1
|
Wang Y, Zhang X, Biverstål H, Bazan NG, Tan S, Li N, Ohshima M, Schultzberg M, Li X. Pro-resolving lipid mediator reduces amyloid-β42-induced gene expression in human monocyte-derived microglia. Neural Regen Res 2025; 20:873-886. [PMID: 38886959 PMCID: PMC11433908 DOI: 10.4103/nrr.nrr-d-23-01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University, New Orleans, LA, USA
| | - Shuai Tan
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Nailin Li
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Makiko Ohshima
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Höfling C, Donkersloot P, Ulrich L, Burghardt S, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Dipeptidyl peptidase 4 deficiency improves survival after focal cerebral ischemia in mice and ameliorates microglia activation and specific inflammatory markers. Neurobiol Dis 2024; 201:106671. [PMID: 39293688 DOI: 10.1016/j.nbd.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024] Open
Abstract
Dipeptidyl peptidase 4 (DPP4; CD26) is involved in the regulation of various metabolic, immunological, and neurobiological processes in healthy individuals. Observations based on epidemiological data indicate that DPP4 inhibition by gliptins, typically used in patients with diabetes, may reduce the risk for cerebral ischemia and may also improve related outcomes. However, as DPP4 inhibitor application is neither complete nor specific for suppression of DPP4 enzymatic activity and DPP4 has non-enzymatic functions as well, the variety of consequences is a matter of debate. Therefore, we here used DPP4 knock-out (KO) mice to analyze the specific contribution of DPP4 to cellular, immunological, and functional consequences of experimental focal cerebral ischemia. We observed a significantly higher survival rate of DPP4 KO mice after ischemia, which was accompanied by a lower abundance of the pro-inflammatory chemokine CCL2 and reduced activation of Iba1-positive microglia cells in brain tissue of DPP4 KO mice. In addition, after ischemia for 24 h to 72 h, decreased concentrations of CCL5 and CCL12 in plasma and of CCL17 in brain tissue of DPP4 KO mice were observed when compared to wild type mice. Other aspects analyzed, such as the functional Menzies score, astrocyte activation and chemokine levels in plasma and brain tissue were affected by ischemia but appeared to be unaffected by the DPP4 KO genotype. Taken together, experimental ablation of DPP4 functions in mice improves survival and ameliorates aspects of cellular and molecular inflammation after focal cerebral ischemia.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; Department of Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle (Saale), Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle (Saale), Germany; Anhalt University of Applied Sciences, Faculty of Applied Biosciences and Process Engineering, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle (Saale), Germany; Junior Research Group "Immunomodulation in Pathophysiological Processes" Faculty of Medicine, Martin Luther University Halle-Wittenberg, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Zhuang T, Yang Y, Ren H, Zhang H, Gao C, Chen S, Shen J, Ji M, Cui Y. Novel plasma protein biomarkers: A time-dependent predictive model for Alzheimer's disease. Arch Gerontol Geriatr 2024; 129:105650. [PMID: 39427525 DOI: 10.1016/j.archger.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The accurate prediction of Alzheimer's disease (AD) is crucial for the efficient management of its progression. The objective of this research was to construct a new risk predictive model utilizing novel plasma protein biomarkers for predicting AD incidence in the future and analyze their potential biological correlation with AD incidence. METHODS A cohort of 440 participants aged 60 years and older from the Alzheimer's Disease Neuroimaging Initiative (ADNI) longitudinal cohort was utilized. The baseline plasma proteomics data was employed to conduct Cox regression, LASSO regression, and cross-validation to identify plasma protein signatures predictive of AD risk. Subsequently, a multivariable Cox proportional hazards model based on these signatures was constructed. The performance of the risk prediction model was evaluated using time-dependent receiver operating characteristic (t-ROC) curves and Kaplan-Meier curves. Additionally, we analyzed the correlations between protein signature expression in plasma and predicted AD risk, the time of AD onset, the expression of protein signatures in cerebrospinal fluid (CSF), the expression of CSF and plasma biomarkers, and APOE ε4 genotypes. Colocalization and Mendelian randomization analyses was conducted to investigate the association between protein features and AD risk. GEO database was utilized to analyze the differential expression of protein features in the blood and brain of AD patients. RESULTS We identified seven protein signatures (APOE, CGA, CRP, CCL26, CCL20, NRCAM, and PYY) that independently predicted AD incidence in the future. The risk prediction model demonstrated area under the ROC curve (AUC) values of 0.77, 0.76, and 0.77 for predicting AD incidence at 4, 6, and 8 years, respectively. Furthermore, the model remained stable in the range of the 3rd to the 12th year (ROC ≥ 0.74). The low-risk group, as defined by the model, exhibited a significantly later AD onset compared to the high-risk group (P < 0.0001). Moreover, all protein signatures exhibited significant correlations with AD risk (P < 0.001) and the time of AD onset (P < 0.01). There was no strong correlation between the protein expression levels in plasma and CSF, as well as AD CSF biomarkers. APOE, CGA, and CRP exhibited significantly lower expression levels in APOE ε4 positive individuals (P < 0.05). Additionally, colocalization analysis reveals a significant association between AD and SNP loci in APOE. Mendelian randomization analysis shows a negative correlation between NRCAM and AD risk. Transcriptomic analysis indicates a significant downregulation of NRCAM and PYY in the peripheral blood of AD patients (P < 0.01), while APOE, CGA, and NRCAM are significantly downregulated in the brains of AD patients (P < 0.0001). CONCLUSION Our research has successfully identified protein signatures in plasma as potential risk biomarkers that can independently predict AD onset in the future. Notably, this risk prediction model has demonstrated commendable predictive performance and stability over time. These findings underscore the promising utility of plasma protein signatures in dynamically predicting the risk of AD, thereby facilitating early screening and intervention strategies.
Collapse
Affiliation(s)
- Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Yingqi Yang
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Haili Ren
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Haoxiang Zhang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Chang Gao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Shen Chen
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jiemiao Shen
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Yan Cui
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
4
|
Daniilidou M, Holleman J, Hagman G, Kåreholt I, Aspö M, Brinkmalm A, Zetterberg H, Blennow K, Solomon A, Kivipelto M, Sindi S, Matton A. Neuroinflammation, cerebrovascular dysfunction and diurnal cortisol biomarkers in a memory clinic cohort: Findings from the Co-STAR study. Transl Psychiatry 2024; 14:364. [PMID: 39251589 PMCID: PMC11385239 DOI: 10.1038/s41398-024-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Cortisol dysregulation, neuroinflammation, and cerebrovascular dysfunction are biological processes that have been separately shown to be affected in Alzheimer's disease (AD). Here, we aimed to identify biomarker signatures reflecting these pathways in 108 memory clinic patients with subjective cognitive decline (SCD, N = 40), mild cognitive impairment (MCI, N = 39), and AD (N = 29). Participants were from the well-characterized Cortisol and Stress in Alzheimer's Disease (Co-STAR) cohort, recruited at Karolinska University Hospital. Salivary diurnal cortisol measures and 41 CSF proteins were analyzed. Principal component analysis was applied to identify combined biosignatures related to AD pathology, synaptic loss, and neuropsychological assessments, in linear regressions adjusted for confounders, such as age, sex, education and diagnosis. We found increased CSF levels of C-reactive protein (CRP), interferon γ-inducible protein (IP-10), thymus and activation-regulated chemokine (TARC), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in MCI patients. Further, markers of cortisol dysregulation (flattened salivary cortisol awakening response and flattened cortisol slope) correlated with increased levels of placental growth factor (PlGF), IP-10, and chitinase 3-like 1 (YKL-40) in the total cohort. A biosignature composed of cortisol awakening response, cortisol slope, and CSF IL-6 was downregulated in AD patients. Moreover, biomarker signatures reflecting overlapping pathophysiological processes of neuroinflammation and vascular injury were associated with AD pathology, synaptic loss, and worsened processing speed. Our findings suggest an early dysregulation of immune and cerebrovascular processes during the MCI stage and provide insights into the interrelationship of chronic stress and neuroinflammation in AD.
