940 4177Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Section of Catania, Catania, Italy
| | - Francesca Guarino
- we.MitoBiotech S.R.L., C.so Italia 172, Catania, Italy ,grid.8158.40000 0004 1757 1969Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Caccamo
- grid.8158.40000 0004 1757 1969Department of Drug and Health Sciences, University of Catania, Catania, Italy ,grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical Sciences, University of Messina, Messina, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy. .,we.MitoBiotech S.R.L., C.so Italia 172, Catania, Italy.
| |
Collapse
|
35
|
Arnold PK, Finley LWS. Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 2023; 299:102838. [PMID: 36581208 PMCID: PMC9871338 DOI: 10.1016/j.jbc.2022.102838] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.
Collapse
Affiliation(s)
- Paige K Arnold
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
36
|
Wang X, Huang Y, Zhang K, Chen F, Nie T, Zhao Y, He F, Ni J. Changes of energy metabolism in failing heart and its regulation by SIRT3. Heart Fail Rev 2023:10.1007/s10741-023-10295-5. [PMID: 36708431 DOI: 10.1007/s10741-023-10295-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Heart failure (HF) is the leading cause of hospitalization in elderly patients and a disease with extremely high morbidity and mortality rate worldwide. Although there are some existing treatment methods for heart failure, due to its complex pathogenesis and often accompanied by various comorbidities, there is still a lack of specific drugs to treat HF. The mortality rate of patients with HF is still high, highlighting an urgent need to elucidate the pathophysiological mechanisms of HF and seek new therapeutic approaches. The heart is an organ with a very high metabolic intensity, mainly using fatty acids, glucose, ketone bodies, and branched-chain amino acids as energy substrates to supply energy for the heart. Loss of metabolic flexibility and metabolic remodeling occurs with HF. Sirtuin3 (SIRT3) is a member of the NAD+-dependent Sirtuin family located in mitochondria, and can participate in mitochondrial physiological functions through the deacetylation of metabolic and respiratory enzymes in mitochondria. As the center of energy metabolism, mitochondria are involved in many physiological processes. Maintaining stable metabolic and physiological functions of the heart depends on normal mitochondrial function. The damage or loss of SIRT3 can lead to various cardiovascular diseases. Therefore, we summarize the recent progress of SIRT3 in cardiac mitochondrial protection and metabolic remodeling.
Collapse
Affiliation(s)
- Xiao Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuting Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Feng Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Tong Nie
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yun Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China.
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
37
|
Branco A, Moniz I, Ramalho-Santos J. Mitochondria as biological targets for stem cell and organismal senescence. Eur J Cell Biol 2023; 102:151289. [PMID: 36696809 DOI: 10.1016/j.ejcb.2023.151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Organismal aging is impacted by the deterioration of tissue turnover mechanisms due, in part, to the decline in stem cell function. This decline can be related to mitochondrial dysfunction and underlying energetic defects that, in concert, help drive biological aging. Thus, mitochondria have been described as a potential interventional target to hinder the loss of stem cell robustness, and subsequently, decrease tissue turnover decline and age-associated pathologies. In this review, we focused our analysis on the most recent literature on mitochondria and stem cell aging and discuss the potential benefits of targeting mitochondria in preventing stem cell dysfunction and thus influencing aging.
Collapse
Affiliation(s)
- Ana Branco
- CNC-Centre for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal
| | - Inês Moniz
- CNC-Centre for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, Polo 2, 3030-789 Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Centre for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
38
|
Bennett CF, Latorre-Muro P, Puigserver P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 2022; 23:817-835. [PMID: 35804199 PMCID: PMC9926497 DOI: 10.1038/s41580-022-00506-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
39
|
Dhillon RS, Qin Y(A, van Ginkel PR, Fu VX, Vann JM, Lawton AJ, Green CL, Manchado‐Gobatto FB, Gobatto CA, Lamming DW, Prolla TA, Denu JM. SIRT3 deficiency decreases oxidative metabolism capacity but increases lifespan in male mice under caloric restriction. Aging Cell 2022; 21:e13721. [PMID: 36199173 PMCID: PMC9741511 DOI: 10.1111/acel.13721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.
