1
|
Zhang Y, Zhang C, Feng R, Meng T, Peng W, Song J, Ma W, Xu W, Chen X, Chen J, Liang C. CXCR4 regulates macrophage M1 polarization by altering glycolysis to promote prostate fibrosis. Cell Commun Signal 2024; 22:456. [PMID: 39327570 PMCID: PMC11426013 DOI: 10.1186/s12964-024-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND C-X-C receptor 4(CXCR4) is widely considered to be a highly conserved G protein-coupled receptor, widely involved in the pathophysiological processes in the human body, including fibrosis. However, its role in regulating macrophage-related inflammation in the fibrotic process of prostatitis has not been confirmed. Here, we aim to describe the role of CXCR4 in modulating macrophage M1 polarization through glycolysis in the development of prostatitis fibrosis. METHODS Use inducible experimental chronic prostatitis as a model of prostatic fibrosis. Reduce CXCR4 expression in immortalized bone marrow-derived macrophages using lentivirus. In the fibrotic mouse model, use adenovirus carrying CXCR4 agonists to detect the silencing of CXCR4 and assess the in vivo effects. RESULTS In this study, we demonstrated that reducing CXCR4 expression during LPS treatment of macrophages can alleviate M1 polarization. Silencing CXCR4 can inhibit glycolytic metabolism, enhance mitochondrial function, and promote macrophage transition from M1 to M2. Additionally, in vivo functional experiments using AAV carrying CXCR4 showed that blocking CXCR4 in experimental autoimmune prostatitis (EAP) can alleviate inflammation and experimental prostate fibrosis development. Mechanistically, CXCR4, a chemokine receptor, when silenced, weakens the PI3K/AKT/mTOR pathway as its downstream signal, reducing c-MYC expression. PFKFB3, a key enzyme involved in glucose metabolism, is a target gene of c-MYC, thus impacting macrophage polarization and glycolytic metabolism processes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chen Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Peng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jian Song
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenming Ma
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenlong Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xianguo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Jing Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. Characterization of prostate macrophage heterogeneity, foam cell markers, and CXCL17 upregulation in a mouse model of steroid hormone imbalance. Sci Rep 2024; 14:21029. [PMID: 39251671 PMCID: PMC11383972 DOI: 10.1038/s41598-024-71137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kayah J Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, An Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nehemiah S Alvarez
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
3
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
4
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis part III: genitourinary system. J Transl Med 2024; 22:616. [PMID: 38961396 PMCID: PMC11223291 DOI: 10.1186/s12967-024-05333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in carcinogenesis and the progression of cancer.Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough understanding of how their relationship reveals itself through modern imaging techniques.This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its detection and exploring future directions.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
5
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. PROSTATE CELL HETEROGENEITY AND CXCL17 UPREGULATION IN MOUSE STEROID HORMONE IMBALANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590980. [PMID: 38712029 PMCID: PMC11071464 DOI: 10.1101/2024.04.24.590980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrate and accumulate in the prostate lumen where they differentiate into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify the epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T+E2) and harvested the ventral prostates two weeks later for scRNA-seq analysis, or performed sham surgery. We identified Ear2+ and Cd72+ macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1+ resident macrophage population did not change. In addition, an Spp1+ foam cell cluster was almost exclusively found in T+E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelial-derived Cxcl17, a known monocyte attractant, in T+E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that respond to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Kayah J. Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A. Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Nehemiah S. Alvarez
- Department of Surgery, Endeavor Health, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
