1
|
Han T, Lombardelli G, Peterson SD, Porfiri M. Inferring the metabolic rate of zebrafish from ventilation frequency. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39319507 DOI: 10.1111/jfb.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Fish schooling has attracted the interest of the scientific community for centuries. Energy savings have been long posited to be a key determinant for the emergence of schooling patterns. Yet, current methodologies do not allow the precise quantification of the metabolic rate of specific individuals within the school, typically leaving researchers with only a single, global measurement of metabolic rate for the collective. In this paper, we demonstrate the feasibility of inferring metabolic rate of swimming fish using the mouth-opening frequency, a simple proxy that can be scored utilizing video recordings in the laboratory or in the field, even for small fish. The mouth-opening frequency is independent of hydrodynamic interactions within the school, thereby mitigating potential confounding factors that arise when using locomotory measures associated with tail-beat motion. We assessed the reliability of mouth-opening frequency as a proxy for metabolic rate by conducting experiments on zebrafish (Danio rerio) using swimming respirometry. We varied the flow speed from 0.8 to 3.2 body lengths per second and extracted tail-beat motion and mouth opening from video recordings. Our results revealed a strong correlation between oxygen uptake and mouth-opening frequency for nonzero flow speeds but not in quiescent water. Contrary to our expectations, we did not find evidence in favor of the use of tail-beat frequency as a proxy for metabolic rate. Overall, our results open the door to the study of individual metabolic rates in fish schools without confounding factors related to hydrodynamic interactions.
Collapse
Affiliation(s)
- Tianjun Han
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| | - Giulia Lombardelli
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| | - Sean D Peterson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Hernandez-Huertas L, Moreno-Sanchez I, Crespo-Cuadrado J, Vargas-Baco A, da Silva Pescador G, Santos-Pereira JM, Bazzini AA, Moreno-Mateos MA. CRISPR-RfxCas13d screening uncovers Bckdk as a post-translational regulator of the maternal-to-zygotic transition in teleosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595167. [PMID: 38826327 PMCID: PMC11142190 DOI: 10.1101/2024.05.22.595167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Maternal-to-Zygotic transition (MZT) is a reprograming process encompassing zygotic genome activation (ZGA) and the clearance of maternally-provided mRNAs. While some factors regulating MZT have been identified, there are thousands of maternal RNAs whose function has not been ascribed yet. Here, we have performed a proof-of-principle CRISPR-RfxCas13d maternal screening targeting mRNAs encoding protein kinases and phosphatases in zebrafish and identified Bckdk as a novel post-translational regulator of MZT. Bckdk mRNA knockdown caused epiboly defects, ZGA deregulation, H3K27ac reduction and a partial impairment of miR-430 processing. Phospho-proteomic analysis revealed that Phf10/Baf45a, a chromatin remodeling factor, is less phosphorylated upon Bckdk depletion. Further, phf10 mRNA knockdown also altered ZGA and Phf10 constitutively phosphorylated rescued the developmental defects observed after bckdk mRNA depletion. Altogether, our results demonstrate the competence of CRISPR-RfxCas13d screenings to uncover new regulators of early vertebrate development and shed light on the post-translational control of MZT mediated by protein phosphorylation.
Collapse
Affiliation(s)
- Luis Hernandez-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ismael Moreno-Sanchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Jesús Crespo-Cuadrado
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ana Vargas-Baco
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - José M. Santos-Pereira
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ariel A. Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Miguel A. Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| |
Collapse
|
3
|
Souders CL, Konig I, Martyniuk CJ. High-Resolution Respirometry for the Assessment of Teratogenic Chemicals. Methods Mol Biol 2024; 2753:385-396. [PMID: 38285353 DOI: 10.1007/978-1-0716-3625-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Pesticides are often used in agriculture and residential areas to mitigate pests and weeds. These chemicals can enter aquatic ecosystems via runoff and rain events, exerting negative effects on aquatic species. In rapidly developing fish embryos, metabolic disruption can alter the developmental trajectory and alter ATP levels. Therefore, it is important to quantify mitochondrial integrity in organisms following exposure to pesticides. To achieve this, a high throughput method to assess pesticide effects on oxidative phosphorylation and mitochondria has been optimized for fish embryos. Fish embryos are first exposed to pesticides for 24 or 48 h, and oxygen consumption rates are measured using the Seahorse XFe24/96 Flux Analyzer (formerly Seahorse Biosciences, now Agilent). The assay utilizes a single embryo and precisely measures oxygen consumption and extracellular acidification. Based upon these measurements, characteristics related to mitochondrial bioenergetics are calculated to provide information on mitochondrial integrity. Using this approach, one can identify pesticides affecting the electron transport chain and ultimately ATP production. In this chapter, we describe the mitochondrial stress test to understand mitochondrial dysfunction and metabolic shifts within the fish embryo.
Collapse
Affiliation(s)
- Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
- Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Kozal JS, Jayasundara N, Massarsky A, Lindberg CD, Oliveri AN, Cooper EM, Levin ED, Meyer JN, Giulio RTD. Mitochondrial dysfunction and oxidative stress contribute to cross-generational toxicity of benzo(a)pyrene in Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106658. [PMID: 37722151 PMCID: PMC10591944 DOI: 10.1016/j.aquatox.2023.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The potential for polycyclic aromatic hydrocarbons (PAHs) to have adverse effects that persist across generations is an emerging concern for human and wildlife health. This study evaluated the role of mitochondria, which are maternally inherited, in the cross-generational toxicity of benzo(a)pyrene (BaP), a model PAH and known mitochondrial toxicant. Mature female zebrafish (F0) were fed diets containing 0, 12.5, 125, or 1250 μg BaP/g at a feed rate of 1% body weight twice/day for 21 days. These females were bred with unexposed males, and the embryos (F1) were collected for subsequent analyses. Maternally-exposed embryos exhibited altered mitochondrial function and metabolic partitioning (i.e. the portion of respiration attributable to different cellular processes), as evidenced by in vivo oxygen consumption rates (OCRs). F1 embryos had lower basal and mitochondrial respiration and ATP turnover-mediated OCR, and increased proton leak and reserve capacity. Reductions in mitochondrial DNA (mtDNA) copy number, increases in mtDNA damage, and alterations in biomarkers of oxidative stress were also found in maternally-exposed embryos. Notably, the mitochondrial effects in offspring occurred largely in the absence of effects in maternal ovaries, suggesting that PAH-induced mitochondrial dysfunction may manifest in subsequent generations. Maternally-exposed larvae also displayed swimming hypoactivity. The lowest observed effect level (LOEL) for maternal BaP exposure causing mitochondrial effects in offspring was 12.5 µg BaP/g diet (nominally equivalent to 250 ng BaP/g fish). It was concluded that maternal BaP exposure can cause significant mitochondrial impairments in offspring.
Collapse
Affiliation(s)
- Jordan S Kozal
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | - Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Casey D Lindberg
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Anthony N Oliveri
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | |
Collapse
|
5
|
Dogra D, Meza-Santoscoy PL, Gavrilovici C, Rehak R, de la Hoz CLR, Ibhazehiebo K, Rho JM, Kurrasch DM. kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 2023; 64:2186-2199. [PMID: 37209379 DOI: 10.1111/epi.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paola L Meza-Santoscoy
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Renata Rehak
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane L R de la Hoz
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol Open 2023; 12:bio059905. [PMID: 37746814 PMCID: PMC10354717 DOI: 10.1242/bio.059905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 09/26/2023] Open
Abstract
Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.
Collapse
Affiliation(s)
- Jamison Leid
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Gray
- Departments of Nutritional Sciences, Dell Pediatrics Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Peter Rakita
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohan Tripathy
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A. J. Fitzpatrick
- Departments of Neuroscience and Cell Biology, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Kaufman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Biswas S, Ghosh S, Maitra S. Role of insulin-like growth factor 1 (IGF1) in the regulation of mitochondrial bioenergetics in zebrafish oocytes: lessons from in vivo and in vitro investigations. Front Cell Dev Biol 2023; 11:1202693. [PMID: 37457295 PMCID: PMC10347385 DOI: 10.3389/fcell.2023.1202693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Optimal mitochondrial functioning is indispensable for acquiring oocyte competence and meiotic maturation, whilst mitochondrial dysfunction may lead to diminished reproductive potential and impaired fertility. The role of the intra-ovarian IGF system in ovarian follicular dynamics has been implicated earlier. Although several studies have demonstrated the role of the IGF axis in facilitating mitochondrial function over a multitude of cell lines, its role in oocyte energy metabolism remains largely unexplored. Here using zebrafish, the relative importance of IGF1 in modulating oocyte mitochondrial bioenergetics has been investigated. A dramatic increase in ovarian lhcgr and igf1 expression accompanied heightened ATP levels and mitochondrial polarization in full-grown (FG) oocytes resuming meiotic maturation and ovulation in vivo. Concomitant with elevated igf1 expression and IGF1R phosphorylation, hCG (LH analog) stimulation of FG follicles in vitro prompted a sharp increase in NRF-1 and ATP levels, suggesting a positive influence of gonadotropin action on igf1 expression vis-à-vis oocyte bioenergetics. While recombinant IGF1 administration enhanced mitochondrial function, IGF1R immunodepletion or priming with PI3K inhibitor wortmannin could abrogate NRF-1 immunoreactivity, expression of respiratory chain subunits, ΔΨM, and ATP content. Mechanistically, activation of PI3K/Akt signaling in IGF1-treated follicles corroborated well with the rapid phosphorylation of GSK3β at Ser9 (inactive) followed by PGC-1β accumulation. While selective inhibition of GSK3β promoted PGC-1β, Akt inhibition could abrogate IGF1-induced p-GSK3β (Ser9) and PGC-1β immunoreactive protein indicating Akt-mediated GSK3β inactivation and PGC-1β stabilization. The IGF1-depleted follicles showed elevated superoxide anions, subdued steroidogenic potential, and attenuated G2-M1 transition. In summary, this study highlights the importance of IGF1 signaling in oocyte bioenergetics prior to resumption of meiosis.
