1
|
Neupane SB, Schmidt JM, Snyder WE, Hudson WG, Wang X, Buffington M, Daane KM, Sial AA. Assessing native parasitoids of the invasive pest Drosophila suzukii (Diptera: Drosophilidae) in the Southeastern USA. ENVIRONMENTAL ENTOMOLOGY 2024; 53:966-972. [PMID: 39447035 DOI: 10.1093/ee/nvae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly known as spotted-wing Drosophila (SWD), is an invasive insect pest threatening the economy of many small fruit farms in the Americas and Europe. Biological control using parasitoids is a promising strategy for improving the sustainable management of SWD. To use the parasitoids as biocontrol agents, recognizing and understanding the presence and preference of North American native parasitoids and their local adaptation is necessary. We conducted 2 season-long field explorations of North American native parasitoids of SWD during 2021 and 2022 at major blueberry-producing locations in southeast GA, USA. A total of 371 parasitoids of Drosophila were collected using fruit-baited sentinel traps and classified into 3 families: Figitidae, Pteromalidae, and Diapriidae. Leptopilina boulardi (Hymenoptera: Figitidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae) were the most abundant species. The abundance of parasitoids was higher during the peak blueberry ripening period through the end of the harvest season compared to all other phenological stages. Out of the North American native parasitoids of SWD that we collected, Pachycrepoideus vindemmiae successfully parasitized SWD in its natural habitat, and L. boulardi only parasitized SWD larvae at a low rate of 7% in the laboratory, but it failed to emerge from all the parasitized SWD. Ultimately, we found that the existing North American native parasitoids were inadequate to suppress the SWD in these locations. Planned intervention with the classical release of Asian native specialist parasitoids in addition to the existing SWD management approaches was deemed necessary in these areas.
Collapse
Affiliation(s)
- Subin B Neupane
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jason M Schmidt
- Department of Entomology, University of Georgia, Tifton, GA, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - William G Hudson
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xingeng Wang
- United States Department of Agriculture, Agricultural Research Service, Newark, DE, USA
| | - Matthew Buffington
- United States Department of Agriculture, Agricultural Research Service, Washington, DC, USA
| | - Kent M Daane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Edwards S, Naundrup A, Becher PG, De Fine Licht HH. Patterns of genotype-specific interactions in an obligate host-specific insect pathogenic fungus. J Evol Biol 2024:voae149. [PMID: 39671697 DOI: 10.1093/jeb/voae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Host-pathogen infections and possible effects on co-evolutionary patterns depend on the genotypes of both host and pathogen. Obligate fungal pathogens of plants are often characterized by host-pathogen genotype-by-genotype (GxG) interactions, but whether these patterns exist in obligate insect fungal pathogens is unclear. We take advantage of the obligate insect pathogenic fungus Entomophthora muscae, where individual isolates are specific to different dipteran host species in nature but can cross-infect multiple fly species in the laboratory. We collected three new isolates of E. muscae from Drosophila species. Phylogenetic analysis showed that Drosophila-isolated E. muscae represents a distinct geographically widespread Drosophila lineage compared to the house fly (Musca domestica) or Delia species-isolated E. muscae. We used the three new E. muscae isolates from Drosophila spp. together with a genetically distinct E. muscae isolate from house flies and assessed their virulence in a cross-infection experiment using one house fly, three Drosophila suzukii, and two D. melanogaster genotypes as hosts. All fungal isolates successfully infected hosts, induced behavioural manipulation, sporulated in all fly hosts, and differed in virulence between host genotypes, revealing GxG interactions. While house flies were most susceptible to fungal infection with 99% mortality, we found a lower virulence of 49% and 25% mortality in D. melanogaster and D. suzukii genotypes, respectively. Furthermore, all isolates harboured a specific mycovirus (family Iflaviridae), but co-phylogenetic branching patterns did not support fungus-virus co-speciation. We show that the genetic makeup of both fungal pathogen and fly host influence E. muscae infectivity, confirming GxG interactions in obligate fly fungal pathogens.
Collapse
Affiliation(s)
- Sam Edwards
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Andreas Naundrup
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Alnarp 23053, Sweden
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| |
Collapse
|
3
|
Walsh-Antzak CR, Erickson PA. Strength of enemy release from parasitoids is context-dependent in the invasive African Fig Fly, Zaprionus indianus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602257. [PMID: 39026893 PMCID: PMC11257516 DOI: 10.1101/2024.07.09.602257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Understanding the mechanisms underlying the success of biological invasions is essential to employ effective prediction and management strategies. Escape from natural enemies in invaded regions (enemy release hypothesis, ERH) and increased competitive ability are hallmarks of invasive species; however, these two processes are rarely studied within the same context. Here, we examined the effect of enemy release on the competition outcomes of a successful invasive insect pest in North America, the African fig fly (Zaprionus indianus). Parasitoid wasps such as Leptopilina heterotoma that parasitize drosophilid larvae may seek out established species with known host suitability over a novel species, so we hypothesized Z. indianus may have low susceptibility to parasitoids, giving them a competitive advantage over co-occurring drosophilids. We tested this hypothesis by comparing the adult emergence rates from Z. indianus larvae reared alone or in competition with Drosophila hydei or D. simulans larvae in the presence and absence of parasitoid wasps under low and high larval densities. At low larval densities, Z. indianus emerged at equal rates to D. hydei but outcompeted D. simulans, and these outcomes were not affected by parasitoids. However, at high densities, the addition of parasitoids shifted competition outcomes in favor of Z. indianus, suggesting enemy release provides a competitive advantage under some circumstances. These results indicate that the strength of enemy release in Z. indianus is widely dependent on contextual factors such as density and competitor species. This study emphasizes how a community approach to testing the ERH is vital as the overall interpretation of the presence and strength of enemy release differed between intraspecific and interspecific experiments. Further investigation of how these results apply to field environments could offer insight into how Z. indianus alters ecosystems and how productive biological control may limit the spread of Z. indianus.
Collapse
|
4
|
Garriga A, Toubarro D, Morton A, Simões N, García-Del-Pino F. Analysis of the immune transcriptome of the invasive pest spotted wing drosophila infected by Steinernema carpocapsae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:622-630. [PMID: 39328175 DOI: 10.1017/s0007485324000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Drosophila suzukii is a pest of global concern due to its great impact on several crops. The entomopathogenic nematode Steinernema carpocapsae was highly virulent to the larvae of the fly although some immune mechanisms were triggered along the infection course. Thus, to understand the gene activation profile we performed a comparative transcriptome of D. suzukii larvae infected with S. carpocapsae and Xenorhabdus nematophila to map the differentially expressed genes involved in the defence response. The analysis exposed the induction of genes involved in the humoral response such as the antimicrobial peptides and pattern-recognition receptors while there was a suppression of the cellular defence. Besides, genes involved in melanisation, and clot formation were downregulated hindering the encapsulation response and wound healing. After the infection, larvae were in a stress condition with an enrichment of metabolic and transport functionalities. Concerning the stress response, we observed variations of the heat-shock proteins, detoxification, and peroxidase enzymes. These findings set a genetical comprehensive knowledge of the host-pathogen relation of D. suzukii challenged with S. carpocapsae which could support further comparative studies with entomopathogenic nematodes.
Collapse
Affiliation(s)
- A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - A Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Simões
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - F García-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
Hopper KR, Wang X, Kenis M, Seehausen ML, Abram PK, Daane KM, Buffington ML, Hoelmer KA, Kingham BF, Shevchenko O, Bernberg E. Genome divergence and reproductive incompatibility among populations of Ganaspis near brasiliensis. G3 (BETHESDA, MD.) 2024; 14:jkae090. [PMID: 38718200 PMCID: PMC11228843 DOI: 10.1093/g3journal/jkae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/12/2024] [Indexed: 07/09/2024]
Abstract
During the last decade, the spotted wing drosophila, Drosophila suzukii, has spread from eastern Asia to the Americas, Europe, and Africa. This fly attacks many species of cultivated and wild fruits with soft, thin skins, where its serrated ovipositor allows it to lay eggs in undamaged fruit. Parasitoids from the native range of D. suzukii may provide sustainable management of this polyphagous pest. Among these parasitoids, host-specificity testing has revealed a lineage of Ganaspis near brasiliensis, referred to in this paper as G1, that appears to be a cryptic species more host-specific to D. suzukii than other parasitoids. Differentiation among cryptic species is critical for introduction and subsequent evaluation of their impact on D. suzukii. Here, we present results on divergence in genomic sequences and architecture and reproductive isolation between lineages of Ganaspis near brasiliensis that appear to be cryptic species. We studied five populations, two from China, two from Japan, and one from Canada, identified as the G1 vs G3 lineages based on differences in cytochrome oxidase l sequences. We assembled and annotated the genomes of these populations and analyzed divergences in sequence and genome architecture between them. We also report results from crosses to test reproductive compatibility between the G3 lineage from China and the G1 lineage from Japan. The combined results on sequence divergence, differences in genome architectures, ortholog divergence, reproductive incompatibility, differences in host ranges and microhabitat preferences, and differences in morphology show that these lineages are different species. Thus, the decision to evaluate the lineages separately and only import and introduce the more host-specific lineage to North America and Europe was appropriate.