6
|
Liu J, Zhou W, Yang L, Li Y, Qiu J, Fu X, Ren P, Guo F, Zhou Y, Liu J, Chen P, DiSanto ME, Zhang X. STEAP4 modulates cell proliferation and oxidative stress in benign prostatic hyperplasia. Cell Signal 2024; 113:110933. [PMID: 37866665 DOI: 10.1016/j.cellsig.2023.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a quite common chronic disease plagued elderly men and its etiology remains unclear. It was reported that the six-transmembrane epithelial antigen of prostate 4 (STEAP4) could modulate cell proliferation/apoptosis ratio and oxidative stress in cancers. Our current study aimed to explore the expression, biological function, and underlying mechanism of STEAP4 in BPH progress. Human prostate tissues and cell lines were utilized. qRT-PCR and immunofluorescence staining were employed. STEAP4 knockdown (STEAP4-KD) or STEAP4 overexpression (STEAP4-OE) cell models were established. Cell proliferation, cell cycle, apoptosis, and reactive oxygen species (ROS) were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Apoptosis-related proteins and antioxidant enzymes were identified by Western Blot. In addition, the epithelial-mesenchymal transition (EMT) process and fibrosis biomarker (collagen I and α-SMA) were analyzed. It was indicated that STEAP4 was mainly located in the prostate epithelium and upregulated in BPH tissues. STEAP4 deficiency induced apoptosis and inhibited cell survival, but had no effect on the cell cycle, fibrosis, and EMT process. In addition, ROS changes were observed in the STEAP4-KD model. Consistently, overproduction of STEAP4 suppressed apoptosis and promoted cell proliferation, as well as facilitated ROS production. We further examined AKT / mTOR, p38MAPK / p-p38MAPK, and WNT/ β-Catenin signaling pathway and demonstrated that STEAP4 regulated the proliferation and apoptosis of prostate cells through AKT / mTOR signaling, rather than p38MAPK / p-p38MAPK and WNT/ β-Catenin pathways. Furthermore, activating AKT / mTOR signaling with SC79 significantly reversed apoptosis triggered by STEAP4 deficiency, whereas suppressing AKT / mTOR signaling with MK2206 reduced the increase of cell viability triggered by STEAP4 overproduction. Our original data demonstrated that STEAP4 is crucial in the onset and progression of prostate hyperplasia and may become a new target for the treatment of BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengfei Ren
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Arriojas A, Patalano S, Macoska J, Zarringhalam K. A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data. NAR Genom Bioinform 2023; 5:lqad106. [PMID: 38094309 PMCID: PMC10716740 DOI: 10.1093/nargab/lqad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF-gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.
Collapse
Affiliation(s)
- Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jill Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
8
|
D'Arcy Q, Sarna-McCarthy M, Bowen D, Soto FO, Zarringhalam K, Macoska JA. Beta-Sitosterol Alters Collagen Distribution in Prostate Fibroblasts. J Diet Suppl 2023; 21:313-326. [PMID: 37933457 DOI: 10.1080/19390211.2023.2276943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Herbal supplements containing several types of plant sterols, vitamins, and minerals, are marketed for prostate health. In the majority of these supplements, the most abundant plant sterol is saw palmetto extract or its' principal component, beta-sitosterol. In terms of prostate health, previous work almost exclusively focused on the effects of beta-sitosterol on prostatic epithelium, with little attention paid to the effects on prostatic stroma. This omission is a concern, as the abnormal accumulation of collagen, or fibrosis, of the prostatic stroma has been identified as a factor contributing to lower urinary tract symptoms and dysfunction in aging men. To address whether beta-sitosterol may be promoting prostatic fibrosis, immortalized and primary prostate stromal fibroblasts were subjected to immunoblotting, immunofluorescence, qRT-PCR, ELISA, and image quantitation and analysis techniques to elucidate the effects of beta-sitosterol on cell viability and collagen expression and cellular localization. The results of these studies show that beta-sitosterol is nontoxic to prostatic fibroblasts and does not stimulate collagen production by these cells. However, beta-sitosterol alters collagen distribution and sequesters collagen within prostatic fibroblasts, likely in an age-dependent manner. This is a significant finding as prostate health supplements are used predominantly by middle aged and older men who may, then, be affected disproportionately by these effects.