Collapse
|
8
|
Sleiman A, Lalanne K, Vianna F, Perrot Y, Richaud M, SenGupta T, Cardot-Martin M, Pedini P, Picard C, Nilsen H, Galas S, Adam-Guillermin C. Targeted Central Nervous System Irradiation with Proton Microbeam Induces Mitochondrial Changes in Caenorhabditis elegans. BIOLOGY 2023; 12:839. [PMID: 37372124 DOI: 10.3390/biology12060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of Caenorhabditis elegans with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode C. elegans were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of pink-1 (PTEN-induced kinase) and pdr-1 (C. elegans parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Kévin Lalanne
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Tanima SenGupta
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Mikaël Cardot-Martin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Pascal Pedini
- Aix Marseille University, CNRS, EFS, ADES, 13288 Marseille, France
| | | | - Hilde Nilsen
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| |
Collapse
|
9
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
10
|
An G, Hong T, Park H, Lim W, Song G. Oxamyl exerts developmental toxic effects in zebrafish by disrupting the mitochondrial electron transport chain and modulating PI3K/Akt and p38 Mapk signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160458. [PMID: 36435248 DOI: 10.1016/j.scitotenv.2022.160458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Oxamyl, a carbamate insecticide, is mainly used to control nematodes in the agricultural field. Although oxamyl is a widely used insecticide that is associated with ecological concerns, limited studies have examined the toxic effects of oxamyl on the developmental stage and the underlying mechanisms. In this study, the developmental toxicity of oxamyl was demonstrated using zebrafish, which is a representative model as it is associated with rapid embryogenesis and a toxic response similar to that of other vertebrates. The morphological alteration of zebrafish larvae was analyzed to confirm the sub-lethal toxicity of oxamyl. Analysis of transgenic zebrafish (olig2:dsRED and flk1:eGFP line) and mRNA levels of genes associated with individual organ development revealed that oxamyl exerted toxic effects on the development of neuron, notochord, and vascular system. Next, the adverse effect of oxamyl on the mitochondrial electron transport chain was examined. Treatment with oxamyl altered the PI3K/Akt signaling and p38 Mapk signaling pathways in zebrafish. Thus, this study elucidated the mechanisms underlying the developmental toxicity of oxamyl and provided information on the parameters to assess the developmental toxicity of other environmental contaminants.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Zhou W, Wang Y, Wang J, Peng C, Wang Z, Qin H, Li G, Li D. Geosmin disrupts energy metabolism and locomotor behavior of zebrafish in early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160222. [PMID: 36400299 DOI: 10.1016/j.scitotenv.2022.160222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Geosmin has been commonly detected both in various aquatic environments and biota, but its exact toxicological mechanisms to organisms need further experimentation. In the present study, zebrafish embryos were exposed to geosmin at nominal concentrations of 50, 500 and 5000 ng/L for 120 h post-fertilization (hpf), followed by locomotor activity and biochemical parameter examination, and multi-omics investigation of the transcriptome and metabolome. The results showed that geosmin exposure significantly reduced the mitochondrial electron transport chain (ETC) complexes I-V, ATP content and mitochondrial respiration and suppressed the locomotor behavior of zebrafish larvae. Transcriptomics analysis revealed that the transcripts of genes involved in oxidative phosphorylation, glycolysis, and lipid metabolism were significantly affected, indicating that geosmin disrupts energy metabolism. Furthermore, metabolomics results showed that 3 classes of lipids, namely glycerophospholipids (GPs), sphingolipids (SLs) and fatty acyls (FAs) were significantly decreased after geosmin exposure. This study provides novel insight into the underlying mechanisms of geosmin-induced energy metabolism and highlights the need for concern about geosmin exposure.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Comprehensive Innovative Utilization of Ornamental Plant Germplasm, Guangzhou 510640, PR China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
12
|
Commercial Red Food Dyes Preparations Modulate the Oxidative State in Three Model Organisms (Cucumis sativus, Artemia salina, and Danio rerio). ENVIRONMENTS 2022. [DOI: 10.3390/environments9050063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The growing environmental spreading of food synthetic dyes and bio-colors have the potential for altering organisms’ redox states. Here, three model species for aquatic pollution trials, Cucumis sativus seeds, Artemia salina cysts, and Danio rerio embryos, were short-term exposed to a fixed concentration of the artificial red E124, and two red bio-colors, cochineal E120, and vegan red (VEGR). In the animal models, we evaluated the total reactive oxygen species (ROS) and the susceptibility to in vitro oxidative stress, and in C. sativus, H2O2 production and antioxidant capacity. We also measured organismal performance indices (routine oxygen consumption in the animal models, dark oxygen consumption, and photosynthetic efficiency in C. sativus). In C. sativus, only E124 increased ROS and affected dark oxygen consumption and photosynthetic efficiency, while all dyes enhanced the antioxidant defenses. In the A. salina nauplii, all dyes increased ROS, while E120 and E124 reduced the susceptibility to oxidative stress. In D. rerio, treatments did not affect ROS content, and reduced oxidative stress susceptibility. Our data show that red food dyes affect the redox state of the developing organisms, in which ROS plays a significant role. We suggest a potentially toxic role for red food dyes with environmentally relevant consequences.
Collapse
|
13
|
Bohaud C, Cruz JDL, Terraza C, Barthelaix A, Laplace-Builhé B, Jorgensen C, Arribat Y, Djouad F. Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics 2022; 12:3995-4009. [PMID: 35664055 PMCID: PMC9131269 DOI: 10.7150/thno.65235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, F-34295 France
| | - Yoan Arribat
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
14
|
Glyoxylate protects against cyanide toxicity through metabolic modulation. Sci Rep 2022; 12:4982. [PMID: 35322094 PMCID: PMC8943054 DOI: 10.1038/s41598-022-08803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Although cyanide's biological effects are pleiotropic, its most obvious effects are as a metabolic poison. Cyanide potently inhibits cytochrome c oxidase and potentially other metabolic enzymes, thereby unleashing a cascade of metabolic perturbations that are believed to cause lethality. From systematic screens of human metabolites using a zebrafish model of cyanide toxicity, we have identified the TCA-derived small molecule glyoxylate as a potential cyanide countermeasure. Following cyanide exposure, treatment with glyoxylate in both mammalian and non-mammalian animal models confers resistance to cyanide toxicity with greater efficacy and faster kinetics than known cyanide scavengers. Glyoxylate-mediated cyanide resistance is accompanied by rapid pyruvate consumption without an accompanying increase in lactate concentration. Lactate dehydrogenase is required for this effect which distinguishes the mechanism of glyoxylate rescue as distinct from countermeasures based solely on chemical cyanide scavenging. Our metabolic data together support the hypothesis that glyoxylate confers survival at least in part by reversing the cyanide-induced redox imbalances in the cytosol and mitochondria. The data presented herein represent the identification of a potential cyanide countermeasure operating through a novel mechanism of metabolic modulation.
Collapse
|
15
|
Lv X, Zhang R, Xu L, Wang G, Yan C, Lin P. Tcap Deficiency in Zebrafish Leads to ROS Production and Mitophagy, and Idebenone Improves its Phenotypes. Front Cell Dev Biol 2022; 10:836464. [PMID: 35372370 PMCID: PMC8964517 DOI: 10.3389/fcell.2022.836464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Limb-girdle muscular dystrophy 2G (LGMD2G) is a subtype of limb-girdle muscular dystrophy. However, the disease’s mechanisms are still not fully understood, and no established therapeutic targets have been found. Using a morpholino-based knockdown approach, we established an LGMD2G zebrafish model. In this study, we found that the ROS level increased in LGMD2G zebrafish. The expression of the mitophagy-related protein BNIP3L, LC3A-II/LC3A-I, and LAMP1 were increased in LGMD2G zebrafish. The oxygen consumption rate and citrate synthase expression was significantly decreased. Thus, mitophagy was presumed to be involved in the LGMD2G to reduce ROS levels. Then, we administered vitamin C, coenzyme Q10, idebenone, metformin, or dexamethasone to rescue LGMD2G in zebrafish. Idebenone reduced the curly tail phenotype and ROS level. Also, it reduced BNIP3L expression in LGMD2G zebrafish models and improved their motor function. In conclusion, mitophagy might be involved in the LGMD2G, and idebenone ameliorated LGMD2G by downregulating ROS level.