Collapse
Affiliation(s)
- Keith R Hopper
- United States Department of Agriculture, Agricultural Research Service, 501 South Chapel Street, Newark, DE 19713, USA
| | - Xingeng Wang
- United States Department of Agriculture, Agricultural Research Service, 501 South Chapel Street, Newark, DE 19713, USA
| | - Marc Kenis
- CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland
| | | | - Paul K Abram
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, PO Box 1000, Agassiz, BC V0 M 1A2, Canada
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Matthew L Buffington
- United States Department of Agriculture, Agricultural Research Service, Washington, c/o Smithsonian Institution, National Museum of Natural History, 10th and Constitution NW, MRC-168, Washington, DC 20013-7012, USA
| | - Kim A Hoelmer
- United States Department of Agriculture, Agricultural Research Service, 501 South Chapel Street, Newark, DE 19713, USA
| | - Brewster F Kingham
- DNA Sequencing & Genotyping Center, Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| | - Olga Shevchenko
- DNA Sequencing & Genotyping Center, Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| | - Erin Bernberg
- DNA Sequencing & Genotyping Center, Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
6
|
Brantley SE, Stouthamer CM, Kr P, Fischer ML, Hill J, Schlenke TA, Mortimer NT. Host JAK-STAT activity is a target of parasitoid wasp virulence strategies. PLoS Pathog 2024; 20:e1012349. [PMID: 38950076 PMCID: PMC11244843 DOI: 10.1371/journal.ppat.1012349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Innate immune responses that allow hosts to survive infection depend on the action of multiple conserved signaling pathways. Pathogens and parasites in turn have evolved virulence factors to target these immune signaling pathways in an attempt to overcome host immunity. Consequently, the interactions between host immune molecules and pathogen virulence factors play an important role in determining the outcome of an infection. The immune responses of Drosophila melanogaster provide a valuable model to understand immune signaling and host-pathogen interactions. Flies are commonly infected by parasitoid wasps and mount a coordinated cellular immune response following infection. This response is characterized by the production of specialized blood cells called lamellocytes that form a tight capsule around wasp eggs in the host hemocoel. The conserved JAK-STAT signaling pathway has been implicated in lamellocyte proliferation and is required for successful encapsulation of wasp eggs. Here we show that activity of Stat92E, the D. melanogaster STAT ortholog, is induced in immune tissues following parasitoid infection. Virulent wasp species are able to suppress Stat92E activity during infection, suggesting they target JAK-STAT pathway activation as a virulence strategy. Furthermore, two wasp species (Leptopilina guineaensis and Ganaspis xanthopoda) suppress phenotypes associated with a gain-of-function mutation in hopscotch, the D. melanogaster JAK ortholog, indicating that they inhibit the activity of the core signaling components of the JAK-STAT pathway. Our data suggest that parasitoid wasp virulence factors block JAK-STAT signaling to overcome fly immune defenses.
Collapse
Affiliation(s)
- Susanna E Brantley
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Corinne M Stouthamer
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Pooja Kr
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Mary L Fischer
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Joshua Hill
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Todd A Schlenke
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
7
|
Krüger AP, Garcez AM, Scheunemann T, Nava DE, Garcia FRM. Trichopria anastrephae as a Biological Control Agent of Drosophila suzukii in Strawberries. NEOTROPICAL ENTOMOLOGY 2024; 53:216-224. [PMID: 38206509 DOI: 10.1007/s13744-023-01113-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
In South America, the resident pupal parasitoid Trichopria anastrephae Costa Lima (Hymenoptera: Diapriidae) is a potential biological control agent of the pest Drosophila suzukii Matsumura (Diptera: Drosophilidae). In the present study, we (1) examined the behavior of T. anastrephae towards different host (D. suzukii) and host-substrate (strawberry) cues in choice and non-choice bioassays in laboratory, and (2) examined the density-dependent parasitism of T. anastrephae in D. suzukii-infested strawberries in a greenhouse. When given a choice, female parasitoids walked longer over chambers with fruits infested with eggs, larvae, or pupae of D. suzukii, when compared to healthy uninfested strawberries, and over overripe fruits when compared to unripe or ripe fruits. In the greenhouse assay, we observed an increase in parasitism and a decrease in the number of D. suzukii emerging per fruit with an increase in the number of parasitoids released. Our results allow a better understanding of the behavior and parasitism of T. anastrephae in D. suzukii-infested strawberries and provide useful data for potential biological control programs using this parasitoid.
Collapse
Affiliation(s)
- Alexandra P Krüger
- Crop Protection Department, Federal University of Pelotas (UFPel), Capão do Leão, RS, Brazil.
| | - Amanda M Garcez
- Crop Protection Department, Federal University of Pelotas (UFPel), Capão do Leão, RS, Brazil
| | - Tiago Scheunemann
- Crop Protection Department, Federal University of Pelotas (UFPel), Capão do Leão, RS, Brazil
| | - Dori E Nava
- Laboratoy of Entomology, Embrapa Temperate Agriculture, Pelotas, RS, Brazil
| | - Flávio R M Garcia
- Crop Protection Department, Federal University of Pelotas (UFPel), Capão do Leão, RS, Brazil
- Ecology, Zoology and Genetics Department, Institute of Biology, Federal University of Pelotas (UFPel), Capão do Leão, RS, Brazil
| |
Collapse
|
8
|
Fischbein D, Kun ME, Chillo V, Masciocchi M, Germano MD, Cardozo A, Martínez AS. Resident Hymenopteran Parasitoids with Potential Drosophilid Associations in Andean North Patagonia: Implications for the Biological Control of the Spotted Wing Drosophila. NEOTROPICAL ENTOMOLOGY 2024; 53:18-28. [PMID: 37752294 DOI: 10.1007/s13744-023-01083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
The spotted wing drosophila, Drosophila suzukii Matsumura, is native to Southeast Asia and has become a serious pest of soft-skinned fruits worldwide. Several control methods are being tested worldwide as part of an integrated pest management approach. Biological control is a promising alternative tactic that can be used to manage D. suzukii populations, especially in unmanaged areas. This study aimed at exploring the diversity of resident hymenopteran parasitoids of drosophilids in northwestern Patagonia, where D. suzukii is considered an important pest. The survey also aimed to investigate possible associations between parasitoids and D. suzukii in several crops and non-crop fruits, and to determine D. suzukii fruits infestation levels. Fourteen sites with mainly berry crops were sampled biweekly using cider vinegar traps and collecting fresh fruits from a variety of crop and non-crop fruit plants. We identified five species of hymenopteran parasitoids, obtained from the baited traps, that have the potential to associate with D. suzukii: Leptopilina heterotoma Thomson, Ganaspis brasiliensis Ihering, Hexacola hexatoma Hartig (Figitidae), Pachycrepoideus vindemmiae Rondani (Pteromalidae), and Spalangia endius Walker (Spalangiidae). Leptopilina heterotoma is reported for the first time in Argentina. High numbers of D. suzukii adults were recovered from baited traps and field-collected fruits. However, no parasitoid emerged from D. suzukii pupae recovered from fruits, nor were any dead parasitoids recorded inside D. suzukii pupae. Overall infestation levels of D. suzukii on field-collected fruits did not differ significantly between species/varieties. The results are discussed with emphasis on the possible functionality and perspectives of using these species as biological control agents.
Collapse
Affiliation(s)
- Deborah Fischbein
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA EEA Bariloche-CONICET), Bariloche, Río Negro, Argentina.
| | - Marcelo Eduardo Kun
- Laboratorio de Zoología, Universidad Nacional del Comahue, CRUB, Bariloche, Río Negro, Argentina
| | - Verónica Chillo
- Agencia de Extensión Rural Bolsón (IFAB, INTA EEA Bariloche-CONICET), Bariloche, Río Negro, Argentina
| | - Maité Masciocchi
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA EEA Bariloche-CONICET), Bariloche, Río Negro, Argentina
| | - Mónica Daniela Germano
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA EEA Bariloche-CONICET), Bariloche, Río Negro, Argentina
| | - Andrea Cardozo
- Agencia de Extensión Rural Bolsón (IFAB, INTA EEA Bariloche-CONICET), Bariloche, Río Negro, Argentina
| | - Andrés Santiago Martínez
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA EEA Bariloche-CONICET), Bariloche, Río Negro, Argentina
| |
Collapse
|
9
|
Shaw B, Walker A, Hemer S, Cannon MFL, Brown B, Rogai FM, Fountain MT. Preliminary evidence of Drosophila suzukii parasitism in Southeast England. Parasitol Res 2023; 122:2585-2597. [PMID: 37707606 DOI: 10.1007/s00436-023-07957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Controlling the invasive fruit pest, Drosophila suzukii, relies on a range of complimentary pest management approaches. However, increasing external costs (e.g., labour, exclusion mesh and fuel), are limiting the ability to control the pest via non-chemical means. Extant UK parasitoids could be exploited for the suppression of D. suzukii populations, but there is currently a lack of knowledge of the UK species utilising D. suzukii as a host or their lifecycle requirements. Between 2017 and 2020, we identified parasitoids developing in D. suzukii, in Southeast England.Sentinel traps, containing laboratory reared D. suzukii larvae/pupae in fruit, were deployed within the vicinity of commercial crops and semi-natural areas. Six generalist parasitoid species were recovered from D. suzukii sentinel traps. These included two species of larval parasitoids (Leptopilina heterotoma Thomson (Hymenoptera: Figitidae) and Asobara tabida (Nees) (Hymenoptera: Braconidae) and four pupal parasitoids (Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae), Spalangia erythromera (Forster) (Hymenoptera: Pteromalidae), Trichopria modesta (Ratzeburg, 1848) and T. prema Nixon (both Hymenoptera: Diapriidae)).The performance of the first four species as D. suzukii parasitoids was further tested in the laboratory and then in the field to assess rates of parasitism. Pachycrepoideus vindemiae was the most abundant species recovered from field collections and had in increasing rate of population rate in the laboratory. Other species were not successful at parasitising D. suzukii. In the field, adult D. suzukii emergence from sentinel traps was reduced by ~ 21% where parasitoids could access D. suzukii larvae and pupae.Parasitoids of D. suzukii are understudied in the UK, and this research indicates where future efforts could be made in understanding the interaction between host and parasitoid and the opportunities to exploit extant parasitoids for the control of D. suzukii. We also evaluate the prospects for classical and augmented control and discuss how they may fit with current regional integrated pest management options.
