1
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
2
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
3
|
Gayathri SL, Bhakat M, Mohanty TK. Early Detection of Sub-clinical Mastitis in Murrah Buffaloes through Udder Thermogram Analysis during the Natural Progression of Infection. Vet J 2024; 306:106176. [PMID: 38901760 DOI: 10.1016/j.tvjl.2024.106176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Mastitis is a global production disease that needs an intelligent solution to tackle effectively. Infrared Thermography (IRT) is a non-invasive technology that could be incorporated into routine day-to-day farm activities to monitor the health status of the animals. In this study, the udder health status was routinely monitored for 30 days among 41 Murrah buffaloes via IRT and the California Mastitis Test (CMT). Further, somatic cell count (SCC), microbial identification, and milk quality parameters were also estimated for representative samples. The thermal imaging data obtained was tabulated and back propagated from the 0th day to the -10th day and front propagated from the 0th day to +10th day for all the udder quarters. Results revealed that on the 0th day, the mean of udder skin surface temperature (USST) and teat skin surface temperature (TSST) showed a difference (p < 0.05) in the sub-clinical mastitis (SCM) and clinical mastitis (CM) affected quarters to the healthy quarters, and their degree of difference was the highest. The indication of infection was signaled during the -9th to -5th day to the 0th day in SCM and CM cases. There was a steep increment in the temperature from -2nd and -1st day to the 0th day of infection. Sometimes, some quarters show an increment in temperature due to mastitis during morning hours but recover by evening milking due to the animal's innate immune system. Thus, the initiation period in which the udder gets assaulted is crucial in the early assessment of SCM by monitoring temperature change using IRT.
Collapse
Affiliation(s)
- S L Gayathri
- Livestock Production Management Division, ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - M Bhakat
- Livestock Production Management Division, ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - T K Mohanty
- Livestock Production Management Division, ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
4
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
5
|
Artarini A, Hadianti T, Giri-Rachman EA, Tan MI, Safitri IA, Hidayat NA, Retnoningrum DS, Natalia D. Development of Adenovirus-Based Covid-19 Vaccine Candidate in Indonesia. Mol Biotechnol 2024; 66:222-232. [PMID: 37076664 PMCID: PMC10115376 DOI: 10.1007/s12033-023-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Covid-19 pandemic has struck worldwide by end of 2019 and the use of various vaccine platforms was one of the main strategies to end this. To meet the needs for vaccine technology equality among many countries, we developed adenovirus-based Covid-19 vaccine candidate in Indonesia. SARS-CoV-2 Spike gene (S) was constructed into pAdEasy vector. The recombinant serotype 5 Adenovirus (AdV_S) genome was transfected into AD293 cells to produce recombinant adenovirus. Characterization using PCR confirmed the presence of spike gene. Transgene expression analysis showed the expression of S protein in AdV_S infected AD293 and A549 cells. Optimization of viral production showed the highest titer was obtained at MOI of 0.1 and 1 at 4 days. The in vivo study was performed by injecting Balb/c mice with 3.5 × 107 ifu of purified adenovirus. The result showed that S1-specific IgG was increased up to 56 days after single-dose administration of AdV_S. Interestingly, significant increase of S1 glycoprotein-specific IFN-γ ELISpot was observed in AdV_S treated Balb/c mice. In conclusion, the AdV_S vaccine candidate was successfully produced at laboratory scale, immunogenic, and did not cause severe inflammation in Balb/c mice. This study serves as initial step towards manufacturing of adenovirus-based vaccine in Indonesia.
Collapse
Affiliation(s)
- Anita Artarini
- School of Pharmacy, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia.
| | - Tia Hadianti
- School of Pharmacy, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | | | - Marselina Irasonia Tan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Intan A Safitri
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Nurhamidah A Hidayat
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Debbie S Retnoningrum
- School of Pharmacy, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Dessy Natalia
- Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
6
|
Safitri IA, Sugijo Y, Puspasari F, Masduki FF, Ihsanawati, Giri-Rachman EA, Artarini AA, Tan MI, Natalia D. Immunogenicity studies of recombinant RBD SARS-CoV-2 as a COVID-19 vaccine candidate produced in Escherichia coli. Vaccine X 2024; 16:100443. [PMID: 38304876 PMCID: PMC10832452 DOI: 10.1016/j.jvacx.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 -related global COVID-19 pandemic has been impacting millions of people since its outbreak in 2020. COVID-19 vaccination has proven highly efficient in reducing illness severity and preventing infection-related fatalities. The World Health Organization has granted emergency use approval to multiple, including protein subunit technology-based, COVID-19 vaccines. Foreseeably, additional COVID-19 subunit vaccine development would be essential to meet the accessible and growing demand for effective vaccines, especially for Low-Middle-Income Countries (LMIC). The SARS-CoV-2 spike protein receptor binding domain (RBD), as the primary target for neutralizing antibodies, holds significant potential for future COVID-19 subunit vaccine development. In this study, we developed a recombinant Escherichia coli-expressed RBD (rRBD) as a vaccine candidate and evaluated its immunogenicity and preliminary toxicity in BALB/c mice. The rRBD induced humoral immune response from day 7 post-vaccination and, following the booster doses, the IgG levels increased dramatically in mice. Interestingly, our vaccine candidate also significantly induced cellular immune response, indicated by the incrased IFN-ɣ-producing cell numbers. We observed no adverse effect or local reactogenicity either in control or treated mice. Taken together, our discoveries could potentially support efficient and cost-effective vaccine antigen production, from which LMICs could particularly benefit.
Collapse
Affiliation(s)
- Intan Aghniya Safitri
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
| | - Yovin Sugijo
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Fernita Puspasari
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Fifi Fitriyah Masduki
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Ihsanawati
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Aluicia Anita Artarini
- Pharmaceutical Biotechnology Laboratory, Pharmaceutics Department, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Marselina Irasonia Tan
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Dessy Natalia
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
7
|
Kozłowski HM, Sobocińska J, Jędrzejewski T, Maciejewski B, Dzialuk A, Wrotek S. Fever-Range Hyperthermia Promotes Macrophage Polarization towards Regulatory Phenotype M2b. Int J Mol Sci 2023; 24:17574. [PMID: 38139402 PMCID: PMC10744093 DOI: 10.3390/ijms242417574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Fever-range hyperthermia (FRH) is utilized in chronic disease treatment and serves as a model for fever's thermal component investigation. Macrophages, highly susceptible to heat, play a pivotal role in various functions determined by their polarization state. However, it is not well recognized whether this process can be modulated by FRH. To address this, we used two different macrophage cell lines that were treated with FRH. Next, to define macrophage phenotype, we examined their functional surface markers CD80 and CD163, intracellular markers such as inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), and the expression of interleukin-10 (IL-10) and tumor necrosis factor α (TNF-α). Additionally, in FRH-treated cells, we analyzed an expression of Toll-like receptor 4 (TLR-4) and its role in macrophage polarization. We also checked whether FRH can switch the polarization of macrophages in pro-inflammatory condition triggered by lipopolysaccharide (LPS). FRH induced M2-like polarization, evident in increased CD163, IL-10, and Arg-1 expression. Notably, elevated COX-2, TNF-α, and TLR-4 indicated potential pro-inflammatory properties, suggesting polarization towards the M2b phenotype. Additionally, FRH shifted lipopolysaccharide (LPS)-induced M1 polarization to an M2-like phenotype, reducing antimicrobial molecules (ROS and NO). In summary, FRH emerged as a modulator favoring M2-like macrophage polarization, even under pro-inflammatory conditions, showcasing its potential therapeutic relevance.
Collapse
Affiliation(s)
- Henryk Mikołaj Kozłowski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, 10 Powstańców Wielkopolskich Ave., 85-090 Bydgoszcz, Poland;
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Artur Dzialuk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, 10 Powstańców Wielkopolskich Ave., 85-090 Bydgoszcz, Poland;
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| |
Collapse
|
8
|
Eskandar S, Bezemer RE, Eggen BJL, Prins JR. Cold Mechanical Isolation of Placental Macrophages as a Method to Limit Procedure-Induced Activation of Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1868-1876. [PMID: 37909834 PMCID: PMC10694029 DOI: 10.4049/jimmunol.2300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Isolation of placental macrophages using enzymatic digestion at warm temperatures is widely used for in vitro studies. However, studies in brain and kidney tissue show that this method activates immune cells, immediate early genes, and heat shock proteins. Isolating placental macrophages while preserving their tissue-specific characteristics as much as possible is pivotal to reliably studying their functions. We therefore developed a mechanical dissociation protocol at low temperatures and compared this to enzymatic digestion at high temperatures. Decidual and villous macrophages were isolated from term human placentas. A cell suspension was generated by mechanical dissociation using a gentleMACS. For warm enzymatic digestion, Accutase was added, followed by incubation at 37°C. Macrophages were isolated after Ficoll density gradient centrifugation. Cell types were analyzed with flow cytometry (CD45, CD14, CD80, CD86, CD163, and CD206) and their activation status with real-time PCR (FOS, JUN, HSP27, HSP70, IL1β, TNFα, IL10, and TGFβ) after cell sorting. A higher proportion of leukocytes and macrophages was obtained from the villi with cold mechanical dissociation (p < 0.05). Compared to warm enzymatic digestion, cold mechanical dissociation resulted in a higher expression of CD163 in villous and decidual macrophages (p < 0.05). Warm enzymatic digestion showed higher levels of TNFα, IL1β, and IL10 in decidual and villous macrophages, and HSP70 in villous macrophages. Our data show that mechanical dissociation of placental tissue at low temperatures is associated with less activation of placental macrophages. This suggests that cold mechanical dissociation is a preferred method, resulting in macrophages that more closely resemble their in-tissue state.