Collapse
Affiliation(s)
- Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyu Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Pengfei Lin,
| |
Collapse
|
16
|
A Selective Luminescent Probe to Monitor Cellular ATP: Potential Application for in vivo Imaging in Zebrafish Embryo. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
18
|
Chen Y, Li J, Yuan P, Wu Z, Wang Z, Wu W. Graphene oxide promoted chromium uptake by zebrafish embryos with multiple effects: Adsorption, bioenergetic flux and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149914. [PMID: 34474293 DOI: 10.1016/j.scitotenv.2021.149914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The increasing production and application of graphene oxide (GO, a popular carbon nanomaterial), makes their release into aqueous environment inevitably. The capability of GO to enhance the toxicity of background contaminants has been widely concerned. However, the effect of GO on heavy metal accumulation in fish embryos remains unclear. Here, we show that GO-promoted chromium (Cr) uptake by zebrafish embryos with multiple effects. The adsorption accelerated the aggregation and settlement of Cr6+-adsorbed GO and decreased the Cr6+ concentration in the upper water, which enhanced the interaction of chorions and contaminants (Cr6+, GO and Cr6+-adsorbed GO). In the presence of GO, the Cr content in chorions and intra-chorion embryos was increased by four times and 57% respectively, compared to that of the single Cr6+ exposure. Furthermore, GO+Cr6+ increased the oxygen consumption rates, embryonic acid extrusion rates and ATP production, induced more serious oxidative stress, and disturbed amino acid metabolism, fatty acid metabolism and TCA cycle. These findings provide new insights into the effect of GO on heavy metal bioaccumulation and toxicity during embryogenesis.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jitong Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases/Henan Neural Development Engineering Research Center for Children, Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhaoxin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
19
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
20
|
Kumar V, Singh C, Singh A. Zebrafish an experimental model of Huntington's disease: molecular aspects, therapeutic targets and current challenges. Mol Biol Rep 2021; 48:8181-8194. [PMID: 34665402 DOI: 10.1007/s11033-021-06787-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a lethal autosomal dominant neurodegenerative disease whose exact causative mechanism is still unknown. It can transform from one generation to another generation. The CAG triplet expansion on polyglutamine (PolyQ) tract on Huntingtin protein primarily contributes in HD pathogenesis. Apart from this some another molecular mechanisms are also involved in HD pathology such as loss of Brain derived neurotrophic factor in medium spiny neurons, mitochondrial dysfunction, and alterations in synaptic plasticity are briefly discussed in this review. However, several chemicals (3-nitropropionic acid, and Quinolinic acid) and genetic (mHTT-ΔN17-97Q over expression) experimental models are used to explore the exact pathogenic mechanism and finding of new drug targets for the development of novel therapeutic approaches. The zebrafish (Danio rerio) is widely used in in-vivo screening of several central nervous system (CNS) diseases such as HD, Alzheimer's disease (AD), Parkinson's disease (PD), and in memory deficits. Thus, this makes zebrafish as an excellent animal model for the development of new therapeutic strategies against various CNS disorders. We had reviewed several publications utilizing zebrafish and rodents to explore the disease pathology. Studies suggested that zebrafish genes and their human homologues have conserved functions. Zebrafish advantages and their characteristics over the other experimental animals make it an excellent tool for the disease study. This review explains the possible pathogenic mechanism of HD and also discusses about possible treatment therapies, apart from this we also discussed about possible potential therapeutic targets which will helps in designing of novel therapeutic approaches to overcome the disease progression. Diagrammatic depiction shows prevention of HD pathogenesis through attenuation of various biochemical alterations.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
21
|
Rollwitz E, Jastroch M. Plate-Based Respirometry to Assess Thermal Sensitivity of Zebrafish Embryo Bioenergetics in situ. Front Physiol 2021; 12:746367. [PMID: 34621190 PMCID: PMC8491625 DOI: 10.3389/fphys.2021.746367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Oxygen consumption allows measuring the metabolic activity of organisms. Here, we adopted the multi-well plate-based respirometry of the extracellular flux analyzer (Seahorse XF96) to investigate the effect of temperature on the bioenergetics of zebrafish embryos (Danio rerio) in situ. We show that the removal of the embryonic chorion is beneficial for oxygen consumption rates (OCR) and penetration of various mitochondrial inhibitors, and confirm that sedation reduces the variability of OCR. At 48h post-fertilization, embryos (maintained at a routine temperature of 28°C) were exposed to different medium temperatures ranging from 18°C to 37°C for 20h prior OCR measurement. Measurement temperatures from 18°C to 45°C in the XF96 were achieved by lowering the room temperature and active in-built heating. At 18°C assay temperature, basal OCR was low due to decreased ATP-linked respiration, which was not limited by mitochondrial power, as seen in substantial spare respiratory capacity. Basal OCR of the embryos increased with assay temperature and were stable up to 37°C assay temperature, with pre-exposure of 37°C resulting in more thermo-resistant basal OCR measured at 41°C. Adverse effects of the mitochondrial inhibitor oligomycin were seen at 37°C and chemical uncouplers disrupted substrate oxidation gradually with increasing assay temperature. Proton leak respiration increased at assay temperatures above 28°C and compromised the efficiency of ATP production, calculated as coupling efficiency. Thus, temperature impacts mitochondrial respiration by reduced cellular ATP turnover at lower temperatures and by increased proton leak at higher temperatures. This conclusion is coherent with the assessment of heart rate, an independent indicator of systemic metabolic rate, which increased with exposure temperature, peaking at 28°C, and decreased at higher temperatures. Collectively, plate-based respirometry allows assessing distinct parts of mitochondrial energy transduction in zebrafish embryos and investigating the effect of temperature and temperature acclimation on mitochondrial bioenergetics in situ.
Collapse
Affiliation(s)
- Erik Rollwitz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Hala D, Faulkner P, He K, Kamalanathan M, Brink M, Simons K, Apaydin M, Hernout B, Petersen LH, Ivanov I, Qian X. An integrated in vivo and in silico analysis of the metabolism disrupting effects of CPI-613 on embryo-larval zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109084. [PMID: 34051378 DOI: 10.1016/j.cbpc.2021.109084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/12/2023]
Abstract
CPI-613 is a mitochondrial metabolism disrupter that inhibits tricarboxylic acid (TCA) cycle activity. The consequences of TCA cycle disruption on various metabolic pathways and overall organismal physiology are not fully known. The present study integrates in vivo experimental data with an in silico stoichiometric metabolism model of zebrafish to study the metabolic pathways perturbed under CPI-613 exposure. Embryo-larval life stages of zebrafish (Danio rerio) were exposed to 1 μM CPI-613 for 20 days. Whole-organism respirometry measurements showed an initial suppression of O2 consumption at Day 5 of exposure, followed by recovery comparable to the solvent control (0.01% DMSO) by Day 20. Comparison of whole-transcriptome RNA-sequencing at Day 5 vs. 20 of exposure showed functional categories related to O2 binding and transport, antioxidant activity, FAD binding, and hemoglobin complexes, to be commonly represented. Metabolic enzyme gene expression changes and O2 consumption rate was used to parametrize two in silico stoichiometric metabolic models representative of Day 5 or 20 of exposure. Computational simulations predicted impaired ATP synthesis, α-ketoglutarate dehydrogenase (KGDH) activity, and fatty acid β-oxidation at Day 5 vs. 20 of exposure. These results show that the targeted disruption of KGDH may also impact oxidative phosphorylation (ATP synthesis) and fatty acid metabolism (β-oxidation), in turn influencing cellular bioenergetics and the observed reduction in whole-organism O2 consumption rate. The results of this study provide an integrated in vivo and in silico framework to study the impacts of metabolic disruption on organismal physiology.
Collapse
Affiliation(s)
- David Hala
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA; Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
| | - Patricia Faulkner
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kai He
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Mikeelee Brink
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kristina Simons
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Meltem Apaydin
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Beatrice Hernout
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA; Institute for a Sustainable Environment, Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Lene H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, USA
| | - Xiaoning Qian
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
23
|
SUZUKI M, IWAKI Y, TERAO K, KUNIKATA R, SUDA A, Y. INOUE K, INO K, MATSUE T, YASUKAWA T. Simultaneous Monitoring of Oxygen Consumption and Movement of Zebrafish Embryos Based on an LSI-based Electrochemical Multiple-biosensor. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Yuka IWAKI
- Graduate School of Science, University of Hyogo
| | | | | | | | - Kumi Y. INOUE
- Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi
| | - Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
| | | | | |
Collapse
|
24
|
Pottie L, Van Gool W, Vanhooydonck M, Hanisch FG, Goeminne G, Rajkovic A, Coucke P, Sips P, Callewaert B. Loss of zebrafish atp6v1e1b, encoding a subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and identifies multiple pathobiological signatures. PLoS Genet 2021; 17:e1009603. [PMID: 34143769 PMCID: PMC8244898 DOI: 10.1371/journal.pgen.1009603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/30/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
The inability to maintain a strictly regulated endo(lyso)somal acidic pH through the proton-pumping action of the vacuolar-ATPases (v-ATPases) has been associated with various human diseases including heritable connective tissue disorders. Autosomal recessive (AR) cutis laxa (CL) type 2C syndrome is associated with genetic defects in the ATP6V1E1 gene and is characterized by skin wrinkles or loose redundant skin folds with pleiotropic systemic manifestations. The underlying pathological mechanisms leading to the clinical presentations remain largely unknown. Here, we show that loss of atp6v1e1b in zebrafish leads to early mortality, associated with craniofacial dysmorphisms, vascular anomalies, cardiac dysfunction, N-glycosylation defects, hypotonia, and epidermal structural defects. These features are reminiscent of the phenotypic manifestations in ARCL type 2C patients. Our data demonstrates that loss of atp6v1e1b alters endo(lyso)somal protein levels, and interferes with non-canonical v-ATPase pathways in vivo. In order to gain further insights into the processes affected by loss of atp6v1e1b, we performed an untargeted analysis of the transcriptome, metabolome, and lipidome in early atp6v1e1b-deficient larvae. We report multiple affected pathways including but not limited to oxidative phosphorylation, sphingolipid, fatty acid, and energy metabolism together with profound defects on mitochondrial respiration. Taken together, our results identify complex pathobiological effects due to loss of atp6v1e1b in vivo. Cutis laxa syndromes are pleiotropic disorders of the connective tissue, characterized by skin redundancy and variable systemic manifestations. Cutis laxa syndromes are caused by pathogenic variants in genes encoding structural and regulatory components of the extracellular matrix or in genes encoding components of cellular trafficking, metabolism, and mitochondrial function. Pathogenic variants in genes coding for vacuolar-ATPases, a multisubunit complex responsible for the acidification of multiple intracellular vesicles, cause type 2 cutis laxa syndromes, a group of cutis laxa subtypes further characterized by neurological, skeletal, and rarely cardiopulmonary manifestations. To investigate the pathomechanisms of vacuolar-ATPase dysfunction, we generated zebrafish models that lack a crucial subunit of the vacuolar-ATPases. The mutant zebrafish models show morphological and functional features reminiscent of the phenotypic manifestations in cutis laxa patients carrying pathogenic variants in ATP6V1E1. In-depth analysis at multiple -omic levels identified biological signatures that indicate impairment of signaling pathways, lipid metabolism, and mitochondrial respiration. We anticipate that these data will contribute to a better understanding of the pathogenesis of cutis laxa syndromes and other disorders involving defective v-ATPase function, which may eventually improve patient treatment and management.