Collapse
Affiliation(s)
- Makrina Daniilidou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Jasper Holleman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Shireen Sindi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Anna Matton
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
5
|
Steiner K, Yilmaz SN, Gern A, Marksteiner J, Faserl K, Villunger M, Sarg B, Humpel C. From Organotypic Mouse Brain Slices to Human Alzheimer Plasma Biomarkers: A Focus on Microglia. Biomolecules 2024; 14:1109. [PMID: 39334874 PMCID: PMC11430359 DOI: 10.3390/biom14091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disorder, and the discovery of biomarkers is crucial for early diagnosis. While the analysis of biomarkers in cerebrospinal fluid is well accepted, there are currently no blood biomarkers available. Our research focuses on identifying novel plasma biomarkers for Alzheimer's disease. To achieve this, we employed a technique that involves coupling human plasma to mouse organotypic brain slices via microcontact prints. After culturing for two weeks, we assessed Iba1-immunopositive microglia on these microcontact prints. We hypothesized that plasma from Alzheimer's patients contains factors that affect microglial migration. Our data indicated that plasma from Alzheimer's patients significantly inhibited the migration of round Iba1-immunoreactive microglia (13 ± 3, n = 24, p = 0.01) compared to healthy controls (50 ± 16, n = 23). Based on these findings, we selected the most promising plasma samples and conducted mass spectrometry using a differential approach, and we identified four potential biomarkers: mannose-binding protein C, macrophage receptor MARCO, complement factor H-related protein-3, and C-reactive protein. Our method represents a novel and innovative approach to translate research findings from mouse models to human applications.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
| | - Sakir Necat Yilmaz
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin 33110, Turkey
| | - Alessa Gern
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria;
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Mathias Villunger
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
| |
Collapse
|
6
|
Gallo LH, Akanda N, Autar K, Patel A, Cox I, Powell HA, Grillo M, Barakat N, Morgan D, Guo X, Hickman JJ. A functional aged human iPSC-cortical neuron model recapitulates Alzheimer's disease, senescence, and the response to therapeutics. Alzheimers Dement 2024; 20:5940-5960. [PMID: 39077965 DOI: 10.1002/alz.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The degeneration of cortical layers is associated with cognitive decline in Alzheimer's disease (AD). Current therapies for AD are not disease-modifying, and, despite substantial efforts, research and development for AD has faced formidable challenges. In addition, cellular senescence has emerged as a significant contributor to therapy resistance. METHODS Human iPSC-derived cortical neurons were cultured on microelectrode arrays to measure long-term potentiation (LTP) noninvasively. Neurons were treated with pathogenic amyloid-β (Aβ) to analyze senescence and response to therapeutic molecules. RESULTS Microphysiological recordings revealed Aβ dampened cortical LTP activity and accelerated neuronal senescence. Aging neurons secreted inflammatory factors previously detected in brain, plasma, and cerebral spinal fluid of AD patients, in which drugs modulated senescence-related factors. DISCUSSION This platform measures and records neuronal LTP activity in response to Aβ and therapeutic molecules in real-time. Efficacy data from similar platforms have been accepted by the FDA for neurodegenerative diseases, expediting regulatory submissions. HIGHLIGHTS This work developed a progerontic model of amyloid-β (Aβ)-driven cortical degeneration. This work measured neuronal LTP and correlated function with aging biomarkers. Aβ is a driver of neuronal senescence and cortical degeneration. Molecules rescued neuronal function but did not halt Aβ-driven senescence. Therapeutic molecules modulated secretion of inflammatory factors by aging neurons.
Collapse
Affiliation(s)
- Leandro H Gallo
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Nesar Akanda
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Kaveena Autar
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
- Hesperos Inc., Orlando, Florida, USA
| | - Aakash Patel
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
- Hesperos Inc., Orlando, Florida, USA
| | - Ian Cox
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Haley A Powell
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Marcella Grillo
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
- Hesperos Inc., Orlando, Florida, USA
| | - Natali Barakat
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Dave Morgan
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids Research Center, Grand Rapids, Michigan, USA
| | - Xiufang Guo
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
- Hesperos Inc., Orlando, Florida, USA
| |
Collapse
|
7
|
Höfling C, Ulrich L, Burghardt S, Donkersloot P, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses. Cells 2024; 13:1412. [PMID: 39272984 PMCID: PMC11394561 DOI: 10.3390/cells13171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| |
Collapse
|
8
|
Li M, Guan M, Lin J, Zhu K, Zhu J, Guo M, Li Y, Chen Y, Chen Y, Zou Y, Wu D, Xu J, Yi W, Fan Y, Ma S, Chen Y, Xu J, Yang L, Dai J, Ye T, Lu Z, Chen Y. Early blood immune molecular alterations in cynomolgus monkeys with a PSEN1 mutation causing familial Alzheimer's disease. Alzheimers Dement 2024; 20:5492-5510. [PMID: 38973166 PMCID: PMC11350033 DOI: 10.1002/alz.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aβ42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aβ secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aβ42 and phosphorylated tau).
Collapse
Affiliation(s)
- Mengqi Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Mingfeng Guan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Jianbang Lin
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaichuan Zhu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Jiayi Zhu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Ming Guo
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Yefei Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Ying Zou
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Daiqiang Wu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Junxin Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Xu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Lixin Yang
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ji Dai
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhonghua Lu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- The Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Anastasi F, Genius P, Rodriguez-Fernandez B, Yang C, Gorijala P, Timsina J, Hernández-Villamizar F, Lorenzini L, Del Campo M, Sánchez-Benavides G, Minguillon C, Navarro A, Cruchaga C, Suárez-Calvet M, Vilor-Tejedor N. Polygenic proxies of age-related plasma protein levels reveal TIMP2 role in cognitive performance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.23.24310854. [PMID: 39211866 PMCID: PMC11361219 DOI: 10.1101/2024.07.23.24310854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Several studies have identified blood proteins that influence brain aging performance in mice, yet translating these findings to humans remains challenging. Here we found that higher predicted plasma levels of Tissue Inhibitor of Metalloproteinases 2 (TIMP2) were significantly associated with improved global cognition and memory performance in humans. We first identified 12 proteins with aging or rejuvenating effects on murine brains through a systematic review. Using protein quantitative trait loci data for these proteins, we computed polygenic scores as proxies for plasma protein levels and validated their prediction accuracy in two independent cohorts. Association models between genetic proxies and cognitive performance highlighted the significance of TIMP2, also when the models were stratified by sex, APOE -ε4, and Aβ42 status. This finding aligns with TIMP2's brain-rejuvenating role in murine models, suggesting it as a promising therapeutic target for brain aging and age-related brain diseases in humans.
Collapse
|
10
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Wang C, Wang J, Zhu Z, Hu J, Lin Y. Spotlight on pro-inflammatory chemokines: regulators of cellular communication in cognitive impairment. Front Immunol 2024; 15:1421076. [PMID: 39011039 PMCID: PMC11247373 DOI: 10.3389/fimmu.2024.1421076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiayi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhichao Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesia, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Thorp EB, Filipp M, Dima M, Tan C, Feinstein M, Popko B, DeBerge M. CCR2 + monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav Immun 2024; 119:818-835. [PMID: 38735403 DOI: 10.1016/j.bbi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, United States.