Collapse
Affiliation(s)
- Sharon Eskandar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Romy E. Bezemer
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelmer R. Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Bonfanti NP, Mohr NM, Willms DC, Bedimo RJ, Gundert E, Goff KL, Kulstad EB, Drewry AM. Core Warming of Coronavirus Disease 2019 Patients Undergoing Mechanical Ventilation: A Pilot Study. Ther Hypothermia Temp Manag 2023; 13:225-229. [PMID: 37527424 DOI: 10.1089/ther.2023.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Fever is a recognized protective factor in patients with sepsis, and growing data suggest beneficial effects on outcomes in sepsis with elevated temperature, with a recent pilot randomized controlled trial (RCT) showing lower mortality by warming afebrile sepsis patients in the intensive care unit (ICU). The objective of this prospective single-site RCT was to determine if core warming improves respiratory physiology of mechanically ventilated patients with coronavirus disease 2019 (COVID-19), allowing earlier weaning from ventilation, and greater overall survival. A total of 19 patients with mean age of 60.5 (±12.5) years, 37% female, mean weight 95.1 (±18.6) kg, and mean body mass index 34.5 (±5.9) kg/m2 with COVID-19 requiring mechanical ventilation were enrolled from September 2020 to February 2022. Patients were randomized 1:1 to standard of care or to receive core warming for 72 hours through an esophageal heat exchanger commonly utilized in critical care and surgical patients. The maximum target temperature was 39.8°C. A total of 10 patients received usual care and 9 patients received esophageal core warming. After 72 hours of warming, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratios were 197 (±32) and 134 (±13.4), cycle thresholds were 30.8 (±6.4) and 31.4 (±3.2), ICU mortalities were 40% and 44%, 30-day mortalities were 30% and 22%, and mean 30-day ventilator-free days were 11.9 (±12.6) and 6.8 (±10.2) for standard of care and warmed patients, respectively (p = NS). This pilot study suggests that core warming of patients with COVID-19 undergoing mechanical ventilation is feasible and appears safe. Optimizing time to achieve febrile-range temperature may require a multimodal temperature management strategy to further evaluate effects on outcome. ClinicalTrials.gov Identifier: NCT04494867.
Collapse
Affiliation(s)
- Nathaniel P Bonfanti
- Department of Emergency Medicine, University of Texas at Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas M Mohr
- Department of Emergency Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - David C Willms
- Department of Critical Care, Sharp Memorial Hospital, San Diego, California, USA
| | - Roger J Bedimo
- Department of Internal Medicine, Division of Infectious Disease, VA North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emily Gundert
- Department of Emergency Medicine, University of Texas at Southwestern Medical Center, Dallas, Texas, USA
| | - Kristina L Goff
- Department of Anesthesiology, University of Texas at Southwestern Medical Center, Dallas, Texas, USA
| | - Erik B Kulstad
- Department of Emergency Medicine, University of Texas at Southwestern Medical Center, Dallas, Texas, USA
| | - Anne M Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Ammons DT, MacDonald CR, Chow L, Repasky EA, Dow S. Chronic adrenergic stress and generation of myeloid-derived suppressor cells: Implications for cancer immunotherapy in dogs. Vet Comp Oncol 2023; 21:159-165. [PMID: 36876492 DOI: 10.1111/vco.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for β-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Steven Dow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Haddad F, Soliman AM, Wong ME, Albers EH, Semple SL, Torrealba D, Heimroth RD, Nashiry A, Tierney KB, Barreda DR. Fever integrates antimicrobial defences, inflammation control, and tissue repair in a cold-blooded vertebrate. eLife 2023; 12:83644. [PMID: 36917159 PMCID: PMC10014077 DOI: 10.7554/elife.83644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple lines of evidence support the value of moderate fever to host survival, but the mechanisms involved remain unclear. This is difficult to establish in warm-blooded animal models, given the strict programmes controlling core body temperature and the physiological stress that results from their disruption. Thus, we took advantage of a cold-blooded teleost fish that offered natural kinetics for the induction and regulation of fever and a broad range of tolerated temperatures. A custom swim chamber, coupled to high-fidelity quantitative positional tracking, showed remarkable consistency in fish behaviours and defined the febrile window. Animals exerting fever engaged pyrogenic cytokine gene programmes in the central nervous system, increased efficiency of leukocyte recruitment into the immune challenge site, and markedly improved pathogen clearance in vivo, even when an infecting bacterium grew better at higher temperatures. Contrary to earlier speculations for global upregulation of immunity, we identified selectivity in the protective immune mechanisms activated through fever. Fever then inhibited inflammation and markedly improved wound repair. Artificial mechanical hyperthermia, often used as a model of fever, recapitulated some but not all benefits achieved through natural host-driven dynamic thermoregulation. Together, our results define fever as an integrative host response that regulates induction and resolution of acute inflammation, and demonstrate that this integrative strategy emerged prior to endothermy during evolution.
Collapse
|
12
|
Stan RC. Moderate Fever Serves as an Adjuvant to Therapy for Pre- and Post-Surgery Sepsis. Surg Infect (Larchmt) 2023; 24:4-5. [PMID: 36525513 DOI: 10.1089/sur.2022.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Razvan C Stan
- Department of Basic Medical Science, Chonnam National University, Republic of Korea.,Previous Address: Cantacuzino-Military-Medical Research and Development National Institute, Bucharest, Romania
| |
Collapse
|
13
|
Rajamanickam K, Leela V, Suganya G, Basha SH, Parthiban M, Visha P, Elango A. Thermal cum lipopolysaccharide-induced stress challenge downregulates functional response of bovine monocyte-derived macrophages. J Therm Biol 2022; 108:103301. [DOI: 10.1016/j.jtherbio.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
14
|
Los B, Preußner M, Eschke K, Vidal RM, Abdelgawad A, Olofsson D, Keiper S, Paulo-Pedro M, Grindel A, Meinke S, Trimpert J, Heyd F. Body temperature variation controls pre-mRNA processing and transcription of antiviral genes and SARS-CoV-2 replication. Nucleic Acids Res 2022; 50:6769-6785. [PMID: 35713540 PMCID: PMC9262603 DOI: 10.1093/nar/gkac513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immunity represents the first defense against invading viruses and is key to control viral infections, including SARS-CoV-2. Body temperature is an omnipresent variable but was neglected when addressing host defense mechanisms and susceptibility to SARS-CoV-2 infection. Here, we show that increasing temperature in a 1.5°C window, between 36.5 and 38°C, strongly increases the expression of genes in two branches of antiviral immunity, nitric oxide production and type I interferon response. We show that alternative splicing coupled to nonsense-mediated decay decreases STAT2 expression in colder conditions and suggest that increased STAT2 expression at elevated temperature induces the expression of diverse antiviral genes and SARS-CoV-2 restriction factors. This cascade is activated in a remarkably narrow temperature range below febrile temperature, which reflects individual, circadian and age-dependent variation. We suggest that decreased body temperature with aging contributes to reduced expression of antiviral genes in older individuals. Using cell culture and in vivo models, we show that higher body temperature correlates with reduced SARS-CoV-2 replication, which may affect the different vulnerability of children versus seniors toward severe SARS-CoV-2 infection. Altogether, our data connect body temperature and pre-mRNA processing to provide new mechanistic insight into the regulation of antiviral innate immunity.