Collapse
Affiliation(s)
- Rashpal S. Dhillon
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yiming (Amy) Qin
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Paul R. van Ginkel
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vivian X. Fu
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James M. Vann
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alexis J. Lawton
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Cara L. Green
- Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | | | - Claudio A. Gobatto
- Laboratory of Applied Sport Physiology, School of Applied SciencesUniversity of CampinasLimeiraBrazil
| | - Dudley W. Lamming
- Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Tomas A. Prolla
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John M. Denu
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
40
|
Atallah R, Olschewski A, Heinemann A. Succinate at the Crossroad of Metabolism and Angiogenesis: Roles of SDH, HIF1α and SUCNR1. Biomedicines 2022; 10:3089. [PMID: 36551845 PMCID: PMC9775124 DOI: 10.3390/biomedicines10123089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Angiogenesis is an essential process by which new blood vessels develop from existing ones. While adequate angiogenesis is a physiological process during, for example, tissue repair, insufficient and excessive angiogenesis stands on the pathological side. Fine balance between pro- and anti-angiogenic factors in the tissue environment regulates angiogenesis. Identification of these factors and how they function is a pressing topic to develop angiogenesis-targeted therapeutics. During the last decade, exciting data highlighted non-metabolic functions of intermediates of the mitochondrial Krebs cycle including succinate. Among these functions is the contribution of succinate to angiogenesis in various contexts and through different mechanisms. As the concept of targeting metabolism to treat a wide range of diseases is rising, in this review we summarize the mechanisms by which succinate regulates angiogenesis in normal and pathological settings. Gaining a comprehensive insight into how this metabolite functions as an angiogenic signal will provide a useful approach to understand diseases with aberrant or excessive angiogenic background, and may provide strategies to tackle them.
Collapse
Affiliation(s)
- Reham Atallah
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
41
|
Kuo CC, Wu JY, Wu KK. Cancer-derived extracellular succinate: a driver of cancer metastasis. J Biomed Sci 2022; 29:93. [DOI: 10.1186/s12929-022-00878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSuccinate is a tricarboxylic acid (TCA) cycle intermediate normally confined to the mitochondrial matrix. It is a substrate of succinate dehydrogenase (SDH). Mutation of SDH subunits (SDHD and SDHB) in hereditary tumors such as paraganglioma or reduction of SDHB expression in cancer results in matrix succinate accumulation which is transported to cytoplasma and secreted into the extracellular milieu. Excessive cytosolic succinate is known to stabilize hypoxia inducible factor-1α (HIF-1α) by inhibiting prolyl hydroxylase. Recent reports indicate that cancer-secreted succinate enhances cancer cell migration and promotes cancer metastasis by activating succinate receptor-1 (SUCNR-1)-mediated signaling and transcription pathways. Cancer-derived extracellular succinate enhances cancer cell and macrophage migration through SUCNR-1 → PI-3 K → HIF-1α pathway. Extracellular succinate induces tumor angiogenesis through SUCNR-1-mediated ERK1/2 and STAT3 activation resulting in upregulation of vascular endothelial growth factor (VEGF) expression. Succinate increases SUCNR-1 expression in cancer cells which is considered as a target for developing new anti-metastasis drugs. Furthermore, serum succinate which is elevated in cancer patients may be a theranostic biomarker for selecting patients for SUCNR-1 antagonist therapy.
Collapse
|
42
|
Keller AC, Chun JH, Knaub L, Henckel M, Hull S, Scalzo R, Pott G, Walker L, Reusch J. Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. J Hypertens 2022; 40:2133-2146. [PMID: 35881464 PMCID: PMC9553250 DOI: 10.1097/hjh.0000000000003153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cardiovascular disease is of paramount importance, yet there are few relevant rat models to investigate its pathology and explore potential therapeutics. Housing at thermoneutral temperature (30 °C) is being employed to humanize metabolic derangements in rodents. We hypothesized that housing rats in thermoneutral conditions would potentiate a high-fat diet, resulting in diabetes and dysmetabolism, and deleteriously impact vascular function, in comparison to traditional room temperature housing (22 °C). METHODS Male Wistar rats were housed at either room temperature or thermoneutral temperatures for 16 weeks on either a low or high-fat diet. Glucose and insulin tolerance tests were conducted at the beginning and end of the study. At the study's conclusion, vasoreactivity and mitochondrial respiration of aorta and carotid were conducted. RESULTS We observed diminished vasodilation in vessels from thermoneutral rats ( P < 0.05), whereas high-fat diet had no effect. This effect was also observed in endothelium-denuded aorta in thermoneutral rats ( P < 0.05). Vasoconstriction was significantly elevated in aorta of thermoneutral rats ( P < 0.05). Diminished nitric oxide synthase activity and nitrotyrosine, and elevated glutathione activity were observed in aorta from rats housed under thermoneutral conditions, indicating a climate of lower nitric oxide and excess reactive oxygen species in aorta. Thermoneutral rat aorta also demonstrated less mitochondrial respiration with lipid substrates compared with the controls ( P < 0.05). CONCLUSION Our data support that thermoneutrality causes dysfunctional vasoreactivity, decreased lipid mitochondrial metabolism, and modified cellular signaling. These are critical observations as thermoneutrality is becoming prevalent for translational research models. This new model of vascular dysfunction may be useful for dissection of targetable aspects of cardiovascular disease and is a novel and necessary model of disease.