Collapse
Affiliation(s)
- Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wouter Van Gool
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food technology, Safety and Health, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
25
|
Park H, Lee JY, Lim W, Song G. Assessment of the in vivo genotoxicity of pendimethalin via mitochondrial bioenergetics and transcriptional profiles during embryogenesis in zebrafish: Implication of electron transport chain activity and developmental defects. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125153. [PMID: 33485224 DOI: 10.1016/j.jhazmat.2021.125153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Pendimethalin, an herbicide used to control weeds, acts by inhibiting plant cell division and mitosis. Several studies have reported the detrimental effects of pendimethalin on non-target organisms. It has been found to be especially toxic to aquatic life. Additionally, there is some evidence that pendimethalin induces mitochondrial stress. However, none of the studies have provided information about the functional defects in mitochondria and toxicity during embryogenesis. In this study, we evaluated the impact of pendimethalin on the electron transport chain (ETC) activity and mitochondrial complexes via in vivo screening of oxidative phosphorylation and transcriptional profiles in zebrafish embryos. The results showed that pendimethalin interferes with mitochondrial complexes I and V, which inhibit embryo energy metabolism, thereby leading to developmental defects. Transgenic zebrafish, fli1:eGFP and olig2:dsRed, were used to confirm pendimethalin-induced functional depletion in neurogenesis and vasculogenesis during embryo development. This study provides new insights into the methodology of environmental assessment of biohazard chemicals that target ETC activity in mitochondria. Additionally, the results suggest that real-time respiratory and metabolic monitoring in zebrafish will be useful for the genotoxicity assessment of environmentally hazardous substances and may be used as an alternative model for the control of aquatic environmental pollutants.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
26
|
HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death Dis 2021; 12:434. [PMID: 33934112 PMCID: PMC8088431 DOI: 10.1038/s41419-021-03716-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
The mitochondrial paralog of the Hsp90 chaperone family TRAP1 is often induced in tumors, but the mechanisms controlling its expression, as well as its physiological functions remain poorly understood. Here, we find that TRAP1 is highly expressed in the early stages of Zebrafish development, and its ablation delays embryogenesis while increasing mitochondrial respiration of fish larvae. TRAP1 expression is enhanced by hypoxic conditions both in developing embryos and in cancer models of Zebrafish and mammals. The TRAP1 promoter contains evolutionary conserved hypoxic responsive elements, and HIF1α stabilization increases TRAP1 levels. TRAP1 inhibition by selective compounds or by genetic knock-out maintains a high level of respiration in Zebrafish embryos after exposure to hypoxia. Our data identify TRAP1 as a primary regulator of mitochondrial bioenergetics in highly proliferating cells following reduction in oxygen tension and HIF1α stabilization.
Collapse
|
27
|
Huang X, Zhao X, Zhu K, Ding S, Shao B. Sodium dehydroacetate exposure decreases locomotor persistence and hypoxia tolerance in zebrafish. ENVIRONMENTAL RESEARCH 2021; 195:110276. [PMID: 33131684 DOI: 10.1016/j.envres.2020.110276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Environmental exposure to sodium dehydroacetate (DHA-S) is inevitable as DHA-S is a high-volume preservative widely used in cosmetics, processed foods and personal care products. DHA-S is absorbed rapidly when administered orally or on the skin and generally considered to be safe and well tolerated. However, DHA-S has recently been reported to induce weight loss and allergic contact dermatitis, yet little is known about how DHA-S affect the related biological processes. Here, we characterize the biological effects of DHA-S on zebrafish model by directly waterborne exposure. Zebrafish is susceptible to DHA-S exposure at early developmental stage. DHA-S decreased the hatch rate and locomotor persistence of zebrafish, and eventually induced lethality during the continuous exposure at relatively low concentrations of commonly addition. Acute DHA-S exposure decreased respiration capacity in larval zebrafish, promoted the expression of HIF-1α (hypoxia-inducible factor-1α) and caused rapid adult zebrafish death in 30 h. We further demonstrated that DHA-S inhibited the activity of succinate dehydrogenase (SDH) inducing respiratory chain interruption, energy deficiency and organic acids accumulation. These results suggest that the approved DHA-S may pose serious environmental/ecological pressures on the aquatic animal's migration.
Collapse
Affiliation(s)
- Xiaoyong Huang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centers for Disease Control and Preventative Medical Research, Beijing, 100013, China
| | - Xiaole Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shuangyang Ding
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centers for Disease Control and Preventative Medical Research, Beijing, 100013, China.
| |
Collapse
|
28
|
Banerji R, Huynh C, Figueroa F, Dinday MT, Baraban SC, Patel M. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun 2021; 3:fcab004. [PMID: 33842883 PMCID: PMC8023476 DOI: 10.1093/braincomms/fcab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, SCN1A. We utilized a translatable zebrafish model of Dravet syndrome (scn1lab) which exhibits key characteristics of patients with Dravet syndrome and shows metabolic deficits accompanied by down-regulation of gluconeogenesis genes, pck1 and pck2. Using a metabolism-based small library screen, we identified compounds that increased gluconeogenesis via up-regulation of pck1 gene expression in scn1lab larvae. Treatment with PK11195, a pck1 activator and a translocator protein ligand, normalized dys-regulated glucose levels, metabolic deficits, translocator protein expression and significantly decreased electrographic seizures in mutant larvae. Inhibition of pck1 in wild-type larvae mimicked metabolic and behaviour defects observed in scn1lab mutants. Together, this suggests that correcting dys-regulated metabolic pathways can be therapeutic in neurodevelopmental disorders such as Dravet syndrome arising from ion channel dysfunction.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Christopher Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Francisco Figueroa
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Matthew T Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Manisha Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| |
Collapse
|
29
|
Babich R, Ulrich JC, Ekanayake EMDV, Massarsky A, De Silva PMCS, Manage PM, Jackson BP, Ferguson PL, Di Giulio RT, Drummond IA, Jayasundara N. Kidney developmental effects of metal-herbicide mixtures: Implications for chronic kidney disease of unknown etiology. ENVIRONMENT INTERNATIONAL 2020; 144:106019. [PMID: 32818823 DOI: 10.1016/j.envint.2020.106019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an emerging global concern affecting several agricultural communities in the Americas and South Asia. Environmental contaminants such as heavy metals (e.g., Cd, As, Pb, and V) and organic pesticides (e.g., glyphosate) in the drinking water have been hypothesized to play a role in childhood onset and progression of this disease. However, a comprehensive analysis of chemical contaminants in the drinking water and effects of these compounds and their mixtures on kidney development and function remains unknown. Here, we conducted targeted and non-targeted chemical analyses of sediment and drinking water in CKDu affected regions in Sri Lanka, one of the most affected countries. Using zebrafish Danio rerio, a toxicology and kidney disease model, we then examined kidney developmental effects of exposure to (i) environmentally derived samples from CKDu endemic and non-endemic regions and (ii) Cd, As, V, Pb, and glyphosate as individual compounds and in mixtures. We found that drinking water is contaminated with various organic chemicals including nephrotoxic compounds as well as heavy metals, but at levels considered safe for drinking. Histological studies and gene expression analyses examining markers of kidney development (pax2a) and kidney injury (kim1) showed novel metal and glyphosate-metal mixture specific effects on kidney development. Mitochondrial dysfunction is directly linked to kidney failure, and examination of mixture specific mitochondrial toxicity showed altered mitochondrial function following treatment with environmental samples from endemic regions. Collectively, we show that metals in drinking water, even at safe levels, can impede kidney development at an early age, potentiating increased susceptibility to other agrochemicals such as glyphosate. Drinking water contaminant effects on mitochondria can further contribute to progression of kidney dysfunction and our mitochondrial assay may help identify regions at risk of CKDu.
