1
|
Satoh K, Maeno A, Adachi U, Ishizaka M, Yamada K, Koita R, Nakazawa H, Oikawa S, Fujii R, Furudate H, Kawamura A. Physical constraints on the positions and dimensions of the zebrafish swim bladder by surrounding bones. J Anat 2024. [PMID: 39556020 DOI: 10.1111/joa.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Precise regulation of organ size and position is crucial for optimal organ function. Since the swim bladder is primarily responsible for buoyancy in teleosts, early development and subsequent inflation of the swim bladder should be appropriately controlled with the body growth. However, the underlying mechanism remains unclear. In this study, we show that the size and position of the swim bladder are physically constrained by the surrounding bones in zebrafish. Non-invasive micro-CT scanning revealed that the anterior edge of the swim bladder is largely attached to the os suspensorium, which is an ossicle extending medioventrally from the 4th centrum. Additionally, we observed that hoxc6a mutants, which lack the os suspensorium, exhibited an anterior projection of the swim bladder beyond the 4th vertebra. During the swim bladder development, we found that the counterclockwise rotation of the os suspensorium correlates with posterior regression of the swim bladder, suggesting that the os suspensorium pushes the swim bladder posteriorly into its proper position. Furthermore, our results revealed a close association between the posterior region of the swim bladder and the pleural ribs. In hoxaa cluster mutants with additional ribs, the swim bladder expanded posteriorly, accompanied by an enlarged body cavity. Taken together, our results demonstrate the importance of the surrounding bones in the robust regulation of swim bladder size and position in zebrafish.
Collapse
Affiliation(s)
- Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Renka Fujii
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hiroyuki Furudate
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
2
|
Pillai L, Karandikar S, Pandya K, V M A, Singh A, Balakrishnan S. Exposure to thiourea during the early stages of development impedes the formation of the swim bladder in zebrafish larvae. J Appl Toxicol 2024; 44:1572-1582. [PMID: 38888127 DOI: 10.1002/jat.4657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Thiourea, a widely used agrochemical, is known to inhibit the activity of thyroid peroxidase, a key enzyme in the biosynthetic pathway of thyroid hormones. Thyroid insufficiency compromises the basal metabolic rate in warm-blooded organisms and embryonic development in vertebrates. In this study, we looked for developmental defects by exposing the zebrafish embryos to an environmentally relevant dose of thiourea (3 mg/mL). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to validate thiourea's presence in the treated zebrafish embryos. Structural anomalies like bent tail and pericardial edema were noticed in 96-h post-fertilization (hpf) larvae. On histological examination, underdeveloped swim bladder was noticed in 96 hpf larvae exposed to 3 mg/mL thiourea. The treated larvae also failed to follow the characteristic swimming behavior in response to stimuli due to defective swim bladder. Swim bladder being homologous to the lung of tetrapod, the role of Bmp4, a major regulator of lung development, was studied along with the associated regulatory genes. Gene expression analysis revealed that thiourea administration led to the downregulation of bmp4, shh, pcna, anxa5, acta2, and the downstream effector snail3 but the upregulation of caspase3. The protein expression showed a similar trend, wherein Bmp4, Shh, and Pcna were downregulated, but Cleaved Caspase3 showed an increased expression in the treated group. Therefore, it is prudent to presume that exposure to thiourea significantly reduces the expression of Bmp4 and other key regulators; hence, the larvae fail to develop a swim bladder, a vital organ that regulates buoyancy.
Collapse
Affiliation(s)
- Lakshmi Pillai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Shantanu Karandikar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kamya Pandya
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Aishwarya V M
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Anjali Singh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
3
|
Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024; 32:2219-2233. [PMID: 38926297 PMCID: PMC11300644 DOI: 10.1007/s10787-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Immune-mediated inflammatory disease (IMID) prevalence is estimated at 3-7% for Westernised populations, with annual incidence reported at almost 1 in 100 people globally. More recently, drug discovery approaches have been evolving towards more targeted therapies with an improved long-term safety profile, while the requirement for individualisation of medicine in complex conditions such as IMIDs, is acknowledged. However, existing preclinical models-such as cellular and in vivo mammalian models-are not ideal for modern drug discovery model requirements, such as real-time in vivo visualisation of drug effects, logistically feasible safety assessment over the course of a lifetime, or dynamic assessment of physiological changes during disease development. Zebrafish share high homology with humans in terms of proteins and disease-causing genes, with high conservation of physiological processes at organ, tissue, cellular and molecular level. These and other unique attributes, such as high fecundity, relative transparency and ease of genetic manipulation, positions zebrafish as the next major role player in IMID drug discovery. This review provides a brief overview of the suitability of this organism as model for human inflammatory disease and summarises the range of approaches used in zebrafish-based drug discovery research. Strengths and limitations of zebrafish as model organism, as well as important considerations in research study design, are discussed. Finally, under-utilised avenues for investigation in the IMID context are highlighted.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Group, Department of Medicine, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
4
|
Sonkar R, Ma H, Waxman DJ. Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression. Toxicol Sci 2024; 200:324-345. [PMID: 38710495 DOI: 10.1093/toxsci/kfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Han S, Liu X, Liu Y, Lu J. Parental exposure to Cypermethrin causes intergenerational toxicity in zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173456. [PMID: 38788937 DOI: 10.1016/j.scitotenv.2024.173456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Cypermethrin (CYP), a synthetic pyrethroid pesticide, has been detected in agriculture and aquaculture. However, there is limited knowledge about the transgenerational impacts. This study aimed to investigate the developmental toxicity of CYP on F1 larvae offspring of adult zebrafish exposed to various CYP concentrations (5, 10, and 20 μg/L) for 28 days. The results indicated that CYP accumulated in parental zebrafish, and CYP was below the limit of quantification in offspring. Paternal exposure impacted the hatching rate and heart rate of the F1 generation. Furthermore, CYP significantly impacted the development of swim bladders in progeny and dysregulated the genes relevant to swim bladder development. The neutrophil migrated to the swim bladder. The mRNA levels of the inflammatory factors were also significantly elevated. According to network toxicology, PI3-AKT may be the signaling pathway for CYP-influenced bladder development. Subsequent molecular docking and Western blot analysis showed CYP affected the PI3-AKT signaling pathway. Notably, MK-2206, a specific Akt inhibitor, rescued the CYP-induced damage of swim bladder development in offspring. The present study highlights the potential risks of CYP on the development of offspring and lasting impact in aquatic environments.
Collapse
Affiliation(s)
- Shuang Han
- Morphology and Spatial Multi-omics Technology Platform, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031 Shanghai, China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xi Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Torday JS. Symbiogenesis redicts the monism of the cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:58-62. [PMID: 38972464 DOI: 10.1016/j.pbiomolbio.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Symbiogenesis has been systematically exploited to understand consciousness as the aggregate of our physiology. The Symbiogenic mechanism for assimilation of factors in the environment formulates the continuum from inside the cell to the Cosmos, both consciousness and cosmology complying with the Laws of Nature. Since Symbiogenesis is 'constructive', whereas eliminating what threatens us is 'destructive', why do we largely practice Symbiogenesis? Hypothetically, Symbiogenesis recursively simulates the monism of our origin, recognizing 'something bigger than ourselves'. That perspective explains many heretofore unexplained aspects of consciousness, such as mind, epigenetic inheritance, physiology, behaviors, social systems, mathematics, the Arts, from an a priori perspective. Moreover, there is an energetic continuum from Newtonian to Quantum Mechanics, opening up to a novel way of understanding the 'true nature of our being', not as 'materialism', but instead being the serial homeostatic control of energy. The latter is consistent with the spirit of Claude Bernard and Walter B. Cannon's perspectives on physiology. Such a paradigm shift is overdue, given that materialism is causing the destruction of the Earth and ourselves.