Collapse
Affiliation(s)
- Bruna Los
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Marco Preußner
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Kathrin Eschke
- Omiqa Bioinformatics, Altensteinstraße 40, 14195 Berlin, Germany
| | | | - Azza Abdelgawad
- Omiqa Bioinformatics, Altensteinstraße 40, 14195 Berlin, Germany
| | - Didrik Olofsson
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Sandra Keiper
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Margarida Paulo-Pedro
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Alica Grindel
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Stefan Meinke
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Jakob Trimpert
- Omiqa Bioinformatics, Altensteinstraße 40, 14195 Berlin, Germany
| | - Florian Heyd
- To whom correspondence should be addressed. Tel: +49 30 83862938; Fax: +49 30 838 4 62938;
| |
Collapse
|
15
|
Ueda K, Shiraya T, Araki F, Hashimoto Y, Yamamoto M, Yamanari M, Ueta T, Minami T, Aoki N, Sugiyama S, Zhou HP, Totsuka K, Toyama T, Sugimoto K, Obata R, Kato S. Changes in entropy on polarized-sensitive optical coherence tomography images after therapeutic subthreshold micropulse laser for diabetic macular edema: A pilot study. PLoS One 2021; 16:e0257000. [PMID: 34516553 PMCID: PMC8437304 DOI: 10.1371/journal.pone.0257000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the dynamics of the healing process after therapeutic subthreshold micropulse laser (SMPL) for diabetic macular edema (DME) using polarization-sensitive optical coherence tomography (PS-OCT). Methods Patients with treatment-native or previously-treated DME were prospectively imaged using PS-OCT at baseline, 1, 2, 3, and 6 months. The following outcomes were evaluated: changes in the entropy value per unit area (pixel2) in the retinal pigment epithelium (RPE) on the B-scan image; changes in the entropy value in each stratified layer (retina, RPE, choroid) based on the ETDRS grid circle overlaid with en face entropy mapping, not only the whole ETDRS grid area but also a sector irradiated by the SMPL; and the relationship between edema reduction and entropy changes. Results A total of 11 eyes of 11 consecutive DME patients were enrolled. No visible signs of SMPL treatment were detected on PS-OCT images. The entropy value per unit area (pixel2) in the RPE tended to decrease at 3 and 6 months from baseline (35.8 ± 17.0 vs 26.1 ± 9.8, P = 0.14; vs 28.2 ± 18.3, P = 0.14). Based on the en face entropy mapping, the overall entropy value did not change in each layer in the whole ETDRS grid; however, decrease of entropy in the RPE was observed at 2, 3, and 6 months post-treatment within the SMPL-irradiated sectors (P < 0.01, each). There was a positive correlation between the change rate of retinal thickness and that of entropy in the RPE within the SMPL-irradiated sector at 6 months (r2 = 0.19, P = 0.039). Conclusion Entropy measured using PS-OCT may be a new parameter that facilitates objective monitoring of SMPL-induced functional changes in the RPE that could not previously be assessed directly. This may contribute to a more promising therapeutic evaluation of DME. Clinical trial This clinical study was registered in UMIN-CTR (ID: UMIN000042420).
Collapse
Affiliation(s)
- Koji Ueda
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Fumiyuki Araki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yohei Hashimoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motoshi Yamamoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Takashi Ueta
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Minami
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuyori Aoki
- Engineering Department, Tomey Corporation, Nagoya, Aichi, Japan
| | | | - Han Peng Zhou
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyohito Totsuka
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Toyama
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichiro Sugimoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Obata
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kato
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Mota-Rojas D, Wang D, Titto CG, Gómez-Prado J, Carvajal-de la Fuente V, Ghezzi M, Boscato-Funes L, Barrios-García H, Torres-Bernal F, Casas-Alvarado A, Martínez-Burnes J. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals (Basel) 2021; 11:2316. [PMID: 34438772 PMCID: PMC8388492 DOI: 10.3390/ani11082316] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Cristiane Gonçalves Titto
- Laboratório de Biometeorologia e Etologia, FZEA-USP, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil;
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Verónica Carvajal-de la Fuente
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina;
| | - Luciano Boscato-Funes
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Hugo Barrios-García
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| | - Fabiola Torres-Bernal
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| |
Collapse
|
17
|
Choron RL, Butts CA, Bargoud C, Krumrei NJ, Teichman AL, Schroeder ME, Bover Manderski MT, Cai J, Song C, Rodricks MB, Lissauer M, Gupta R. Fever in the ICU: A Predictor of Mortality in Mechanically Ventilated COVID-19 Patients. J Intensive Care Med 2021; 36:484-493. [PMID: 33317374 PMCID: PMC7738811 DOI: 10.1177/0885066620979622] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE While fever may be a presenting symptom of COVID-19, fever at hospital admission has not been identified as a predictor of mortality. However, hyperthermia during critical illness among ventilated COVID-19 patients in the ICU has not yet been studied. We sought to determine mortality predictors among ventilated COVID-19 ICU patients and we hypothesized that fever in the ICU is predictive of mortality. MATERIALS AND METHODS We conducted a retrospective cohort study of 103 ventilated COVID-19 patients admitted to the ICU between March 14 and May 27, 2020. Final follow-up was June 5, 2020. Patients discharged from the ICU or who died were included. Patients still admitted to the ICU at final follow-up were excluded. RESULTS 103 patients were included, 40 survived and 63(61.1%) died. Deceased patients were older {66 years[IQR18] vs 62.5[IQR10], (p = 0.0237)}, more often male {48(68%) vs 22(55%), (p = 0.0247)}, had lower initial oxygen saturation {86.0%[IQR18] vs 91.5%[IQR11.5], (p = 0.0060)}, and had lower pH nadir than survivors {7.10[IQR0.2] vs 7.30[IQR0.2] (p < 0.0001)}. Patients had higher peak temperatures during ICU stay as compared to hospital presentation {103.3°F[IQR1.7] vs 100.0°F[IQR3.5], (p < 0.0001)}. Deceased patients had higher peak ICU temperatures than survivors {103.6°F[IQR2.0] vs 102.9°F[IQR1.4], (p = 0.0008)}. Increasing peak temperatures were linearly associated with mortality. Febrile patients who underwent targeted temperature management to achieve normothermia did not have different outcomes than those not actively cooled. Multivariable analysis revealed 60% and 75% higher risk of mortality with peak temperature greater than 103°F and 104°F respectively; it also confirmed hyperthermia, age, male sex, and acidosis to be predictors of mortality. CONCLUSIONS This is one of the first studies to identify ICU hyperthermia as predictive of mortality in ventilated COVID-19 patients. Additional predictors included male sex, age, and acidosis. With COVID-19 cases increasing, identification of ICU mortality predictors is crucial to improve risk stratification, resource management, and patient outcomes.
Collapse
Affiliation(s)
- Rachel L. Choron
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christopher A. Butts
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christopher Bargoud
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Nicole J. Krumrei
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Amanda L. Teichman
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mary E. Schroeder
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Division of Acute Care Surgery, Froedtert Memorial Lutheran Hospital, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Jenny Cai
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Cherry Song
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael B. Rodricks
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Matthew Lissauer
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Rajan Gupta
- Division of Acute Care Surgery, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
18
|
Investigation of innate immune function in adult and geriatric horses. Vet Immunol Immunopathol 2021; 235:110207. [PMID: 33735821 DOI: 10.1016/j.vetimm.2021.110207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 11/23/2022]
Abstract
In order to better understand the influence of age on innate immune function in horses, blood was collected from twelve adult horses (aged 10-16 years; mean: 13 years) and ten geriatric horses (aged 18-26 years; mean: 21.7 years) for analysis of plasma myeloperoxidase, complete blood counts, and cytokine and receptor expression in response to in vitro stimulation with heat-inactivated Rhodococcus equi, heat-inactivated Escherichia coli, and PMA/ionomycin. Gene expression was measured using RT-PCR for IFNγ, IL-1β, IL-6, IL-8, IL-10, IL-12α, IL-13, IL-17α, TLR2, TLR4, and TNFα. Endocrine function and body weight were measured to assess any potential impacts of ACTH, insulin, or body weight on immune function; none of the horses had pituitary pars intermedia dysfunction. The geriatric horse group had lower concentrations of plasma myeloperoxidase (P = 0.0459) and lower absolute monocyte counts (P = 0.0477); however, the difference in monocyte counts was no longer significant after outliers were removed. Additionally, only two significant differences in cytokine/receptor expression in whole blood were observed. Compared with adult horses, the geriatric horses had increased TNFα expression after in vitro stimulation with heat-inactivated R. equi (P = 0.0224) and had decreased IL-17α expression after PMA/ionomycin stimulation when one outlier was excluded (P = 0.0334). These changes may represent a compensatory mechanism by which geriatric horses could ensure adequate immune responses despite potentially dysfunctional neutrophil activity and/or decreased monocyte counts. Aging may influence equine innate immune function, and additional research is warranted to confirm and further explore these findings.