Collapse
Affiliation(s)
- Remy Babich
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Jake C Ulrich
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | | | - Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Cardno ChemRisk, Aliso Viejo, CA 92656, USA
| | | | - Pathmalal M Manage
- Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - P Lee Ferguson
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | | | - Iain A Drummond
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Nishad Jayasundara
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
30
|
Trevisan R, Uzochukwu D, Di Giulio RT. PAH SORPTION TO NANOPLASTICS AND THE TROJAN HORSE EFFECT AS DRIVERS OF MITOCHONDRIAL TOXICITY AND PAH LOCALIZATION IN ZEBRAFISH. FRONTIERS IN ENVIRONMENTAL SCIENCE 2020; 8:78. [PMID: 34322495 PMCID: PMC8315355 DOI: 10.3389/fenvs.2020.00078] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastics are world-wide pollutants that pose a potential threat to wildlife and human health. Small plastic particles, such as microplastics and nanoplastics, are easily ingested, and can act as a Trojan Horse by carrying microorganisms and pollutants. This study investigated the potential role of the Trojan Horse effect in the toxicity of nanoplastics to the vertebrate model organism, zebrafish (Danio rerio). First, we investigated if this effect could affect the toxicity of nanoplastics. Second, we analyzed if it could contribute to the biodistribution of the associated contaminants. And third, we focused on its effect on the mitochondrial toxicity of nanoplastics. We incubated 44 nm polystyrene nanoparticles with a real-world mixture of polycyclic aromatic hydrocarbons (PAHs) for 7 days and removed the free PAHs by ultrafiltration. We dosed embryos with 1 ppm of nanoplastics (NanoPS) or PAH-sorbed nanoplastics (PAH-NanoPS). Neither type of plastic particle caused changes in embryonic and larval development. Fluorescence microscopy and increased EROD activity suggested the uptake of PAHs in larvae exposed to PAH-NanoPS. This coincided with higher concentrations in the yolk sac and the brain. However, PAH-only exposure leads to their accumulation in the yolk sac but not in the brain, suggesting that that the spatial distribution of bioaccumulated PAHs can differ depending on their source of exposure. Both nanoplastic particles affected mitochondrial energy metabolism but caused different adverse effects. While NanoPS decreased NADH production, PAH-NanoPS decreased mitochondrial coupling efficiency and spare respiratory capacity. In summary, the addition of PAHs to the surface of nanoplastics did not translate into increased developmental toxicity. Low levels of PAHs were accumulated in the organisms, and the transfer of PAHs seems to happen in tissues and possibly organelles where nanoplastics accumulate. Disruption of the energy metabolism in the mitochondria may be a key factor in the toxicity of nanoplastics, and the Trojan Horse effect may amplify this effect.
Collapse
Affiliation(s)
- Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Daniel Uzochukwu
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | |
Collapse
|
31
|
Chowanadisai W, Hart MD, Strong MD, Graham DM, Rucker RB, Smith BJ, Keen CL, Messerli MA. Genetic and Genomic Advances in Developmental Models: Applications for Nutrition Research. Adv Nutr 2020; 11:971-978. [PMID: 32135011 PMCID: PMC7360451 DOI: 10.1093/advances/nmaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
There is increasing appreciation that dietary components influence and interact with genes important to metabolism. How such influences impact developmental regulation and programming or risks of chronic diseases remains unclear. Nutrition is recognized to affect development and chronic diseases, but our understanding about how genes essential to nutrient metabolism regulate development and impact risks of these diseases remains unclear. Historically, mammalian models, especially rodents such as rats and mice, have been the primary models used for nutrition and developmental nutrition science, although their complexity and relatively slow rate of development often compromise rapid progress in resolving fundamental, genetic-related questions. Accordingly, the objective of this review is to highlight the opportunities for developmental models in the context of uncovering the function of gene products that are relevant to human nutrition and provide the scientific bases for these opportunities. We present recent studies in zebrafish related to obesity as applications of developmental models in nutritional science. Although the control of external factors and dependent variables, such as nutrition, can be a challenge, suggestions for standardizations related to diet are made to improve consistency in findings between laboratories. The review also highlights the need for standardized diets across different developmental models, which could improve consistency in findings across laboratories. Alternative and developmental animal models have advantages and largely untapped potential for the advancement of nutrigenomics and nutritionally relevant research areas.
Collapse
Affiliation(s)
- Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - David M Graham
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Robert B Rucker
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
32
|
Babich R, Hamlin H, Thayer L, Dorr M, Wei Z, Neilson A, Jayasundara N. Mitochondrial response and resilience to anthropogenic chemicals during embryonic development. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108759. [PMID: 32259593 DOI: 10.1016/j.cbpc.2020.108759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
Mitochondria are integral to maintaining cellular homeostasis. Optimum mitochondrial function is critical during embryonic development, as they play a key role in early signaling cascades and epigenetic programming, in addition to sustaining an adequate energy production. Mitochondria are sensitive targets of environmental toxins, potentially even at levels considered safe under current regulatory limits. Most mitochondrial analyses have focused only on chemical exposure effects in vitro or in isolated mitochondria. However, comparatively little is known about mitochondrial effects of chemical exposure during vertebrate embryogenesis, especially during the recovery phase following a chemical insult. Here, we used the zebrafish (Danio rerio), in a 96-well plate system, to examine mitochondrial effects of 24 chemicals including pharmaceuticals, industrial chemicals, and agrochemicals. We used oxygen consumption rate (OCR) during embryogenesis as a proxy for mitochondrial function. Embryonic OCR (eOCR) was measured in clean egg water immediately following 24 h of chemical exposure and subsequently for an additional 8 h. Each chemical, dependent upon the concentration, resulted in a unique eOCR response profile. While some eOCR effects were persistent or recoverable over time, some effects were only detected several hours after being removed from the exposure. Non-monotonic dose response effects as well as mitochondrial hormesis were also detected following exposure to some chemicals. Collectively, our study shows that mitochondrial response to chemicals are highly dynamic and warrant careful consideration when determining mitochondrial toxicity of a given chemical.
Collapse
Affiliation(s)
- Remy Babich
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA.
| | - Heather Hamlin
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - LeeAnne Thayer
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Madeline Dorr
- The Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA
| | - Zheng Wei
- The Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA
| | | | - Nishad Jayasundara
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
33
|
Otten ABC, Kamps R, Lindsey P, Gerards M, Pendeville-Samain H, Muller M, van Tienen FHJ, Smeets HJM. Tfam Knockdown Results in Reduction of mtDNA Copy Number, OXPHOS Deficiency and Abnormalities in Zebrafish Embryos. Front Cell Dev Biol 2020; 8:381. [PMID: 32596237 PMCID: PMC7303330 DOI: 10.3389/fcell.2020.00381] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
High mitochondrial DNA (mtDNA) copy numbers are essential for oogenesis and embryogenesis and correlate with fertility of oocytes and viability of embryos. To understand the pathology and mechanisms associated with low mtDNA copy numbers, we knocked down mitochondrial transcription factor A (tfam), a regulator of mtDNA replication, during early zebrafish development. Reduction of tfam using a splice-modifying morpholino (MO) resulted in a 42 ± 17% decrease in mtDNA copy number in embryos at 4 days post fertilization. Morphant embryos displayed abnormal development of the eye, brain, heart, and muscle, as well as a 50 ± 22% decrease in ATP production. Transcriptome analysis revealed a decrease in protein-encoding transcripts from the heavy strand of the mtDNA, and down-regulation of genes involved in haem production and the metabolism of metabolites, which appear to trigger increased rRNA and tRNA synthesis in the nucleoli. However, this stress or compensatory response appears to fall short as pathology emerges and expression of genes related to eye development are severely down-regulated. Taken together, this study highlights the importance of sufficient mtDNA copies for early zebrafish development. Zebrafish is an excellent model to manipulate the mtDNA bottleneck and study its effect on embryogenesis rapidly and in large numbers of offspring.
Collapse
Affiliation(s)
- Auke B. C. Otten
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, Netherlands
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
- School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Rick Kamps
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Patrick Lindsey
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mike Gerards
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marc Muller
- Laboratory of Organogenesis and Regeneration, Univérsité Liège, Liège, Belgium
| | - Florence H. J. van Tienen
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Hubert J. M. Smeets
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
34
|
Lim CH, Kaur P, Teo E, Lam VYM, Zhu F, Kibat C, Gruber J, Mathuru AS, Tolwinski NS. Application of optogenetic Amyloid-β distinguishes between metabolic and physical damages in neurodegeneration. eLife 2020; 9:52589. [PMID: 32228858 PMCID: PMC7145416 DOI: 10.7554/elife.52589] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression. Alzheimer's disease is a progressive condition that damages the brain over time. The cause is not clear, but a toxic molecule called Amyloid-β peptide seems to play a part. It builds up in the brains of people with Alzheimer's disease, forming hard clumps called plaques. Yet, though the plaques are a hallmark of the disease, experimental treatments designed to break them down do not seem to help. This raises the question – do Amyloid-β plaques actually cause Alzheimer's disease? Answering this question is not easy. One way to study the effect of amyloid plaques is to inject clumps of Amyloid-β peptides into model organisms. This triggers Alzheimer's-like brain damage, but it is not clear why. It remains difficult to tell the difference between the damage caused by the injected Amyloid-β peptides and the damage caused by the solid plaques that they form. For this, researchers need a way to trigger plaque formation directly inside animal brains. This would make it possible to test the effects of plaque-targeting treatments, like the drug lithium. Optogenetics is a technique that uses light to control molecules in living animals. Hsien, Kaur et al. have now used this approach to trigger plaque formation by fusing light-sensitive proteins to Amyloid-β peptides in worms, fruit flies and zebrafish. This meant that the peptides clumped together to form plaques whenever the animals were exposed to blue light. This revealed that, while both the Amyloid-β peptides and the plaques caused damage, the plaques were much more toxic. They damaged cell metabolism and caused tissue loss that resembled late Alzheimer's disease in humans. To find out whether it was possible to test Alzheimer's treatments in these animals, Hsien, Kaur et al. treated them with the drug, lithium. This increased their lifespan, reversing some of the damage caused by the plaques. Alzheimer's disease affects more than 46.8 million people worldwide and is the sixth leading cause of death in the USA. But, despite over 50 years of research, there is no cure. This new plaque-formation technique allows researchers to study the effects of amyloid plaques in living animals, providing a new way to test Alzheimer's treatments. This could be of particular help in studies of experimental drugs that aim to reduce plaque formation.