Collapse
Affiliation(s)
- John S Torday
- Obstetrics and Gynecology, Evolutionary Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
7
|
Banerjee S, Bongu S, Hughes SP, Gaboury EK, Carver CE, Luo X, Bessert DA, Thummel R. Hypomyelinated vps16 Mutant Zebrafish Exhibit Systemic and Neurodevelopmental Pathologies. Int J Mol Sci 2024; 25:7260. [PMID: 39000367 PMCID: PMC11242861 DOI: 10.3390/ijms25137260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Homotypic Fusion and Protein Sorting (HOPS) and Class C-core Vacuole/Endosome Tethering (CORVET) complexes regulate the correct fusion of endolysosomal bodies. Mutations in core proteins (VPS11, VPS16, VPS18, and VPS33) have been linked with multiple neurological disorders, including mucopolysaccharidosis (MPS), genetic leukoencephalopathy (gLE), and dystonia. Mutations in human Vacuolar Protein Sorting 16 (VPS16) have been associated with MPS and dystonia. In this study, we generated and characterized a zebrafish vps16(-/-) mutant line using immunohistochemical and behavioral approaches. The loss of Vps16 function caused multiple systemic defects, hypomyelination, and increased neuronal cell death. Behavioral analysis showed a progressive loss of visuomotor response and reduced motor response and habituation to acoustic/tap stimuli in mutants. Finally, using a novel multiple-round acoustic/tap stimuli test, mutants showed intermediate memory deficits. Together, these data demonstrate that zebrafish vps16(-/-) mutants show systemic defects, neurological and motor system pathologies, and cognitive impairment. This is the first study to report behavior abnormalities and memory deficiencies in a zebrafish vps16(-/-) mutant line. Finally, we conclude that the deficits observed in vps16(-/-) zebrafish mutants do not mimic pathologies associated with dystonia, but more align to abnormalities associated with MPS and gLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.B.); (S.B.); (S.P.H.); (E.K.G.); (C.E.C.); (X.L.); (D.A.B.)
| |
Collapse
|
8
|
Fagundes T, Pannetier P, Gölz L, Behnstedt L, Morthorst J, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. The generation gap in endocrine disruption: Can the integrated fish endocrine disruptor test (iFEDT) bridge the gap by assessing intergenerational effects of thyroid hormone system disruption? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106969. [PMID: 38824743 DOI: 10.1016/j.aquatox.2024.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Thyroid hormones (THs) act early in ontogenesis, even prior to the differentiation of thyrocytes. Maternal transfer of THs is therefore known to play an essential role in early development. Current OECD test guidelines for the assessment of TH system disruption (THSD) do not address inter- or transgenerational effects. The integrated fish endocrine disruptor test (iFEDT), a test combining parental and developmental exposure of filial fish, may fill this gap. We tested the ability of the iFEDT to detect intergenerational effects in zebrafish (Danio rerio): Parental fish were exposed to propylthiouracil (PTU), an inhibitor of TH synthesis, or not exposed. The offspring was submitted to a crossed experimental design to obtain four exposure scenarios: (1) no exposure at all, (2) parental exposure only, (3) embryonic exposure only, and (4) combined parental and embryonic exposure. Swim bladder inflation, visual motor response (VMR) and gene expression of the progeny were analysed. Parental, but not embryonic PTU exposure reduced the size of the swim bladder of 5 d old embryos, indicating the existence of intergenerational effects. The VMR test produced opposite responses in 4.5 d old embryos exposed to PTU vs. embryos derived from exposed parents. Embryonic exposure, but not parental exposure increased gene expression of thyroperoxidase, the target of PTU, most likely due to a compensatory mechanism. The gene expression of pde-6h (phosphodiesterase) was reduced by embryonic, but not parental exposure, suggesting downregulation of phototransduction pathways. Hence, adverse effects on swim bladder inflation appear more sensitive to parental than embryonic exposure and the iFEDT represents an improvement in the testing strategy for THSD.
Collapse
Affiliation(s)
- Teresa Fagundes
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Eurofins Aquatic Ecotoxicolgy, Eutinger Str. 24, D-75223 Niefern-Öschelbronn, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Technopôle Brest Iroise, CS 10070, F-29280 Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Jane Morthorst
- University of Southern Denmark, Institute of Biology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lucia Vergauwen
- University of Antwerp, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, Universiteitsplein 1, BE-2160 Wilrijk, Belgium
| | - Dries Knapen
- University of Antwerp, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, Universiteitsplein 1, BE-2160 Wilrijk, Belgium
| | - Henrik Holbech
- University of Southern Denmark, Institute of Biology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Cupello C, Clément G, Herbin M, Meunier FJ, Brito PM. Pulmonary arteries in coelacanths shed light on the vasculature evolution of air-breathing organs in vertebrates. Sci Rep 2024; 14:10624. [PMID: 38724555 PMCID: PMC11082188 DOI: 10.1038/s41598-024-61065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).
Collapse
Affiliation(s)
- Camila Cupello
- Departamento de Zoologia, Instituto de Biologia-IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Gaël Clément
- Département Origines & Evolution, Muséum national d'Histoire naturelle, UMR 7207 (MNHN-CNRS-Sorbonne Universités) Centre de Recherche en Paléontologie (CR2P), Paris, France
| | - Marc Herbin
- Département Adaptations du Vivant, Muséum national d'Histoire naturelle, UMR 7179 (CNRS-MNHN) Mécanismes Adaptatifs et Evolution (MECADEV), Paris, France
| | - François J Meunier
- Département Adaptations du Vivant, Muséum national d'Histoire naturelle, UMR 8067 (CNRS-IRD-MNHN-Sorbonne Universités-UCN, UA), Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Paris, France
| | - Paulo M Brito
- Departamento de Zoologia, Instituto de Biologia-IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Torday JS. The quantum cell. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:24-30. [PMID: 38395203 DOI: 10.1016/j.pbiomolbio.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
There is a consensus that we are conscious of something greater than ourselves, as if we are derived from some other primordial set of principles. Classical or Newtonian physics is based on the Laws of Nature. Conversely, in a recent series of articles, it has been hypothesized that the cell was formed from lipid molecules submerged in the primordial ocean that covered the earth 100 million years after it formed. Since lipids are amphiphiles, with both a positively- and negatively-charged pole, the negatively-charged pole is miscible in water. Under the influence of earth's gravity, the lipid molecules stand up perpendicularly to the surface of the water, packing together until the negative charge neutralizes the Van der Waals force for surface tension, causing the lipid molecules to 'leap' into the micellar form as a sphere with a semi-permeable membrane. Particles in the water freely enter and exit such spheres based on mass action. Over time such protocells evolved Symbiogenesis, encountering factors that posed existential threats, assimilating them to form physiology to maintain homeostatic control. Importantly, when differentiated lung or bone cells are exposed to zero gravity, they lose their phenotypic identity in their evolved state, which has been interpreted as transiting from local to non-local consciousness.
Collapse
Affiliation(s)
- John S Torday
- Pediatrics, University of California- Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Smoot J, Padilla S, Kim YH, Hunter D, Tennant A, Hill B, Lowery M, Knapp BR, Oshiro W, Hazari MS, Hays MD, Preston WT, Jaspers I, Gilmour MI, Farraj AK. Burn pit-related smoke causes developmental and behavioral toxicity in zebrafish: Influence of material type and emissions chemistry. Heliyon 2024; 10:e29675. [PMID: 38681659 PMCID: PMC11053193 DOI: 10.1016/j.heliyon.2024.e29675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Combustion of mixed materials during open air burning of refuse or structural fires in the wildland urban interface produces emissions that worsen air quality, contaminate rivers and streams, and cause poor health outcomes including developmental effects. The zebrafish, a freshwater fish, is a useful model for quickly screening the toxicological and developmental effects of agents in such species and elicits biological responses that are often analogous and predictive of responses in mammals. The purpose of this study was to compare the developmental toxicity of smoke derived from the burning of 5 different burn pit-related material types (plywood, cardboard, plastic, a mixture of the three, and the mixture plus diesel fuel as an accelerant) in zebrafish larvae. Larvae were exposed to organic extracts of increasing concentrations of each smoke 6-to-8-hr post fertilization and assessed for morphological and behavioral toxicity at 5 days post fertilization. To examine chemical and biological determinants of toxicity, responses were related to emissions concentrations of polycyclic hydrocarbons (PAH). Emissions from plastic and the mixture containing plastic caused the most pronounced developmental effects, including mortality, impaired swim bladder inflation, pericardial edema, spinal curvature, tail kinks, and/or craniofacial deformities, although all extracts caused concentration-dependent effects. Plywood, by contrast, altered locomotor responsiveness to light changes to the greatest extent. Some morphological and behavioral responses correlated strongly with smoke extract levels of PAHs including 9-fluorenone. Overall, the findings suggest that material type and emissions chemistry impact the severity of zebrafish developmental toxicity responses to burn pit-related smoke.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Yong Ho Kim
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Deborah Hunter
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Alan Tennant
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Bridgett Hill
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Morgan Lowery
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Wendy Oshiro
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mehdi S. Hazari
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael D. Hays
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - M. Ian Gilmour
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Aimen K. Farraj
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Chen X, Wang C, Gui W, Guo Y, Zhou X, Zhao Y, Dai J. Time-course transcriptome analysis discloses PFDMO2OA (C8 HFPO-TA)-induced developmental malformations and cardiovascular toxicities in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123729. [PMID: 38462201 DOI: 10.1016/j.envpol.2024.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
PFDMO2OA (C8 HFPO-TA), a novel substitute for perfluorooctanoic acid (PFOA), has been frequently detected in surface waters. However, information on its toxicity remains scarce. In the present study, zebrafish embryos were exposed to varying concentrations of PFDMO2OA, ranging from 80 to 800 mg/L, until 120 h post-fertilization (hpf) to explore its potential developmental toxicities. The LC50 value for mortality was 505.9 mg/L, comparable to that of PFOA (over 500 mg/L), suggesting a lack of safety of PFDMO2OA compared to PFOA. At 120 hpf, PFDMO2OA exposure led to various malformations in embryos, including uninflated swim bladder, yolk sac oedema, spinal deformation, and pigmentation changes, with pericardial oedema being prominent. Analysis using O-dianisidine stain indicated a decline in erythrocytes over time. Transcriptome analysis further revealed the cardiovascular toxicity caused by PFDMO2OA at the molecular level. Time-course differential analysis pointed to the apoptosis dependent on disrupted mitochondrial function as a significant contributor to erythrocyte disappearance, as confirmed by the TUNEL stain. Therefore, the present findings suggest that PFDMO2OA induces developmental malformations and cardiovascular toxicities in zebrafish embryos, demonstrating a toxic potency comparable to that of PFOA. The results further highlight the significance of evaluating the health risks associated with PFDMO2OA.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanying Gui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
13
|
Zhang R, Liu Q, Pan S, Zhang Y, Qin Y, Du X, Yuan Z, Lu Y, Song Y, Zhang M, Zhang N, Ma J, Zhang Z, Jia X, Wang K, He S, Liu S, Ni M, Liu X, Xu X, Yang H, Wang J, Seim I, Fan G. A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nat Commun 2023; 14:5630. [PMID: 37699889 PMCID: PMC10497629 DOI: 10.1038/s41467-023-41309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Qun Liu
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Shanshan Pan
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yingying Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yating Qin
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Xiao Du
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- BGI Research, 518083, Shenzhen, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yongrui Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yue Song
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Nannan Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Jie Ma
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P.R. China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Shanshan Liu
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Ming Ni
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Xin Liu
- BGI Research, 518083, Shenzhen, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, 518083, Shenzhen, China
| | | | - Jian Wang
- BGI Research, 518083, Shenzhen, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia.