Collapse
Affiliation(s)
| | | | - Sebastian Hemer
- NIAB East Malling, Maidstone, Kent, UK
- Berry Gardens Growers, Maidstone, Kent, UK
| | | | | | | | | |
Collapse
|
10
|
Li TH, Wang X, Desneux N, Song LW, Zang LS. Performance of Chouioia cunea reared from a coleopteran alternative host as a biocontrol agent against the invasive lepidopteran pest, Hyphantria cunea. PEST MANAGEMENT SCIENCE 2023; 79:1500-1507. [PMID: 36502497 DOI: 10.1002/ps.7318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chouioia cunea is a generalist pupal endoparasitoid. Native to Eurasia, the parasitoid has been mass-reared on an alternative lepidopteran host (Antheraea pernyi) to successfully control the exotic invasive lepidopteran pest Hyphantria cunea in China. To solicit more accessible hosts, this study evaluated the potential of an easily cultured coleopteran beetle (Tenebrio molitor) as a substitute for rearing C. cunea through comparing the relative performance of the parasitoids reared from both alternative hosts on H. cunea. RESULTS Compared with those reared from A. pernyi, the parasitoids reared from T. molitor (i.e., T. molitor vs. A. pernyi groups) performed equally well in terms of parasitism rate (94.4 vs. 88.9%), number of offspring produced per parasitized host (278 vs. 286), and female body length (1.334 vs. 1.351 mm), hind-tibia length (0.322 vs. 0.324 mm) and number of mature oocytes in the ovarioles (171 vs. 187), or even better based on offspring pre-emergence time (16.0 vs 16.9 days) and percentages of emerged offspring (99.8 vs. 99.1%) and female offspring (97.1 vs. 91.3%). Flight performance testing indicated that young C. cunea adults emerged from T. molitor had a similar percentage of actively flying wasps (76.9 vs. 72.9%) and a lower percentage of inactive wasps (2.3 vs. 10.6%) when compared to those reared from A. pernyi. CONCLUSION Given the remarkable adaptability of C. cunea and the vast availability of T. molitor as a common resource insect worldwide, this indigenous parasitoid could be mass-reared on T. molitor to improve the prospect of biological control of H. cunea in its invaded regions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian-Hao Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xingeng Wang
- USDA ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | | | - Li-Wei Song
- Changchun Jingyuetan Experimental Forest Farm, Changchun, China
| | - Lian-Sheng Zang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Garriga A, Toubarro D, Simões N, Morton A, García-Del-Pino F. The modulation effect of the Steinernema carpocapsae - Xenorhabdus nematophila complex on immune-related genes in Drosophila suzukii larvae. J Invertebr Pathol 2023; 196:107870. [PMID: 36493843 DOI: 10.1016/j.jip.2022.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Larvae of the invasive pest Drosophila suzukii are susceptible to the Steinernema carpocapsae - Xenorhabdus nematophila complex and an assessment of the immune-regulatory system activation in this insect was performed to understand the response to the nematode infection. The expressions of 14 immune-related genes of different pathways (Imd, Toll, Jak-STAT, ProPO, JNK, TGF-β) were analyzed using qRT-PCR to determine variations after nematode penetration (90 min and 4 h) and after bacterial release (14 h). Before the bacteria were present, the nematodes were not recognized by the immune system of the larvae and practically none of the analyzed pathways presented variations when compared with the non-infected larvae. However, after the X. nematophila were released, PGRP-LC was activated leading to the gene upregulation of antimicrobial peptides of both the Toll and Imd pathways. Interestingly, the cellular response was inactive during the infection course as Jak/STAT and pro-phenoloxidase genes remained unresponsive to the presence of both pathogens. These results illustrate how D. suzukii immune pathways responded differently to the nematode and bacteria along the infection course.
Collapse
Affiliation(s)
- A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - N Simões
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - A Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F García-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Quicray M, Wilhelm L, Enriquez T, He S, Scheifler M, Visser B. The Drosophila-parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution. Ecol Evol 2023; 13:e9625. [PMID: 36703713 PMCID: PMC9871341 DOI: 10.1002/ece3.9625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid-parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances.
Collapse
Affiliation(s)
- Maude Quicray
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Shulin He
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| |
Collapse
|
13
|
Nair RR, Peterson AT. Mapping the global distribution of invasive pest Drosophila suzukii and parasitoid Leptopilina japonica: implications for biological control. PeerJ 2023; 11:e15222. [PMID: 37123003 PMCID: PMC10135410 DOI: 10.7717/peerj.15222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Insect pest invasions cause significant damage to crop yields, and the resultant economic losses are truly alarming. Climate change and trade liberalization have opened new ways of pest invasions. Given the consumer preference towards organic agricultural products and environment-friendly nature of natural pest control strategies, biological control is considered to be one of the potential options for managing invasive insect pests. Drosophila suzukii (Drosophilidae) is an extremely damaging fruit pest, demanding development of effective and sustainable biological control strategies. In this study, we assessed the potential of the parasitoid Leptopilina japonica (Figitidae) as a biocontrol agent for D. suzukii using ecological niche modeling approaches. We developed global-scale models for both pest and parasitoid to identify four components necessary to derive a niche based, target oriented prioritization approach to plan biological control programs for D. suzukii: (i) potential distribution of pest D. suzukii, (ii) potential distribution of parasitoid L. japonica, (iii) the degree of overlap in potential distributions of pest and parasitoid, and (iv) biocontrol potential of this system for each country. Overlapping suitable areas of pest and parasitoid were identified at two different thresholds and at the most desirable threshold (E = 5%), potential for L. japonica mediated biocontrol management existed in 125 countries covering 1.87 × 107 km2, and at the maximum permitted threshold (E = 10%), land coverage was reduced to 1.44 × 107 km2 in 121 countries. Fly pest distributional information as a predictor variable was not found to be improving parasitoid model performance, and globally, only in half of the countries, >50% biocontrol coverage was estimated. We therefore suggest that niche specificities of both pest and parasitoid must be included in site-specific release planning of L. japonica for effective biocontrol management aimed at D. suzukii. This study can be extended to design cost-effective pre-assessment strategies for implementing any biological control management program.
Collapse
Affiliation(s)
- Rahul R. Nair
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
14
|
Punia A, Chauhan NS. Effect of daidzein on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109465. [PMID: 36103973 DOI: 10.1016/j.cbpc.2022.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Anti- insecticidal potential of daidzein was studied by feeding second instar larvae of Spodoptera litura (Fabricius) on artificial diet incorporated with different concentrations (5 ppm, 25 ppm, 125 ppm, 625 ppm) of diadzein. Results revealed high larval mortality, prolongation of pupal and total developmental period of the larvae treated with diadzein. Anti-nutritional/post ingestive toxicity of diadzein was also revealed by the decrease in the nutritional indices such as relative growth rate (RGR), relative consumption rate (RCR), efficiency of conversion of digested food (ECD), efficiency of conversion of ingested food (ECI) and approximate digestibility (AD). The suppression of immune function due to decline in the total hemocytes count was also observed in treated S. litura larvae. Profiles of detoxifying enzymes viz. superoxide dismutases (SOD), catalase (CAT), ascorbate peroxidases (APOX) and glutathione S-transferase (GST) were also significantly increased with diadzein treatment. The hydrogen peroxide content (H2O2), lipid peroxide content (LP) and protein carbonyl content were also significantly enhanced in the treated larvae thus, indicating oxidative stress in the insect. Our findings suggest that daidzein can be used as the alternative to conventional pesticides for controlling S. litura population.
Collapse
Affiliation(s)
- Abhay Punia
- Department of Zoology, DAV University, Jalandhar, Punjab, India
| | | |
Collapse
|
15
|
Wang T, Marle P, Slaveykova VI, Schirmer K, Liu W. Comparative study of the sensitivity of two freshwater gastropods, Lymnaea stagnalis and Planorbarius corneus, to silver nanoparticles: bioaccumulation and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119999. [PMID: 36030959 DOI: 10.1016/j.envpol.2022.119999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively) which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.
Collapse
Affiliation(s)
- Ting Wang
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland
| | - Pierre Marle
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland; University of Lyon, CNRS UMR5023 LEHNA, Villeurbanne Cedex 69622, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL Lausanne, Lausanne, Switzerland
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland.
| |
Collapse
|
16
|
Gwokyalya R, Herren JK, Weldon CW, Khamis FM, Ndlela S, Mohamed SA. Differential immune responses in new and old fruit fly-parasitoid associations: Implications for their management. Front Physiol 2022; 13:945370. [PMID: 36091407 PMCID: PMC9458847 DOI: 10.3389/fphys.2022.945370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), and marula fruit fly, Ceratitis cosyra (Walker), are major fruit-infesting tephritids across sub-Saharan Africa. Biological control of these pests using parasitic wasps has been widely adopted but with varying levels of success. Most studies investigating host-parasitoid models have focused on functional and evolutionary aspects leaving a knowledge gap about the physiological mechanisms underpinning the efficacy of parasitoids as biocontrol agents of tephritids. To better understand these physiological mechanisms, we investigated changes in the cellular immune responses of C. cosyra and B. dorsalis when exposed to the parasitic wasps, Diachasmimorpha longicaudata (Ashmaed) and Psyttalia cosyrae (Wilkinson). We found that B. dorsalis was more resistant to parasitisation, had a higher hemocyte count, and encapsulated more parasitoid eggs compared to C. cosyra, achieving up to 100% encapsulation when exposed to P. cosyrae. Exposing B. dorsalis to either parasitoid species induced the formation of a rare cell type, the giant multinucleated hemocyte, which was not observed in C. cosyra. Furthermore, compared to P. cosyrae-parasitized larvae, those of both host species parasitized by D. longicaudata had lower encapsulation rates, hemocyte counts and spreading abilities and yielded a higher number of parasitoid progeny with the highest parasitoid emergence (72.13%) recorded in C. cosyra. These results demonstrate that cellular immune responses are central to host-parasitoid interaction in tephritid fruit flies and further suggest that D. longicaudata presents greater potential as a biocontrol agent of B. dorsalis and C. cosyra in horticultural cropping systems.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Rehemah Gwokyalya, , ; Samira Abuelgasim Mohamed,
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Samira Abuelgasim Mohamed
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- *Correspondence: Rehemah Gwokyalya, , ; Samira Abuelgasim Mohamed,
| |
Collapse
|
17
|
Abram PK, Wang X, Hueppelsheuser T, Franklin MT, Daane KM, Lee JC, Lue CH, Girod P, Carrillo J, Wong WHL, Kula RR, Gates MW, Hogg BN, Moffat CE, Hoelmer KA, Sial AA, Buffington ML. A Coordinated Sampling and Identification Methodology for Larval Parasitoids of Spotted-Wing Drosophila. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:922-942. [PMID: 34984457 DOI: 10.1093/jee/toab237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 06/14/2023]
Abstract
We provide recommendations for sampling and identification of introduced larval parasitoids of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). These parasitoids are either under consideration for importation (aka classical) biological control introductions, or their adventive (presumed to have been accidentally introduced) populations have recently been discovered in North America and Europe. Within the context of the ecology of D. suzukii and its parasitoids, we discuss advantages and disadvantages of estimating larval parasitism levels using different methods, including naturally collected fruit samples and sentinel baits. For most situations, we recommend repeated sampling of naturally occurring fruit rather than using sentinel baits to monitor seasonal dynamics of host plant-Drosophila-parasitoid associations. We describe how to separate Drosophilidae puparia from host fruit material in order to accurately estimate parasitism levels and establish host-parasitoid associations. We provide instructions for identification of emerging parasitoids and include a key to the common families of parasitoids of D. suzukii. We anticipate that the guidelines for methodology and interpretation of results that we provide here will form the basis for a large, multi-research team sampling effort in the coming years to characterize the biological control and nontarget impacts of accidentally and intentionally introduced larval parasitoids of D. suzukii in several regions of the world.