Collapse
Affiliation(s)
- Chu Hsien Lim
- Science Division, Yale- NUS College, Singapore, Singapore
| | - Prameet Kaur
- Science Division, Yale- NUS College, Singapore, Singapore
| | - Emelyne Teo
- Science Division, Yale- NUS College, Singapore, Singapore
| | | | - Fangchen Zhu
- Science Division, Yale- NUS College, Singapore, Singapore
| | - Caroline Kibat
- Science Division, Yale- NUS College, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, YLL School of Medicine, Singapore, Singapore
| | - Jan Gruber
- Science Division, Yale- NUS College, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Ajay S Mathuru
- Science Division, Yale- NUS College, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, YLL School of Medicine, Singapore, Singapore
| | | |
Collapse
|
35
|
Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020; 167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
As one of the most common neurological disorders, epilepsy can occur throughout the lifespan and from a multiplicity of causes, including genetic mutations, inflammation, neurotrauma, or brain malformations. Although pharmacological agents are the mainstay of treatment for seizure control, an unyielding 30-40% of patients remain refractory to these medications and continue to experience spontaneous recurrent seizures with attendant life-long cognitive, behavioural, and mental health issues, as well as an increased risk for sudden unexpected death. Despite over eight decades of antiseizure drug (ASD) discovery and the approval of dozens of new medications, the percentage of this refractory population remains virtually unchanged, suggesting that drugs with new and unexpected mechanisms of action are needed. In this brief review, we discuss the need for new animal models of epilepsy, with a particular focus on the advantages and disadvantages of zebrafish. We also outline the evidence that epilepsy is characterized by derangements in mitochondrial function and introduce the rationale and promise of bioenergetics as a functional readout assay to uncover novel ASDs. We also consider limitations of a zebrafish metabolism-based drug screening approach. Our goal is to discuss the opportunities and challenges of further development of mitochondrial screening strategies for the development of novel ASDs. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Canada; Department of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
36
|
Kumar N, Willis A, Satbhai K, Ramalingam L, Schmitt C, Moustaid-Moussa N, Crago J. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). CHEMOSPHERE 2020; 241:124980. [PMID: 31600620 DOI: 10.1016/j.chemosphere.2019.124980] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Azoxystrobin and pyraclostrobin are broad spectrum strobilurin fungicides that have been measured in the aquatic environment. Strobilurins inhibit mitochondrial respiration by binding to the mitochondrial respiratory complex III. The goal of this study was to investigate mitochondrial dysfunction and oxidative stress in the developing zebrafish from exposure to azoxystrobin and pyraclostrobin. Exposure studies were performed where zebrafish embryos were exposed to azoxystrobin and pyraclostrobin at 0.1, 10, 100 μg/L from 4 hpf to 48 hpf to measure mitochondrial dysfunction and oxidative stress mRNA transcripts, and 5 dpf to measure movement, growth, oxygen consumption, enzymatic activities, and mRNA transcripts. Results from this study indicated that there was a significant reduction in both basal and maximal respiration at 48 hpf in zebrafish exposed to 100 μg/L of pyraclostrobin. There was no difference in oxidative stress or apoptotic mRNA transcripts at 48 hpf, indicating that the two strobilurins were acting first on mitochondrial function and not directly through oxidative stress. At 5 dpf, standard body length was significantly reduced with exposure to pyraclostrobin and azoxystrobin exposure as compared to the control. These reductions in apical endpoints corresponded with increases in oxidative stress and apoptotic mRNA transcripts in treatment groups at 5 dpf indicating that strobilurins' exposure followed the adverse outcome pathway for mito-toxicants. Our results indicate that strobilurins can decrease mitochondrial function, which in turn lead to diminished growth and movement.
Collapse
Affiliation(s)
- N Kumar
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA.
| | - A Willis
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - K Satbhai
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - L Ramalingam
- Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - C Schmitt
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | | | - J Crago
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
37
|
Tu W, Martínez R, Navarro-Martin L, Kostyniuk DJ, Hum C, Huang J, Deng M, Jin Y, Chan HM, Mennigen JA. Bioconcentration and Metabolic Effects of Emerging PFOS Alternatives in Developing Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13427-13439. [PMID: 31609598 DOI: 10.1021/acs.est.9b03820] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The novel PFOS alternatives, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzenesulfonate (OBS), are emerging in the Chinese market, but little is known about their ecological risks. In this study, zebrafish embryos were exposed to PFOS, F-53B, and OBS to evaluate their bioconcentration and acute metabolic consequences. Per- and polyfluoroalkyl substances (PFASs) accumulated in larvae in the order of F-53B > PFOS > OBS, with the bioconcentration factors ranging from 20 to 357. Exposure to F-53B and PFOS, but not OBS, increased energy expenditure, and reduced feed intake in a concentration-dependent manner and the expression of genes involved in metabolic pathways at the transcriptional and translational levels. Molecular docking revealed that the binding affinities of PFASs to glucokinase were decreased in the following order: F-53B > PFOS > OBS. Finally, the results of Point of Departure (PoD) indicate that metabolic end points at the molecular and organismal level are most sensitive to F-53B followed by PFOS and OBS. Collectively, F-53B has the highest bioconcentration potential and the strongest metabolism-disrupting effects, followed by PFOS and OBS. Our findings have important implications for the assessment of early developmental metabolic effects of PFOS alternatives F-53B and OBS in wildlife and humans.
Collapse
Affiliation(s)
- Wenqing Tu
- Research Institute of Poyang Lake , Jiangxi Academy of Sciences , Nanchang 330012 , China
| | - Rubén Martínez
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research, IDAEA-CSIC , Jordi Girona, Barcelona 18-26 08034 , Spain
- Department of Cellular Biology, Physiology and Immunology , Universitat de Barcelona (UB) , Barcelona 585 08007 , Spain
| | - Laia Navarro-Martin
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research, IDAEA-CSIC , Jordi Girona, Barcelona 18-26 08034 , Spain
| | - Daniel J Kostyniuk
- Department of Biology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Christine Hum
- Department of Biology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Jing Huang
- Research Institute of Poyang Lake , Jiangxi Academy of Sciences , Nanchang 330012 , China
| | - Mi Deng
- Research Institute of Poyang Lake , Jiangxi Academy of Sciences , Nanchang 330012 , China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou , 310032 , China
| | - Hing Man Chan
- Department of Biology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | | |
Collapse
|
38
|
Vliet SM, Dasgupta S, Volz DC. Niclosamide Induces Epiboly Delay During Early Zebrafish Embryogenesis. Toxicol Sci 2019; 166:306-317. [PMID: 30165700 DOI: 10.1093/toxsci/kfy214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have revealed that niclosamide exhibits diverse mechanisms of action and, as a result, demonstrates promise for a number of applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, the objective of this study was to investigate the mechanism of niclosamide toxicity during early stages of embryonic development. Using zebrafish as a model, we found that niclosamide induced a concentration-dependent delay in epiboly progression during late-blastula and early-gastrula, an effect that was dependent on exposure during the maternal-to-zygotic transition-a period characterized by degradation of maternally derived transcripts, zygotic genome activation, and initiation of cell motility. Moreover, we found that niclosamide did not affect embryonic oxygen consumption, suggesting that oxidative phosphorylation-a well-established target for niclosamide within intestinal parasites-may not play a role in niclosamide-induced epiboly delay. However, mRNA-sequencing revealed that niclosamide exposure during blastula and early-gastrula significantly impacted the timing of zygotic genome activation as well as the abundance of cytoskeleton- and cell cycle regulation-specific transcripts. In addition, we found that niclosamide inhibited tubulin polymerization in vitro, suggesting that niclosamide-induced delays in epiboly progression may, in part, be driven by disruption of microtubule formation and cell motility within the developing embryo.
Collapse
Affiliation(s)
- Sara M Vliet
- Department of Environmental Sciences, University of California, Riverside, California 92521
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521
| |
Collapse
|
39
|
Lindberg CD, Di Giulio RT. Polycyclic aromatic hydrocarbon and hypoxia exposures result in mitochondrial dysfunction in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105298. [PMID: 31586484 PMCID: PMC6917040 DOI: 10.1016/j.aquatox.2019.105298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 05/20/2023]
Abstract
Organisms are routinely subjected to a variety of environmental and chemical perturbations simultaneously. Often, multi-stressor exposures result in unpredictable toxicity that occurs through unidentified mechanisms. Here, we focus on polycyclic aromatic hydrocarbons (PAHs) and hypoxia, two environmental and physiological stressors that are known to co-occur in the environment. The aim of this study was to assess whether interactive mitochondrial dysfunction resulted from co-exposures of PAHs and hypoxia. Zebrafish embryos were co-exposed to non-teratogenic concentrations of an environmental PAH mixture and hypoxia beginning at 6 hpf for an acute period of 24 h and afterwards were given either no recovery period, 45 min, 5 -hs, or 18 -hs of recovery time in clean conditions. Mitochondrial function and integrity were assessed through the use of both in ovo and in vitro assays. Hypoxia exposures resulted in drastic reductions in parameters relating to mitochondrial respiration, ATP turnover, and mitochondrial DNA integrity. PAH exposures affected ATP production and content, as well as mitochondrial membrane dynamics and lactate content. While PAH and hypoxia exposures caused a broad range of effects, there appeared to be very little interaction between the two stressors in the co-exposure group. However, because hypoxia significantly altered mitochondrial function, the possibility remains that these effects may limit an individual's ability to respond to PAH toxicity and therefore could cause downstream interactive effects.