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China.
- BGI Research, 518083, Shenzhen, China.
| |
Collapse
|
14
|
Van Dingenen I, Vergauwen L, Haigis AC, Blackwell BR, Stacy E, Villeneuve DL, Knapen D. Deiodinase inhibition impairs the formation of the three posterior swim bladder tissue layers during early embryonic development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106632. [PMID: 37451188 PMCID: PMC10949247 DOI: 10.1016/j.aquatox.2023.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Thyroid hormone system disruption (THSD) negatively affects multiple developmental processes and organs. In fish, inhibition of deiodinases, which are enzymes crucial for (in)activating thyroid hormones (THs), leads to impaired swim bladder inflation. Until now, the underlying mechanism has remained largely unknown. Therefore, the objective of this study was to identify the process during swim bladder development that is impacted by deiodinase inhibition. Zebrafish embryos were exposed to 6 mg/L iopanoic acid (IOP), a model deiodinase inhibitor, during 8 different exposure windows (0-60, 60-120, 24-48, 48-72, 72-96, 96-120, 72-120 and 0-120 h post fertilization (hpf)). Exposure windows were chosen based on the three stages of swim bladder development: budding (24-48 hpf), pre-inflation, i.e., the formation of the swim bladder tissue layers (48-72 hpf), and inflation phase (72-120 hpf). Exposures prior to 72 hpf, during either the budding or pre-inflation phase (or both), impaired swim bladder inflation, while exposure during the inflation phase did not. Based on our results, we hypothesize that DIO inhibition before 72 hpf leads to a local decrease in T3 levels in the developing swim bladder. Gene transcript analysis showed that these TH level alterations disturb both Wnt and hedgehog signaling, known to be essential for swim bladder formation, eventually resulting in impaired development of the swim bladder tissue layers. Improper development of the swim bladder impairs swim bladder inflation, leading to reduced swimming performance. This study demonstrates that deiodinase inhibition impacts processes underlying the formation of the swim bladder and not the inflation process, suggesting that these processes primarily rely on maternal rather than endogenously synthetized THs since TH measurements showed that THs were not endogenously synthetized during the sensitive period.
Collapse
Affiliation(s)
- Imke Van Dingenen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Brett R Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Emma Stacy
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
15
|
Kim I, Cho HJ, Lim S, Seok SH, Lee HY. Comparison of the effects of empagliflozin and sotagliflozin on a zebrafish model of diabetic heart failure with reduced ejection fraction. Exp Mol Med 2023; 55:1174-1181. [PMID: 37258583 PMCID: PMC10318005 DOI: 10.1038/s12276-023-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/02/2023] Open
Abstract
The sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin (EMPA) and dual SGLT1/2 inhibitor sotagliflozin (SOTA) are emerging as heart failure (HF) medications in addition to having glucose-lowering effects in diabetes mellitus (DM). However, the precise mechanism underlying this cardioprotective effect has not yet been elucidated. Here, we evaluated the effects of EMPA and SOTA in a zebrafish model of DM combined with HF with reduced ejection fraction (DM-HFrEF). To compare the effects of the two drugs, survival, locomotion, and myocardial contractile function were evaluated. The structural binding and modulating effects of the two medications on sodium-hydrogen exchanger 1 (NHE1) were evaluated in silico and in vitro. DM-HFrEF zebrafish showed impaired cardiac contractility and decreased locomotion and survival, all of which were improved by 0.2-5 μM EMPA or SOTA treatment. However, the 25 μM SOTA treatment group had worse survival rates and less locomotion preservation than the EMPA treatment group at the same concentration, and pericardial edema and an uninflated swim bladder were observed. SOTA, EMPA and cariporide (CARI) showed similar structural binding affinities to NHE1 in a molecular docking analysis and drug response affinity target stability assay. In addition, EMPA, SOTA, and CARI effectively reduced intracellular Na+ and Ca2+ changes through the inhibition of NHE1 activity. These findings suggest that both EMPA and SOTA exert cardioprotective effects in the DM-HFrEF zebrafish model by inhibiting NHE1 activity. In addition, despite the similar cardioprotective effects of the two drugs, SOTA may be less effective than EMPA at high concentrations.
Collapse
Affiliation(s)
- Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| | - Hae-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Tyrkalska SD, Candel S, Pedoto A, García-Moreno D, Alcaraz-Pérez F, Sánchez-Ferrer Á, Cayuela ML, Mulero V. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023; 47:fuac042. [PMID: 36323404 PMCID: PMC9841970 DOI: 10.1093/femsre/fuac042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Departmento de Bioloquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Torday JS. Cybernetics as a conversation with the Cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:77-81. [PMID: 35487343 DOI: 10.1016/j.pbiomolbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Norbert Wiener was the first to functionally define cybernetics as "the study of control and communication in the animal and the machine". Herein, it is shown that as a manifestation of physiology, cybernetics can be further reduced to cell-cell signaling to maintain homeostasis, bridging Newtonian 3rd Order Cybernetics with Quantum Mechanical 4th Order Cybernetics as our 'conversation with the Cosmos' based on Quantum Entanglement, constrained by non-localization. As such, cybernetics can be scientifically tested in toto from the functional to the metaphysical, rendered physical as communication for the first time. If that is correct, then the sooner we begin operating based on Quantum Mechanical principles, the sooner we will function based on predictive algorithms.
Collapse
Affiliation(s)
- John S Torday
- Departments of Pediatrics, Obstetrics and Gynecology, Evolutionary Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
18
|
Hattab S, Dagher AM, Wheeler RT. Pseudomonas Synergizes with Fluconazole against Candida during Treatment of Polymicrobial Infection. Infect Immun 2022; 90:e0062621. [PMID: 35289633 PMCID: PMC9022521 DOI: 10.1128/iai.00626-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Anna-Maria Dagher
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
19
|
Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses. Cell Discov 2022; 8:31. [PMID: 35379790 PMCID: PMC8979957 DOI: 10.1038/s41421-022-00393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
Collapse
|
20
|
Phillips J, Haimbaugh AS, Akemann C, Shields JN, Wu CC, Meyer DN, Baker BB, Siddiqua Z, Pitts DK, Baker TR. Developmental Phenotypic and Transcriptomic Effects of Exposure to Nanomolar Levels of 4-Nonylphenol, Triclosan, and Triclocarban in Zebrafish (Danio rerio). TOXICS 2022; 10:toxics10020053. [PMID: 35202241 PMCID: PMC8877790 DOI: 10.3390/toxics10020053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Triclosan, triclocarban and 4-nonylphenol are all chemicals of emerging concern found in a wide variety of consumer products that have exhibited a wide range of endocrine-disrupting effects and are present in increasing amounts in groundwater worldwide. Results of the present study indicate that exposure to these chemicals at critical developmental periods, whether long-term or short-term in duration, leads to significant mortality, morphologic, behavioral and transcriptomic effects in zebrafish (Danio rerio). These effects range from total mortality with either long- or short-term exposure at 100 and 1000 nM of triclosan, to abnormalities in uninflated swim bladder seen with long-term exposure to triclocarban and short-term exposure to 4-nonylphenol, and cardiac edema seen with short-term 4-nonylphenol exposure. Additionally, a significant number of genes involved in neurological and cardiovascular development were differentially expressed after the exposures, as well as lipid metabolism genes and metabolic pathways after exposure to each chemical. Such changes in behavior, gene expression, and pathway abnormalities caused by these three known endocrine disruptors have the potential to impact not only the local ecosystem, but human health as well.