| | - Mallory Filipp
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Maria Dima
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Chunfeng Tan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Feinstein
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Medicine, Division of Cardiology, Northwestern University, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Matthew DeBerge
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
13
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
14
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
15
|
Taraschenko O, Fox HS, Eldridge E, Heliso P, Al-Saleem F, Dessain S, Casale G, Willcockson G, Anderson K, Wang W, Dingledine R. MyD88-mediated signaling is critical for the generation of seizure responses and cognitive impairment in a model of anti-N-methyl-D-aspartate receptor encephalitis. Epilepsia 2024; 65:1475-1487. [PMID: 38470097 PMCID: PMC11087204 DOI: 10.1111/epi.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE We previously demonstrated that interleukin-1 receptor-mediated immune activation contributes to seizure severity and memory loss in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. In the present study, we assessed the role of the myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in Toll-like receptor signaling, in the key phenotypic characteristics of anti-NMDAR encephalitis. METHODS Monoclonal anti-NMDAR antibodies or control antibodies were infused into the lateral ventricle of MyD88 knockout mice (MyD88-/-) and control C56BL/6J mice (wild type [WT]) via osmotic minipumps for 2 weeks. Seizure responses were measured by electroencephalography. Upon completion of the infusion, the motor, anxiety, and memory functions of the mice were assessed. Astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adaptor molecule 1 [Iba-1]) activation and transcriptional activation for the principal inflammatory mediators involved in seizures were determined using immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. RESULTS As shown before, 80% of WT mice infused with anti-NMDAR antibodies (n = 10) developed seizures (median = 11, interquartile range [IQR] = 3-25 in 2 weeks). In contrast, only three of 14 MyD88-/- mice (21.4%) had seizures (0, IQR = 0-.25, p = .01). The WT mice treated with antibodies also developed memory loss in the novel object recognition test, whereas such memory deficits were not apparent in MyD88-/- mice treated with anti-NMDAR antibodies (p = .03) or control antibodies (p = .04). Furthermore, in contrast to the WT mice exposed to anti-NMDAR antibodies, the MyD88-/- mice had a significantly lower induction of chemokine (C-C motif) ligand 2 (CCL2) in the hippocampus (p = .0001, Sidak tests). There were no significant changes in the expression of GFAP and Iba-1 in the MyD88-/- mice treated with anti-NMDAR or control antibodies. SIGNIFICANCE These findings suggest that MyD88-mediated signaling contributes to the seizure and memory phenotype in anti-NMDAR encephalitis and that CCL2 activation may participate in the expression of these features. The removal of MyD88 inflammation may be protective and therapeutically relevant.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Howard S. Fox
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Ember Eldridge
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Priscilla Heliso
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | | | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - George Casale
- Department of Surgery, Division of Vascular Surgery, University of Nebraska Medical Center, Omaha, NE
| | | | - Kayley Anderson
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
16
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Gholamalizadeh H, Ensan B, Sukhorukov VN, Sahebkar A. Targeting the CCL2-CCR2 signaling pathway: potential implications of statins beyond cardiovascular diseases. J Pharm Pharmacol 2024; 76:138-153. [PMID: 38127312 DOI: 10.1093/jpp/rgad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The chemokine ligand CCL2 and its cognate receptor CCR2 have been implicated in the pathogenesis of a wide variety of diseases. Hence, the inhibition of the CCL2/CCR2 signaling pathway has been of great attention in recent studies. Among suggested medications, statins known as HMG-COA reductase inhibitors with their pleiotropic effects are widely under investigation. METHOD A comprehensive literature search on Scopus and PubMed databases was conducted using the keywords 'CCL2', 'CCR2', 'monocyte chemoattractant protein-1', 'HMG-COA reductase inhibitor', and 'statin'. Both experimental and clinical studies measuring CCL2/CCR2 expressions following statin therapy were identified excluding the ones focused on cardiovascular diseases. RESULTS Herein, we summarized the effects of statins on CCL2 and CCR2 expression in various pathologic conditions including immune-mediated diseases, nephropathies, diabetes, rheumatic diseases, neuroinflammation, inflammatory bowel diseases, gynecologic diseases, and cancers. CONCLUSION For the most part, statins play an inhibitory role on the CCL2-CCR2 axis which implies their potential to be further developed as therapeutic options in non-cardiovascular diseases either alone or in combination with other conventional treatments. However, the existing literature mostly focused on experimental models and is therefore inadequate to reach a conclusion.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Behzad Ensan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
18
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
19
|
Hau SO, Svensson M, Petersson A, Eberhard J, Jirström K. Trajectories of immune-related serum proteins and quality of life in patients with pancreatic and other periampullary cancer: the CHAMP study. BMC Cancer 2023; 23:1074. [PMID: 37936126 PMCID: PMC10629201 DOI: 10.1186/s12885-023-11562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND There is still a profound lack of efficient therapeutic strategies against pancreatic and other periampullary adenocarcinoma. Surgery is seldom possible, leaving palliative chemotherapy the only option for most patients. Chemotherapy treatment is however often accompanied by serious side-effects, and the identification of biomarkers for early prediction of disease and treatment-associated symptoms could help alleviate patient suffering. This study investigated the dynamic interrelationship between immune-related serum proteins, routine biomarkers, and health-related quality of life (HRQoL) factors during chemotherapy treatment of patients enrolled in the prospective, observational study Chemotherapy, Host response And Molecular dynamics in Periampullary cancer (CHAMP). METHODS Proximity extension assay was applied to analyse 92 immune-associated proteins in longitudinal serum samples from 75 patients, 18 treated with curative and 57 with palliative intent. HRQoL data were available from all patients at baseline (BL), from 41 patients at three months, and from 23 patients at six months. Information on routine laboratory parameters albumin, CA19-9, CEA and CRP were collected from medical charts. RESULTS In total nine proteins; chemokine (C-C motif) ligand 23 (CCL23), cluster of differentiation 4 (CD4), cluster of differentiation 28 (CD28), decorin (DCN), galectin-1 (Gal-1), granzyme B (GZMB), granzyme H (GZMH), matrix metallopeptidase 7 (MMP7), and monocyte chemotactic protein-1 (MCP-1) were strongly correlated (Spearman's Rho ≤ -0.6 or ≥ 0.6) with either cognitive functioning (DCN), emotional functioning (DCN, MCP-1), dyspnoea (CD28, GZMB, GZMH) or insomnia (CCL23, CD4, Gal-1, MMP7) during treatment. Associations between routine laboratory parameters (CA 19-9, CA-125, CRP, CEA and albumin) and HRQoL factors were overall weaker. None of the investigated proteins were associated with pain. CONCLUSIONS This is, to our knowledge, the first study exploring associations between serum biomarkers and HRQoL in patients with pancreatic or other periampullary cancer, and some findings merit further validation. The associations of DCN and MCP-1with impaired cognitive and/or emotional functioning are of particular interest, given their established link to various neurodegenerative conditions. Chemotherapy is known to cause persistent cognitive dysfunction with effects on memory and executive function, referred to as "chemo brain". It would therefore be of great value to identify biomarkers for early detection and management of this debilitating condition. TRIAL REGISTRATION Clinical Trial Registration: NCT03724994.