Collapse
|
19
|
Bonfanti N, Gundert E, Drewry AM, Goff K, Bedimo R, Kulstad E. Core warming of coronavirus disease 2019 (COVID-19) patients undergoing mechanical ventilation-A protocol for a randomized controlled pilot study. PLoS One 2020; 15:e0243190. [PMID: 33259540 PMCID: PMC7707531 DOI: 10.1371/journal.pone.0243190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, is spreading rapidly across the globe, with little proven effective therapy. Fever is seen in most cases of COVID-19, at least at the initial stages of illness. Although fever is typically treated (with antipyretics or directly with ice or other mechanical means), increasing data suggest that fever is a protective adaptive response that facilitates recovery from infectious illness. OBJECTIVE To describe a randomized controlled pilot study of core warming patients with COVID-19 undergoing mechanical ventilation. METHODS This prospective single-site randomized controlled pilot study will enroll 20 patients undergoing mechanical ventilation for respiratory failure due to COVID-19. Patients will be randomized 1:1 to standard-of-care or to receive core warming via an esophageal heat exchanger commonly utilized in critical care and surgical patients. The primary outcome is patient viral load measured by lower respiratory tract sample. Secondary outcomes include severity of acute respiratory distress syndrome (as measured by PaO2/FiO2 ratio) 24, 48, and 72 hours after initiation of treatment, hospital and intensive care unit length of stay, duration of mechanical ventilation, and 30-day mortality. RESULTS Resulting data will provide effect size estimates to guide a definitive multi-center randomized clinical trial. ClinicalTrials.gov registration number: NCT04426344. CONCLUSIONS With growing data to support clinical benefits of elevated temperature in infectious illness, this study will provide data to guide further understanding of the role of active temperature management in COVID-19 treatment and provide effect size estimates to power larger studies.
Collapse
Affiliation(s)
- Nathaniel Bonfanti
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
- Department of Anesthesia/Critical Care, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
| | - Emily Gundert
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
- Department of Anesthesia/Critical Care, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
| | - Anne M. Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kristina Goff
- Department of Anesthesiology and Pain Management, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
| | - Roger Bedimo
- Infectious Diseases Section, VA North Texas Health Care System, Dallas, TX, United States of America
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
| | - Erik Kulstad
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
20
|
Sakkat A, Alquraini M, Aljazeeri J, Farooqi MAM, Alshamsi F, Alhazzani W. Temperature control in critically ill patients with fever: A meta-analysis of randomized controlled trials. J Crit Care 2020; 61:89-95. [PMID: 33157310 DOI: 10.1016/j.jcrc.2020.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Fever is frequently encountered in ICU. It is unclear if targeted temperature control is beneficial in critically ill patients with suspected or confirmed infection. We conducted a systemic review and meta-analysis to answer this question. METHODS We systematically reviewed major databases before January 2020 to identify randomized controlled trials (RCTs) that compared antipyretic with placebo for temperature control in non-neurocritical ill adult patients with suspected or confirmed infection. Outcomes of interest were 28-day mortality, temperature level, hospital mortality, length of stay, shock reversal, and patient comfort. RESULT 13 RCTs enrolling 1963 patients were included. No difference in 28-day mortality between antipyretic compared with placebo (risk ratio [RR] 1.03; 95% CI 0.79-1.35). Lower temperature levels were achieved in the antipyretic group (MD [mean difference] -0.41; 95% CI -0.66 to -0.16). Antipyretic use did not affect the risk of hospital mortality (RR 0.97; 95% CI 0.73-1.30), ICU length of stay (MD -0.07; 95% CI -0.70 to 0.56), or shock reversal (RR 1.11; 95% CI 0.76-1.62). CONCLUSION Antipyretic therapy effectively reduces temperature in non-neurocritical ill patients but does not reduce mortality or impact other outcomes.
Collapse
Affiliation(s)
- Abdullah Sakkat
- Department of Medicine, McMaster University, Hamilton, Canada.
| | - Mustafa Alquraini
- Department of Critical Medicine, Al Ahsa Hospital, Al Ahsa, Saudi Arabia
| | - Jafar Aljazeeri
- University of Pittsburgh Medical Center (UPMC) Pinnacle, PA, USA
| | | | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Waleed Alhazzani
- Department of Medicine, McMaster University, Hamilton, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| |
Collapse
|
21
|
Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proc Natl Acad Sci U S A 2020; 117:22357-22366. [PMID: 32839313 DOI: 10.1073/pnas.1922683117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fever is a conserved and prominent response to infection. Yet, the issue of how CD4 T cell responses are modulated if they occur at fever temperatures remains poorly addressed. We have examined the priming of naive CD4 T cells in vitro at fever temperatures, and we report notable fever-mediated modulation of their cytokine commitment. When naive CD4 T cells were primed by plate-bound anti-CD3 and anti-CD28 monoclonal antibodies at moderate fever temperature (39 °C), they enhanced commitment to IL4/5/13 (Th2) and away from IFNg (Th1). This was accompanied by up-regulation of the Th2-relevant transcription factor GATA3 and reduction in the Th1-relevant transcription factor Tbet. Fever sensing by CD4 T cells involved transient receptor potential vanilloid cation channels (TRPVs) since TRPV1/TRPV4 antagonism blocked the febrile Th2 switch, while TRPV1 agonists mediated a Th2 switch at 37 °C. The febrile Th2 switch was IL4 independent, but a γ-secretase inhibitor abrogated it, and it was not found in Notch1-null CD4 T cells, identifying the Notch pathway as a major mediator. However, when naive CD4 T cells were primed via antigen and dendritic cells (DCs) at fever temperatures, the Th2 switch was abrogated via increased production of IL12 from DCs at fever temperatures. Thus, immune cells directly sense fever temperatures with likely complex physiological consequences.
Collapse
|
22
|
Mercado-Montoya M, Bonfanti N, Gundert E, Drewry AM, Bedimo R, Kostov V, Kostov K, Shah S, Kulstad E. The Use of Core Warming as a Treatment for Coronavirus Disease 2019 (COVID-19): an Initial Mathematical Model. JOURNAL OF CARDIAC ARRHYTHMIAS 2020. [DOI: 10.24207/jca.v33i1.3382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Increasing data suggest that elevated body temperature may be helpful in resolving a variety of diseases, including sepsis, acute respiratory distress syndrome (ARDS), and viral illnesses. SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19), may be more temperature sensitive than other coronaviruses, particularly with respect to the binding affinity of its viral entry via the ACE2 receptor. A mechanical provision of elevated temperature focused in a body region of high viral activity in patients undergoing mechanical ventilation may offer a therapeutic option that avoids arrhythmias seen with some pharmaceutical treatments. We investigated the potential to actively provide core warming to the lungs of patients with a commercially available heat transfer device via mathematical modeling, and examine the influence of blood perfusion on temperature using this approach. Methods: Using the software Comsol Multiphysics, we modeled and simulated heat transfer in the body from an intraesophageal warming device, taking into account the airflow from patient ventilation. The simulation was focused on heat transfer and warming of the lungs and performed on a simplified geometry of an adult human body and airway from the pharynx to the lungs. Results: The simulations were run over a range of values for blood perfusion rate, which was a parameter expected to have high influence in overall heat transfer, since the heat capacity and density remain almost constant. The simulation results show a temperature distribution which agrees with the expected clinical experience, with the skin surface at a lower temperature than the rest of the body due to convective cooling in a typical hospital environment. The highest temperature in this case is the device warming water temperature, and that heat diffuses by conduction to the nearby tissues, including the air flowing in the airways. At the range of blood perfusion investigated, maximum lung temperature ranged from 37.6°C to 38.6°C. Conclusions: The provision of core warming via commercially available technology currently utilized in the intensive care unit, emergency department, and operating room can increase regional temperature of lung tissue and airway passages. This warming may offer an innovative approach to treating infectious diseases from viral illnesses such as COVID-19, while avoiding the arrhythmogenic complications of currently used pharmaceutical treatments.