Collapse
Affiliation(s)
- Casey D Lindberg
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Richard T Di Giulio
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
40
|
Lee S, Lee H, Kim KT. Optimization of experimental conditions and measurement of oxygen consumption rate (OCR) in zebrafish embryos exposed to organophosphate flame retardants (OPFRs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109377. [PMID: 31254858 DOI: 10.1016/j.ecoenv.2019.109377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 05/18/2023]
Abstract
The measurement of oxygen consumption rate (OCR) provides a comprehensive understanding of mitochondrial metabolism. However, no study has been conducted to investigate the mitochondrial dysfunction caused by organophosphate flame retardants (OPFRs). The objectives of this study were to optimize the experimental conditions to measure OCR in zebrafish embryos using the Seahorse XFe 24 Extracellular Flux Analyzer, and to investigate the changes of OCR in zebrafish embryos exposed to OPFRs. We first optimized the experimental conditions such as the number of embryos, concentrations of inhibitors, and time points. We determined the factors, i.e., three embryos, 12.5 μM of oligomycin, 8 μM of carbonyl cyanaide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and 24 hpf (hours post-fertilization) time point, for obtaining the typical pattern of OCR in dechorinated zebrafish embryos. After confirming the determinants upon exposure of triclosan, the inhibition of OCR was measured in zebrafish embryos exposed to two major OPFRs, triphenyl phosphate (TPHP) and tris (1,3-dichloro-2-propyl) phosphate (TDCIPP). We found that significant inhibition of OCR was observed in basal respiration for TPHP, and in basal and maximal respiration for TDCIPP exposure, respectively. We suggest the optimum conditions of the Seahorse XFe 24 analyzer to better evaluate OCR in zebrafish embryos, and demonstrate the potential of TPHP and TDCIPP to cause the disruption of energy metabolism associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sunjin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hyojin Lee
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
41
|
Félix L, Coimbra AM, Valentim AM, Antunes L. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol 2019; 49:357-370. [PMID: 31314655 DOI: 10.1080/10408444.2019.1617236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the years, the potential toxicity of anesthetics has raised serious concerns about its safe use during pregnancy. As evidence emerged from research in animal models, showing that some anesthetic drugs are potential teratogenic, the determination of the risk of exposures to anesthetic drugs at early life stages became mandatory. However, due to inaccessibility and ethical constrains related to experimental conditions, the use of early life stages in mammalian models is limited. In this regard, some animal and nonanimal models have been suggested to surpass mammalian use in experimentation. Among them, the zebrafish embryo test has been recognized as a promising alternative in toxicology research, as well as an inexpensive and practical test. Substantial information collected from developmental research following compounds exposure, has contributed to the application of zebrafish assays in research, although only a few studies have focused on the use of early life stages of zebrafish to evaluate the developmental effects of anesthetics. Based on the recent advances of science and technology, there is a clear potential for zebrafish early life stages to provide new insights into anesthetics teratogenicity. This review provides an overview of recent anesthesia research using zebrafish embryos, demonstrating its usefulness to the anesthesia field, discussing the recent findings on various aspects related to the effects of anesthetics during early life development and the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Luís Félix
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Valentim
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Luís Antunes
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| |
Collapse
|
42
|
Trevisan R, Voy C, Chen S, Di Giulio RT. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8405-8415. [PMID: 31259535 PMCID: PMC6660138 DOI: 10.1021/acs.est.9b02003] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plastics are recognized as a worldwide threat to the environment, possibly affecting human health and wildlife. Small forms of plastics such as micro- and nanoplastics can interact with other organic contaminants, potentially acting as chemical carriers and modulating their toxicity. In this study, we investigated the toxicity of polystyrene nanoparticles (Nano-PS) and a real-world environmental PAH mixture (Elizabeth River Sediment Extract, ERSE, comprised of 36 detected PAHs) to zebrafish embryos and larvae. Embryos were exposed to Nano-PS (0.1-10 ppm) or ERSE (0.1-5% v/v, equivalent to ΣPAH 5.07-25.36 ppb) or coexposed to a combination of both. Larvae exposed to Nano-PS did not exhibit developmental defects, while larvae exposed to ERSE (2-5%) showed classic signs of PAH toxicity such as heart malformation and deformities in the jaw, fin, and tail. ERSE (5%) also impaired vascular development in the brain. When coexposed, Nano-PS decreased the developmental deformities and impaired vascular development caused by ERSE. This was strongly correlated to the lower PAH bioaccumulation detected in the coexposed animals (whole larvae, as well as the yolk sac, brain, and heart). Our data suggest that PAHs are sorbing to the surface of the Nano-PS, decreasing the concentration, uptake, and toxicity of free PAHs during the exposure. Such sorption of PAHs increases the agglomeration rate of Nano-PS during the exposure time, potentially decreasing the uptake of Nano-PS and associated PAHs. Despite that, similar induction of EROD activity was detected in animals exposed to ERSE in the presence or not of Nano-PS, suggesting that enough PAHs were accumulated in the organisms to induce cellular defense mechanisms. Nano-PS exposure (single or combined with ERSE) decreased the mitochondrial coupling efficiency and increased NADH production, suggesting an impairment on ATP production accompanied by a compensatory mechanism. Our data indicate that nanoplastics can sorb contaminants and potentially decrease their uptake due to particle agglomeration. Nanoplastics also target and disrupt mitochondrial energy production and act as vectors for the mitochondrial uptake of sorbed contaminants during embryonic and larval stages. Such negative effects of nanoplastics on energy metabolism and efficiency could be detrimental under multiple-stressors exposures and energy-demanding scenarios, which remains to be validated.
Collapse
Affiliation(s)
- Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Ciara Voy
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Shuxin Chen
- North Carolina School of Science and Mathematics, Durham, NC 27705, USA
| | | |
Collapse
|
43
|
Kumar N, Awoyemi O, Willis A, Schmitt C, Ramalingam L, Moustaid-Moussa N, Crago J. Comparative Lipid Peroxidation and Apoptosis in Embryo-Larval Zebrafish Exposed to 3 Azole Fungicides, Tebuconazole, Propiconazole, and Myclobutanil, at Environmentally Relevant Concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1455-1466. [PMID: 30919521 DOI: 10.1002/etc.4429] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Azole fungicides have entered the aquatic environment through agricultural and residential runoff. In the present study, we compared the off-target toxicity of tebuconazole, propiconazole, and myclobutanil using embryo-larval zebrafish as a model. The aim of the present study was to investigate the relative toxicity of tebuconazole, propiconazole, and myclobutanil using multiple-level endpoints such as behavioral endpoints and enzymatic and molecular biomarkers associated with their mode of action. Zebrafish embryos were exposed to azoles at environmentally relevant and high concentrations, 0.3, 1.0, and 1000 µg/L, starting at 5 h postfertilization (hpf) up to 48 hpf, as well as 5 d postfertilization (dpf). Relative mRNA expressions of cytochrome P450 family 51 lanosterol-14α-demethylase, glutathione S-transferase, caspase 9, phosphoprotein p53, and BCL2-associated X protein were measured to assess toxicity attributable to fungicides at the mRNA level, whereas caspase 3/7 (apoptosis) and 3,4-methylenedioxyamphetamine (lipid peroxidation) levels were measured at the enzymatic level. Furthermore, mitochondrial dysfunction was measure through the Mito Stress test using the Seahorse XFe24 at 48 hpf. In addition, light to dark movement behavior was monitored at 5 dpf using Danio Vision® to understand adverse effects at the organismal level. There was no significant difference in the light to dark behavior with exposure to azoles compared to controls. The molecular biomarkers indicated that propiconazole and myclobutanil induced lipid peroxidation, oxidative stress, and potentially apoptosis at environmentally relevant concentrations (0.3 and 1 µg/L). The results from the mitochondrial respiration assay indicated a slight decrease in spare respiratory capacity with an acute exposure (48 hpf) to all 3 azoles at 1000 µg/L. Based on the present results, propiconazole and myclobutanil are acutely toxic compared to tebuconazole in aquatic organisms at environmentally relevant concentrations. Environ Toxicol Chem 2019;38:1455-1466. © 2019 SETAC.