Collapse
Affiliation(s)
- Jessica Phillips
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Alex S. Haimbaugh
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Jeremiah N. Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
| | - Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Danielle N. Meyer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Bridget B. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32610, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - David K. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - Tracie R. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
21
|
Bian Y, He MY, Ling Y, Wang XJ, Zhang F, Feng XS, Zhang Y, Xing SG, Li J, Qiu X, Li YR. Tissue distribution study of perfluorooctanoic acid in exposed zebrafish using MALDI mass spectrometry imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118505. [PMID: 34785291 DOI: 10.1016/j.envpol.2021.118505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) as an emerging environmental contaminant, has become ubiquitous in the environment. It is of significance to study bioconcentration and tissue distribution of aquatic organisms for predicting the persistence of PFOA and its adverse effects on the environment and human body. However, the distribution of PFOA in different tissues is a complex physiological process affected by many factors. It is difficult to be accurately described by a simple kinetic model. In present study, a new strategy was introduced to research the PFOA distribution in tissues and estimate the exposure stages. Zebrafish were continuously exposed to 25 mg/L PFOA for 30 days to simulate environmental process. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) method was used to monitor the spatio-temporal distribution of PFOA in zebrafish tissues. By analyzing the law of change obtained from the high spatial resolution MSI data, two different enrichment trends in ten tissues were summarized by performing curve fitting. Analyzing the ratio of two types of curves, a new "exposure curve" was defined to evaluate the exposure stages. With this model, three levels (mild, moderate, and deep pollution stage) of PFOA pollution in zebrafish can be simply evaluated.
Collapse
Affiliation(s)
- Yu Bian
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiu-Juan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shi-Ge Xing
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jie Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Qiu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu-Rui Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| |
Collapse
|
22
|
Jiang M, Xiao Y, E W, Ma L, Wang J, Chen H, Gao C, Liao Y, Guo Q, Peng J, Han X, Guo G. Characterization of the Zebrafish Cell Landscape at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:743421. [PMID: 34660600 PMCID: PMC8517238 DOI: 10.3389/fcell.2021.743421] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Zebrafish have been found to be a premier model organism in biological and regeneration research. However, the comprehensive cell compositions and molecular dynamics during tissue regeneration in zebrafish remain poorly understood. Here, we utilized Microwell-seq to analyze more than 250,000 single cells covering major zebrafish cell types and constructed a systematic zebrafish cell landscape. We revealed single-cell compositions for 18 zebrafish tissue types covering both embryo and adult stages. Single-cell mapping of caudal fin regeneration revealed a unique characteristic of blastema population and key genetic regulation involved in zebrafish tissue repair. Overall, our single-cell datasets demonstrate the utility of zebrafish cell landscape resources in various fields of biological research.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haide Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qile Guo
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Torday JS. Life is a mobius strip. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:41-45. [PMID: 34364909 DOI: 10.1016/j.pbiomolbio.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
If you cut a mobius strip in half, the edges form a Trefoil Knot, which can be untied to form a circle, proving it's a true mathematical knot. The cell is a homologue of the mathematical knot since it, too, must be able to unknot itself to form the egg and sperm meiotically in order to reproduce. The homology between a knot and a cell is thought-provoking biologically because the Trefoil Knot is a metaphor for the endoderm, ectoderm and mesoderm, the three germ layers of the gastrula that ultimately produce the embryo, beginning with the zygote. Upon further consideration, the cell membrane is like a mobius strip, forming one continuous surface between the inner environment of the cell and the outer environment. However, it is not formed by taking a circular surface, cutting it, twisting it and attaching the two ends as you would conventionally to form a mobius strip. Conversely, David Bohm's Explicate Order forms a boundary with the Implicate Order. That lipid boundary is the prima facie mobius strip that divides the infinite surface of the Implicate Order into inside and outside by 'recalling' its pre-adapted state as lipid molecules before there was an inside or outside.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, University of California, Los Angeles, Westwood, CA, USA.
| |
Collapse
|
24
|
Funk EC, Birol EB, McCune AR. Does the bowfin gas bladder represent an intermediate stage during the lung-to-gas bladder evolutionary transition? J Morphol 2021; 282:600-611. [PMID: 33538055 DOI: 10.1002/jmor.21330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/09/2022]
Abstract
Whether phenotypic evolution occurs gradually through time has prompted the search for intermediate forms between the ancestral and derived states of morphological features, especially when there appears to be a discontinuous origin. The gas bladder, a derived character of the Actinopteri, is a modification of lungs, which characterize the common ancestor of bony vertebrates. While gas bladders and lungs are similar in many ways, the key morphological difference between these organs is the direction of budding from the foregut during development; essentially, the gas bladder buds dorsally and the lungs bud ventrally from the foregut. Did the shift from ventral lungs to dorsal gas bladder transition through a lateral-budding stage? To answer this question, the precise location of budding during gas bladder development in bowfin, representing the sister lineage to teleosts, has been debated. In the early 20th-century, it was suggested that the bowfin gas bladder buds laterally from the right wall of the foregut. We used nano-CT scanning to visualize the early development of the bowfin gas bladder to verify the historical studies of gas bladder developmental morphology and determine whether the direction of gas bladder budding in bowfin could be intermediate between ventrally budding lungs and dorsally budding gas bladders. We found that the bowfin gas bladder buds dorsally from the anterior foregut; however, during early development, the posterior gas bladder twists right. As development progresses, the posterior, right-hand twist becomes shallower, and the gas bladder itself shifts toward a mid-dorsal position. The budding site is definitively dorsal, despite the temporary lateral twist of the posterior gas bladder.
Collapse
Affiliation(s)
- Emily C Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Genomics Variation Lab, University of California Davis, Davis, California, USA
| | - Eda B Birol
- Department of Architecture, Cornell University, Ithaca, New York, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Yamada K, Maeno A, Araki S, Kikuchi M, Suzuki M, Ishizaka M, Satoh K, Akama K, Kawabe Y, Suzuki K, Kobayashi D, Hamano N, Kawamura A. An atlas of seven zebrafish hox cluster mutants provides insights into sub/neofunctionalization of vertebrate Hox clusters. Development 2021; 148:269044. [PMID: 34096572 DOI: 10.1242/dev.198325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Vertebrate Hox clusters are comprised of multiple Hox genes that control morphology and developmental timing along multiple body axes. Although results of genetic analyses using Hox-knockout mice have been accumulating, genetic studies in other vertebrates have not been sufficient for functional comparisons of vertebrate Hox genes. In this study, we isolated all of the seven hox cluster loss-of-function alleles in zebrafish using the CRISPR-Cas9 system. Comprehensive analysis of the embryonic phenotype and X-ray micro-computed tomography scan analysis of adult fish revealed several species-specific functional contributions of homologous Hox clusters along the appendicular axis, whereas important shared general principles were also confirmed, as exemplified by serial anterior vertebral transformations along the main body axis, observed in fish for the first time. Our results provide insights into discrete sub/neofunctionalization of vertebrate Hox clusters after quadruplication of the ancient Hox cluster. This set of seven complete hox cluster loss-of-function alleles provide a formidable resource for future developmental genetic analysis of the Hox patterning system in zebrafish.