Collapse
Affiliation(s)
- Marcela Mercado-Montoya
- Universidad de Antioquia – Engineering Faculty – Bioengineering Department – Medellín, Colombia
| | - Nathaniel Bonfanti
- UT Southwestern Medical Center – Departments of Emergency Medicine and Anesthesia/Critical Care – Dallas (TX), USA
| | - Emily Gundert
- UT Southwestern Medical Center – Departments of Emergency Medicine and Anesthesia/Critical Care – Dallas (TX), USA
| | - Anne Meredith Drewry
- Washington University – School of Medicine – Department of Anesthesiology – St. Louis (MO), USA
| | - Roger Bedimo
- UT Southwestern Medical CenterVA North Texas Health Care System – UT Southwestern Medical Center – Dallas (TX), USA
| | - Victor Kostov
- Walter Payton College Preparatory High School – Chicago (IL), USA
| | | | - Shailee Shah
- Illinois Institute of Technology – Department of Bioengineering – Chicago (IL), USA
| | - Erik Kulstad
- UT Southwestern Medical Center – Department of Emergency Medicine – Dallas (TX), USA
| |
Collapse
|
23
|
Salama AAK, Contreras-Jodar A, Love S, Mehaba N, Such X, Caja G. Milk yield, milk composition, and milk metabolomics of dairy goats intramammary-challenged with lipopolysaccharide under heat stress conditions. Sci Rep 2020; 10:5055. [PMID: 32193484 PMCID: PMC7081266 DOI: 10.1038/s41598-020-61900-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Heat stress and mastitis are major economic issues in dairy production. The objective was to test whether goat’s mammary gland immune response to E. coli lipopolysaccharide (LPS) could be conditioned by heat stress (HS). Changes in milk composition and milk metabolomics were evaluated after the administration of LPS in mammary glands of dairy goats under thermal-neutral (TN; n = 4; 15 to 20 °C; 40 to 45% humidity) or HS (n = 4; 35 °C day, 28 °C night; 40% humidity) conditions. Milk metabolomics were evaluated using 1H nuclear magnetic resonance spectroscopy, and multivariate analyses were carried out. Heat stress reduced feed intake and milk yield by 28 and 21%, respectively. Mammary treatment with LPS resulted in febrile response that was detectable in TN goats, but was masked by elevated body temperature due to heat load in HS goats. Additionally, LPS increased milk protein and decreased milk lactose, with more marked changes in HS goats. The recruitment of somatic cells in milk after LPS treatment was delayed by HS. Milk metabolomics revealed that citrate increased by HS, whereas choline, phosphocholine, N-acetylcarbohydrates, lactate, and ß-hydroxybutyrate could be considered as putative markers of inflammation with different pattern according to the ambient temperature (i.e. TN vs. HS). In conclusion, changes in milk somatic cells and milk metabolomics indicated that heat stress affected the mammary immune response to simulated infection, which could make dairy animals more vulnerable to mastitis.
Collapse
Affiliation(s)
- Ahmed A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Alexandra Contreras-Jodar
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain.,Animal Welfare Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Girona, Spain
| | - Samantha Love
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nabil Mehaba
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gerardo Caja
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
24
|
Gruber EJ, Leifer CA. Molecular regulation of TLR signaling in health and disease: mechano-regulation of macrophages and TLR signaling. Innate Immun 2020; 26:15-25. [PMID: 31955624 PMCID: PMC6974875 DOI: 10.1177/1753425919838322] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Immune cells encounter tissues with vastly different biochemical and physical characteristics. Much of the research emphasis has focused on the role of cytokines and chemokines in regulating immune cell function, but the role of the physical microenvironment has received considerably less attention. The tissue mechanics, or stiffness, of healthy tissues varies dramatically from soft adipose tissue and brain to stiff cartilage and bone. Tissue mechanics also change due to fibrosis and with diseases such as atherosclerosis or cancer. The process by which cells sense and respond to their physical microenvironment is called mechanotransduction. Here we review mechanotransduction in immunologically important diseases and how physical characteristics of tissues regulate immune cell function, with a specific emphasis on mechanoregulation of macrophages and TLR signaling.
Collapse
Affiliation(s)
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell
University, Ithaca, NY, USA
| |
Collapse
|
25
|
Abstract
INTRODUCTION Absence of fever is associated with higher mortality in septic patients, but the reason for this is unknown. Immune dysfunction may be a potential link between failure to mount a fever and poor outcomes. The purpose of this study was to evaluate monocyte function and clinical surrogates of immunity (i.e., mortality and acquisition of secondary infections) in febrile and afebrile septic patients. METHODS Single-center, prospective cohort study of 92 critically ill septic patients. Patients were categorized into febrile (≥38.0°C) and afebrile (<38.0°C) groups based on temperature measurements within 24 hours of sepsis diagnosis. HLA-DR expression and LPS-induced TNF-α production were quantified on days 1-2, days 3-4, and days 6-8 after sepsis diagnosis. A repeated measures mixed models analysis was used to compare these markers between the two groups. RESULTS Forty-four patients (47.8%) developed a fever within 24 h of sepsis diagnosis. There were no significant differences in HLA-DR expression or LPS-induced TNF-α production between febrile and afebrile patients at any individual time point. However, HLA-DR expression significantly increased between days 1-2 and days 6-8 (median difference 8118 [IQR 1,662, 9,878] antibodies/cell, P = 0.002) in febrile patients, but not in afebrile patients (median difference 403 [-3,382, 3,507] antibodies/cell, P = 0.25). Afebrile patients demonstrated higher 28-day mortality (37.5% vs 18.2%) and increased acquisition of secondary infections (35.4% vs. 15.9%). CONCLUSIONS Absence of fever is associated with suppressed HLA-DR expression over time, a finding suggestive of monocyte dysfunction in sepsis, as well as worse clinical outcomes.
Collapse
|
26
|
Martine P, Chevriaux A, Derangère V, Apetoh L, Garrido C, Ghiringhelli F, Rébé C. HSP70 is a negative regulator of NLRP3 inflammasome activation. Cell Death Dis 2019; 10:256. [PMID: 30874540 PMCID: PMC6420651 DOI: 10.1038/s41419-019-1491-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/03/2022]
Abstract
The NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome is a multi-protein complex, aimed at producing IL-1β in response to danger signals which must be tightly regulated. Here we investigated the importance of the stress sensor, Heat Shock Protein 70 (HSP70) on NLRP3 inflammasome activation. HSP70 deficiency leads to the worsening of NLRP3-dependent peritonitis in mice. HSP70 deficiency also enhances caspase-1 activation and IL-1β production in murine Bone Marrow-Derived Macrophages (BMDMs) under NLRP3 activator treatment in vitro. This observation is associated with an increased number and size of Apoptosis associated Speck-like protein containing a CARD domain (ASC)/NLRP3 specks. Conversely, the overexpression of HSP70 in BMDMs decreases caspase-1 activation and IL-1β production under NLRP3 activator treatment. HSP70 interacts with NLRP3 and this interaction is lost upon NLRP3 inflammasome activation. Heat shock inhibits NLRP3 inflammasome activation in vitro and inhibits peritonitis in mice. Therefore this study provides evidence on the inhibitory role of HSP70 on NLRP3 inflammasome and open the possibility of treating inflammatory diseases via HSP70 induction and/or by hyperthermia.
Collapse
Affiliation(s)
- Pierre Martine
- INSERM UMR1231, F-21000, Dijon, France.,Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Angélique Chevriaux
- INSERM UMR1231, F-21000, Dijon, France.,Centre Georges François Leclerc, F-21000, Dijon, France
| | - Valentin Derangère
- INSERM UMR1231, F-21000, Dijon, France.,Université Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre Georges François Leclerc, F-21000, Dijon, France
| | - Lionel Apetoh
- INSERM UMR1231, F-21000, Dijon, France.,Université Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre Georges François Leclerc, F-21000, Dijon, France
| | - Carmen Garrido
- INSERM UMR1231, F-21000, Dijon, France.,Université Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre Georges François Leclerc, F-21000, Dijon, France
| | - François Ghiringhelli
- INSERM UMR1231, F-21000, Dijon, France.,Université Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre Georges François Leclerc, F-21000, Dijon, France
| | - Cédric Rébé
- INSERM UMR1231, F-21000, Dijon, France. .,Centre Georges François Leclerc, F-21000, Dijon, France.