Collapse
Affiliation(s)
- Paul K Abram
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, BC, Canada
| | - Xingeng Wang
- USDA-ARS, Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Tracy Hueppelsheuser
- British Columbia Ministry of Agriculture, Food and Fisheries, Abbotsford, BC, Canada
| | - Michelle T Franklin
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, BC, Canada
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Jana C Lee
- USDA-ARS, Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Chia-Hua Lue
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Pierre Girod
- Faculty of Land and Food Systems, University of British Columbia, Centre for Sustainable Food Systems and the Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, Vancouver, BC, Canada
| | - Juli Carrillo
- Faculty of Land and Food Systems, University of British Columbia, Centre for Sustainable Food Systems and the Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, Vancouver, BC, Canada
| | - Warren H L Wong
- Faculty of Land and Food Systems, University of British Columbia, Centre for Sustainable Food Systems and the Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, Vancouver, BC, Canada
| | - Robert R Kula
- USDA-ARS, Systematic Entomology Laboratory, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Michael W Gates
- USDA-ARS, Systematic Entomology Laboratory, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Brian N Hogg
- USDA-ARS, Invasive Species and Pollinator Health Research Unit, Albany, CA, USA
| | - Chandra E Moffat
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - Kim A Hoelmer
- USDA-ARS, Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Matthew L Buffington
- USDA-ARS, Systematic Entomology Laboratory, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
18
|
Garcia FRM, Lasa R, Funes CF, Buzzetti K. Drosophila suzukii Management in Latin America: Current Status and Perspectives. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1008-1023. [PMID: 35595171 DOI: 10.1093/jee/toac052] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 05/17/2023]
Abstract
Spotted-wing drosophila, Drosophila suzukii Matsumura, was first established in Latin America in Mexico in 2011. The vinegar fly has since been detected in 296 municipalities in Argentina, Brazil, Chile, Mexico, and Uruguay. Drosophila suzukii is polyphagous and is found on 64 host plants in 25 families in Latin America, with most hosts also exotic species. In Latin America, D. suzukii is attacked by 14 species of parasitoid wasps in the families Diapriidae, Figitidae, and Pteromalidae, which are promising native parasitoids for control of the pest. This article analyzes results from studies on monitoring, biological, chemical, and cultural control, and sterile insect techniques to provide a basis for the development of area-wide and sustainable D. suzukii management programs in Latin America. The review examines how D. suzukii has been managed in Latin America and how research conducted in this region can contribute to management of the species in other parts of the world.
Collapse
Affiliation(s)
- Flávio Roberto Mello Garcia
- Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Ecologia, Zoologia e Genética, 96010-900, Pelotas, RS, Brazil
| | - Rodrigo Lasa
- Instituto de Ecología AC, Red de Manejo Biorracional de Plagas y Vectores, 91073 Xalapa, Veracruz, Mexico
| | - Claudia F Funes
- INTA Estación Experimental Agropecuaria Famaillá, Ruta Provincial 301, Km 32, 4132 Famaillá, Tucumán, Argentina
| | - Karina Buzzetti
- Consultora AgriDevelopment Ltda, Napoleón 3565 of 202, 7550219, Las Condes, Chile
| |
Collapse
|
19
|
Kruitwagen A, Beukeboom LW, Wertheim B, van Doorn GS. Evolution of parasitoid host preference and performance in response to an invasive host acting as evolutionary trap. Ecol Evol 2022; 12:e9030. [PMID: 35813932 PMCID: PMC9251845 DOI: 10.1002/ece3.9030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/02/2023] Open
Abstract
The invasion of a novel host species can create a mismatch in host choice and offspring survival (performance) when native parasitoids attempt to exploit the invasive host without being able to circumvent its resistance mechanisms. Invasive hosts can therefore act as evolutionary trap reducing parasitoids' fitness and this may eventually lead to their extinction. Yet, escape from the trap can occur when parasitoids evolve behavioral avoidance or a physiological strategy compatible with the trap host, resulting in either host-range expansion or a complete host-shift. We developed an individual based model to investigate which conditions promote parasitoids to evolve behavioral preference that matches their performance, including host-trap avoidance, and which conditions lead to adaptations to the unsuitable hosts. The model was inspired by solitary endo-parasitoids attacking larval host stages. One important aspect of these conditions was reduced host survival during incompatible interaction, where a failed parasitization attempt by a parasitoid resulted not only in death of her offspring but also in host killing. This non-reproductive host mortality had a strong influence on the likelihood of establishment of novel host-parasitoid relationship, in some cases constraining adaptation to the trap host species. Moreover, our model revealed that host-search efficiency and genetic variation in host-preference play a key role in the likelihood that parasitoids will include the suboptimal host in their host range, or will evolve behavioral avoidance resulting in specialization and host-range conservation, respectively. Hence, invasive species might change the evolutionary trajectory of native parasitoid species, which is important for predicting biocontrol ability of native parasitoids towards novel hosts.
Collapse
Affiliation(s)
- Astrid Kruitwagen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - G. Sander van Doorn
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
20
|
Gautam A, Mukherjee S, Manna S, Banerjee P, Manna S, Ghosh AR, Ray M, Ray S. Metal accumulation and morphofunctional damage in coelomocytes of earthworm collected from industrially contaminated soil of Kolkata, India. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109299. [PMID: 35182717 DOI: 10.1016/j.cbpc.2022.109299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
The current study is aimed to assess the ecotoxicological effects of toxic metals and seasonal shift of the physicochemical characteristics of soil in an endogeic earthworm Metaphire posthuma of industrially contaminated soil of Calcutta leather complex. The accumulation of cadmium, chromium, lead and mercury was quantitated in whole earthworms and coelomocytes. The accumulation of metals was derived to be high in the coelomocytes than whole earthworms. Morphofunctional shift in coelomocytes indicated a high level of metal toxicity in soil inhabitants. The shift in differential coelomocyte count and cellular damage including intense cytoplasmic vacuolation and membrane blebbing of coelomocytes of M. posthuma of contaminated soil were suggestive to a state of immunocompromisation in the same species. Shift in the generation of nitric oxide and activity of inducible nitric oxide synthase indicated a possible immunosuppression in earthworm. Depletion in the acetylcholinesterase activity of coelomocytes indicated neurotoxicity of metals leached from the dumped wastes in Calcutta leather complex. Integrated biomarker response based analysis was carried out to assess the biomarker potential of experimental endpoints of M. posthuma to monitor metal toxicity in soil.
Collapse
Affiliation(s)
- Arunodaya Gautam
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Soumalya Mukherjee
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Department of Zoology, Brahmananda Keshab Chandra College, 111/2, Barrackpore Trunk Road, Kolkata 700108, West Bengal, India
| | - Sumit Manna
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pallab Banerjee
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Manna
- Semiochemicals and Lipid Laboratory, Department of Life Science, Presidency University, 86/1, College Street, Kolkata 700073, West Bengal, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, University of Burdwan, Golapbag, Bardhaman 713104, West Bengal, India
| | - Mitali Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
21
|
Manna S, Ray A, Gautam A, Mukherjee S, Ray M, Ray S. A comparative account of coelomocyte of earthworm ecotypes with reference to its morphology, morphometry, density, phagocytosis, autofluorescence, and oxidative status. J Morphol 2022; 283:956-972. [PMID: 35621718 DOI: 10.1002/jmor.21483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Earthworms inhabit different strata of moist soil. Epigeic and endogeic earthworms prefer superficial and inner stratum of soil respectively, whereas, semiaquatic species are distributed around hydrated soil near ponds and lakes. Coelomocytes, the chief immunoeffector cells of coelomic origin, perform diverse physiological functions like phagocytosis, maintenance of cellular homeostasis, and acid-base balance of coelomic fluid, graft rejection, elicitation of cytotoxic, and oxidative responses under the challenges of pathogens and toxins. The present study aims to analyze selected morphological and functional parameters in three differentially adapted Indian earthworms of nonsimilar habitats. Coelomocytes of Glyphidrilus tuberosus (Stephenson, 1916) (semiaquatic), Perionyx excavatus (Perrier, 1872) (epigeic), and Eutyphoeus orientalis (Beddard, 1883) (endogeic) were isolated for morphological and morphometric analyses and subjected to determination of phagocytic, oxidative, and cytotoxic responses. Activities of phenoloxidase, pro, and antioxidant enzymes, and autofluorescence were determined in the extruded coelomocytes of earthworms of three contrasting habitats. The differential result may be correlated with species-specific responses and variation in habitat preference and related adaptation.