Collapse
Affiliation(s)
- Sofie Olsson Hau
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Maja Svensson
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alexandra Petersson
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jakob Eberhard
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Thaker AA, McConnell BV, Rogers DM, Carlson NE, Coughlan C, Jensen AM, Lopez-Paniagua D, Holden SK, Pressman PS, Pelak VS, Filley CM, Potter H, Solano DA, Heffernan KS, Bettcher BM. Astrogliosis, neuritic microstructure, and sex effects: GFAP is an indicator of neuritic orientation in women. Brain Behav Immun 2023; 113:124-135. [PMID: 37394144 PMCID: PMC10584366 DOI: 10.1016/j.bbi.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aβ42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Dustin M Rogers
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria M Jensen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Lopez-Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha K Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter S Pressman
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brianne M Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
21
|
Huang J, Wang Y, Stein TD, Ang TFA, Zhu Y, Tao Q, Lunetta KL, Mez J, Au R, Farrer LA, Qiu WQ, Zhang X. The impact of blood MCP-1 levels on Alzheimer's disease with genetic variation of UNC5C and NAV3 loci. RESEARCH SQUARE 2023:rs.3.rs-3376348. [PMID: 37841863 PMCID: PMC10571626 DOI: 10.21203/rs.3.rs-3376348/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background Previous study shows that monocyte chemoattractant protein-1 (MCP-1), which is implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption, modulates the genetic risks of AD in established AD loci. Methods In this study, we hypothesized that blood MCP-1 impacts the AD risk of genetic variants beyond known AD loci. We thus performed a genome-wide association study (GWAS) using the logistic regression via generalized estimating equations (GEE) and the Cox proportional-hazards models to examine the interactive effects between single nucleotide polymorphisms (SNPs) and blood MCP-1 level on AD in three cohorts: the Framingham Heart Study (FHS), Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study/Memory and Aging Project (ROSMAP). Results We identified SNPs in two genes, neuron navigator 3 (NAV3, also named Unc-53 Homolog 3, rs696468) (p < 7.55×10- 9) and Unc-5 Netrin Receptor C (UNC5C rs72659964) (p < 1.07×10- 8) that showed an association between increasing levels of blood MCP-1 and AD. Elevating blood MCP-1 concentrations increased AD risk and AD pathology in genotypes of NAV3 (rs696468-CC) and UNC5C (rs72659964-AT + TT), but did not influence the other counterpart genotypes of these variants. Conclusions NAV3 and UNC5C are homologs and may increase AD risk through dysregulating the functions of neurite outgrowth and guidance. Overall, the association of risk alleles of NAV3 and UNC5C with AD is enhanced by peripheral MCP-1 level, suggesting that lowering the level of blood MCP-1 may reduce the risk of developing AD for people with these genotypes.
Collapse
Affiliation(s)
- Jinghan Huang
- Boston University Chobanian & Avedisian School of Medicine
| | - Yixuan Wang
- Boston University Chobanian & Avedisian School of Medicine
| | - Thor D Stein
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Yibo Zhu
- Boston University Chobanian & Avedisian School of Medicine
| | - Qiushan Tao
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Jesse Mez
- Boston University Chobanian & Avedisian School of Medicine
| | - Rhoda Au
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Wei Qiao Qiu
- Boston University Chobanian & Avedisian School of Medicine
| | - Xiaoling Zhang
- Boston University Chobanian & Avedisian School of Medicine
| |
Collapse
|
22
|
Sabirov D, Ogurcov S, Shulman I, Kabdesh I, Garanina E, Sufianov A, Rizvanov A, Mukhamedshina Y. Comparative Analysis of Cytokine Profiles in Cerebrospinal Fluid and Blood Serum in Patients with Acute and Subacute Spinal Cord Injury. Biomedicines 2023; 11:2641. [PMID: 37893015 PMCID: PMC10604120 DOI: 10.3390/biomedicines11102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Cytokines are actively involved in the regulation of the inflammatory and immune responses and have crucial importance in the outcome of spinal cord injuries (SCIs). Examining more objective and representative indicators of the patient's condition is still required to reveal the fundamental patterns of the abovementioned posttraumatic processes, including the identification of changes in the expression of cytokines. METHODS We performed a dynamic (3, 7, and 14 days post-injury (dpi)) extended multiplex analysis of cytokine profiles in both CSF and blood serum of SCI patients with baseline American Spinal Injury Association Impairment Scale grades of A. RESULTS The data obtained showed a large elevation of IL6 (>58 fold) in CSF and IFN-γ (>14 fold) in blood serum at 3 dpi with a downward trend as the post-traumatic period increases. The level of cytokine CCL26 was significantly elevated in both CSF and blood serum at 3 days post-SCI, while other cytokines did not show the same trend in the different biosamples. CONCLUSIONS The dynamic changes in cytokine levels observed in our study can explore the relationships with the SCI region and injury severity, paving the way for a better understanding of the pathophysiology of SCI and potentially more targeted and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Davran Sabirov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Ilya Shulman
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Ilyas Kabdesh
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ekaterina Garanina
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
23
|
Temmerman J, Engelborghs S, Bjerke M, D’haeseleer M. Cerebrospinal fluid inflammatory biomarkers for disease progression in Alzheimer's disease and multiple sclerosis: a systematic review. Front Immunol 2023; 14:1162340. [PMID: 37520580 PMCID: PMC10374015 DOI: 10.3389/fimmu.2023.1162340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory processes are involved in the pathophysiology of both Alzheimer's disease (AD) and multiple sclerosis (MS) but their exact contribution to disease progression remains to be deciphered. Biomarkers are needed to define pathophysiological processes of these disorders, who may increasingly co-exist in the elderly generations of the future, due to the rising prevalence in both and ameliorated treatment options with improved life expectancy in MS. The purpose of this review was to provide a systematic overview of inflammatory biomarkers, as measured in the cerebrospinal fluid (CSF), that are associated with clinical disease progression. International peer-reviewed literature was screened using the PubMed and Web of Science databases. Disease progression had to be measured using clinically validated tests representing baseline functional and/or cognitive status, the evolution of such clinical scores over time and/or the transitioning from one disease stage to a more severe stage. The quality of included studies was systematically evaluated using a set of questions for clinical, neurochemical and statistical characteristics of the study. A total of 84 papers were included (twenty-five for AD and 59 for MS). Elevated CSF levels of chitinase-3-like protein 1 (YKL-40) were associated with disease progression in both AD and MS. Osteopontin and monocyte chemoattractant protein-1 were more specifically related to disease progression in AD, whereas the same was true for interleukin-1 beta, tumor necrosis factor alpha, C-X-C motif ligand 13, glial fibrillary acidic protein and IgG oligoclonal bands in MS. We observed a broad heterogeneity of studies with varying cohort characterization, non-disclosure of quality measures for neurochemical analyses and a lack of adequate longitudinal designs. Most of the retrieved biomarkers are related to innate immune system activity, which seems to be an important mediator of clinical disease progression in AD and MS. Overall study quality was limited and we have framed some recommendations for future biomarker research in this field. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021264741.
Collapse
Affiliation(s)
- Joke Temmerman
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Maria Bjerke
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Jette, Brussels, Belgium
| | - Miguel D’haeseleer
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- National MS Center (NMSC), Neurology, Melsbroek, Steenokkerzeel, Belgium
| |
Collapse
|
24
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
25
|
Huang J, Stein TD, Wang Y, Ang TFA, Tao Q, Lunetta KL, Massaro J, Akhter-Khan SC, Mez J, Au R, Farrer LA, Zhang X, Qiu WQ. Blood levels of MCP-1 modulate the genetic risks of Alzheimer's disease mediated by HLA-DRB1 and APOE for Alzheimer's disease. Alzheimers Dement 2023; 19:1925-1937. [PMID: 36396603 PMCID: PMC10182187 DOI: 10.1002/alz.12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION C-Reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) are both implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption. Since the blood CRP level increases Alzheimer's disease (AD) risk depending on the apolipoprotein E (APOE) genotype, we hypothesized that the blood MCP-1 level exerts different effects on the AD risk depending on the genotypes. METHODS Using multiple regression analyses, data from the Framingham Heart Study (n = 2884) and Alzheimer's Disease Neuroimaging Initiative study (n = 231) were analyzed. RESULTS An elevated blood MCP-1 level was associated with AD risk in major histocompatibility complex, Class II, DR beta 1 (HLA-DRB1) rs9271192-AC/CC (hazard ratio [HR] = 3.07, 95% confidence interval [CI] = 1.50-6.28, p = 0.002) and in APOE ε4 carriers (HR = 3.22, 95% CI = 1.59-6.53, p = 0.001). In contrast, among HLA-DRB1 rs9271192-AA and APOE ε4 noncarriers, blood MCP-1 levels were not associated with these phenotypes. DISCUSSION Since HLA-DRB1 and APOE are expressed in the BBB, blood MCP-1 released in the peripheral inflammatory cascade may function as a mediator of the effects of HLA-DRB1 rs9271192-AC/CC and APOE ε4 genotypes on AD pathogenesis in the brain via the BBB pathways.