Collapse
Affiliation(s)
- Quentin D'Arcy
- Center for Personalized Cancer Therapy, The University of MA Boston, Boston, MA, USA
- Department of Biology, The University of Massachusetts Boston, Boston, MA, USA
| | - Marissa Sarna-McCarthy
- Center for Personalized Cancer Therapy, The University of MA Boston, Boston, MA, USA
- Department of Biology, The University of Massachusetts Boston, Boston, MA, USA
| | - Delaney Bowen
- Center for Personalized Cancer Therapy, The University of MA Boston, Boston, MA, USA
- Department of Biology, The University of Massachusetts Boston, Boston, MA, USA
| | - Fidias O Soto
- Center for Personalized Cancer Therapy, The University of MA Boston, Boston, MA, USA
- Department of Biology, The University of Massachusetts Boston, Boston, MA, USA
| | - Kourosh Zarringhalam
- Center for Personalized Cancer Therapy, The University of MA Boston, Boston, MA, USA
- Department of Mathematics, The University of Massachusetts Boston, Boston, MA, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, The University of MA Boston, Boston, MA, USA
- Department of Biology, The University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
9
|
Arriojas A, Patalano S, Macoska J, Zarringhalam K. A Bayesian Noisy Logic Model for Inference of Transcription Factor Activity from Single Cell and Bulk Transcriptomic Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539308. [PMID: 37205561 PMCID: PMC10187261 DOI: 10.1101/2023.05.03.539308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as Transcription Factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF-gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.
Collapse
Affiliation(s)
- Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jill Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
10
|
Cao Y, Zhang H, Tu GL, Tian Y, Tang XH, Tang L, Luo MX, Wang YD, Wang Z, Xia SJ, Luo GH. The Symptoms of Benign Prostatic Hyperplasia Patients with Stromal-Dominated Hyperplasia Nodules May Be Associated with Prostate Fibrosis. Int J Gen Med 2023; 16:1181-1191. [PMID: 37033208 PMCID: PMC10075217 DOI: 10.2147/ijgm.s395705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Objective The aim of the present study was to observe the effect of the stroma proportion in hyperplasia nodules on the clinical symptoms of benign prostatic hyperplasia (BPH) patients and to identify the different genes and pathways in prostatic hyperplasia nodules between patients with epithelial-dominated hyperplasia (EDH) and stromal-dominated hyperplasia (SDH) nodules. Methods Sixty-seven BPH patient samples underwent transurethral resection of the prostate (TURP) were collected and retrospectively analyzed. The differences in clinical parameters between the EDH and SDH groups were investigated. Collagen fiber percentage was assessed, and the correlation with clinical parameters was evaluated. mRNA sequencing in hyperplasia nodules of 8 BPH patients was performed, and differentially expressed genes (DEGs) between the EDH and SDH groups were screened. These DEGs were analyzed using GO, KEGG and PPI analysis. Results The results showed the IPSS was significantly higher in the SDH group than in the EDH group (p < 0.01). The collagen fiber percentage of BPH nodules was higher in the SDH group than in the EDH group (p < 0.05), and the collagen fiber percentage was positively correlated with the IPSS (r = 0.4058, p = 0.0007). A total of 172 DEGs were obtained, including 63 up-regulated genes and 109 down-regulated genes. GO and KEGG pathway enrichment analyses showed DEGs were mainly enriched in extracellular matrix structural constituents. The top 10 hub genes were associated to the components of extracellular matrix and fibrosis. Conclusion These results suggested that the symptoms of BPH patients with SDH nodules may be associated with prostate fibrosis and fibrosis may be a significant contributing factor in BPH/LUTS patients with SDH nodules.