Collapse
Affiliation(s)
- Sumit Manna
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Abhishek Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Arunodaya Gautam
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Soumalya Mukherjee
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India.,Department of Zoology, Brahmananda Keshab Chandra College, Kolkata, West Bengal, India
| | - Mitali Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Sajal Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Morais MC, Rakes M, Pasini RA, Grützmacher AD, Nava DE, Bernardi D. Toxicity and Transgenerational Effects of Insecticides on Trichopria anastrephae (Hymenoptera: Diapriidae). NEOTROPICAL ENTOMOLOGY 2022; 51:143-150. [PMID: 34936065 DOI: 10.1007/s13744-021-00925-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Trichopria anastrephae Costa Lima, 1940 (Hymenoptera: Diapriidae) is a pupal endoparasitoid of Drosophila suzukii Matsumura, 1931 (Diptera: Drosophilidae) in Brazil. This species is of great agricultural importance and is almost exclusively managed by organophosphate, spinosyn, pyrethroid, neonicotinoid, and avermectin insecticides. However, frequent application of insecticides can have negative effects on the parasitoid. The objective of this study was to evaluate the lethal and transgenerational toxicity of five insecticides on T. anastrephae adults during the F0, F1, and F2 generations. Drosophila suzukii puparia were sprayed prior to their exposure to T. anastrephae for 24 h. Parameters evaluated in generation F0 were mortality and rate of parasitism. After the emergence of the F1 generation, the emergence rate and sex ratio were analyzed. Then, pairs of parasitoids were selected from F1 and pupae; the host was offered to evaluate parasitism, emergence, and sex ratio of the F2 generation. In the F0 generation, malathion was the only insecticide that caused 100% mortality of adults of T. anastrephae. However, all insecticides tested affected the parasitism rate, being classified as moderately to slightly harmful. In F1, the emergence of T. anastrephae was also affected, making the insecticides moderately to slightly harmful. However, there were no significant differences in the sex ratio and parasitism rate or the parameters evaluated in F2, which means that all products were classified as harmless. These results are important for the development of Integrated Management programs for D. suzukii and for the conservation of natural populations of T. anastrephae in the field.
Collapse
Affiliation(s)
- Maíra Chagas Morais
- Department of Plant Protection, Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Matheus Rakes
- Department of Plant Protection, Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Anderson Dionei Grützmacher
- Department of Plant Protection, Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Daniel Bernardi
- Department of Plant Protection, Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Dhankhar J, Agrawal N, Shrivastava A. Pan-neuronal expression of human mutant huntingtin protein in Drosophila impairs immune response of hemocytes. J Neuroimmunol 2021; 363:577801. [PMID: 34973473 DOI: 10.1016/j.jneuroim.2021.577801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a late-onset; progressive, dominantly inherited neurological disorder marked by an abnormal expansion of polyglutamine (poly Q) repeats in Huntingtin (HTT) protein. The pathological effects of mutant Huntingtin (mHTT) are not restricted to the nervous system but systemic abnormalities including immune dysregulation have been evidenced in clinical and experimental settings of HD. Indeed, mHTT is ubiquitously expressed and could induce cellular toxicity by directly acting on immune cells. However, it is still unclear if selective expression of mHTT exon1 in neurons could induce immune responses and hemocytes' function. In the present study, we intended to monitor perturbations in the hemocytes' population and their physiological functions in Drosophila, caused by pan-neuronal expression of mHTT protein. A measure of hemocyte count and their physiological activities caused by pan-neuronal expression of mHTT protein highlighted the extent of immune dysregulation occurring with disease progression. We found that pan-neuronal expression of mHTT significantly alters crystal cells and plasmatocyte count in larvae and adults with disease progression. Interestingly, plasmatocytes isolated from diseased conditions exhibit a gradual decline in phagocytic activity ex vivo at progressive stages of the disease as compared to age-matched control groups. In addition, diseased flies displayed elevated reactive oxygen species (ROS) in circulating plasmatocytes at the larval stage and in sessile plasmatocytes of hematopoietic pockets at terminal stages of disease. These findings strongly implicate that neuronal expression of mHTT alone is sufficient to induce non-cell-autonomous immune dysregulation in vivo.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi 110007, India.
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
24
|
Cinege G, Magyar LB, Kovács AL, Lerner Z, Juhász G, Lukacsovich D, Winterer J, Lukacsovich T, Hegedűs Z, Kurucz É, Hultmark D, Földy C, Andó I. Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. J Innate Immun 2021; 14:335-354. [PMID: 34864742 PMCID: PMC9275024 DOI: 10.1159/000520110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Lilla B Magyar
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zita Lerner
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Kurucz
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - István Andó
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
25
|
Carrau T, Thümecke S, Silva LMR, Perez-Bravo D, Gärtner U, Taubert A, Hermosilla C, Vilcinskas A, Lee KZ. The Cellular Innate Immune Response of the Invasive Pest Insect Drosophila suzukii against Pseudomonas entomophila Involves the Release of Extracellular Traps. Cells 2021; 10:cells10123320. [PMID: 34943828 PMCID: PMC8699444 DOI: 10.3390/cells10123320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Drosophila suzukii is a neobiotic invasive pest that causes extensive damage to fruit crops worldwide. The biological control of this species has been unsuccessful thus far, in part because of its robust cellular innate immune system, including the activity of professional phagocytes known as hemocytes and plasmatocytes. The in vitro cultivation of primary hemocytes isolated from D. suzukii third-instar larvae is a valuable tool for the investigation of hemocyte-derived effector mechanisms against pathogens such as wasp parasitoid larvae, bacteria, fungi and viruses. Here, we describe the morphological characteristics of D. suzukii hemocytes and evaluate early innate immune responses, including extracellular traps released against the entomopathogen Pseudomonas entomophila and lipopolysaccharides. We show for the first time that D. suzukii plasmatocytes cast extracellular traps to combat P. entomophila, along with other cell-mediated reactions, such as phagocytosis and the formation of filopodia.
Collapse
Affiliation(s)
- Tessa Carrau
- Department Pests and Vector Insect Control, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (T.C.); (A.V.)
| | - Susanne Thümecke
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich Buff Ring 26-32, D-35392 Giessen, Germany;
| | - Liliana M. R. Silva
- Institute of Parasitology, Justus Liebig University, Schubert Strasse 81, D-35392 Giessen, Germany; (A.T.); (C.H.)
- Correspondence: (L.M.R.S.); (K.-Z.L.)
| | - David Perez-Bravo
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Aulweg 123, D-35394 Giessen, Germany;
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, D-35392 Giessen, Germany;
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University, Schubert Strasse 81, D-35392 Giessen, Germany; (A.T.); (C.H.)
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University, Schubert Strasse 81, D-35392 Giessen, Germany; (A.T.); (C.H.)
| | - Andreas Vilcinskas
- Department Pests and Vector Insect Control, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (T.C.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich Buff Ring 26-32, D-35392 Giessen, Germany;
| | - Kwang-Zin Lee
- Department Pests and Vector Insect Control, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (T.C.); (A.V.)
- Correspondence: (L.M.R.S.); (K.-Z.L.)
| |
Collapse
|
26
|
Etebari K, Gharuka M, Asgari S, Furlong MJ. Diverse Host Immune Responses of Different Geographical Populations of the Coconut Rhinoceros Beetle to Oryctes Rhinoceros Nudivirus (OrNV) Infection. Microbiol Spectr 2021; 9:e0068621. [PMID: 34523987 PMCID: PMC8557903 DOI: 10.1128/spectrum.00686-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Incursions of the coconut rhinoceros beetle (CRB), Oryctes rhinoceros, into different islands in the South Pacific have been detected in recent years. It has been suggested that this range expansion is related to an O. rhinoceros haplotype reported to show reduced susceptibility to the well-established classical biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). Our understanding of the genetic characteristics which distinguish the population of O. rhinoceros that has recently established in Solomon Islands from other well-established populations across the region is very limited. Here, we hypothesized that the recently established O. rhinoceros population should have greater innate immune responses when challenged by OrNV than those of well-established and native O. rhinoceros populations. We used the RNA sequencing (RNA-Seq) approach to generate gene expression profiles of midgut tissue from OrNV-infected and noninfected individuals collected in the Solomon Islands (recent incursion), Papua New Guinea and Fiji (previously established), and the Philippines (within the native range). The collections included individuals from each of the three major mitochondrial lineages (CRB-G, CRB-PNG, and CRB-S) known to the region, allowing us to explore the specific responses of each haplotype to infection. Although insects from the Philippines and Solomon Islands that were tested belong to the same mitochondrial lineage (CRB-G), their overall responses to infection were different. The number of differentially expressed genes between OrNV-infected and noninfected wild-caught individuals from the four different locations varied from 148 to 252. Persistent OrNV infection caused a high level of induced antimicrobial activity and immune responses in O. rhinoceros, but the direction and magnitude of the responses were population specific. The insects tested from the Solomon Islands displayed extremely high expression of genes which are known to be involved in immune responses (e.g. coleoptericin, cecropin, and serpin). These variations in the host immune system among insects from different geographical regions might be driven by variations in the virulence of OrNV isolates, and this requires further investigation. Overall, our current findings support the importance of immunity in insect pest incursion and an expansion of the pest's geographic range. IMPORTANCE Oryctes rhinoceros nudivirus (OrNV) is a double-stranded DNA (dsDNA) virus which has been used as a biocontrol agent to suppress coconut rhinoceros beetle (CRB) in the Pacific Islands. Recently a new wave of CRB incursions in Oceania is thought to be related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles (CRB-G). Our comparative analysis of OrNV-infected and noninfected CRBs revealed that specific sets of genes were induced by viral infection in the beetles. This induction was much stronger in beetles collected from the Solomon Islands, a newly invaded country, than in individuals collected from within the beetle's native range (the Philippines) or from longer-established populations in its exotic range (Fiji and Papua New Guinea [PNG]). Beetles from the Philippines and the Solomon Islands that were tested in this study all belonged to the CRB-G haplotype, but the country-specific responses of the beetles to OrNV infection were different.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Gharuka
- Research Division, Ministry of Agriculture and Livestock, Honiara, Solomon Islands
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J. Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
28
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Kruitwagen A, Wertheim B, Beukeboom LW. Artificial selection for nonreproductive host killing in a native parasitoid on the invasive pest, Drosophila suzukii. Evol Appl 2021; 14:1993-2011. [PMID: 34429744 PMCID: PMC8372078 DOI: 10.1111/eva.13252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Establishment and spread of invasive species can be facilitated by lack of natural enemies in the invaded area. Host-range evolution of natural enemies augments their ability to reduce the impact of the invader and could enhance their value for biological control. We assessed the potential of the Drosophila parasitoid, Leptopilina heterotoma (Hymenoptera: Figitidae), to exploit the invasive pest Drosophila suzukii by focusing on three performance indices: (i) attack rate; (ii) host killing, consisting of killing rate and lethal attack rate (killing efficiency); and (iii) successful offspring development (reproductive success). We found significant intraspecific variation in attack rate and killing rate and lethal attack rate among seven European populations, but offspring generally failed to successfully develop from the D. suzukii host. We crossed these European lines to create a genetically variable source population and performed a half-sib analysis to quantify genetic variation. Using a Bayesian animal model, we found that attack rate and killing rate had a heritability ofh 2 = 0.2 , lethal attack rateh 2 = 0.4 , and offspring developmenth 2 = 0 . We then artificially selected wasps with the highest killing rate of D. suzukii for seven generations to test whether host-killing could be improved. There was a small and inconsistent response to selection in the three selection lines. Realized heritability ( h r 2 ) after four generations of selection was 0.17 but near zero after seven generations of selection. The genetic response might have been masked by an increased D. suzukii fitness resulting from adaptation to laboratory conditions. Our study reveals that native, European, L. heterotoma can attack the invasive pest, D. suzukii and significantly reduce fly survival and that different steps of the parasitization process need to be considered in the evolution of host-range. It highlights how evolutionary principles can be applied to optimize performance of native species for biological control.