Collapse
Affiliation(s)
- Jinghan Huang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Yixuan Wang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Qiushan Tao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
| | - Samia C. Akhter-Khan
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Department of Health Service & Population Research, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
26
|
Rege SV, Teichert A, Masumi J, Dhande OS, Harish R, Higgins BW, Lopez Y, Akrapongpisak L, Hackbart H, Caryotakis S, Leone DP, Szoke B, Hannestad J, Nikolich K, Braithwaite SP, Minami SS. CCR3 plays a role in murine age-related cognitive changes and T-cell infiltration into the brain. Commun Biol 2023; 6:292. [PMID: 36934154 PMCID: PMC10024715 DOI: 10.1038/s42003-023-04665-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
Targeting immune-mediated, age-related, biology has the potential to be a transformative therapeutic strategy. However, the redundant nature of the multiple cytokines that change with aging requires identification of a master downstream regulator to successfully exert therapeutic efficacy. Here, we discovered CCR3 as a prime candidate, and inhibition of CCR3 has pro-cognitive benefits in mice, but these benefits are not driven by an obvious direct action on central nervous system (CNS)-resident cells. Instead, CCR3-expressing T cells in the periphery that are modulated in aging inhibit infiltration of these T cells across the blood-brain barrier and reduce neuroinflammation. The axis of CCR3-expressing T cells influencing crosstalk from periphery to brain provides a therapeutically tractable link. These findings indicate the broad therapeutic potential of CCR3 inhibition in a spectrum of neuroinflammatory diseases of aging.
Collapse
|
27
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
28
|
Gao F, Zhang PF, Gao J, Song J, Chi S. The CCL2 rs4586 SNP Is Associated with Slower Amyloid-β Deposition and Faster Tau Accumulation of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1647-1657. [PMID: 36314210 DOI: 10.3233/jad-220716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND CC-chemokine ligand 2 (CCL2), the key immunomodulatory chemokine for microglial activation, has been implicated in the pathogenesis of Alzheimer's disease (AD). Whether the association of CCL2 single nucleotide polymorphisms (SNPs) and the risk of AD is still controversial. OBJECTIVE We aimed to investigate whether CCL2 rs4586 SNP is associated with the pathological changes and cognitive decline of AD. METHODS A total of 486 participants with longitudinal cerebrospinal fluid (CSF) amyloid-β (Aβ) and phospho-tau (P-tau) biomarkers, 18F-Florbetapir and 18F-flortaucipir-positron emission tomography (PET), and cognitive assessments from the Alzheimer's disease Neuroimaging Initiative were included in the study. The effects of CCL2 rs4586 SNP on the pathological changes and cognitive decline of AD were assessed with linear mixed-effects models and evaluated according to the Aβ-status so as to identify whether the effects were independent of Aβ status. RESULTS CCL2 rs4586-CC carriers exhibited a slower global Aβ-PET accumulation, particularly within stage I and stage II. However, they exhibited a faster accumulation of CSF P-tau and global tau-PET standard uptake value ratios, especially in Braak I and Braak III/IV and the inferior temporal gyrus. The congruent effects of CCL2 rs4586 on tau accumulation existed only in the Aβ-group, as is shown in global tau-PET and Braak I. However, CCL2 rs4586 was not associated with the cognitive decline. CONCLUSION Our findings showed that the CCL2 rs4586-CC (versus TT/TC) genotype was associated with slower Aβ deposition and faster tau accumulation, and the latter of which was independent of Aβ status.
Collapse
Affiliation(s)
- Fan Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng-Fei Zhang
- Department of Medicine, Hangzhou Juno Genomics Inc, Hangzhou, China
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinghui Song
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
29
|
Sanchez-Sanchez JL, Giudici KV, Guyonnet S, Delrieu J, Li Y, Bateman RJ, Parini A, Vellas B, de Souto Barreto P, Vellas B, Guyonnet S, Carrié I, Brigitte L, Faisant C, Lala F, Delrieu J, Villars H, Combrouze E, Badufle C, Zueras A, Andrieu S, Cantet C, Morin C, Van Kan GA, Dupuy C, Rolland Y, Caillaud C, Ousset PJ, Lala F, Willis S, Belleville S, Gilbert B, Fontaine F, Dartigues JF, Marcet I, Delva F, Foubert A, Cerda S, Marie-Noëlle-Cuffi, Costes C, Rouaud O, Manckoundia P, Quipourt V, Marilier S, Franon E, Bories L, Pader ML, Basset MF, Lapoujade B, Faure V, Tong MLY, Malick-Loiseau C, Cazaban-Campistron E, Desclaux F, Blatge C, Dantoine T, Laubarie-Mouret C, Saulnier I, Clément JP, Picat MA, Bernard-Bourzeix L, Willebois S, Désormais I, Cardinaud N, Bonnefoy M, Livet P, Rebaudet P, Gédéon C, Burdet C, Terracol F, Pesce A, Roth S, Chaillou S, Louchart S, Sudres K, Lebrun N, Barro-Belaygues N, Touchon J, Bennys K, Gabelle A, Romano A, Touati L, Marelli C, Pays C, Robert P, Le Duff F, Gervais C, Gonfrier S, Gasnier Y, Bordes S, Begorre D, Carpuat C, Khales K, Lefebvre JF, El Idrissi SM, Skolil P, Salles JP, Dufouil C, Lehéricy S, Chupin M, Mangin JF, Bouhayia A, Allard M, Ricolfi F, Dubois D, Martel MPB, Cotton F, Bonafé A, Chanalet S, Hugon F, Bonneville F, Cognard C, Chollet F, Payoux P, Voisin T, Peiffer S, Hitzel A, Zanca M, Monteil J, Darcourt J, Molinier L, Derumeaux H, Costa N, Perret B, Vinel C, Caspar-Bauguil S, Olivier-Abbal P, Coley N. Plasma MCP-1 and changes on cognitive function in community-dwelling older adults. Alzheimers Res Ther 2022; 14:5. [PMID: 34996522 PMCID: PMC8742409 DOI: 10.1186/s13195-021-00940-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Background Monocyte Chemoattractant Protein-1 (MCP-1), a glial-derived chemokine, mediates neuroinflammation and may regulate memory outcomes among older adults. We aimed to explore the associations of plasma MCP-1 levels (alone and in combination with β-amyloid deposition—Aβ42/40) with overall and domain-specific cognitive evolution among older adults. Methods Secondary analyses including 1097 subjects (mean age = 75.3 years ± 4.4; 63.8% women) from the Multidomain Alzheimer Preventive Trial (MAPT). MCP-1 (higher is worse) and Aβ42/40 (lower is worse) were measured in plasma collected at year 1. MCP-1 in continuous and as a dichotomy (values in the highest quartile (MCP-1+)) were used, as well as a dichotomy of Aβ42/40. Outcomes were measured annually over 4 years and included the following: cognitive composite z-score (CCS), the Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR) sum of boxes (overall cognitive function); composite executive function z-score, composite attention z-score, Free and Cued Selective Reminding Test (FCSRT - memory). Results Plasma MCP-1 as a continuous variable was associated with the worsening of episodic memory over 4 years of follow-up, specifically in measures of free and cued delayed recall. MCP-1+ was associated with worse evolution in the CCS (4-year between-group difference: β = −0.14, 95%CI = −0.26, −0.02) and the CDR sum of boxes (2-year: β = 0.19, 95%CI = 0.06, 0.32). In domain-specific analyses, MCP-1+ was associated with declines in the FCSRT delayed recall sub-domains. In the presence of low Aβ42/40, MCP-1+ was not associated with greater declines in cognitive functions. The interaction with continuous biomarker values Aβ42/40× MCP-1 × time was significant in models with CDR sum of boxes and FCSRT DTR as dependent variables. Conclusions Baseline plasma MCP-1 levels were associated with longitudinal declines in overall cognitive and episodic memory performance in older adults over a 4-year follow-up. How plasma MCP-1 interacts with Aβ42/40 to determine cognitive decline at different stages of cognitive decline/dementia should be clarified by further research. The MCP-1 association on cognitive decline was strongest in those with amyloid plaques, as measured by blood plasma Aβ42/40. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00940-2.