Collapse
Affiliation(s)
- Ying Cao
- Guizhou University Medical College, Guiyang, 550025, People’s Republic of China
| | - Heng Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Gui-Lan Tu
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Ye Tian
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Xiao-Hu Tang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Lei Tang
- Guizhou University Medical College, Guiyang, 550025, People’s Republic of China
| | - Mu-Xia Luo
- Guizhou University Medical College, Guiyang, 550025, People’s Republic of China
| | - Yan-Dong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Shu-Jie Xia
- Department of Urology, Shanghai First People’s Hospital, Shanghai Jiaotong University, Shanghai, 200080, People’s Republic of China
| | - Guang-Heng Luo
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
- Correspondence: Guang-Heng Luo, Email
| |
Collapse
|
11
|
Liu J, Liu D, Zhang J, He W, Guo Y, Li Y, Chen P, DiSanto ME, Zhang X. Expression and functional activity of myosin II in hyperplastic prostates of varying volumes. Cell Signal 2023; 106:110658. [PMID: 36935086 DOI: 10.1016/j.cellsig.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Prostate volume (PV) differs dramatically among benign prostatic hyperplasia (BPH) patients. Estimation of PV is important to guide the most appropriate pharmacologic or interventional treatment approach. However, the underlying pathophysiological mechanisms for the differences in PV remain unknown. We recently found that the myosin II system might participate in the etiology and development of BPH via static and dynamic factors. Our present study aims to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in hyperplastic prostates with varied PV. Human hyperplastic prostates and the testosterone-induced rat BPH model were employed for this study. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. Also, a BPH tissue microarray (TMA) was constructed to determine the correlations between myosin II isoforms with clinical parameters of BPH patients. With the increase of PV, the expression of NMMHC-A, NMMHC-C, SM-A and LC17b isoforms were increased, and the contractility of prostate smooth muscle was enhanced but force developed more slowly. Consistently, NMMHC-A, NMMHC-C, SM-A and LC17b were correlated positively with PV. Similar outcomes were also observed in the BPH rat model with different PVs. Alterations in the expression and function of myosin the II system may be involved in the pathophysiological mechanism of PV differences between BPH patients.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuhang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P, Zhang X. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:2870. [PMID: 36769190 PMCID: PMC9917596 DOI: 10.3390/ijms24032870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
13
|
Ruetten H, Sandhu SK, Fox O, Zhu J, Sandhu JK, Vezina CM. The impact of short term, long term and intermittent E. coli infection on male C57BL/6J mouse prostate histology and urinary physiology. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:59-68. [PMID: 36923725 PMCID: PMC10009312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Prostatic inflammation and prostatic fibrosis are associated with lower urinary tract dysfunction in men. Prostatic inflammation arising from a transurethral uropathogenic E. coli infection is sufficient to increase prostatic collagen content in male mice. It is not known whether and how the sequence, duration and chronology of prostatic infection influence urinary function, prostatic inflammation and collagen content. We placed a transurethral catheter into adult male C57BL/6J mice to deliver uropathogenic E. coli UTI189 two-weeks prior to study endpoint (to evaluate the short-term impact of infection), 10-weeks prior to study endpoint (to evaluate the long-term impact of infection), or two-, six-, and ten-weeks prior to endpoint (to evaluate the impact of repeated intermittent infection). Mice were catheterized the same number of times across all experimental groups and instilled with sterile saline when not instilled with E. coli to control for the variable of catheterization. We measured bacterial load in free catch urine, body weight and weight of bladder and dorsal prostate; prostatic density of leukocytes, collagen and procollagen 1A1 producing cells, and urinary function. Transurethral E. coli instillation caused more severe and persistent bacteriuria in mice with a history of one or more transurethral instillations of sterile saline or E. coli. Repeated intermittent infections resulted in a greater relative bladder wet weight than single infections. However, voiding function, as measured by the void spot assay, and the density of collagen and ProCOL1A1+ cells in dorsal prostate tissue sections did not significantly differ among infection groups. The density of CD45+ leukocytes was greater in the dorsal prostate of mice infected two weeks prior to study endpoint but not in other infection groups compared to uninfected controls.