Collapse
Affiliation(s)
- Astrid Kruitwagen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
30
|
Ebrahim SAM, Talross GJS, Carlson JR. Sight of parasitoid wasps accelerates sexual behavior and upregulates a micropeptide gene in Drosophila. Nat Commun 2021; 12:2453. [PMID: 33907186 PMCID: PMC8079388 DOI: 10.1038/s41467-021-22712-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Parasitoid wasps inflict widespread death upon the insect world. Hundreds of thousands of parasitoid wasp species kill a vast range of insect species. Insects have evolved defensive responses to the threat of wasps, some cellular and some behavioral. Here we find an unexpected response of adult Drosophila to the presence of certain parasitoid wasps: accelerated mating behavior. Flies exposed to certain wasp species begin mating more quickly. The effect is mediated via changes in the behavior of the female fly and depends on visual perception. The sight of wasps induces the dramatic upregulation in the fly nervous system of a gene that encodes a 41-amino acid micropeptide. Mutational analysis reveals that the gene is essential to the behavioral response of the fly. Our work provides a foundation for further exploration of how the activation of visual circuits by the sight of a wasp alters both sexual behavior and gene expression.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Animals, Genetically Modified
- Carnivory/physiology
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila/parasitology
- Drosophila Proteins/deficiency
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/metabolism
- Drosophila melanogaster/parasitology
- Drosophila simulans/genetics
- Drosophila simulans/metabolism
- Drosophila simulans/parasitology
- Female
- Fertility/genetics
- Gene Expression Regulation
- Male
- Neurons/cytology
- Neurons/metabolism
- Pattern Recognition, Visual/physiology
- Receptors, Ionotropic Glutamate/deficiency
- Receptors, Ionotropic Glutamate/genetics
- Receptors, Odorant/deficiency
- Receptors, Odorant/genetics
- Sexual Behavior, Animal/physiology
- Wasps/pathogenicity
- Wasps/physiology
- beta-Carotene 15,15'-Monooxygenase/genetics
- beta-Carotene 15,15'-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Shimaa A M Ebrahim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Sadanandappa MK, Sathyanarayana SH, Kondo S, Bosco G. Neuropeptide F signaling regulates parasitoid-specific germline development and egg-laying in Drosophila. PLoS Genet 2021; 17:e1009456. [PMID: 33770070 PMCID: PMC8026082 DOI: 10.1371/journal.pgen.1009456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/07/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Drosophila larvae and pupae are at high risk of parasitoid infection in nature. To circumvent parasitic stress, fruit flies have developed various survival strategies, including cellular and behavioral defenses. We show that adult Drosophila females exposed to the parasitic wasps, Leptopilina boulardi, decrease their total egg-lay by deploying at least two strategies: Retention of fully developed follicles reduces the number of eggs laid, while induction of caspase-mediated apoptosis eliminates the vitellogenic follicles. These reproductive defense strategies require both visual and olfactory cues, but not the MB247-positive mushroom body neuronal function, suggesting a novel mode of sensory integration mediates reduced egg-laying in the presence of a parasitoid. We further show that neuropeptide F (NPF) signaling is necessary for both retaining matured follicles and activating apoptosis in vitellogenic follicles. Whereas previous studies have found that gut-derived NPF controls germ stem cell proliferation, we show that sensory-induced changes in germ cell development specifically require brain-derived NPF signaling, which recruits a subset of NPFR-expressing cell-types that control follicle development and retention. Importantly, we found that reduced egg-lay behavior is specific to parasitic wasps that infect the developing Drosophila larvae, but not the pupae. Our findings demonstrate that female fruit flies use multimodal sensory integration and neuroendocrine signaling via NPF to engage in parasite-specific cellular and behavioral survival strategies.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Shivaprasad H. Sathyanarayana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
33
|
The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size. Sci Rep 2021; 11:995. [PMID: 33441785 PMCID: PMC7806991 DOI: 10.1038/s41598-020-80355-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023] Open
Abstract
Controlling the cosmopolitan pest Drosophila suzukii (spotted wing drosophila) is a challenge for fruit growers. A promising agent for biological control of that pest are parasitoid wasps. Especially the widespread pupal parasitoid Trichopria drosophilae had shown the ability to parasitise the pest fly. However, as a biocontrol agent, parasitoids can only be effective when they prefer the pest to other insects. Until now studies have been inconsistent concerning the preference of T. drosophilae for D. suzukii and whether the preference depends on pupal volume. To clarify this inconsistency, we used video recordings of parasitisation experiments with a set up to observe the direct host preference of the parasitoid. Additionally, the volume of each host pupa was measured. We found significant preference of T. drosophilae for D. suzukii pupae independent of the pupal size and of the host species the wasps were reared on. The article also discusses the sex ratio and the success of the parasitoid in the different pupae characteristics.
Collapse
|
34
|
Huang J, Chen J, Fang G, Pang L, Zhou S, Zhou Y, Pan Z, Zhang Q, Sheng Y, Lu Y, Liu Z, Zhang Y, Li G, Shi M, Chen X, Zhan S. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat Commun 2021; 12:234. [PMID: 33431897 PMCID: PMC7801585 DOI: 10.1038/s41467-020-20332-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.
Collapse
Affiliation(s)
- Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China.
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China. .,State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Trainor JE, KR P, Mortimer NT. Immune Cell Production Is Targeted by Parasitoid Wasp Virulence in a Drosophila-Parasitoid Wasp Interaction. Pathogens 2021; 10:49. [PMID: 33429864 PMCID: PMC7826891 DOI: 10.3390/pathogens10010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
The interactions between Drosophila melanogaster and the parasitoid wasps that infect Drosophila species provide an important model for understanding host-parasite relationships. Following parasitoid infection, D. melanogaster larvae mount a response in which immune cells (hemocytes) form a capsule around the wasp egg, which then melanizes, leading to death of the parasitoid. Previous studies have found that host hemocyte load; the number of hemocytes available for the encapsulation response; and the production of lamellocytes, an infection induced hemocyte type, are major determinants of host resistance. Parasitoids have evolved various virulence mechanisms to overcome the immune response of the D. melanogaster host, including both active immune suppression by venom proteins and passive immune evasive mechanisms. We identified a previously undescribed parasitoid species, Asobara sp. AsDen, which utilizes an active virulence mechanism to infect D. melanogaster hosts. Asobara sp. AsDen infection inhibits host hemocyte expression of msn, a member of the JNK signaling pathway, which plays a role in lamellocyte production. Asobara sp. AsDen infection restricts the production of lamellocytes as assayed by hemocyte cell morphology and altered msn expression. Our findings suggest that Asobara sp. AsDen infection alters host signaling to suppress immunity.
Collapse
Affiliation(s)
| | | | - Nathan T. Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; (J.E.T.); (P.K.)
| |
Collapse
|
36
|
Wolf S, Barmettler E, Eisenring M, Romeis J, Collatz J. Host searching and host preference of resident pupal parasitoids of Drosophila suzukii in the invaded regions. PEST MANAGEMENT SCIENCE 2021; 77:243-252. [PMID: 32687647 DOI: 10.1002/ps.6013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In its invaded regions, Drosophila suzukii (Matsumura) is a novel host for the community of resident parasitoids of Drosophila. To attain a high parasitization rate on the novel host, the parasitoids have to locate it and accept it in the presence of other Drosophila hosts. We conducted a laboratory choice experiment and a semifield trial to investigate host searching and host preference of the three pupal parasitoid species Trichopria drosophilae (Perkins), Pachycrepoideus vindemmiae (Rondani) and Spalangia erythromera Förster. RESULTS All three parasitoid species preferred D. suzukii over two common native hosts in the choice experiment. In field cages, most parasitoid offspring emerged from D. suzukii hosts. While P. vindemmiae mainly parasitized hosts in the foliage, most T. drosophilae offspring emerged from pupae presented on the ground. CONCLUSIONS Both P. vindemmiae and T. drosophilae have the potential to find and parasitize D. suzukii in the field. If released early in the season, possible nontarget effects on native Drosophila should be minimal.
Collapse
Affiliation(s)
- Sarah Wolf
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Elias Barmettler
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Michael Eisenring
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| |
Collapse
|
37
|
Decker LE, Jeffrey CS, Ochsenrider KM, Potts AS, de Roode JC, Smilanich AM, Hunter MD. Elevated atmospheric concentrations of CO 2 increase endogenous immune function in a specialist herbivore. J Anim Ecol 2020; 90:628-640. [PMID: 33241571 DOI: 10.1111/1365-2656.13395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Abigail S Potts
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity (Edinb) 2020; 126:477-490. [PMID: 33219366 DOI: 10.1038/s41437-020-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male-female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male-female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female's genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.