| |
Collapse
|
27
|
Peters MJ, Woolfall K, Khan I, Deja E, Mouncey PR, Wulff J, Mason A, Agbeko RS, Draper ES, Fenn B, Gould DW, Koelewyn A, Klein N, Mackerness C, Martin S, O'Neill L, Ray S, Ramnarayan P, Tibby S, Thorburn K, Tume L, Watkins J, Wellman P, Harrison DA, Rowan KM. Permissive versus restrictive temperature thresholds in critically ill children with fever and infection: a multicentre randomized clinical pilot trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:69. [PMID: 30845977 PMCID: PMC6407208 DOI: 10.1186/s13054-019-2354-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
Background Fever improves pathogen control at a significant metabolic cost. No randomized clinical trials (RCT) have compared fever treatment thresholds in critically ill children. We performed a pilot RCT to determine whether a definitive trial of a permissive approach to fever in comparison to current restrictive practice is feasible in critically ill children with suspected infection. Methods An open, parallel-group pilot RCT with embedded mixed methods perspectives study in four UK paediatric intensive care units (PICUs) and associated retrieval services. Participants were emergency PICU admissions aged > 28 days to < 16 years receiving respiratory support and supplemental oxygen. Subjects were randomly assigned to permissive (antipyretic interventions only at ≥ 39.5 °C) or restrictive groups (antipyretic interventions at ≥ 37.5 °C) whilst on respiratory support. Parents were invited to complete a questionnaire or take part in an interview. Focus groups were conducted with staff at each unit. Outcomes were measures of feasibility: recruitment rate, protocol adherence and acceptability, between group separation of temperature and safety. Results One hundred thirty-eight children met eligibility criteria of whom 100 (72%) were randomized (11.1 patients per month per site) without prior consent (RWPC). Consent to continue in the trial was obtained in 87 cases (87%). The mean maximum temperature (95% confidence interval) over the first 48 h was 38.4 °C (38.2–38.6) in the restrictive group and 38.8 °C (38.6–39.1) in the permissive group, a mean difference of 0.5 °C (0.2–0.8). Protocol deviations were observed in 6.8% (99/1438) of 6-h time periods and largely related to patient comfort in the recovery phase. Length of stay, duration of organ support and mortality were similar between groups. No pre-specified serious adverse events occurred. Staff (n = 48) and parents (n = 60) were supportive of the trial, including RWPC. Suggestions were made to only include invasively ventilated children for the duration of intubation. Conclusion Uncertainty around the optimal fever threshold for antipyretic intervention is relevant to many emergency PICU admissions. A more permissive approach was associated with a modest increase in mean maximum temperature. A definitive trial should focus on the most seriously ill cases in whom antipyretics are rarely used for their analgesic effects alone. Trial registration ISRCTN16022198. Registered on 14 August 2017. Electronic supplementary material The online version of this article (10.1186/s13054-019-2354-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark J Peters
- Respiratory, Critical Care and Anaesthesia Unit, Paediatric Intensive Care, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK. .,Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Kerry Woolfall
- Department of Psychological Sciences, North West Hub for Trials Methodology, University of Liverpool, Liverpool, UK
| | - Imran Khan
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Elisabeth Deja
- Department of Psychological Sciences, North West Hub for Trials Methodology, University of Liverpool, Liverpool, UK
| | - Paul R Mouncey
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Jerome Wulff
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Alexina Mason
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Rachel S Agbeko
- NHS Foundation Trust, Newcastle, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | | | - Blaise Fenn
- Patient and Parent representative, London, UK
| | - Doug W Gould
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Abby Koelewyn
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Nigel Klein
- Infection, Inflammation and Rheumatology, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Sian Martin
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Lauran O'Neill
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Samiran Ray
- Respiratory, Critical Care and Anaesthesia Unit, Paediatric Intensive Care, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK.,Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Padmanabhan Ramnarayan
- Respiratory, Critical Care and Anaesthesia Unit, Paediatric Intensive Care, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK.,Children's Acute Transport Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Shane Tibby
- Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Lyvonne Tume
- Faculty of Health and Applied Sciences, University of the West of England, Glenside Campus, Bristol, UK
| | - Jason Watkins
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Paul Wellman
- Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David A Harrison
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | - Kathryn M Rowan
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, UK
| | | |
Collapse
|
28
|
Temperature regulates NF-κB dynamics and function through timing of A20 transcription. Proc Natl Acad Sci U S A 2018; 115:E5243-E5249. [PMID: 29760065 PMCID: PMC5984538 DOI: 10.1073/pnas.1803609115] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NF-κB signaling plays a pivotal role in control of the inflammatory response. We investigated how the dynamics and function of NF-κB were affected by temperature within the mammalian physiological range (34 °C to 40 °C). An increase in temperature led to an increase in NF-κB nuclear/cytoplasmic oscillation frequency following Tumor Necrosis Factor alpha (TNFα) stimulation. Mathematical modeling suggested that this temperature sensitivity might be due to an A20-dependent mechanism, and A20 silencing removed the sensitivity to increased temperature. The timing of the early response of a key set of NF-κB target genes showed strong temperature dependence. The cytokine-induced expression of many (but not all) later genes was insensitive to temperature change (suggesting that they might be functionally temperature-compensated). Moreover, a set of temperature- and TNFα-regulated genes were implicated in NF-κB cross-talk with key cell-fate-controlling pathways. In conclusion, NF-κB dynamics and target gene expression are modulated by temperature and can accurately transmit multidimensional information to control inflammation.
Collapse
|
29
|
Hines MT. Clinical Approach to Commonly Encountered Problems. EQUINE INTERNAL MEDICINE 2018. [PMCID: PMC7158300 DOI: 10.1016/b978-0-323-44329-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Gross JJ, Grossen-Rösti L, Héritier R, Tröscher A, Bruckmaier RM. Inflammatory and metabolic responses to an intramammary lipopolysaccharide challenge in early lactating cows supplemented with conjugated linoleic acid. J Anim Physiol Anim Nutr (Berl) 2017; 102:e838-e848. [DOI: 10.1111/jpn.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Affiliation(s)
- J. J. Gross
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - L. Grossen-Rösti
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - R. Héritier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | | | - R. M. Bruckmaier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
31
|
Jiang JF, Lei F, Yuan ZY, Wang YG, Wang XP, Yan XJ, Yu X, Xing DM, DU LJ. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes. Chin J Nat Med 2017; 15:178-191. [PMID: 28411686 DOI: 10.1016/s1875-5364(17)30034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/19/2022]
Abstract
Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.
Collapse
Affiliation(s)
- Jing-Fei Jiang
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhi-Yi Yuan
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Gang Wang
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Xin-Pei Wang
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Jin Yan
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Yu
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Li-Jun DU
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Drewry AM, Ablordeppey EA, Murray ET, Stoll CRT, Izadi SR, Dalton CM, Hardi AC, Fowler SA, Fuller BM, Colditz GA. Antipyretic Therapy in Critically Ill Septic Patients: A Systematic Review and Meta-Analysis. Crit Care Med 2017; 45:806-813. [PMID: 28221185 PMCID: PMC5389594 DOI: 10.1097/ccm.0000000000002285] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This meta-analysis aimed to examine the impact of antipyretic therapy on mortality in critically ill septic adults. DATA SOURCES Literature searches were implemented in Ovid Medline, Embase, Scopus, Cumulative Index of Nursing and Allied Health Literature, Cochrane Central Register of Controlled Trials, NHS Economic Evaluation Database, and ClinicalTrials.gov through February 2016. STUDY SELECTION Inclusion criteria were observational or randomized studies of septic patients, evaluation of antipyretic treatment, mortality reported, and English-language version available. Studies were excluded if they enrolled pediatric patients, patients with neurologic injury, or healthy volunteers. Criteria were applied by two independent reviewers. DATA EXTRACTION Two reviewers independently extracted data and evaluated methodologic quality. Outcomes included mortality, frequency of shock reversal, acquisition of nosocomial infections, and changes in body temperature, heart rate, and minute ventilation. Randomized and observational studies were analyzed separately. DATA SYNTHESIS Eight randomized studies (1,507 patients) and eight observational studies (17,432 patients) were analyzed. Antipyretic therapy did not reduce 28-day/hospital mortality in the randomized studies (relative risk, 0.93; 95% CI, 0.77-1.13; I = 0.0%) or observational studies (odds ratio, 0.90; 95% CI, 0.54-1.51; I = 76.1%). Shock reversal (relative risk, 1.13; 95% CI, 0.68-1.90; I = 51.6%) and acquisition of nosocomial infections (relative risk, 1.13; 95% CI, 0.61-2.09; I = 61.0%) were also unchanged. Antipyretic therapy decreased body temperature (mean difference, -0.38°C; 95% CI, -0.63 to -0.13; I = 84.0%), but not heart rate or minute ventilation. CONCLUSIONS Antipyretic treatment does not significantly improve 28-day/hospital mortality in adult patients with sepsis.