Collapse
Affiliation(s)
- Amy C. Keller
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | | | - L.A. Knaub
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - M.M. Henckel
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - S.E. Hull
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - R.L. Scalzo
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - G.B. Pott
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - L.A. Walker
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J.E.B. Reusch
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| |
Collapse
|
43
|
Patel S, Khan H, Majumdar A. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 2022; 37:2181-2195. [PMID: 35616799 DOI: 10.1007/s11011-022-00956-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
About 50% of the diabetic patients worldwide suffer from Diabetic peripheral neuropathy (DPN) which is characterized by chronic pain and loss of sensation, frequent foot ulcerations, and risk for amputation. Numerous factors like hyperglycemia, oxidative stress (OS), impaired glucose signaling, inflammatory responses, neuronal cell death are known to be the various mechanisms underlying DACD and DPN. Development of tolerance, insufficient and inadequate relief and potential toxicity of classical antinociceptives still remains a challenge in the clinical setting. Therefore, there is an emerging need for novel treatments which are both without any potential side effects as well as which focus more on the pathophysiological mechanisms underlying the disease. Also, sirtuins are known to deacetylate Nrf2 and contribute to its action of reducing ROS by generation of anti-oxidant enzymes. Therefore, targeting sirtuins could be a favourable therapeutic strategy to treat diabetic neuropathy by reducing ROS and thereby alleviating OS in DPN. In the present review, we outline the potential use of SIRT1 activators as therapeutic alternatives in treating DPN. We have tried to highlight how sirtuins are interlinked with Nrf2 and NF-κB and put forth how SIRT activators could serve as potential therapy for DPN.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Hasnat Khan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
44
|
He Y, Huang B, Yang Y, Song W, Fan Y, Zhang L, Liu G. MicroRNA‐16‐5p exacerbates sepsis by upregulating aerobic glycolysis via SIRT3‐SDHA axis. Cell Biol Int 2022; 46:2207-2219. [DOI: 10.1002/cbin.11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xian He
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
- Department of Pediatrics The First Affiliated Hospital of Jinan University Guangzhou Guangdong People's Republic of China
| | - Bo‐Lun Huang
- Department of PICU Guangzhou Women and Children's Medical Center Guangzhou Guangdong People's Republic of China
| | - Yi‐Yu Yang
- Department of PICU Guangzhou Women and Children's Medical Center Guangzhou Guangdong People's Republic of China
| | - Wen‐Xiu Song
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Yong‐Bo Fan
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Li‐Mei Zhang
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Guo‐Sheng Liu
- Department of Pediatrics The First Affiliated Hospital of Jinan University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
45
|
Wang M, Pang Y, Guo Y, Tian L, Liu Y, Shen C, Liu M, Meng Y, Cai Z, Wang Y, Zhao W. Metabolic reprogramming: A novel therapeutic target in diabetic kidney disease. Front Pharmacol 2022; 13:970601. [PMID: 36120335 PMCID: PMC9479190 DOI: 10.3389/fphar.2022.970601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes mellitus. However, the pathological mechanisms contributing to DKD are multifactorial and poorly understood. Diabetes is characterized by metabolic disorders that can bring about a series of changes in energy metabolism. As the most energy-consuming organs secondary only to the heart, the kidneys must maintain energy homeostasis. Aberrations in energy metabolism can lead to cellular dysfunction or even death. Metabolic reprogramming, a shift from mitochondrial oxidative phosphorylation to glycolysis and its side branches, is thought to play a critical role in the development and progression of DKD. This review focuses on the current knowledge about metabolic reprogramming and the role it plays in DKD development. The underlying etiologies, pathological damages in the involved cells, and potential molecular regulators of metabolic alterations are also discussed. Understanding the role of metabolic reprogramming in DKD may provide novel therapeutic approaches to delay its progression to end-stage renal disease.