Collapse
|
39
|
Ray A, Gautam A, Das S, Pal K, Das S, Karmakar P, Ray M, Ray S. Effects of copper oxide nanoparticle on gill filtration rate, respiration rate, hemocyte associated immune parameters and oxidative status of an Indian freshwater mussel. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108855. [PMID: 32781292 DOI: 10.1016/j.cbpc.2020.108855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/29/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Waterbodies of India support a wide range of molluscs including Lamellidens marginalis, a pearl forming edible mussel of ecological significance. Report of copper oxide nanoparticle toxicity in Indian molluscs is limited in scientific literature. L. marginalis is a gill respiring filter feeder, which is toxicologically vulnerable to exposure of copper oxide nanoparticles liberated from electrical, textile and polymer industries. Experimental exposure of copper oxide nanoparticles for 7 days yielded a decrease in gill filtration rate, respiration rate, total count and phagocytic response of hemocytes, the chief immunoeffector cells of L. marginalis. Nanoparticle exposure resulted in decrease of phagocytic response of mussel hemocytes. Decrease in nitric oxide generation and phenoloxidase activity were recorded in L. marginalis exposed to 0.5, 1 and 5 mg copper oxide nanoparticles per litre of water for 7 and 14 days. Superoxide anion generation in hemocytes was increased under the exposure of copper oxide nanoparticles. Increase in superoxide anion and decrease in the activities of superoxide dismutase and catalase were indicative to oxidative stress in mussels. Copper oxide nanoparticle induced shift in filtration and respiration rate along with the hemocyte associated immune parameters were suggestive to an acute immunophysiological stress in L. marginalis. We estimated the functional performance of gill and physiological status of aquatic respiration in L. marginalis exposed to copper oxide nanoparticles. A parallel set of estimation of each parameter was carried out in L. marginalis exposed to identical copper sulphate concentrations to record and compare the ionic toxicity of copper in the same specimen.
Collapse
Affiliation(s)
- Abhishek Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Arunodaya Gautam
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Santanu Das
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Kunal Pal
- Nanobiotechnology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, 188 Raja Subodh Chandra Mallick Road, Kolkata 700032, West Bengal, India
| | - Subhadeep Das
- Semiochemicals and Lipid Laboratory, Department of Life Science, Presidency University, 86/1, College Street, Kolkata 700073, West Bengal, India
| | - Parimal Karmakar
- Nanobiotechnology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, 188 Raja Subodh Chandra Mallick Road, Kolkata 700032, West Bengal, India
| | - Mitali Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
40
|
Puppato S, Grassi A, Pedrazzoli F, De Cristofaro A, Ioriatti C. First Report of Leptopilina japonica in Europe. INSECTS 2020; 11:insects11090611. [PMID: 32911672 PMCID: PMC7563833 DOI: 10.3390/insects11090611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary The invasive spotted wing drosophila, Drosophila suzukii, is a polyphagous species that has become a serious fruit pest worldwide. Biological control plays a key role in the integrated management of invasive insect pests. With the aim to verify whether some parasitoid wasps, being considered as major mortality factors for D. suzukii, followed its host along global pathways, a field survey was conducted by sampling fruits and installing fruit-baited traps near isolated cherry trees within a wide agricultural area. Morphological and molecular analysis revealed three specimens of Leptopilinajaponica in the parasitoid complex collected during the 2019 field survey; this is considered the first record of this larval parasitoid in Europe. A wider survey carried out during 2020 confirmed the presence of an adventive population of the parasitoid. In terms of reproductive biology, L. japonica shows similarity with Ganaspisbrasiliensis, the best candidate for a future program of classical biological control. Interplay among indigenous parasitoids and the newly arrived Asian parasitoid, as well as the interactions of these species with G. brasiliensis, offer a unique ecological context to acquire new insights into the relationship between D. suzukii and its natural enemies and into their role in providing effective control of the pest. Abstract Drosophila suzukii (Matsumura; Diptera: Drosophilidae) is a key pest of sweet cherry and small fruits worldwide. Biological control remains unutilized in the framework of D. suzukii management. Nonetheless, natural enemies may play an important role in regulating this pest. We report for the first time the presence of Leptopilina japonica Novković and Kimura (Hymenoptera: Figitidae) in Europe. Two specimens emerged from ripened fruits and one was collected after direct observation on a cherry tree in June 2019. They showed the distinctive morphological traits already described and shared more than 99% sequence similarity with specimens of L. japonica collected in Asia. This first finding was confirmed by a wider survey carried out in 2020; L. japonica emerged from cherry fruit samples collected in five other sites across the Trentino region, suggesting that L. japonica has already colonized a wide area. Detection of this Asian species is relevant to the future direction in managing D. suzukii, both in Europe and North America. In fact, L. japonica showed similarity with Ganaspis brasiliensis (Ihering) (Hymenoptera: Figitidae), the most promising candidate for the classical biological control, in terms of developmental time, egg maturation, host age preference and lifetime fecundity.
Collapse
Affiliation(s)
- Simone Puppato
- Technology Transfer Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, Trento, Italy; (S.P.); (A.G.); (F.P.)
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy;
| | - Alberto Grassi
- Technology Transfer Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, Trento, Italy; (S.P.); (A.G.); (F.P.)
| | - Federico Pedrazzoli
- Technology Transfer Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, Trento, Italy; (S.P.); (A.G.); (F.P.)
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy;
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, Trento, Italy; (S.P.); (A.G.); (F.P.)
- Correspondence: ; Tel.: +39-335-78-22-112
| |
Collapse
|
41
|
Hiebert N, Kessel T, Skaljac M, Spohn M, Vilcinskas A, Lee KZ. The Gram-Positive Bacterium Leuconostoc pseudomesenteroides Shows Insecticidal Activity against Drosophilid and Aphid Pests. INSECTS 2020; 11:E471. [PMID: 32722463 PMCID: PMC7469177 DOI: 10.3390/insects11080471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Insect pests reduce global crop yields by up to 20%, but the most effective control measures are currently based on environmentally hazardous chemical pesticides. An alternative, ecologically beneficial pest-management strategy involves the use of microbial pathogens (or active compounds and extracts derived from them) that naturally target selected insect pests. A novel strain of the bacterium Leuconostoc pseudomesenteroides showed promising activity in our preliminary tests. Here, we investigated its effects in more detail, focusing on drosophilid and aphid pests by testing the survival of two species representing the family Drosophilidae (Drosophila suzukii and D. melanogaster) and one representing the family Aphididae (Acyrthosiphon pisum). We used oral and septic infection models to administer living bacteria or cell-free extracts to adult flies and aphid nymphs. We found that infection with living bacteria significantly reduced the survival of our insect models, whereas the administration of cell-free extracts had a significant effect only in aphids. These results confirm that L. pseudomesenteroides has potential as a new biocontrol agent for sustainable pest management.
Collapse
Affiliation(s)
- Nils Hiebert
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| | - Tobias Kessel
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| | - Marius Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| |
Collapse
|
42
|
Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon SH, Comjean A, Li F, Dervis F, Hung RJ, Nam JW, Ho Sui S, Shim J, Perrimon N. A single-cell survey of Drosophila blood. eLife 2020; 9:e54818. [PMID: 32396065 PMCID: PMC7237219 DOI: 10.7554/elife.54818] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | | | | | - Sang-Ho Yoon
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Fangge Li
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Franz Dervis
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jin-Wu Nam
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | | | - Jiwon Shim
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
43
|
Garriga A, Mastore M, Morton A, Garcia del Pino F, Brivio MF. Immune Response of Drosophila suzukii Larvae to Infection with the Nematobacterial Complex Steinernema carpocapsae-Xenorhabdus nematophila. INSECTS 2020; 11:insects11040210. [PMID: 32231138 PMCID: PMC7240654 DOI: 10.3390/insects11040210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/06/2023]
Abstract
Entomopathogenic nematodes have been proposed as biological agents for the control of Drosophila suzukii, an invasive pest of small-stone and soft-skinned fruits. Larvae of the fly are susceptible to Steinernema carpocapsae infection but the reaction of immune defenses of the host are unknown. To determine the immune response, larvae were infected with S. carpocapsae and Xenorhabdus nematophila to evaluate the effector mechanisms of both humoral and cellular processes. The symbiont bacteria presented an inhibitory effect on the phenoloxidase cascade with a low level of melanization. Besides, X. nematophila activated the synthesis of putative antimicrobial peptides on the hemolymph of infected larvae. However, those peptides presented a lower antimicrobial activity compared to hemolymph from larvae infected with non-symbiont bacteria. Xenorhabdus nematophila avoided also the phagocytosis response of hemocytes. During in vitro and in vivo assays, S. carpocapsae was not encapsulated by cells, unless the cuticle was damaged with a lipase-treatment. Hemocyte counts confirmed differentiation of lamellocytes in the early phase of infection despite the unrecognition of the nematodes. Both X. nematophila and S. carpocapsae avoided the cellular defenses of D. suzukii larvae and depressed the humoral response. These results confirmed the potential of entomopathogenic nematodes to control D. suzukii.
Collapse
Affiliation(s)
- Anna Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
| | - Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | - Ana Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
| | - Fernando Garcia del Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
- Correspondence: (F.G.d.P.); (M.F.B.); Tel.: +39-0332-421404 (M.F.B.)