Collapse
|
30
|
Huang X, Wang YJ, Xiang Y. Bidirectional communication between brain and visceral white adipose tissue: Its potential impact on Alzheimer's disease. EBioMedicine 2022; 84:104263. [PMID: 36122553 PMCID: PMC9490488 DOI: 10.1016/j.ebiom.2022.104263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A variety of axes between brain and abdominal organs have been reported, but the interaction between brain and visceral white adipose tissue (vWAT) remains unclear. In this review, we summarized human studies on the association between brain and vWAT, and generalized their interaction and the underlying mechanisms according to animal and cell experiments. On that basis, we come up with the concept of the brain-vWAT axis (BVA). Furthermore, we analyzed the potential mechanisms of involvement of BVA in the pathogenesis of Alzheimer's disease (AD), including vWAT-derived fatty acids, immunological properties of vWAT, vWAT-derived retinoic acid and vWAT-regulated insulin resistance. The proposal of BVA may expand our understanding to some extent of how the vWAT impacts on brain health and diseases, and provide a novel approach to study the pathogenesis and treatment strategies of neurodegenerative disorders.
Collapse
|
31
|
Engel MG, Smith J, Mao K, Quipildor GF, Cui MH, Gulinello M, Branch CA, Gandy SE, Huffman DM. Evidence for preserved insulin responsiveness in the aging rat brain. GeroScience 2022; 44:2491-2508. [PMID: 35798912 PMCID: PMC9768080 DOI: 10.1007/s11357-022-00618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023] Open
Abstract
Insulin appears to exert salutary effects in the central nervous system (CNS). Thus, brain insulin resistance has been proposed to play a role in brain aging and dementia but is conceptually complex and unlikely to fit classic definitions established in peripheral tissues. Thus, we sought to characterize brain insulin responsiveness in young (4-5 months) and old (24 months) FBN male rats using a diverse set of assays to determine the extent to which insulin effects in the CNS are impaired with age. When performing hyperinsulinemic-euglycemic clamps in rats, intracerebroventricular (ICV) infusion of insulin in old animals improved peripheral insulin sensitivity by nearly two-fold over old controls and comparable to young rats, suggesting preservation of this insulin-triggered response in aging per se (p < 0.05). We next used an imaging-based approach by comparing ICV vehicle versus insulin and performed resting state functional magnetic resonance imaging (rs-fMRI) to evaluate age- and insulin-related changes in network connectivity within the default mode network. In aging, lower connectivity between the mesial temporal (MT) region and other areas, as well as reduced MT signal complexity, was observed in old rats, which correlated with greater cognitive deficits in old. Despite these stark differences, ICV insulin failed to elicit any significant alteration to the BOLD signal in young rats, while a significant deviation of the BOLD signal was observed in older animals, characterized by augmentation in regions of the septal nucleus and hypothalamus, and reduction in thalamus and nucleus accumbens. In contrast, ex vivo stimulation of hippocampus with 10 nM insulin revealed increased Akt activation in young (p < 0.05), but not old rats. Despite similar circulating levels of insulin and IGF-1, cerebrospinal fluid concentrations of these ligands were reduced with age. Thus, these data highlight the complexity of capturing brain insulin action and demonstrate preserved or heightened brain responses to insulin with age, despite dampened canonical signaling, thereby suggesting impaired CNS input of these ligands may be a feature of reduced brain insulin action, providing further rationale for CNS replacement strategies.
Collapse
Affiliation(s)
- Matthew G Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
| | - Jeremy Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gabriela Farias Quipildor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maria Gulinello
- Dominick S. Purpura Department of Neuroscience, Behavioral Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Samuel E Gandy
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
32
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
33
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
34
|
Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 2022; 14:117. [PMID: 36008818 PMCID: PMC9414424 DOI: 10.1186/s13195-022-01062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is foremost characterized by β-amyloid (Aβ)-extracellular plaques, tau-intraneuronal fibrillary tangles (NFT), and neuroinflammation, but over the last years it has become evident that peripheral inflammation might also contribute to the disease. AD patients often demonstrate increased levels of circulating proinflammatory mediators and altered antibody levels in the blood. In our study, we investigated the plasma Immunoglobulin A (IgA) levels in association with apolipoprotein E (APOE) ε4 status and Aβ pathology. Methods IgA levels in antemortem-collected (cohort I) and postmortem-collected (cohort II) plasma samples from AD patients (n = 30 in cohort I and n = 16 in cohort II) and non-demented age-matched controls (NC) (n = 42 in cohort I and n = 7 in cohort II) were measured using ELISA. Hippocampal sections from cohort II were immunostained against IgA, and the IgA area fraction as well as the number of IgA positive (IgA+) cells in the cornu ammonis region were analysed using ImageJ. The relationship between plasma IgA levels and cognition, C-reactive protein (CRP), and cerebrospinal fluid (CSF) AD biomarkers in cohort I as well as neuropathology, IgA+ cell number, and IgA area fraction in cohort II was analysed before and after grouping the cohorts into APOEε4 carriers and APOEε4 non-carriers. Results Plasma IgA levels were higher in AD patients compared to NC in both cohorts. Also, AD patients demonstrated higher IgA area fraction and IgA+ cell number compared to NC. When APOEε4 status was considered, higher plasma IgA levels in AD patients were only seen in APOEε4 non-carriers. Finally, plasma IgA levels, exclusively in APOEε4 non-carriers, were associated with cognition, CRP, and CSF Aβ levels in cohort I as well as with IgA area fraction, IgA+ cell number, and Aβ, Lewy body, and NFT neuropathology in cohort II. Conclusions Our study suggests that AD pathology and cognitive decline are associated with increased plasma IgA levels in an APOE allele-dependent manner, where the associations are lost in APOEε4 carriers. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01062-z.
Collapse
|
35
|
Mapping the dynamics of insulin-responsive pathways in the blood-brain barrier endothelium using time-series transcriptomics data. NPJ Syst Biol Appl 2022; 8:29. [PMID: 35974022 PMCID: PMC9381797 DOI: 10.1038/s41540-022-00235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 01/11/2023] Open
Abstract
Critical functions of the blood-brain barrier (BBB), including cerebral blood flow, energy metabolism, and immunomodulation, are regulated by insulin signaling pathways. Therefore, endothelial insulin resistance could lead to BBB dysfunction, which is associated with neurodegenerative diseases such as Alzheimer's disease (AD). The current study aims to map the dynamics of insulin-responsive pathways in polarized human cerebral microvascular endothelial cell (hCMEC/D3) monolayers. RNA-Sequencing was performed on hCMEC/D3 monolayers with and without insulin treatment at various time points. The Short Time-series Expression Miner (STEM) method was used to identify gene clusters with distinct and representative expression patterns. Functional annotation and pathway analysis of genes from selected clusters were conducted using Webgestalt and Ingenuity Pathway Analysis (IPA) software. Quantitative expression differences of 16,570 genes between insulin-treated and control monolayers were determined at five-time points. The STEM software identified 12 significant clusters with 6880 genes that displayed distinct temporal patterns upon insulin exposure, and the clusters were further divided into three groups. Gene ontology (GO) enrichment analysis demonstrated that biological processes protecting BBB functions such as regulation of vascular development and actin cytoskeleton reorganization were upregulated after insulin treatment (Group 1 and 2). In contrast, GO pathways related to inflammation, such as response to interferon-gamma, were downregulated (Group 3). The IPA analyses further identified insulin-responsive cellular and molecular pathways that are associated with AD pathology. These findings unravel the dynamics of insulin action on the BBB endothelium and inform about downstream signaling cascades that are potentially disrupted due to brain insulin resistance prevalent in AD.