Collapse
Affiliation(s)
- Anne M Drewry
- 1Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO. 2Departments of Emergency Medicine and Anesthesiology, Washington University School of Medicine, St. Louis, MO. 3University of Missouri-Columbia School of Medicine, Columbia, MO. 4Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO. 5Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Uzunoglu E, Yentur S, Kayar AH, Turan M, Donmez A, Direskeneli GS, Erdogan N. Effect of mild heat stress on heat shock protein 70 in a balneotherapy model. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Evaluation of the innate immune response of Angus heifers with genetic marker variation for intramuscular fat deposition following a lipopolysaccharide challenge. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Capitano ML, Hangoc G, Cooper S, Broxmeyer HE. Mild Heat Treatment Primes Human CD34(+) Cord Blood Cells for Migration Toward SDF-1α and Enhances Engraftment in an NSG Mouse Model. Stem Cells 2016; 33:1975-84. [PMID: 25753525 DOI: 10.1002/stem.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/23/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
Simple efforts are needed to enhance cord blood (CB) transplantation. We hypothesized that short-term exposure of CD34(+) CB cells to 39.5°C would enhance their response to stromal-derived factor-1 (SDF-1), by increasing lipid raft aggregation and CXCR4 expression, thus leading to enhanced engraftment. Mild hyperthermia (39.5°C) significantly increased the percent of CD34(+) CB that migrated toward SDF-1. This was associated with increased expression of CXCR4 on the cells. Mechanistically, mild heating increased the percent of CD34(+) cells with aggregated lipid rafts and enhanced colocalization of CXCR4 within lipid raft domains. Using methyl-β-cyclodextrin (MβCD), an agent that blocks lipid raft aggregation, it was determined that this enhancement in chemotaxis was dependent upon lipid raft aggregation. Colocalization of Rac1, a GTPase crucial for cell migration and adhesion, with CXCR4 to the lipid raft was essential for the effects of heat on chemotaxis, as determined with an inhibitor of Rac1 activation, NSC23766. Application-wise, mild heat treatment significantly increased the percent chimerism as well as homing and engraftment of CD34(+) CB cells in sublethally irradiated non-obese diabetic severe combined immunodeficiency IL-2 receptor gamma chain d (NSG) mice. Mild heating may be a simple and inexpensive means to enhance engraftment following CB transplantation in patients.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giao Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Van Poucke S, Boer W. Acetaminophen in critically ill patients, a therapy in search for big data analytics. J Thorac Dis 2016; 8:E109-10. [PMID: 26904235 DOI: 10.3978/j.issn.2072-1439.2015.12.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Sven Van Poucke
- Department of Anesthesiology, Critical Care, Emergency Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
| | - Willem Boer
- Department of Anesthesiology, Critical Care, Emergency Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
| |
Collapse
|
37
|
Marino LV, Pathan N, Meyer RW, Wright VJ, Habibi P. An in vitro model to consider the effect of 2 mM glutamine and KNK437 on endotoxin-stimulated release of heat shock protein 70 and inflammatory mediators. Nutrition 2015; 32:375-83. [PMID: 26706024 DOI: 10.1016/j.nut.2015.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/13/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Glutamine has been shown to promote the release of heat shock protein 70 (HSP70) both within experimental in vitro models of sepsis and in adults with septic shock. This study aimed to investigate the effects of 2 mM glutamine and an inhibitor of HSP70 (KNK437) on the release of HSP70 and inflammatory mediators in healthy adult volunteers. METHODS An in vitro whole blood endotoxin stimulation assay was used. RESULTS The addition of 2 mM glutamine significantly increased HSP70 levels over time (P < 0.05). HSP70 release had a positive correlation at 4 h with IL-1 β (r = 0.51, P = 0.03) and an inverse correlation with TNF-α (r = -0.56, P = 0.02) and IL-8 levels (r = -0.52, P = 0.03), and there were no significant correlations between HSP70 and IL6 or IL-10 or glutamine. Glutamine supplementation significantly (P < 0.05) attenuated the release of IL-10 at 4 h and IL-8 at 24 h, compared with conditions without glutamine. In endotoxin-stimulated blood there were no significant differences in the release of IL-6, TNF-α, and IL-1 β with glutamine supplementation at 4 and 24 h. However, glutamine supplementation (2 mM) appeared to attenuate the release of inflammatory mediators (IL-1 β, IL-6, TNF-α), although this effect was not statistically significant. The addition of KNK437, a HSP70 inhibitor, significantly diminished HSP70 release, which resulted in lower levels of inflammatory mediators (P < 0.05). CONCLUSION Glutamine supplementation promotes HSP70 release in an experimental model of sepsis. After the addition of KNK437, the effects of glutamine on HSP70 and inflammatory mediator release appear to be lost, suggesting that HSP70 in part orchestrates the inflammatory mediator response to sepsis. The clinical implications require further investigation.
Collapse
Affiliation(s)
- Luise V Marino
- Department of Paediatrics, Imperial College London, London, United Kingdom.
| | - Nazima Pathan
- Department of Paediatrics, School of Clinical Medicine, Cambridge University, Cambridge, United Kingdom
| | - Rosan W Meyer
- Department of Gastroenterology, Great Ormond Street Hospital for Sick Children, London, United Kingdom
| | - Victoria J Wright
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Parviz Habibi
- Department of Paediatrics, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Roth J, Blatteis CM. Mechanisms of fever production and lysis: lessons from experimental LPS fever. Compr Physiol 2015; 4:1563-604. [PMID: 25428854 DOI: 10.1002/cphy.c130033] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.
Collapse
Affiliation(s)
- Joachim Roth
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany; Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | | |
Collapse
|
39
|
Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15:335-49. [PMID: 25976513 PMCID: PMC4786079 DOI: 10.1038/nri3843] [Citation(s) in RCA: 654] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.
Collapse
Affiliation(s)
- Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| |
Collapse
|
40
|
Blauenfeldt T, Wagner D, Aabye M, Heyckendorf J, Lange B, Lange C, Ernst M, Ravn P, Duarte R, Morais C, Hoffmann M, Schoch OD, Dominguez J, Latorre I, Ruhwald M. Thermostability of IFN-γ and IP-10 release assays for latent infection with Mycobacterium tuberculosis: A TBnet study. Tuberculosis (Edinb) 2015; 98:7-12. [PMID: 27156612 DOI: 10.1016/j.tube.2015.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Interferon-γ (IFN-γ) inducible protein 10kD (IP-10) and IFN-γ release assays (IGRAs) are immunodiagnostic tests aiming to identify the presence of specific cellular immune responses, interpreted as markers for latent infection with Mycobacterium tuberculosis. Incubation at higher temperatures could affect IFN-γ and IP-10 responsiveness in order to improve the performance of IP-10 release assays and IGRAs. AIM The aim of this study was to assess the robustness of whole blood based IP-10 release assay and IGRAs and the effect of hyper-thermic incubation (39 °C) on the diagnostic accuracy of IP-10 release assay and IGRAs. RESULTS We included 65 patients with confirmed pulmonary tuberculosis and 160 healthy controls from 6 European centres collaborating in the TBnet. In patients, IP-10 responses increased 1.07 (IQR 0.90-1.36) fold and IFN-γ responses decreased 0.88 (IQR 0.57-1.02) fold, with 39 °C compared to 37 °C incubation temperature. At 37 °C IGRA sensitivity was 85% and IP-10 sensitivity was 82%, whereas specificity was 97% for both tests (p > 0.8). These minor changes observed as a result of hyper-thermic incubation were not sufficient to impact IGRA and IP-10 release assay test performance. CONCLUSION The performance of IGRA and IP-10 release assays is robust despite variations in the incubation temperature between 37 °C and 39 °C.
Collapse
Affiliation(s)
- Thomas Blauenfeldt
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Dirk Wagner
- Department of Infectious Diseases and Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martine Aabye
- Department of Double Diagnosis, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Germany
| | - Berit Lange
- Department of Infectious Diseases and Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Germany; German Center for Infection Research Tuberculosis Unit International Health/Infectious Diseases, University of Lübeck, Germany; Department of Internal Medicine, University of Namibia School of Medicine, Windhoek, Namibia; Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Martin Ernst
- Division of Clinical Infectious Diseases, Research Center Borstel, Germany
| | - Pernille Ravn
- Department of Pulmonary and Infectious Diseases, Nordsjaelland Hospital, Hillerød, Denmark
| | - Raquel Duarte
- Tuberculosis Outpatient Centre Vila Nova de Gaia, Portugal; Hospital Centre of Vila Nova de Gaia/Espinho, Portugal; Medical School, Porto University, Portugal; Institute of Public Health, Porto University, Portugal
| | - Clara Morais
- Pulmonology Diagnostic Center Porto and Vila Nova de Gaia, Portugal
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St.Gallen, Switzerland
| | - Otto D Schoch
- Division of Pneumology, Department of Internal Medicine, Cantonal Hospital St.Gallen, Switzerland
| | - Jose Dominguez
- Servei de Microbiologia, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Badalona, Spain
| | - Irene Latorre
- Servei de Microbiologia, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Badalona, Spain
| | - Morten Ruhwald
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
41
|
Gutiérrez-Rebolledo GA, Galar-Martínez M, García-Rodríguez RV, Chamorro-Cevallos GA, Hernández-Reyes AG, Martínez-Galero E. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats. J Med Food 2015; 18:865-71. [PMID: 25599112 DOI: 10.1089/jmf.2014.0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.