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
- Correspondence: (F.G.d.P.); (M.F.B.); Tel.: +39-0332-421404 (M.F.B.)
| |
Collapse
|
44
|
Buffington ML, Giorgini M, Lue CH, Formisano G, Cascone P, Forshage M, Driskell A, Guerrieri E. Description of the aberrant Leptopilina lasallei n. sp., with an updated phylogeny of Leptopilina Förster (Hymenoptera: Figitidae: Eucoilinae). J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1754483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Matthew L. Buffington
- Systematic Entomology Laboratory, ARS/USDA c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Massimo Giorgini
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| | - Chia-Hua Lue
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
- Biology Centre Czech Academy of Science, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Giorgio Formisano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| | - Pasquale Cascone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| | - Mattias Forshage
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Amy Driskell
- Laboratories of Analytical Biology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
- Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
45
|
Wang X, Biondi A, Daane KM. Functional Responses of Three Candidate Asian Larval Parasitoids Evaluated for Classical Biological Control of Drosophila suzukii (Diptera: Drosophilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:73-80. [PMID: 31589742 DOI: 10.1093/jee/toz265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Drosophila suzukii has become a key invasive pest of soft- and thin-skinned fruit crops in its invaded regions in Europe and Americas, where naturally occurring natural enemies are generally not effective for the suppression of this pest or largely absent such as larval-attacking parasitoids. As a part of systematic evaluations of candidate agents for classical biological control of this invasive pest, we evaluated the functional responses of three Asian-native larval hymenopteran parasitoids, Asobara japonica (Braconidae), Ganaspis brasiliensis, and Leptopilina japonica (both Figitidae) to D. suzukii or Drosophila melanogaster (A. japonica only) larvae. Host larval densities were 5, 10, 15, 20, 25, 30, 35, or 40 larvae per test for A. japonica and 3, 6, 9, 12, 18, 24, 30, 36, or 42 larvae per test for G. brasiliensis or L. japonica. Host larvae were provided in standard artificial diet in tubes for a 24-h exposure to individual female parasitoids under the quarantine conditions (23°C). All three parasitoids showed a linear (type I) functional response to the tested host densities. Host species (for A. japonica only) did not affect the number of hosts parasitized or the functional response. Asobara japonica was more efficient than either figitid in terms of the searching efficiency while L. japonica preformed slightly better than G. brasiliensis under the tested conditions. The results are discussed with respect to the selection of parasitoid species to be released in North America and Europe to suppress D. suzukii.
Collapse
Affiliation(s)
- Xingeng Wang
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA
| | - Antonio Biondi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA
| |
Collapse
|
46
|
Yi C, Cai P, Lin J, Liu X, Ao G, Zhang Q, Xia H, Yang J, Ji Q. Life History and Host Preference of Trichopria drosophilae from Southern China, One of the Effective Pupal Parasitoids on the Drosophila Species. INSECTS 2020; 11:insects11020103. [PMID: 32033080 PMCID: PMC7074467 DOI: 10.3390/insects11020103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
Abstract
This study aims to evaluate several life-history traits of a T. drosophilae population from southern China and its parasitic preference of three Drosophila species. For mated T. drosophilae females, the mean oviposition and parasitization period were 27.20 and 37.80 d, respectively. The daily mean parasitization rate was 59.24% per female and the lifetime number of emerged progeny was 134.30 per female. Trichopria drosophilae females survived 37.90 and 71.61 d under host-provided and host-deprived conditions, respectively. To assess the potential for unmated reproduction in T. drosophilae, the mean oviposition and parasitization period of unmated females was 22.90 and 47.70 d, respectively. They had a daily mean parasitization rate of 64.68%, produced a total of 114.80 offspring over their lifetime, and survived 52 d. Moreover, T. drosophilae showed a preference towards D. suzukii based on the total number of emerged offspring under a choice test. Our findings indicate that T. drosophilae from southern China appears to be suitable for the control of D. suzukii in invaded areas, due to its reproductive potential.
Collapse
Affiliation(s)
- Chuandong Yi
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
| | - Pumo Cai
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- Department of Horticulture, College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Jia Lin
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
| | - Xuxiang Liu
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
| | - Guofu Ao
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- College of Agriculture, Anshun University, Anshun 561000, China
| | - Qiwen Zhang
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
| | - Huimin Xia
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
| | - Jianquan Yang
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- Department of Horticulture, College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
- Correspondence: (J.Y.); (Q.J.)
| | - Qinge Ji
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Y.); (P.C.); (J.L.); (X.L.); (G.A.); (Q.Z.); (H.X.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- Department of Horticulture, College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
- Correspondence: (J.Y.); (Q.J.)
| |
Collapse
|
47
|
Abstract
Immune priming occurs when a past infection experience leads to a more effective immune response upon a secondary exposure to the infection or pathogen. In some instances, parents are able to transmit immune priming to their offspring, creating a subsequent generation with a superior immune capability, through processes that are not yet fully understood. Using a parasitoid wasp, which infects larval stages of Drosophila melanogaster, we describe an example of an intergenerational inheritance of immune priming. This phenomenon is anticipatory in nature and does not rely on parental infection, but rather, when adult fruit flies are cohabitated with a parasitic wasp, they produce offspring that are more capable of mounting a successful immune response against a parasitic macro-infection. This increase in offspring survival correlates with a more rapid induction of lamellocytes, a specialized immune cell. RNA-sequencing of the female germline identifies several differentially expressed genes following wasp exposure, including the peptiodoglycan recognition protein-LB (PGRP-LB). We find that genetic manipulation of maternal PGRP-LB identifies this gene as a key element in this intergenerational phenotype.
Collapse
|
48
|
Krüger AP, Scheunemann T, Vieira JGA, Morais MC, Bernardi D, Nava DE, Garcia FRM. Effects of Extrinsic, Intraspecific Competition and Host Deprivation on the Biology of Trichopria anastrephae (Hymenoptera: Diapriidae) Reared on Drosophila suzukii (Diptera: Drosophilidae). NEOTROPICAL ENTOMOLOGY 2019; 48:957-965. [PMID: 31364009 DOI: 10.1007/s13744-019-00705-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The pupal parasitoid Trichopria anastrephae Lima (Hymenoptera: Diapriidae) shows potential to control Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), and understanding the behavior of this parasitoid in challenging environments is important to obtain a higher efficiency in mass rearing and in biological control programs. This study aimed to verify the effects of extrinsic intraspecific competition and the absence of host on the parasitism of T. anastrephae in D. suzukii pupae. Therefore, to evaluate the parasitism of T. anastrephae under intraspecific competition, groups of 20 pupae (24 h old) of D. suzukii were offered for different densities of parasitoids (1, 3, 5, or 10 couples) during a 7-day period. Whereas to evaluate the effects of host deprivation on parasitism of T. anastrephae, we tested different treatments: T1-no deprivation, T2-complete deprivation, T3-deprivation every other day, T4-deprivation for 3 days, and T5-deprivation for 7 days. The increase of density of parasitoids resulted in an increase of oviposition scars on pupae and a longer biological cycle, suggesting the occurrence of superparasitism. Increased density also resulted in a higher percentage of attacked pupae, but did not affect parasitoids emergence nor sex ratio. Host deprivation affected number of parasitized pupae, number and sex ratio of offspring, and the longevity of females. Based on our findings, competition among females do not impair offspring viability, and host deprivation for a period up to 7 days do not influence parasitism capacity, indicating that it can be used as a pre-release strategy.
Collapse
Affiliation(s)
- A P Krüger
- Programa de pós-graduação em Fitossanidade, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil.
| | - T Scheunemann
- Programa de pós-graduação em Fitossanidade, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil
| | - J G A Vieira
- Programa de pós-graduação em Fitossanidade, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil
| | - M C Morais
- Faculdade de Agronomia Eliseu Maciel, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil
| | - D Bernardi
- Programa de pós-graduação em Fitossanidade, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil
| | - D E Nava
- Programa de pós-graduação em Fitossanidade, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil
- EMBRAPA Clima Temperado, Pelotas, RS, 96010-971, Brasil
| | - F R M Garcia
- Programa de pós-graduação em Fitossanidade, Univ Federal de Pelotas, Pelotas, RS, 96010900, Brasil
| |
Collapse
|
49
|
Bourne A, Fountain MT, Wijnen H, Shaw B. Potential of the European earwig (Forficula auricularia) as a biocontrol agent of the soft and stone fruit pest Drosophila suzukii. PEST MANAGEMENT SCIENCE 2019; 75:3340-3345. [PMID: 31066201 DOI: 10.1002/ps.5459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The unintentional introduction of Drosophila suzukii (Matsumura) from Asia has caused global economic losses in the soft and stone fruit industries. Pesticide use can have unintended negative impacts on natural enemies, disrupting attempts to incorporate integrated pest management programmes. Generalist predators could potentially act as biocontrol agents of D. suzukii. In this context, the predatory capabilities of the European earwig (Forficula auricularia) were investigated. RESULTS In semi-field conditions, F. auricularia were effective at reducing the reproductive rate of D. suzukii in more densely populated enclosures. In controlled laboratory conditions, significant negative effects of earwigs were observed for both low (three breeding pairs) and high (six breeding pairs) D. suzukii densities. Both semi-field and laboratory experiments revealed that F. auricularia predation on adult D. suzukii could not account for the subsequent reductions in population density. CONCLUSIONS Reductions in both larval and adult offspring in the presence of earwigs indicate an impact on D. suzukii via predation prior to metamorphosis or disruption of oviposition. Although F. auricularia may predate D. suzukii populations, its capacity to act as a biocontrol agent may be limited. However, results suggest that F. auricularia may be a more effective biocontrol agent earlier in the growing season. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Bethan Shaw
- University of Southampton, Southampton, UK
- NIAB EMR, East Malling, Kent, UK
| |
Collapse
|
50
|
Kacsoh BZ, Bozler J, Hodge S, Bosco G. Neural circuitry of social learning in Drosophila requires multiple inputs to facilitate inter-species communication. Commun Biol 2019; 2:309. [PMID: 31428697 PMCID: PMC6692349 DOI: 10.1038/s42003-019-0557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Drosophila species communicate the threat of parasitoid wasps to naïve individuals. Communication of the threat between closely related species is efficient, while more distantly related species exhibit a dampened, partial communication. Partial communication between D. melanogaster and D. ananassae about wasp presence is enhanced following a period of cohabitation, suggesting that species-specific natural variations in communication 'dialects' can be learned through socialization. In this study, we identify six regions of the Drosophila brain essential for dialect training. We pinpoint subgroups of neurons in these regions, including motion detecting neurons in the optic lobe, layer 5 of the fan-shaped body, the D glomerulus in the antennal lobe, and the odorant receptor Or69a, where activation of each component is necessary for dialect learning. These results reveal functional neural circuits that underlie complex Drosophila social behaviors, and these circuits are required for integration several cue inputs involving multiple regions of the Drosophila brain.
Collapse
Affiliation(s)
- Balint Z. Kacsoh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Julianna Bozler
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Sassan Hodge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| |
Collapse
|