Collapse
Affiliation(s)
- Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akiteru Maeno
- Plant Resource Development, Division of Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Soh Araki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Morimichi Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Masato Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kagari Akama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Yuki Kawabe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kenya Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Daiki Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nanami Hamano
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
26
|
Costa KCM, Brigante TAV, Fernandes GG, Scomparin DS, Scarante FF, de Oliveira DP, Campos AC. Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19? eNeuro 2021; 8:ENEURO.0027-21.2021. [PMID: 33952614 PMCID: PMC8174008 DOI: 10.1523/eneuro.0027-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The Coronavirus disease-2019 (COVID-19) presents a variability of clinical symptoms, ranging from asymptomatic to severe respiratory and systemic conditions. In a cohort of patients, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), beyond the classical respiratory manifestations, induces anosmia. Evidence has suggested SARS-CoV-2-induced anosmia can be the result of neurodegeneration of the olfactory pathway. Neurologic symptoms associated with COVID-19 have been reported; however, the precise mechanism and possible long-lasting effects remain poorly investigated. Preclinical models are valuable tools for describing and testing new possible treatments for neurologic disorders. In this way, the zebrafish (Danio rerio) organism model represents an attractive tool in the field of neuroscience, showing economic and logistic advantages besides genetic and physiologic similarities with mammalian, including the brain structure and functions. Besides, its external embryonic development, high availability of eggs, and fast development allows easy genetic manipulation and fast replications. In the present review, we suggest that the zebrafish model can be advantageous to investigate the neurologic features of COVID-19.
Collapse
Affiliation(s)
- Karla C M Costa
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900,
| | - Tamires A V Brigante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Gabriel G Fernandes
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Davi S Scomparin
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Franciele F Scarante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Danielle P de Oliveira
- EcoHumanTox Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo, Brazil 14049-900
| | - Alline C Campos
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| |
Collapse
|
27
|
Bastian FB, Roux J, Niknejad A, Comte A, Fonseca Costa SS, de Farias TM, Moretti S, Parmentier G, de Laval VR, Rosikiewicz M, Wollbrett J, Echchiki A, Escoriza A, Gharib WH, Gonzales-Porta M, Jarosz Y, Laurenczy B, Moret P, Person E, Roelli P, Sanjeev K, Seppey M, Robinson-Rechavi M. The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Nucleic Acids Res 2021; 49:D831-D847. [PMID: 33037820 PMCID: PMC7778977 DOI: 10.1093/nar/gkaa793] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 01/24/2023] Open
Abstract
Bgee is a database to retrieve and compare gene expression patterns in multiple animal species, produced by integrating multiple data types (RNA-Seq, Affymetrix, in situ hybridization, and EST data). It is based exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, no treatment, no disease), to provide a comparable reference of normal gene expression. Curation includes very large datasets such as GTEx (re-annotation of samples as ‘healthy’ or not) as well as many small ones. Data are integrated and made comparable between species thanks to consistent data annotation and processing, and to calls of presence/absence of expression, along with expression scores. As a result, Bgee is capable of detecting the conditions of expression of any single gene, accommodating any data type and species. Bgee provides several tools for analyses, allowing, e.g., automated comparisons of gene expression patterns within and between species, retrieval of the prefered conditions of expression of any gene, or enrichment analyses of conditions with expression of sets of genes. Bgee release 14.1 includes 29 animal species, and is available at https://bgee.org/ and through its Bioconductor R package BgeeDB.
Collapse
Affiliation(s)
- Frederic B Bastian
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julien Roux
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anne Niknejad
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Aurélie Comte
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sara S Fonseca Costa
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tarcisio Mendes de Farias
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sébastien Moretti
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Gilles Parmentier
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valentine Rech de Laval
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marta Rosikiewicz
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julien Wollbrett
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Amina Echchiki
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Angélique Escoriza
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Walid H Gharib
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Mar Gonzales-Porta
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Yohan Jarosz
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Balazs Laurenczy
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Philippe Moret
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Emilie Person
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Roelli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Komal Sanjeev
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Mathieu Seppey
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Ma X, Shang M, Su B, Wiley A, Bangs M, Alston V, Simora RM, Nguyen MT, Backenstose NJC, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Transcriptome Analysis During the Seven Developmental Stages of Channel Catfish ( Ictalurus punctatus) and Tra Catfish ( Pangasianodon hypophthalmus) Provides Novel Insights for Terrestrial Adaptation. Front Genet 2021; 11:608325. [PMID: 33552125 PMCID: PMC7859520 DOI: 10.3389/fgene.2020.608325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
Abstract
Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Anne Wiley
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Mai Thi Nguyen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| |
Collapse
|
29
|
Yang L, Ivantsova E, Souders CL, Martyniuk CJ. The agrochemical S-metolachlor disrupts molecular mediators and morphology of the swim bladder: Implications for locomotor activity in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111641. [PMID: 33396161 DOI: 10.1016/j.ecoenv.2020.111641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Metolachlor herbicides are derived from the chloroacetamide chemical family of which there are the S- and R-metolachlor isomers. S-metolachlor is a selective herbicide that inhibits cell division and mitosis via enzyme interference. The herbicide is used globally in agriculture and studies report adverse effects in aquatic organisms; however, there are no studies investigating sub-lethal effects of S-metolachlor on swim bladder formation, mitochondrial ATP production, nor light-dark preference behaviors in fish. These endpoints are relevant for larval locomotor activity and metabolism. To address these knowledge gaps, we exposed zebrafish embryos/larvae to various concentrations of S-metolachlor (0.5-50 µM) over early development. S-metolachlor affected survival, hatching percentage, and increased developmental deformities at concentrations of 50 µM and above. Exposure levels as high as 200 µM for 24 and 48 h did not alter oxygen consumption rates in zebrafish, and there were no changes detected in endpoints related to mitochondrial oxidative phosphorylation. We observed impairment of swim bladder inflation at 50 µM in 6 dpf larvae. To elucidate mechanisms related to this, we measured relative transcript abundance for genes associated with the swim bladder (smooth muscle alpha (α)-2 actin, annexin A5, pre-B-cell leukemia homeobox 1a). Smooth muscle alpha (α)-2 actin mRNA levels were reduced in fish exposed to 50 µM while annexin A5 mRNA levels were increased in abundance, corresponding to reduced swim bladder size in larvae. A visual motor response test revealed that larval zebrafish exhibited some hyperactivity in the light with exposure to the herbicide and only the highest dose tested (50 µM) resulted in hypoactivity in the dark cycle. Regression analysis indicated that there was a positive relationship between surface area of the swim bladder and distance traveled, and the size of the swim bladder explained ~10-14% in the variation for total distance moved. Lastly, we tested larvae in a light dark preference test, and we did not detect any altered behavioral response to any concentration tested. Here we present new data on sublethal endpoints associated with exposure to the herbicide S-metolachlor and demonstrate that this chemical may disrupt transcripts associated with swim bladder formation and morphology, which could ultimately affect larval zebrafish activity. These data are expected to contribute to further risk assessment guidelines for S-metolachlor in aquatic ecosystems.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
30
|
Kim J, Lee G, Lee YM, Zoh KD, Choi K. Thyroid disrupting effects of perfluoroundecanoic acid and perfluorotridecanoic acid in zebrafish (Danio rerio) and rat pituitary (GH3) cell line. CHEMOSPHERE 2021; 262:128012. [PMID: 33182161 DOI: 10.1016/j.chemosphere.2020.128012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 05/26/2023]
Abstract
Due to global restriction on perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the use of long-chain perfluoroalkyl substances (PFASs, C > 8) and their environmental occurrences have increased. PFOS and PFOA have been known for thyroid disruption, however, knowledge is still limited on thyroid disrupting effects of long-chain PFASs (C > 10). In this study, two long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA), were chosen and investigated for thyroid disrupting effects, using zebrafish embryo/larvae and rat pituitary cell line (GH3). For comparison, PFOA was also added as a test chemical and also investigated for its thyroid disruption potential. Following a 5 d exposure to PFTrDA, zebrafish larvae showed upregulation of the genes responsible for thyroid hormone synthesis (tshβ, nkx2.1, nis, tpo, mct8) and (de)activation (dio1, dio2). In contrast, both PFUnDA and PFOA induced no regulatory changes except for upregulation of a thyroid metabolism related gene (ugt1ab). Morphological changes such as decreased eyeball size, increased yolk sac size, or deflated swim bladder, occurred following exposure to PFUnDA, PFTrDA, and PFOA. In GH3 cells, exposure to PFUnDA and PFTrDA upregulated Tshβ gene, suggesting that these PFCAs increase thyroid hormone synthesis through stimulation by Tsh. In summary, both long-chain PFCAs could cause transcriptional changes of thyroid regulating genes that may lead to increased malformation of the zebrafish larvae, but the pathway of thyroid disruption appears to be different by the chain length. Confirmation and validation in adult fish following long term exposure are warranted.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Young-Min Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
31
|
Autophagy Is Required for Maturation of Surfactant-Containing Lamellar Bodies in the Lung and Swim Bladder. Cell Rep 2020; 33:108477. [PMID: 33296658 DOI: 10.1016/j.celrep.2020.108477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an intracellular degradation system, but its physiological functions in vertebrates are not yet fully understood. Here, we show that autophagy is required for inflation of air-filled organs: zebrafish swim bladder and mouse lung. In wild-type zebrafish swim bladder and mouse lung type II pulmonary epithelial cells, autophagosomes are formed and frequently fuse with lamellar bodies. The lamellar body is a lysosome-related organelle that stores a phospholipid-containing surfactant complex that lines the air-liquid interface and reduces surface tension. We find that autophagy is critical for maturation of the lamellar body. Accordingly, atg-deficient zebrafish fail to maintain their position in the water, and type-II-pneumocyte-specific Fip200-deficient mice show neonatal lethality with respiratory failure. Autophagy suppression does not affect synthesis of the surfactant phospholipid, suggesting that autophagy supplies lipids and membranes to lamellar bodies. These results demonstrate an evolutionarily conserved role of autophagy in lamellar body maturation.