Collapse
|
46
|
Qin X, Qin Q, Ran K, Yuan G, Chang Y, Wang Y, Xiao Y. Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD +-SIRT3 pathway in rats. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1108-1119. [PMID: 36097779 PMCID: PMC10950099 DOI: 10.11817/j.issn.1672-7347.2022.200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Myocardial ischemia reperfusion injury (IRI) occurs occasionally in the process of ischemic heart disease. Sevoflurane preconditioning has an effect on attenuating IRI. Preserving the structural and functional integrity of mitochondria is the key to reduce myocardial IRI. Silent information regulator 3 (SIRT3), a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, is an important signal-regulating molecule in mitochondria. This study aims to explore the role of mitochondrial NAD+-SIRT3 pathway in attenuating myocardial IRI in rats by sevoflurane preconditioning. METHODS A total of 60 male Sprague Dawley (SD) rats were randomly divided into 5 groups (n=12): A sham group (Sham group), an ischemia reperfusion group (IR group), a sevoflurane preconditioning group (Sev group, inhaled 2.5% sevoflurane for 30 min), a sevoflurane preconditioning+SIRT3 inhibitor 3-TYP group (Sev+3-TYP group, inhaled 2.5% sevoflurane for 30 min and received 5 mg/kg 3-TYP), and a 3-TYP group (5 mg/kg 3-TYP). Except for the Sham group, the IR model in the other 4 groups was established by ligating the left anterior descending coronary artery. The size of myocardial infarction was determined by double staining. Serum cardiac troponin I (cTnI) level was measured. The contents of NAD+ and ATP, the activities of mitochondrial complexes I, II, and IV, the content of MDA, the activity of SOD, and the changes of mitochondrial permeability were measured. The protein expression levels of SIRT3, SOD2, catalase (CAT), and voltage dependent anion channel 1 (VDAC1) were detected by Western blotting. The ultrastructure of myocardium was observed under transmission electron microscope. MAP and HR were recorded immediately before ischemia (T0), 30 min after ischemia (T1), 30 min after reperfusion (T2), 60 min after reperfusion (T3), and 120 min after reperfusion (T4). RESULTS After ischemia reperfusion, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased (both P<0.01), and an obvious myocardial injury occurred, including the increase of myocardial infarction size and serum cTnI level (both P<0.01). Correspondingly, the mitochondria also showed obvious damage on energy metabolism, antioxidant function, and structural integrity, which was manifested as: the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level and mitochondrial permeability were increased (all P<0.01). Compared with the IR group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were increased in the Sev group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were decreased in the Sev group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were increased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were decreased in the Sev group (all P<0.01). Compared with the Sev group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased in the Sev+3-TYP group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were increased in the Sev+3-TYP group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were increased in the Sev+3-TYP group (all P<0.01). CONCLUSIONS Sevoflurane preconditioning attenuates myocardial IRI through activating the mitochondrial NAD+-SIRT3 pathway to preserve the mitochondrial function.
Collapse
Affiliation(s)
- Xiunan Qin
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Qin Qin
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guixiu Yuan
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yetian Chang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yaping Wang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yanying Xiao
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
47
|
Zhou L, Pinho R, Gu Y, Radak Z. The Role of SIRT3 in Exercise and Aging. Cells 2022; 11:cells11162596. [PMID: 36010672 PMCID: PMC9406297 DOI: 10.3390/cells11162596] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The health benefits of regular exercise are well established. Nonetheless, the molecular mechanism(s) responsible for exercise-induced health benefits remain a topic of debate. One of the key cell-signaling candidates proposed to provide exercise-induced benefits is sirtuin 3 (SIRT3). SIRT3, an NAD+ dependent mitochondrial deacetylase, positively modulates many cellular processes, including energy metabolism, mitochondrial biogenesis, and protection against oxidative stress. Although the exercise-induced change in SIRT3 signaling is a potential mechanism contributing to the health advantages of exercise on aging, studies investigating the impact of exercise on SIRT3 abundance in cells provide conflicting results. To resolve this conundrum, this narrative review provides a detailed analysis of the role that exercise-induced changes in SIRT3 play in providing the health and aging benefits associated with regular physical activity. We begin with an overview of SIRT3 function in cells followed by a comprehensive review of the impact of exercise on SIRT3 expression in humans and other mammalians. We then discuss the impact of SIRT3 on aging, followed by a thorough analysis of the cell-signaling links between SIRT3 and exercise-induced adaptation. Notably, to stimulate future research, we conclude with a discussion of key unanswered questions related to exercise, aging, and SIRT3 expression.
Collapse
Affiliation(s)
- Lei Zhou
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-304918224
| |
Collapse
|
48
|
Stamerra CA, Di Giosia P, Giorgini P, Ferri C, Sukhorukov VN, Sahebkar A. Mitochondrial Dysfunction and Cardiovascular Disease: Pathophysiology and Emerging Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9530007. [PMID: 35958017 PMCID: PMC9363184 DOI: 10.1155/2022/9530007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Mitochondria ensure the supply of cellular energy through the production of ATP via oxidative phosphorylation. The alteration of this process, called mitochondrial dysfunction, leads to a reduction in ATP and an increase in the production of reactive oxygen species (ROS). Mitochondrial dysfunction can be caused by mitochondrial/nuclear DNA mutations, or it can be secondary to pathological conditions such as cardiovascular disease, aging, and environmental stress. The use of therapies aimed at the prevention/correction of mitochondrial dysfunction, in the context of the specific treatment of cardiovascular diseases, is a topic of growing interest. In this context, the data are conflicting since preclinical studies are numerous, but there are no large randomized studies.