Collapse
|
36
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
37
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
38
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
39
|
Pagoni P, Korologou-Linden RS, Howe LD, Davey Smith G, Ben-Shlomo Y, Stergiakouli E, Anderson EL. Causal effects of circulating cytokine concentrations on risk of Alzheimer's disease and cognitive function. Brain Behav Immun 2022; 104:54-64. [PMID: 35580794 PMCID: PMC10391322 DOI: 10.1016/j.bbi.2022.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is considerable evidence suggesting a role of neuroinflammation in the pathogenesis of Alzheimer's disease. Establishing causality is challenging due to bias from reverse causation and residual confounding. METHODS We used two-sample MR to explore causal effects of circulating cytokine concentrations on Alzheimer's disease risk and cognitive function. We employed genetic variants from the largest publicly available genome-wide association studies (GWASs) of cytokine concentrations (N = 8,293), Alzheimer's disease (71,880 cases/383,378 controls), prospective memory (N = 152,605 to 462,302), reaction time (N = 454,157 to 459,523) and fluid intelligence (N = 149,051). RESULTS Evidence suggest that 1 standard deviation (SD) increase in levels of CTACK (CCL27) (OR = 1.09 95%CI: 1.01 to 1.19, p = 0.03) increased risk of Alzheimer's disease. There was weak evidence of a causal effect of MIP-1b (CCL4) (OR = 1.04 95% CI: 0.99 to 1.09, p = 0.08), Eotaxin (OR = 1.08 95% CI: 0.99 to 1.17, p = 0.10), GROa (CXCL1) (OR = 1.04 95% CI: 0.99 to 1.10, p = 0.15), MIG (CXCL9) (OR = 1.17 95% CI: 0.97 to 1.41, p = 0.10), IL-8 (Wald ratio: OR = 1.21 95% CI: 0.97 to 1.51, p = 0.09) and IL-2 (Wald Ratio: OR = 1.21 95% CI: 0.94 to 1.56, p = 0.14) on Alzheimer's disease risk. A 1 SD increase in concentration of Eotaxin (IVW: OR = 1.05 95% CI: 0.98 to 1.13, p = 0.14), IL-8 (OR = 1.21 95% CI: 1.07 to 1.37, p = 0.003) and MCP1 (OR = 1.07 95% CI: 1.03 to 1.13, p = 0.003) were associated with lower fluid intelligence, and IL-4 (OR = 0.86 95%CI: 0.79 to 0.98, p = 0.02) with higher. CONCLUSIONS Our findings suggest a causal role of cytokines in the pathogenesis of Alzheimer's disease and fluid intelligence.
Collapse
Affiliation(s)
- Panagiota Pagoni
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Roxanna S Korologou-Linden
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Anderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
Koca S, Kiris I, Sahin S, Cinar N, Karsidag S, Hanagasi HA, Yildiz GB, Tarik Baykal A. Decreased levels of cytokines implicate altered immune response in plasma of moderate-stage Alzheimer's disease patients. Neurosci Lett 2022; 786:136799. [PMID: 35842208 DOI: 10.1016/j.neulet.2022.136799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, increasing evidence suggests that the pathogenesis of the disease is associated with peripheral inflammation. Here, we aimed to determine plasma concentrations of multiple cytokines and chemokines from moderate-stage AD and age-matched controls. Changes in a total of 20 cytokines and chemokines in plasma of moderate-stage AD were evaluated by using quantitative microarray. Six of them, namely MCP-1, MIP-1a, MIP-1b, MMP-9, RANTES, and VEGF, were found to be significantly reduced in moderate-stage AD patients (n = 25) in comparison to age-matched and non-demented controls (n = 25). However, GM-CSF, GRO-α/β/γ, IFN- γ, IL-1α, IL-1β, IL-10, IL-12 p70, IL-13, IL-2, IL- 4, IL-5, IL-6, IL-8, and TNF-α showed no significant differences between the patient and control groups. On the contrary to previous early-stage AD studies that show increased plasma cytokine/chemokine levels, our results indicate that inflammatory plasma molecules are reduced in moderate-stage AD. This finding points out the reduced immune responsiveness, which is known to be directly correlated to the degree of AD.
Collapse
Affiliation(s)
- Sebile Koca
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevki Sahin
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Nilgun Cinar
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Sibel Karsidag
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Hasmet A Hanagasi
- Department of Neurology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulsen B Yildiz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
41
|
Role of Chemokines in the Development and Progression of Alzheimer's Disease. J Mol Neurosci 2022; 72:1929-1951. [PMID: 35821178 PMCID: PMC9392685 DOI: 10.1007/s12031-022-02047-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurogenerative disorder manifested by gradual memory loss and cognitive decline due to profound damage of cholinergic neurons. The neuropathological hallmarks of AD are intracellular deposits of neurofibrillary tangles (NFTs) and extracellular aggregates of amyloid β (Aβ). Mounting evidence indicates that intensified neuroinflammatory processes play a pivotal role in the pathogenesis of AD. Chemokines serve as signaling molecules in immune cells but also in nerve cells. Under normal conditions, neuroinflammation plays a neuroprotective role against various harmful factors. However, overexpression of chemokines initiates disruption of the integrity of the blood–brain barrier, facilitating immune cells infiltration into the brain. Then activated adjacent glial cells–astrocytes and microglia, release massive amounts of chemokines. Prolonged inflammation loses its protective role and drives an increase in Aβ production and aggregation, impairment of its clearance, or enhancement of tau hyperphosphorylation, contributing to neuronal loss and exacerbation of AD. Moreover, chemokines can be further released in response to growing deposits of toxic forms of Aβ. On the other hand, chemokines seem to exert multidimensional effects on brain functioning, including regulation of neurogenesis and synaptic plasticity in regions responsible for memory and cognitive abilities. Therefore, underexpression or complete genetic ablation of some chemokines can worsen the course of AD. This review covers the current state of knowledge on the role of particular chemokines and their receptors in the development and progression of AD. Special emphasis is given to their impact on forming Aβ and NFTs in humans and in transgenic murine models of AD.
Collapse
|
42
|
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A, Gholizadeh Navashenaq J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front Immunol 2022; 13:861931. [PMID: 35677043 PMCID: PMC9168005 DOI: 10.3389/fimmu.2022.861931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chemokines exert crucial roles in inducing immune responses through ligation to their canonical receptors. Besides these receptors, there are other atypical chemokine receptors (ACKR1–4) that can bind to a wide range of chemokines and carry out various functions in the body. ACKR2, due to its ability to bind various CC chemokines, has attracted much attention during the past few years. ACKR2 has been shown to be expressed in different cells, including trophoblasts, myeloid cells, and especially lymphoid endothelial cells. In terms of molecular functions, ACKR2 scavenges various inflammatory chemokines and affects inflammatory microenvironments. In the period of pregnancy and fetal development, ACKR2 plays a pivotal role in maintaining the fetus from inflammatory reactions and inhibiting subsequent abortion. In adults, ACKR2 is thought to be a resolving agent in the body because it scavenges chemokines. This leads to the alleviation of inflammation in different situations, including cardiovascular diseases, autoimmune diseases, neurological disorders, and infections. In cancer, ACKR2 exerts conflicting roles, either tumor-promoting or tumor-suppressing. On the one hand, ACKR2 inhibits the recruitment of tumor-promoting cells and suppresses tumor-promoting inflammation to blockade inflammatory responses that are favorable for tumor growth. In contrast, scavenging chemokines in the tumor microenvironment might lead to disruption in NK cell recruitment to the tumor microenvironment. Other than its involvement in diseases, analyzing the expression of ACKR2 in body fluids and tissues can be used as a biomarker for diseases. In conclusion, this review study has tried to shed more light on the various effects of ACKR2 on different inflammatory conditions.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Oveisee
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Jahanara
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Jamshid Gholizadeh Navashenaq, ;
| |
Collapse
|
43
|
Hao J, Guo Y, Guo K, Yang Q. Peripheral Inflammatory Biomarkers of Alzheimer’s Disease. J Alzheimers Dis 2022; 88:389-398. [PMID: 35599478 DOI: 10.3233/jad-215422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease of unknown pathological origin. The clinical diagnosis of AD is time-consuming and needs to a combination of clinical evaluation, psychological testing, and imaging assessments. Biomarkers may be good indicators for the clinical diagnosis of AD; hence, it is important to identify suitable biomarkers for the diagnosis and treatment of AD. Peripheral inflammatory biomarkers have been the focus of research in recent years. This review summarizes the role of inflammatory biomarkers in the disease course of AD.