Collapse
|
32
|
Kirschman LJ, Khadjinova A, Ireland K, Milligan-Myhre KC. Early life disruption of the microbiota affects organ development and cytokine gene expression in threespine stickleback. Integr Comp Biol 2020; 63:icaa136. [PMID: 32970813 PMCID: PMC10388389 DOI: 10.1093/icb/icaa136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The microbiota that inhabits vertebrates exerts strong effects on host physiology and can be crucial to the development of a normal phenotype. This includes development of the immune system, somatic growth and maintenance, and morphogenesis. However, the genetic background of the host can also affect these life history traits. To this end, we investigated the effects of the microbiota on growth, development, and immune gene expression on two populations of threespine stickleback (Gasterosteus aculeatus), one anadromous and one freshwater. We tested the hypotheses that microbial colonization and the genetic background of the host would affect survival, cytokine gene expression, growth, and development. We raised in vitro crosses of stickleback larvae with and without conventional microbiota. We then exposed all these treatments to Vibrio anguillarum, a potential fish pathogen, in a full factorial design. We found stickleback raised without conventional microbiota had smaller swim bladders relative to those raised with conventional microbiota. Stickleback raised with conventional microbiota exhibited small increases in cytokine gene expression. We found no differences in growth or survival regardless of treatment. These results are consistent with other investigations that show microbiota disruption, in early life, can alter host organ and tissue development and immune responses.
Collapse
Affiliation(s)
- Lucas J Kirschman
- Department Biology, Southeast Missouri University, 1 University Plaza, Cape Girardeau, MO 63701, USA
| | | | - Kelly Ireland
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kathryn C Milligan-Myhre
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| |
Collapse
|
33
|
Zhang T, Peterson RT. Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 2020; 7:82. [PMID: 32435656 PMCID: PMC7218095 DOI: 10.3389/fmolb.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a family of 70 metabolic disorders characterized by mutations in lysosomal proteins that lead to storage material accumulation, multiple-organ pathologies that often involve neurodegeneration, and early mortality in a significant number of patients. Along with the necessity for more effective therapies, there exists an unmet need for further understanding of disease etiology, which could uncover novel pathways and drug targets. Over the past few decades, the growth in knowledge of disease-associated pathways has been facilitated by studies in model organisms, as advancements in mutagenesis techniques markedly improved the efficiency of model generation in mammalian and non-mammalian systems. In this review we highlight non-mammalian models of LSDs, focusing specifically on the zebrafish, a vertebrate model organism that shares remarkable genetic and metabolic similarities with mammals while also conferring unique advantages such as optical transparency and amenability toward high-throughput applications. We examine published zebrafish LSD models and their reported phenotypes, address organism-specific advantages and limitations, and discuss recent technological innovations that could provide potential solutions.
Collapse
Affiliation(s)
- T Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - R T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
Peng W, Liu S, Guo Y, Yang L, Zhou B. Embryonic exposure to pentabromobenzene inhibited the inflation of posterior swim bladder in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113923. [PMID: 31935612 DOI: 10.1016/j.envpol.2020.113923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/25/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The emerging flame retardants pentabromobenzene (PBB) has been frequently detected in recent years and may pose exposure risks to wild animals and human beings. In this study, the inflation of posterior swim bladder of zebrafish larvae was used as an endpoint to study the developmental toxicity and putative mechanisms associated with PBB toxicity. Our results showed that embryonic exposure to PBB could significantly inhibit the inflation of posterior swim bladders. Reduced T3 levels and transcriptional changes of crh and pomc were observed in PBB treated zebrafish larvae at 120 hpf. However, key regulators of thyroid and adrenocortical system involved in the synthesis (tsh), biological conversion (ugt1ab, dio2) and functional regulation (trα, trβ, gr) showed no significant changes. Further data revealed that prlra was the only gene that was altered among the detected genes at 96 h post fertilization (hpf). At 120 hpf, the morphology of swim bladder indicated deflation in treatments at 0.25 μM and higher. In addition, the mRNA levels of anxa5, prlra, prlrb, atp1b2 and slc12a10 were all significantly changed at 120 hpf. Taken together, we suppose that embryonic exposure to PBB inhibited the inflation of swim bladder in zebrafish probably via prlra mediated pathways. The observed changes of thyroid and adrenocortical parameters might be indirect effects evoked by PBB exposure. Overall, our results provide important data and indications for future toxicological study and risk assessment of the emerging flame retardants PBB.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, 415000, China
| | - Sitian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
36
|
Wu Y, Li W, Yuan M, Liu X. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134870. [PMID: 31726413 DOI: 10.1016/j.scitotenv.2019.134870] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DM) is a widely used insecticide and reveals neural, cardiovascular and reproductive toxicity to various aquatic organisms. It has been known that DM negatively affects motion of zebrafish (Danio rerio). However, little is known in relation to the impacts of DM on development of swim bladder, which is a key organ for motion. In the present study, zebrafish embryos were exposed to 20 and 40 µg/L DM. The changes of swim bladder morphology were observed and transcription levels of key genes were compared between DM treatments and the control. The results showed that DM treatments significantly blocked the formation of progenitor and tissue layers in swim bladder of zebrafish embryos, leading to failed inflation of swim bladder. Compared with the control, the key genes (pbx1, foxA3, mnx1, has2, anxa5b, hprt1l and elovl1a) responsible for swim bladder development also showed decreased levels in response to DM treatments, suggesting that DM might specifically affect swim bladder development. Moreover, transcription levels of genes in the Wnt (wnt5b, tcf3a, wnt1, wnt9b, fzd1, fzd3 and fzd5) and Hedgehog (ihhb, ptc1 and ptc2) signaling pathways all decreased significantly in response to DM treatments, compared with the control. Considering the importance of Wnt and Hedgehog pathways in development of swim bladder, these results suggested that DM might affect swim bladder development through inhibiting the Wnt and Hedgehog pathways. Overall, the present study reported that swim bladder might be a potential target organ of DM toxicity in zebrafish, which contributed more information to the evaluation of DM's environmental risks.
Collapse
Affiliation(s)
- Yaqin Wu
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenhua Li
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mingrui Yuan
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Provincial Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
37
|
Hammer B, Wagner C, Divac Rankov A, Reuter S, Bartel S, Hylkema MN, Krüger A, Svanes C, Krauss-Etschmann S. In utero exposure to cigarette smoke and effects across generations: A conference of animals on asthma. Clin Exp Allergy 2019; 48:1378-1390. [PMID: 30244507 DOI: 10.1111/cea.13283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prevalence of asthma and chronic obstructive pulmonary disease (COPD) has risen markedly over the last decades and is reaching epidemic proportions. However, underlying molecular mechanisms are not fully understood, hampering the urgently needed development of approaches to prevent these diseases. It is well established from epidemiological studies that prenatal exposure to cigarette smoke is one of the main risk factors for aberrant lung function development or reduced fetal growth, but also for the development of asthma and possibly COPD later in life. Of note, recent evidence suggests that the disease risk can be transferred across generations, that is, from grandparents to their grandchildren. While initial studies in mouse models on in utero smoke exposure have provided important mechanistic insights, there are still knowledge gaps that need to be filled. OBJECTIVE Thus, in this review, we summarize current knowledge on this topic derived from mouse models, while also introducing two other relevant animal models: the fruit fly Drosophila melanogaster and the zebrafish Danio rerio. METHODS This review is based on an intensive review of PubMed-listed transgenerational animal studies from 1902 to 2018 and focuses in detail on selected literature due to space limitations. RESULTS This review gives a comprehensive overview of mechanistic insights obtained in studies with the three species, while highlighting the remaining knowledge gaps. We will further discuss potential (dis)advantages of all three animal models. CONCLUSION/CLINICAL RELEVANCE Many studies have already addressed transgenerational inheritance of disease risk in mouse, zebrafish or fly models. We here propose a novel strategy for how these three model organisms can be synergistically combined to achieve a more detailed understanding of in utero cigarette smoke-induced transgenerational inheritance of disease risk.