Collapse
Affiliation(s)
- Cosimo Andrea Stamerra
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
- Department of Internal Medicine, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Di Giosia
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
- Department of Internal Medicine, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Giorgini
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Zhao Q, Zhou J, Li F, Guo S, Zhang L, Li J, Qi Q, Shi Y. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol 2022; 12:910963. [PMID: 35832551 PMCID: PMC9272524 DOI: 10.3389/fonc.2022.910963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 3 (SIRT3), the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, acts as a metabolic modulator mainly located in mitochondria via regulating the process of the relevant biochemical processes by targeting crucial mediators. Recently, owing to its dual role in cancer, SIRT3 has attracted extensive attention. Cancer cells have different metabolic patterns from normal cells, and SIRT3-mediated metabolism reprogramming could be critical in the cancer context, which is closely related to the mechanism of metabolism reprogramming, metastasis, and chemoresistance in tumor cells. Therefore, it is crucial to elucidate the relevant pathological mechanisms and take appropriate countermeasures for the progression of clinical strategies to inhibit the development of cancer. In this review, existing available data on the regulation of cancer metabolism reprogramming, metastasis, and chemoresistance progression of SIRT3 are detailed, as well as the status quo of SIRT3 small molecule modulators is updated in the application of cancer therapy, aiming to highlight strategies directly targeting SIRT3-mediated tumor-suppressing and tumor-promoting, and provide new approaches for therapy application. Furthermore, we offer an effective evidence-based basis for the evolvement of potential personalized therapy management strategies for SIRT3 in cancer settings.
Collapse
Affiliation(s)
- QingYi Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Guo
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| |
Collapse
|
50
|
Mitochondrial Sirt3 serves as a biomarker for sepsis diagnosis and mortality prediction. Sci Rep 2022; 12:10414. [PMID: 35729330 PMCID: PMC9213502 DOI: 10.1038/s41598-022-14365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study is to determine whether the levels of serum Sirt3 correlate with disease severity and perfusion indicators in septic patients, as well as to assess the clinical value of Sirt3 as a potential novel marker for sepsis diagnosis and mortality prediction. A total of 79 patients in the ICU were included in the study, of which 28 were postoperatively noninfectious and the remaining 51 patients were all diagnosed with sepsis during the study period. The levels of Sirt3 were detected and dynamically monitored by enzyme-linked adsorption method, Pearson or Spearman coefficient for correlation analysis between Sirt3 and clinical indicators, ROC curve for evaluation of diagnosis and mortality prediction, Kaplan-Meier method for the significance of Sirt3 in 28-day survival. The serum levels of Sirt3 were lower in the sepsis patients on day 1 (P < 0.0001), and the septic shock group had lower Sirt3 levels than the sepsis group (P = 0.013). Sirt3 had good negative correlations with SOFA scores both in sepsis and septic shock groups (Pearson: r2 = - 0.424, - 0.518; P = 0.011, 0.040), and Sirt3 correlated strongly with ScvO2 in the septic shock group (Pearson: r2 = - 0.679, P = 0.004) and with PCT in the sepsis group (Pearson: r2 = - 0.409, P = 0.015). Sirt3 not only performed well in identifying sepsis (AUC = 0.995, 95% CI 0.987-1, P < 0.0001) but also greatly enhanced lactate's specificity in detecting septic shock (from 91.43 to 94.29%). Patients in the low Sirt3 group had higher ScvO2, lactate, APACHE II score, SOFA score, longer ICU stays, and worse indicators of inflammation (TNF-α, IL-6) and infection (PCT) than those in the high Sirt3 group (P < 0.05). Additionally, Sirt3 can predict mortality of sepsis (AUC = 0.746, 95% CI 0.571-0.921, P = 0.022), patients with serum Sirt3 < 10.07 pg/ml have a lower 28-day survival (log-rank P = 0.008). Low serum levels of Sirt3 are significantly correlated with the disease severity. At the same time, Sirt3 increases the sensitivity of lactate to detect "cellular hypoxia" in septic shock. Sirt3 is a promising biomarker for the diagnosis of sepsis and predicting mortality risk in septic patients.
Collapse
|