Collapse
Affiliation(s)
- N Kumar
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - O Awoyemi
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - A Willis
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - C Schmitt
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - L Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - N Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - J Crago
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
44
|
Souders CL, Xavier P, Perez-Rodriguez V, Ector N, Zhang JL, Martyniuk CJ. Sub-lethal effects of the triazole fungicide propiconazole on zebrafish (Danio rerio) development, oxidative respiration, and larval locomotor activity. Neurotoxicol Teratol 2019; 74:106809. [PMID: 31129159 DOI: 10.1016/j.ntt.2019.106809] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Propiconazole is a triazole fungicide used in agriculture. Via run-off, it can enter the aquatic environment, and can adversely affect organisms. However, data are scarce on how propiconazole may affect early developmental life stages of fish. The objectives of this study were to evaluate the potential sub-lethal effects of propiconazole during zebrafish development. Wildtype zebrafish (ABTu strain) embryos and larvae were exposed to propiconazole (0.1-100 μM) for up to 150 hours post fertilization (hpf) depending upon the endpoint measured. Propiconazole decreased survival and induced hypopigmentation in fish at 100 μM compared to the water and solvent controls. Pericardial edema was also noted in embryos and larvae (beginning at 2-3 dpf) exposed to 100 μM propiconazole. To visualize the effects of propiconazole on the circulatory system in more detail, we exposed transgenic zebrafish (globin-LCR:eGFP) to the fungicide. Hematopoietic changes were observed within 48 h of exposure to 100 μM, and localization of blood cells in the cardic region became diffuse, indicating pooling of blood in the pericardial region. We measured oxidative respiration in embryos as sufficient ATP is needed for development. Exposure to 100 μM propiconazole (~6-30 hpf) reduced basal respiration (~50%), oligomycin-induced ATP linked respiration (~70%), proton leak (~30%), and non-mitochondrial respiration (~50%), indicating compromised mitochondrial bioenergetics. A Visual Motor Response (VMR) test was used to measure dark photokinesis behavior in larval fish exposed to propiconazole for a 6-day period. Larval fish exposed to the highest concentration in the assay (10 μM) showed evidence of hypoactivity. This study demonstrates that propiconazole can induce hypopigmentation in zebrafish, disrupt mitochondrial bioenergetics, and can alter locomotor activity. However, these sub-lethal responses were observed at concentrations above what is typically detected in the environment.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Priscilla Xavier
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Naomi Ector
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ji-Liang Zhang
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
45
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
46
|
Perez-Rodriguez V, Souders CL, Tischuk C, Martyniuk CJ. Tebuconazole reduces basal oxidative respiration and promotes anxiolytic responses and hypoactivity in early-staged zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:87-97. [PMID: 30500453 DOI: 10.1016/j.cbpc.2018.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
Abstract
Triazole fungicides are increasingly used in North America to combat mold and fungi, in order to protect vegetables, citrus, ornamental plants and field crops. To determine the biological impacts of tebuconazole in non-target aquatic organisms, early life stage zebrafish were exposed to 0.1-100 μM tebuconazole for 120 h (5 dpf). There was a significant increase in mortality over time and at 100 μM, only 50% of the animals survived 96 h compared to >95% for all other experimental groups. There was evidence for increased hatching time with 10 μM tebuconazole compared to the control group (~7 h longer at 50% total hatch) or a lack of hatch observed with 100 μM. Oxidative respiration and behavior were evaluated to assess whether the fungicide impaired energy-associated processes. Oxygen consumption rates in embryos (exposed from ~6 hpf) were determined with exposure to 2.5, 25, 50, 100 μM tebuconazole for 24 h using the XFe24 Extracellular Flux Analyzer. Embryos treated with 100 μM showed a ~60% reduction in basal respiration, indicating impaired oxygen consumption and/or changes in resource allocation (e.g. anti-oxidant production, metabolite synthesis). Environmentally-relevant concentrations of tebuconazole did not affect oxidative phosphorylation. As behavior is a sensitive endpoint for toxicity, we measured the dark photokinesis response and conducted a light-dark preference test in 6 dpf larvae following a sub-chronic exposure to 0.1, 1 and 10 μM tebuconazole beginning with 6 hpf embryos. It was observed in two independent experiments for dark photokinesis that 10 μM tebuconazole reduced total distance moved (i.e. hypoactivity) in the dark period by ~25-35%. In the light-dark preference test, there was an increase for mean time in dark zone (~100% increase in the average time/visits per second) and frequency in dark zone (increase of ~35% in average number of visits) with tebuconazole, suggestive of anxiolytic behavior at environmentally-relevant doses. This study demonstrates that exposure to tebuconazole can affect survival, hatch time, oxidative phosphorylation, and behavioral activity of early-staged zebrafish. While survival, hatch time, and mitochondrial bioenergetics were not different than control fish at environmentally-relevant levels of tebuconazole, behavioral responses were detected at concentrations reported in some aquatic environments.
Collapse
Affiliation(s)
- Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Claire Tischuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
47
|
Pitt JA, Trevisan R, Massarsky A, Kozal JS, Levin ED, Di Giulio RT. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:324-334. [PMID: 29940444 PMCID: PMC7012458 DOI: 10.1016/j.scitotenv.2018.06.186] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 05/18/2023]
Abstract
Plastics are ubiquitous anthropogenic contaminants that are a growing concern in aquatic environments. The ecological implications of macroplastics pollution are well documented, but less is known about nanoplastics. The current study investigates the potential adverse effects of nanoplastics, which likely contribute to the ecological burden of plastic pollution. To this end, we examined whether a dietary exposure of adult zebrafish (Danio rerio) to polystyrene nanoparticles (PS NPs) could lead to the transfer of nanoplastics to the offspring, and whether nanoplastics exposure affects zebrafish physiology. Specifically, adult female and male zebrafish (F0 generation) were exposed to PS NPs via diet for one week and bred to produce the F1 generation. Four F1 groups were generated: control (unexposed females and males), maternal (exposed females), paternal (exposed males), and co-parental (exposed males and females). Co-parental PS NP exposure did not significantly affect reproductive success. Assessment of tissues from F0 fish revealed that exposure to PS NPs significantly reduced glutathione reductase activity in brain, muscle, and testes, but did not affect mitochondrial function parameters in heart or gonads. Assessment of F1 embryos and larvae revealed that PS NPs were present in the yolk sac, gastrointestinal tract, liver, and pancreas of the maternally and co-parentally exposed F1 embryos/larvae. Bradycardia was also observed in embryos from maternal and co-parental exposure groups. In addition, the activity of glutathione reductase and the levels of thiols were reduced in F1 embryos/larvae from maternal and/or co-parental exposure groups. Mitochondrial function and locomotor activity were not affected in F1 larvae. This study demonstrates that (i) PS NPs are transferred from mothers to offspring, and (ii) exposure to PS NPs modifies the antioxidant system in adult tissues and F1 larvae. We conclude that PS NPs could bioaccumulate and be passed on to the offspring, but this does not lead to major physiological disturbances.
Collapse
Affiliation(s)
- Jordan A Pitt
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Jordan S Kozal
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
48
|
Sokol AM, Uszczynska-Ratajczak B, Collins MM, Bazala M, Topf U, Lundegaard PR, Sugunan S, Guenther S, Kuenne C, Graumann J, Chan SSL, Stainier DYR, Chacinska A. Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet 2018; 14:e1007743. [PMID: 30457989 PMCID: PMC6245507 DOI: 10.1371/journal.pgen.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
Collapse
Affiliation(s)
- Anna M. Sokol
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (AMS); (AC)
| | | | - Michelle M. Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michal Bazala
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ulrike Topf
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sreedevi Sugunan
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail: (AMS); (AC)
| |
Collapse
|
49
|
Li E, Bolser DG, Kroll KJ, Brockmeier EK, Falciani F, Denslow ND. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, Pimephales promelas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:66-72. [PMID: 29879596 DOI: 10.1016/j.aquatox.2018.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Phenols are classified as polar narcotics, which are thought to cause toxicity by non-specific mechanisms, possibly by disrupting membrane structure and function. Here we test three phenolic chemicals, phenol, 2,4-dichlorphenol and pentachlorophenol on embryo development, heartbeat rate and mitochondrial respiration in fathead minnow (Pimephales promelas). While these chemicals have been used on isolated mitochondria, they have not yet been used to verify respiration in intact embryos. Mitochondrial respiration in intact embryos was measured after optimizing the Seahorse XFe24 Extracellular Flux Analyzer. Heartbeat rate and mitochondrial respiration patterns of fathead minnow embryos at different developmental stages were also characterized. Exposures of embryos at developmental stage 20 occurred for 24 h with five concentrations of each phenolic compound ranging from 0.85 to 255 μM for phenol, 0.49 to 147 μM for 2,4-dichlorophenol and 0.3 to 90 μM for pentachlorophenol. Exposure to phenol at the concentrations tested had no effects on development, heartbeat or mitochondrial respiration. However, both 2,4-dichlorophenol and pentachlorophenol showed dose-dependent effects on development, heartbeat rate, and mitochondrial respiration, with the effects occurring at lower concentrations of pentachlorophenol, compared to 2,4-dichlorophenol, highlighting the higher toxicity of the more chlorinated phenols. Both 2,4-dichlorophenol and pentachlorophenol decreased basal mitochondrial respiration of embryos and ATP production. These results indicate that higher chlorinated phenolic chemicals cause developmental toxicity in fathead minnow embryos by decreasing mitochondrial respiration and heartbeat rate.
Collapse
Affiliation(s)
- Erchao Li
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Derek G Bolser
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Erica K Brockmeier
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
50
|
Huang SH, Lin YW. Bioenergetic Health Assessment of a Single Caenorhabditis elegans from Postembryonic Development to Aging Stages via Monitoring Changes in the Oxygen Consumption Rate within a Microfluidic Device. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2453. [PMID: 30060586 PMCID: PMC6111518 DOI: 10.3390/s18082453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Monitoring dynamic changes in oxygen consumption rates (OCR) of a living organism in real time provide an indirect method of monitoring changes in mitochondrial function during development, aging, or malfunctioning processes. In this study, we developed a microfluidic device integrated with an optical detection system to measure the OCR of a single developing Caenorhabditis elegans (C. elegans) from postembryonic development to aging stages in real time via phase-based phosphorescence lifetime measurement. The device consists of two components: an acrylic microwell deposited with an oxygen-sensitive luminescent layer for oxygen (O₂) measurement and a microfluidic module with a pneumatically driven acrylic lid to controllably seal the microwell. We successfully measured the basal respiration (basal OCR, in pmol O₂/min/worm) of a single C. elegans inside a microwell from the stages of postembryonic development (larval stages) through adulthood to aged adult. Sequentially adding metabolic inhibitors to block bioenergetic pathways allowed us to measure the metabolic profiles of a single C. elegans at key growth and aging stages, determining the following fundamental parameters: basal OCR, adenosine triphosphate (ATP)-linked OCR, maximal OCR, reserve respiratory capacity, OCR due to proton leak, and non-mitochondrial OCR. The bioenergetic health index (BHI) was calculated from these fundamental parameters to assess the bioenergetic health of a single developing C. elegans from the postembryonic development to aging stages. The changes in BHI are correlated to C. elegans development stage, with the highest BHI = 27.5 for 4-day-old adults, which possess well-developed bioenergetic functionality. Our proposed platform demonstrates for the first time the feasibility of assessing the BHI of a single C. elegans from postembryonic development to aging stages inside a microfluidic device and provides the potential for a wide variety of biomedical applications that relate mitochondrial malfunction and diseases.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan.
| | - Yu-Wei Lin
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan.
| |
Collapse
|