Collapse
Affiliation(s)
- Barbara Hammer
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Christina Wagner
- Invertebrate Models, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Essen, Germany
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Machteld N Hylkema
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Arne Krüger
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute for Life Science and Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Cecilie Svanes
- Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany
| |
Collapse
|
38
|
Li X, Xiong D, Ding G, Fan Y, Ma X, Wang C, Xiong Y, Jiang X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. CHEMOSPHERE 2019; 235:423-433. [PMID: 31272002 DOI: 10.1016/j.chemosphere.2019.06.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The present study investigated the developmental toxicity of water-accommodated fractions (WAFs) of Oman crude oil (OCO) and Merey crude oil (MCO) on zebrafish (Danio rerio) in early-life stages (ELS). Based on total petroleum hydrocarbons (TPH), LC50 values manifested that OCO WAF was 1.2-fold more lethal to zebrafish embryos than MCO WAF. As for hatching rate, EC50 value for OCO WAF was 5.7-fold lower than that for MCO WAF. To evaluate the sublethal morphological effects, semi-quantitative extended general morphological score (GMS) and general teratogenic score (GTS) systems were adopted. The GMS and GTS scores indicated that the WAFs caused remarkable developmental delay and high frequencies of malformation in a dose-dependent manner. Additionally, OCO and MCO WAFs exposure exhibited severe bradycardia (reduced heart rate) and overt reduction of stroke volume, with a concomitant decrease in the cardiac output. Meanwhile, the WAFs also induced dose-dependent down-regulated expressions of several key functional genes of excitation-contraction coupling in cardiomyocytes, including ryr2, atp2a2a, atp2a2b, ncx1h, and kcnh2. For key gene markers of swim bladder development, results showed that high dose of TPH induced significant down-regulation of hb9 and anxa5 with no obvious change of acta2, suggesting that the WAFs could affect the specification and development of epithelium and outer mesothelium of swim bladder in zebrafish ELS. A strong negative relationship between the failure of swim bladder inflation and cardiac dysfunction via cardiac output was found. All these findings provide novel insights into the complicated mechanisms of the developmental toxicity of crude oil on fish in ELS.
Collapse
Affiliation(s)
- Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Youmei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinrui Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yijun Xiong
- Biological Chemistry & Statistics, Grinnell College, IA, 50112, USA
| | - Xi Jiang
- China Railway No.9 Group Fourth Engineering Co., Ltd, Shenyang, 110013, China
| |
Collapse
|
39
|
A novel zebrafish model to emulate lung injury by folate deficiency-induced swim bladder defectiveness and protease/antiprotease expression imbalance. Sci Rep 2019; 9:12633. [PMID: 31477754 PMCID: PMC6718381 DOI: 10.1038/s41598-019-49152-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
Lung injury is one of the pathological hallmarks of most respiratory tract diseases including asthma, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). It involves progressive pulmonary tissue damages which are usually irreversible and incurable. Therefore, strategies to facilitate drug development against lung injury are needed. Here, we characterized the zebrafish folate-deficiency (FD) transgenic line that lacks a fully-developed swim bladder. Whole-mount in-situ hybridization revealed comparable distribution patterns of swim bladder tissue markers between wild-type and FD larvae, suggesting a proper development of swim bladder in early embryonic stages. Unexpectedly, neutrophils infiltration was not observed in the defective swim bladder. Microarray analysis revealed a significant increase and decrease of the transcripts for cathepsin L and a cystatin B (CSTB)-like (zCSTB-like) proteins, respectively, in FD larvae. The distribution of cathepsin L and the zCSTB-like transcripts was spatio-temporally specific in developing wild-type embryos and, in appropriate measure, correlated with their potential roles in maintaining swim bladder integrity. Supplementing with 5-formyltetrahydrofolate successfully prevented the swim bladder anomaly and the imbalanced expression of cathepsin L and the zCSTB-like protein induced by folate deficiency. Injecting the purified recombinant zebrafish zCSTB-like protein alleviated FD-induced swim bladder anomaly. We concluded that the imbalanced expression of cathepsin L and the zCSTB-like protein contributed to the swim bladder malformation induced by FD and suggested the potential application of this transgenic line to model the lung injury and ECM remodeling associated with protease/protease inhibitor imbalance.
Collapse
|
40
|
Villasante A, Ramírez C, Rodríguez H, Catalán N, Díaz O, Rojas R, Opazo R, Romero J. In-depth analysis of swim bladder-associated microbiota in rainbow trout (Oncorhynchus mykiss). Sci Rep 2019; 9:8974. [PMID: 31221992 PMCID: PMC6586864 DOI: 10.1038/s41598-019-45451-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Our knowledge regarding microbiota associated with the swim bladder of physostomous, fish with the swim bladder connected to the esophagus via the pneumatic duct, remains largely unknown. The goal of this study was to conduct the first in-depth characterization of the swim bladder-associated microbiota using high-throughput sequencing of the V4 region of the 16 S rRNA gene in rainbow trout (Oncorhynchus mykiss). We observed major differences in bacterial communities composition between swim bladder-associated microbiota and distal intestine digesta microbiota in fish. Whilst bacteria genera, such as Cohnella, Lactococcus and Mycoplasma were more abundant in swim bladder-associated microbiota, Citrobacter, Rhodobacter and Clavibacter were more abundant in distal intestine digesta microbiota. The presumptive metabolic function analysis (PICRUSt) revealed several metabolic pathways to be more abundant in the swim bladder-associated microbiota, including metabolism of carbohydrates, nucleotides and lipoic acid as well as oxidative phosphorylation, cell growth, translation, replication and repair. Distal intestine digesta microbiota showed greater abundance of nitrogen metabolism, amino acid metabolism, biosynthesis of unsaturated fatty acids and bacterial secretion system. We demonstrated swim bladder harbors a unique microbiota, which composition and metabolic function differ from microbiota associated with the gut in fish.
Collapse
Affiliation(s)
- Alejandro Villasante
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Carolina Ramírez
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Héctor Rodríguez
- Facultad de Medicina, Universidad de Chile, Programa de Anatomía y Biología del Desarrollo, Santiago, Chile
| | - Natalia Catalán
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Osmán Díaz
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rafael Opazo
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
41
|
Kim YI, Nam IK, Lee DK, Bhandari S, Charton L, Kwak S, Lim JY, Hong K, Kim SJ, Lee JN, Kwon SW, So HS, Linka N, Park R, Choe SK. Slc25a17 acts as a peroxisomal coenzyme A transporter and regulates multiorgan development in zebrafish. J Cell Physiol 2019; 235:151-165. [PMID: 31187491 DOI: 10.1002/jcp.28954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023]
Abstract
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.
Collapse
Affiliation(s)
- Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - In-Koo Nam
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dong-Kyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sushil Bhandari
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Lennart Charton
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - SeongAe Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, South Korea
| | - Jae-Young Lim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - KwangHeum Hong
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Se-Jin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Joon No Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hong-Seob So
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Wonkwang Medical Institute, Wonkwang University School of Medicine, Iksan, South Korea
| |
Collapse
|
42
|
Intravital Imaging Reveals Divergent Cytokine and Cellular Immune Responses to Candida albicans and Candida parapsilosis. mBio 2019; 10:mBio.00266-19. [PMID: 31088918 PMCID: PMC6520444 DOI: 10.1128/mbio.00266-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In modern medicine, physicians are frequently forced to balance immune suppression against immune stimulation to treat patients such as those undergoing transplants and chemotherapy. More-targeted therapies designed to preserve immunity and prevent opportunistic fungal infection in these patients could be informed by an understanding of how fungi interact with professional and nonprofessional immune cells in mucosal candidiasis. In this study, we intravitally imaged these host-pathogen dynamics during Candida infection in a transparent vertebrate model host, the zebrafish. Single-cell imaging revealed an unexpected partitioning of the inflammatory response between phagocytes and epithelial cells. Surprisingly, we found that in vivo cytokine profiles more closely match in vitro responses of epithelial cells rather than phagocytes. Furthermore, we identified a disconnect between canonical inflammatory cytokine production and phagocyte recruitment to the site of infection, implicating noncytokine chemoattractants. Our study contributes to a new appreciation for the specialization and cross talk among cell types during mucosal infection. Candida yeasts are common commensals that can cause mucosal disease and life-threatening systemic infections. While many of the components required for defense against Candida albicans infection are well established, questions remain about how various host cells at mucosal sites assess threats and coordinate defenses to prevent normally commensal organisms from becoming pathogenic. Using two Candida species, C. albicans and C. parapsilosis, which differ in their abilities to damage epithelial tissues, we used traditional methods (pathogen CFU, host survival, and host cytokine expression) combined with high-resolution intravital imaging of transparent zebrafish larvae to illuminate host-pathogen interactions at the cellular level in the complex environment of a mucosal infection. In zebrafish, C. albicans grows as both yeast and epithelium-damaging filaments, activates the NF-κB pathway, evokes proinflammatory cytokines, and causes the recruitment of phagocytic immune cells. On the other hand, C. parapsilosis remains in yeast morphology and elicits the recruitment of phagocytes without inducing inflammation. High-resolution mapping of phagocyte-Candida interactions at the infection site revealed that neutrophils and macrophages attack both Candida species, regardless of the cytokine environment. Time-lapse monitoring of single-cell gene expression in transgenic reporter zebrafish revealed a partitioning of the immune response during C. albicans infection: the transcription factor NF-κB is activated largely in cells of the swimbladder epithelium, while the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) is expressed in motile cells, mainly macrophages. Our results point to different host strategies for combatting pathogenic Candida species and separate signaling roles for host cell types.