Collapse
Affiliation(s)
- Jing Hao
- Department of Neurology, Anyang People’s Hospital, Xinxiang Medical University, Anyang, P.R. China
| | - Yanping Guo
- Department of Neurology, Anyang People’s Hospital, Xinxiang Medical University, Anyang, P.R. China
| | - Keke Guo
- Department of Neurology, Anyang People’s Hospital, Xinxiang Medical University, Anyang, P.R. China
| | - Qingcheng Yang
- Department of Neurology, Anyang People’s Hospital, Xinxiang Medical University, Anyang, P.R. China
| |
Collapse
|
44
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
45
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
46
|
Shi X, Gong X, Xiong H, Zhang J. Cellular distribution of C-C motif chemokine ligand 2 like immunoreactivities in frontal cortex and corpus callosum of normal and lipopolysaccharide treated animal. BMC Neurosci 2022; 23:20. [PMID: 35354428 PMCID: PMC8965573 DOI: 10.1186/s12868-022-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-C motif chemokine ligand 2 (CCL2) is reported to be involved in the pathogenesis of various neurological and/or psychiatric diseases. Tissue or cellular expression of CCL2, in normal or pathological condition, may play an essential role in recruiting monocytes or macrophages into targeted organs, and be involved in a certain pathogenic mechanism. However, few studies focused on tissue and cellular distribution of the CCL2 peptide in brain grey and white matters (GM, WM), and the changes of the GM and WM cellular CCL2 level in septic or endotoxic encephalopathy was not explored. Hence, the CCL2 cellular distribution in the front brain cortex and the corpus callosum (CC) was investigated in the present work by using immunofluorescent staining. RESULTS (1) CCL2 like immunoreactivity (CCL2-ir) in the CC is evidently higher than the cortex. When the measurement includes ependymal layer attached to the CC, CCL2-ir intensity is significantly higher than cortex. (2) Structures in perivascular areas, most of them are GFAP positive, contribute major CCL2-ir positive profiles in both GM and WM, but apparently more in the CC, where they are bilaterally distributed in the lateral CC between the cingulate cortex and ventricles. (3) The neuron-like CCL2-ir positive cells in cortex are significantly more than in the CC, and that number is significantly increased in the cortex following systemic lipopolysaccharide (LPS), but not in the CC. (4) In addition to CCL2-ir positive perivascular rings, more CCL2-ir filled cashew shape elements are observed, probably inside of microvasculature, especially in the CC following systemic LPS. (5) Few macrophage/microglia marker-Iba-1 and CCL2-ir co-labeled structures especially the soma is found in normal cortex and CC; the co-localizations are significantly augmented following systemic LPS, and co-labeled amoeba like somata are presented. (6) CCL2-ir and astrocyte marker GFAP or Iba-1 double labeled structures are also observed within the ependymal layer. No accumulation of neutrophils was detected. CONCLUSION There exist differences in the cellular distribution of the CCL2 peptide in frontal cortex GM and subcortical WM-CC, in both the physiological condition and experimental endotoxemia. Which might cause different pathological change in the GM and WM.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated to Hubei University of Arts and Science, 136 Jinzhou Street, Xiangyang, 441021, China.
| | - Huangui Xiong
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jingdong Zhang
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA. .,Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0531, USA.
| |
Collapse
|
47
|
Gu H, Xu Y, Du N, Yu Y, Zheng W, Du Y. Pb Induces MCP-1 in the Choroid Plexus. BIOLOGY 2022; 11:308. [PMID: 35205174 PMCID: PMC8869661 DOI: 10.3390/biology11020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Lead (Pb) is an environmental element that has been implicated in the development of dementia and Alzheimer's disease (AD). Additionally, innate immune activation contributes to AD pathophysiology. However, the mechanisms involved remain poorly understood. The choroid plexus (CP) is not only the site of cerebrospinal fluid (CSF) production, but also an important location for communication between the circulation and the CSF. In this study, we investigated the involvement of the CP during Pb exposure by evaluating the expression of the monocyte chemoattractant protein-1 (MCP-1). MCP-1 is highly expressed in the CP compared to other CNS tissues. MCP-1 regulates macrophage infiltration and is upregulated in AD brains. Our study revealed that Pb exposure stimulated MCP-1 expression, along with a significantly increased macrophage infiltration into the CP. By using cultured Z310 rat CP cells, Pb exposure stimulated MCP-1 expression in a dose-related fashion and markedly activated both NF-κB and p38 MAP kinase. Interestingly, both SB 203580, a p38 inhibitor, and BAY 11-7082, an NF-κB p65 inhibitor, significantly blocked Pb-induced MCP-1 expression. However, SB203580 did not directly inhibit NF-κB p65 phosphorylation. In conclusion, Pb exposure stimulates MCP-1 expression via the p38 and NF-κB p65 pathways along with macrophage infiltration into the CP.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
| | - Yundan Xu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nicole Du
- Department of Pediatrics, Children’s National Hospital, Washington, DC 20010, USA;
| | - Yongqi Yu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
| |
Collapse
|
48
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
49
|
Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine Pathway Metabolites as Biomarkers in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9484217. [PMID: 35096208 PMCID: PMC8791723 DOI: 10.1155/2022/9484217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that deteriorates cognitive function. Patients with AD generally exhibit neuroinflammation, elevated beta-amyloid (Aβ), tau phosphorylation (p-tau), and other pathological changes in the brain. The kynurenine pathway (KP) and several of its metabolites, especially quinolinic acid (QA), are considered to be involved in the neuropathogenesis of AD. The important metabolites and key enzymes show significant importance in neuroinflammation and AD. Meanwhile, the discovery of changed levels of KP metabolites in patients with AD suggests that KP metabolites may have a prominent role in the pathogenesis of AD. Further, some KP metabolites exhibit other effects on the brain, such as oxidative stress regulation and neurotoxicity. Both analogs of the neuroprotective and antineuroinflammation metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic and neuroinflammation compounds may have potential therapeutic significance. This review focused on the KP metabolites through the relationship of neuroinflammation in AD, significant KP metabolites, and associated molecular mechanisms as well as the utility of these metabolites as biomarkers and therapeutic targets for AD. The objective is to provide references to find biomarkers and therapeutic targets for patients with AD.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shan Xie
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanyun He
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Manru Xu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xi Qiao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yue Zhu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
50
|
Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12010075. [PMID: 35053818 PMCID: PMC8773743 DOI: 10.3390/brainsci12010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The human brain maintains billions of neurons functional across the lifespan of the individual. The glial, supportive cells of the brain are indispensable to neuron elasticity. They undergo various states (active, reactive, macrophage, primed, resting) and carefully impose either quick repair or the cleaning of injured neurons to avoid damage extension. Identifying the failure of these interactions involving the relation of the input of glial cells to the inception and/or progression of chronic neurodegenerative diseases (ND) is crucial in identifying therapeutic options, given the well-built neuro-immune module of these diseases. In the present review, we scrutinize different interactions and important factors including direct cell–cell contact, intervention by the CD200 system, various receptors present on their surfaces, CXC3RI and TREM2, and chemokines and cytokines with special reference to Alzheimer’s disease (AD). The present review of the available literature will elucidate the contribution of microglia and astrocytes to the pathophysiology of AD, thus evidencing glial cells as obligatory transducers of pathology and superlative targets for interference.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Dreamzz IVF Center and Women’s Care Hospital, Ahmedabad 382350, Gujarat, India;
| | - Kavita Singh
- Centre for Translational Research, Jiwaji University, Gwalior 474011, Madhya Pradesh, India;
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.M.); (A.K.M.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (M.M.); (A.K.M.)
| |
Collapse
|