Collapse
Affiliation(s)
| | - Marcela Galar-Martínez
- 1 Department of Pharmacy, ENCB-IPN, Zacatenco Unity of Professional Studies, Del. GAM, Mexico City, Mexico
| | | | - Germán A Chamorro-Cevallos
- 1 Department of Pharmacy, ENCB-IPN, Zacatenco Unity of Professional Studies, Del. GAM, Mexico City, Mexico
| | | | - Elizdath Martínez-Galero
- 1 Department of Pharmacy, ENCB-IPN, Zacatenco Unity of Professional Studies, Del. GAM, Mexico City, Mexico
| |
Collapse
|
42
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Cheng C, Gao X, Feng B, Sheen J, Shan L, He P. Plant immune response to pathogens differs with changing temperatures. Nat Commun 2014; 4:2530. [PMID: 24067909 DOI: 10.1038/ncomms3530] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
Temperature fluctuation is a key determinant for microbial invasion and host evasion. In contrast to mammals that maintain constant body temperature, plant temperature oscillates on a daily basis. It remains elusive how plants operate inducible defenses in response to temperature fluctuation. Here we report that ambient temperature changes lead to pronounced shifts of the following two distinct plant immune responses: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Plants preferentially activate ETI signaling at relatively low temperatures (10-23 °C), whereas they switch to PTI signaling at moderately elevated temperatures (23-32 °C). The Arabidopsis arp6 and hta9hta11 mutants, phenocopying plants grown at elevated temperatures, exhibit enhanced PTI and yet reduced ETI responses. As the secretion of bacterial effectors favours low temperatures, whereas bacteria multiply vigorously at elevated temperatures accompanied with increased microbe-associated molecular pattern production, our findings suggest that temperature oscillation might have driven dynamic co-evolution of distinct plant immune signaling responding to pathogen physiological changes.
Collapse
Affiliation(s)
- Cheng Cheng
- 1] Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA [2]
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific inhibitors of Hsp90 such as 17-(N-allylamino)-17-demethoxygeldanamycin and AUY922 prevent HIV-1 reactivation in CD4+ T cells. A single modification at position 19 in the Hsp90 inhibitors abolished this activity, supporting the specificity of the target. We tested the impact of Hsp90 on known pathways involved in HIV-1 reactivation from latency; they include protein kinase Cs(PKCs), mitogen activated protein kinase/extracellular signal regulated kinase/positive transcriptional elongation factor-b and NF-κB. We found that Hsp90 was required downstream of PKCs and was not required for mitogen activated protein kinase activation. Inhibition of Hsp90 reduced degradation of IkBα and blocked nuclear translocation of transcription factor p65/p50, suppressing the NF-κB pathway. Coimmunoprecipitation experiments showed that Hsp90 interacts with inhibitor of nuclear factor kappa-B kinase (IKK) together with cochaperone Cdc37, which is critical for the activity of several kinases. Targeting of Hsp90 by AUY922 dissociated Cdc37 from the complex. Therefore, Hsp90 controls HIV-1 reactivation from latency by keeping the IKK complex functional and thus connects T-cell activation with HIV-1 replication. AUY922 is in phase II clinical trial and, in combination with a PKC-ϑ inhibitor in phase II clinical trial, almost completely suppressed HIV-1 reactivation at 15 nM with no cytotoxicity. Selective targeting of the Hsp90/Cdc37 interaction may provide a powerful approach to suppress HIV-1 reactivation from latency.
Collapse
|
45
|
Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:101023. [PMID: 24524071 PMCID: PMC3912989 DOI: 10.1155/2014/101023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model.
Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.
Collapse
|
46
|
Romanovsky AA. New research journals are needed and can compete with titans. Temperature (Austin) 2013; 1:1-5. [PMID: 27830162 PMCID: PMC5101870 DOI: 10.4161/temp.27666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix, AZ USA
| |
Collapse
|
47
|
Lam PY, Harvie EA, Huttenlocher A. Heat shock modulates neutrophil motility in zebrafish. PLoS One 2013; 8:e84436. [PMID: 24367659 PMCID: PMC3868611 DOI: 10.1371/journal.pone.0084436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023] Open
Abstract
Heat shock is a routine method used for inducible gene expression in animal models including zebrafish. Environmental temperature plays an important role in the immune system and infection progression of ectotherms. In this study, we analyzed the impact of short-term heat shock on neutrophil function using zebrafish (Danio rerio) as an animal model. Short-term heat shock decreased neutrophil recruitment to localized Streptococcus iniae infection and tail fin wounding. Heat shock also increased random neutrophil motility transiently and increased the number of circulating neutrophils. With the use of the translating ribosome affinity purification (TRAP) method for RNA isolation from specific cell types such as neutrophils, macrophages and epithelial cells, we found that heat shock induced the immediate expression of heat shock protein 70 (hsp70) and a prolonged expression of heat shock protein 27 (hsp27). Heat shock also induced cell stress as detected by the splicing of X-box binding protein 1 (xbp1) mRNA, a marker for endoplasmic reticulum (ER) stress. Exogenous expression of Hsp70, Hsp27 and spliced Xbp1 in neutrophils or epithelial cells did not reproduce the heat shock induced effects on neutrophil recruitment. The effect of heat shock on neutrophils is likely due to a combination of complex changes, including, but not limited to changes in gene expression. Our results indicate that routine heat shock can alter neutrophil function in zebrafish. The findings suggest that caution should be taken when employing a heat shock-dependent inducible system to study the innate immune response.
Collapse
Affiliation(s)
- Pui-ying Lam
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Harvie
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
48
|
Han H, Noureddin M, Witthaus M, Park YJ, Hoofnagle JH, Liang TJ, Rotman Y. Temperature rise after peginterferon alfa-2a injection in patients with chronic hepatitis C is associated with virological response and is modulated by IL28B genotype. J Hepatol 2013; 59:957-63. [PMID: 23850879 PMCID: PMC3856983 DOI: 10.1016/j.jhep.2013.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/18/2013] [Accepted: 07/03/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS Interferon treatment for chronic hepatitis C is associated with non-specific symptoms including fever. We aimed to determine the association of temperature changes with interferon antiviral activity. METHODS 60 treatment-naïve patients with chronic hepatitis C (67% genotype 1/4/6, 33% genotype 2/3) were admitted to start peginterferon alfa-2a and ribavirin in a clinical trial. Temperature was measured at baseline and 3 times daily for the first 24h and the maximal increase from baseline during that time (ΔTmax) was determined. Serum HCV-RNA, interferon-gamma-inducible protein-10 (IP-10) and expression of interferon-stimulated genes (ISGs - CD274, ISG15, RSAD2, IRF7, CXCL10) in peripheral blood mononuclear cells (PBMCs) were measured at very early time points, and response kinetics calculated. The IL28B single nucleotide polymorphism, rs12979860, was genotyped. RESULTS Temperatures rose by 1.2±0.8°C, peaking after 12.5h. ΔTmax was strongly associated with 1st phase virological decline (r=0.59, p<0.0001) and was independent of gender, cirrhosis, viral genotype or baseline HCV-RNA. The association with 1st phase decline was seen in patients with rs12979860CC genotype (r = 0.65, p <0.0001) but not in CT/TT (r = 0.13, p = 0.53) and patients with CC genotype had a higher DTmax (1.4 ± 0.8 C vs. 0.8 ± 0.6 +C, p = 0.001). DTmax was associated with 6- and 24-h induction of serum IP-10 and of PBMC ISG expression, but only in patients with rs12979860CC [corrected].ΔTmax weakly predicted early virological response (AUC=0.68, CI 0.49-0.88). CONCLUSIONS Temperature rise following peginterferon injection is closely associated with virological response and is modulated by IL28B polymorphism, reflecting host interferon-responsiveness.
Collapse
Affiliation(s)
- Hwalih Han
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mazen Noureddin
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Witthaus
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yoon J. Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jay H. Hoofnagle
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaron Rotman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Jiang JF, Wang YG, Hu J, Lei F, Kheir MM, Wang XP, Chai YS, Yuan ZY, Lu X, Xing DM, Du F, Du LJ. Novel effect of berberine on thermoregulation in mice model induced by hot and cold environmental stimulation. PLoS One 2013; 8:e54234. [PMID: 23335996 PMCID: PMC3545878 DOI: 10.1371/journal.pone.0054234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8.
Collapse
Affiliation(s)
- Jing-Fei Jiang
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu-Gang Wang
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Jun Hu
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Fan Lei
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Michael M. Kheir
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xin-Pei Wang
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu-Shuang Chai
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Zhi-Yi Yuan
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xi Lu
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Dong-Ming Xing
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Feng Du
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Li-Jun Du
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Abstract
Fever is considered a key actor of innate immunity aimed to fight infection. A new investigation reports an association of the use of antipyretic drugs with poorer outcome among patients with sepsis. In contrast, high temperature in non-infectious intensive care patients is associated with higher mortality.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit of Cytokines & Inflammation, Department of Infection and Epidemiology, Institut Pasteur, 28 rue Dr Roux, F-75015 Paris, France.
| |
Collapse
|