Collapse
|
43
|
Miller, Jr WB, Torday JS. Reappraising the exteriorization of the mammalian testes through evolutionary physiology. Commun Integr Biol 2019; 12:38-54. [PMID: 31143362 PMCID: PMC6527184 DOI: 10.1080/19420889.2019.1586047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
A number of theories have been proposed to explain the exteriorization of the testicles in most mammalian species. None of these provide a consistent account for the wide variety of testicular locations found across the animal kingdom. It is proposed that testicular location is the result of coordinate action of testicular tissue ecologies to sustain preferential states of homeostatic equipoise throughout evolutionary development in response to the advent of endothermy.
Collapse
Affiliation(s)
| | - John S. Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
44
|
Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 2019; 9:1509. [PMID: 30728369 PMCID: PMC6365535 DOI: 10.1038/s41598-018-36605-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated the pro-tumoral role of neutrophils using a kras-induced zebrafish hepatocarcinogenesis model. To further illustrate the molecular basis of the pro-tumoral role, Tumor-associated neutrophils (TANs) were isolated by fluorescence-activated cell sorting (FACS) and transcriptomic analyses were carried out by RNA-Seq. Differentially expressed gene profiles of TANs from larvae, male and female livers indicate great variations during liver tumorigenesis, but the common responsive canonical pathways included an immune pathway (Acute Phase Response Signaling), a liver metabolism-related pathway (LXR/RXR Activation) and Thrombin Signaling. Consistent with the pro-tumoral role of TANs, gene module analysis identified a consistent down-regulation of Cytotoxicity module, which may allow continued proliferation of malignant cells. Gene Set Enrichment Analysis indicated up-regulation of several genes promoting angiogenesis. Consistent with this, we found decreased density of blood vessels accompanied with decreased oncogenic liver sizes in neutrophil-depleted larvae. Collectively, our study has indicated some molecular mechanisms of the pro-tumoral roles of TANs in hepatocarcinogenesis, including weakened immune clearance against tumor cells and enhanced function in angiogenesis.
Collapse
|
45
|
Shehwana H, Konu O. Comparative Transcriptomics Between Zebrafish and Mammals: A Roadmap for Discovery of Conserved and Unique Signaling Pathways in Physiology and Disease. Front Cell Dev Biol 2019; 7:5. [PMID: 30775367 PMCID: PMC6367222 DOI: 10.3389/fcell.2019.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
46
|
Teixidó E, Kießling TR, Krupp E, Quevedo C, Muriana A, Scholz S. Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens. Toxicol Sci 2019; 167:438-449. [PMID: 30295906 PMCID: PMC6358258 DOI: 10.1093/toxsci/kfy250] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Detection of developmental phenotypes in zebrafish embryos typically involves a visual assessment and scoring of morphological features by an individual researcher. Subjective scoring could impact results and be of particular concern when phenotypic effect patterns are also used as a diagnostic tool to classify compounds. Here we introduce a quantitative morphometric approach based on image analysis of zebrafish embryos. A software called FishInspector was developed to detect morphological features from images collected using an automated system to position zebrafish embryos. The analysis was verified and compared with visual assessments of 3 participating laboratories using 3 known developmental toxicants (methotrexate, dexamethasone, and topiramate) and 2 negative compounds (loratadine and glibenclamide). The quantitative approach exhibited higher sensitivity and made it possible to compare patterns of effects with the potential to establish a grouping and classification of developmental toxicants. Our approach improves the robustness of phenotype scoring and reliability of assay performance and, hence, is anticipated to improve the predictivity of developmental toxicity screening using the zebrafish embryo.
Collapse
Affiliation(s)
- Elisabet Teixidó
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| | | | | | | | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| |
Collapse
|
47
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
48
|
Oura Y, Nakamura M, Takigawa T, Fukushima Y, Wakabayashi T, Tsujikawa M, Nishida K. High-Temperature Requirement A 1 Causes Photoreceptor Cell Death in Zebrafish Disease Models. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2729-2744. [PMID: 30273602 DOI: 10.1016/j.ajpath.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is an important cause of blindness. It is characterized by a retinal pigment epithelium (RPE) disorder that leads to death of photoreceptor cells (PRCs). AMD has a strong genetic association with high-temperature requirement A 1 (HTRA1). The relationship between HTRA1 and the AMD phenotype is unknown. In this study, we show that the expression of HTRA1 in PRCs, as well as in RPE, is increased by the disease-associated HTRA1 mutation and aging. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and quantitative PCR of apoptosis-associated caspases confirmed that PRC-specific overexpression of HTRA1 induced PRC death. Transgenic zebrafish overexpressing human HTRA1 in rod PRCs showed morphologic changes of the RPE, including PRC death and lipofuscin accumulation, features similar to those of early AMD. htra1 expression was also increased in a retinitis pigmentosa zebrafish model compared with wild type. In both fish lines, PRC death was rescued by the suppression of htra1 by the inhibitor 6-boroV. AKT-forkhead box O3 signaling downstream of HTRA1 was activated via a tumor growth factor β signal, resulting in PRC death. These findings suggest that HTRA1 derived from PRCs is associated with early AMD via PRC death. HTRA1 is a potentially effective target for neuroprotective therapy of early AMD and other degenerative diseases of PRCs.
Collapse
Affiliation(s)
- Yoshihito Oura
- Department of Ophthalmology, Osaka University Medical School, Suita, Japan
| | - Machiko Nakamura
- Pain and Neuroscience Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Tohru Takigawa
- Department of Ophthalmology, Osaka University Medical School, Suita, Japan
| | - Yoko Fukushima
- Department of Ophthalmology, Osaka University Medical School, Suita, Japan
| | - Taku Wakabayashi
- Department of Ophthalmology, Osaka University Medical School, Suita, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Medical School, Suita, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Medical School, Suita, Japan
| |
Collapse
|
49
|
Wei P, Zhao F, Zhang X, Liu W, Jiang G, Wang H, Ru S. Transgenerational thyroid endocrine disruption induced by bisphenol S affects the early development of zebrafish offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:800-808. [PMID: 30243188 DOI: 10.1016/j.envpol.2018.09.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/18/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Maternal thyroid hormones (THs) play an essential role in the embryonic and larval development of fish. Previous studies in fish have reported that parental exposure to thyroid disrupting chemicals (TDCs) changed maternal TH levels in the offspring; however, whether this transgenerational thyroid endocrine disruption can further disturb the early development of the offspring still remains largely unknown. Bisphenol S (BPS), a substitute of bisphenol A, has been reported to be a potential TDC. In this study, zebrafish (F0) were exposed to environmentally relevant concentrations (1, 10, and 100 μg/L) of BPS from 2 h post-fertilization to 120 days post-fertilization and then paired to spawn. Plasma levels of thyroxine (T4) were significantly decreased in F0 females while 3,5,3'-triiodothyronine (T3) plasma levels were significantly increased in F0 females and males; moreover, TH content in eggs (F1) spawned by exposed F0 generation exhibited similar changes as the F0 females, with significant decreases in T4 and increases in T3, demonstrating BPS-induced maternal transfer of thyroid endocrine disruption. Further, excessive levels of maternal T3 in the offspring resulted in delayed embryonic development and hatching, swim bladder inflation defect, reduction in motility, developmental neurotoxicity, and lateral stripe hypopigmentation in non-exposed F1 embryos and larvae. These results highlight the adverse effects on the early development of offspring induced by transgenerational thyroid endocrine disruption, which have been ignored by previous studies. Therefore, these results can further improve our understanding of the ecological risks of TDCs.
Collapse
Affiliation(s)
- Penghao Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Fei Zhao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China.
| | - Wenmin Liu
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Guobin Jiang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Hongfang Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| |
Collapse
|
50
|
Evolutionarily conserved Tbx5- Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 2018; 115:E10615-E10624. [PMID: 30352852 DOI: 10.1073/pnas.1811624115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.
Collapse
|