Collapse
Affiliation(s)
- Hannah Ruetten
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Simran K Sandhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Olivia Fox
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Jonathan Zhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Jaskiran K Sandhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Chad M Vezina
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
15
|
The IL-4/IL-13 signaling axis promotes prostatic fibrosis. PLoS One 2022; 17:e0275064. [PMID: 36201508 PMCID: PMC9536598 DOI: 10.1371/journal.pone.0275064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background Lower urinary tract symptoms (LUTS) are a costly and pervasive medical problem for millions of aging men. Recent studies have showed that peri-urethral tissue fibrosis is an untreated pathobiology contributing to LUTS. Fibrosis results from excessive extracellular matrix deposition which increases transition zone and peri-urethral tissue stiffness and compromises prostatic urethral flexibility and compliance, producing urinary obstructive symptoms. Inflammatory cells, including neutrophils, macrophages, and T-lymphocytes, secrete a medley of pro-fibrotic proteins into the prostatic microenvironment, including IFNγ, TNFα, CXC-type chemokines, and interleukins, all of which have been implicated in inflammation-mediated fibrosis. Among these, IL-4 and IL-13 are of particular interest because they share a common signaling axis that, as shown here for the first time, promotes the expression and maintenance of IL-4, IL-13, their cognate receptors, and ECM components by prostate fibroblasts, even in the absence of immune cells. Based on studies presented here, we hypothesize that the IL-4/IL-13 axis promotes prostate fibroblast activation to ECM-secreting cells. Methods N1 or SFT1 immortalized prostate stromal fibroblasts were cultured and treated, short- or long-term, with pro-fibrotic proteins including IL-4, IL-13, TGF-β, TNF-α, IFNγ, with or without prior pre-treatment with antagonists or inhibitors. Protein expression was assessed by immunohistochemistry, immunofluorescence, ELISA, immunoblot, or Sircoll assays. Transcript expression levels were determined by qRT-PCR. Intact cells were counted using WST assays. Results IL-4Rα, IL-13Rα1, and collagen are concurrently up-regulated in human peri-urethral prostate tissues from men with LUTS. IL-4 and IL-13 induce their own expression as well as that of their cognate receptors, IL-4Rα and IL-13Rα1. Low concentrations of IL-4 or IL-13 act as cytokines to promote prostate fibroblast proliferation, but higher (>40ng/ml) concentrations repress cellular proliferation. Both IL-4 and IL-13 robustly and specifically promote collagen transcript and protein expression by prostate stromal fibroblasts in a JAK/STAT-dependent manner. Moreover, IL-4 and IL-13-mediated JAK/STAT signaling is coupled to activation of the IL-4Rα receptor. Conclusions Taken together, these studies show that IL-4 and IL-13 signal through the IL-4Rα receptor to activate JAK/STAT signaling, thereby promoting their own expression, that of their cognate receptors, and collagens. These finding suggest that the IL-4/IL-13 signaling axis is a powerful, but therapeutically targetable, pro-fibrotic mechanism in the lower urinary tract.
Collapse
|
16
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. WNT1 Inducible Signaling Pathway Protein 1 Is a Stroma-Specific Secreting Protein Inducing a Fibroblast Contraction and Carcinoma Cell Growth in the Human Prostate. Int J Mol Sci 2022; 23:ijms231911437. [PMID: 36232736 PMCID: PMC9570503 DOI: 10.3390/ijms231911437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells.
Collapse
Affiliation(s)
- Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City 235041, Taiwan
- TMU Research Center of Urology and Kidney, Department of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (K.-H.T.); (H.-H.J.); Tel.: +886-3-2118800 (ext. 5071) (H.-H.J.); Fax: +886-3-2118112 (H.-H.J.)
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
- Correspondence: (K.-H.T.); (H.-H.J.); Tel.: +886-3-2118800 (ext. 5071) (H.-H.J.); Fax: +886-3-2118112 (H.-H.J.)
| |
Collapse
|
17
|
Sivaraj D, Padmanabhan J, Chen K, Henn D, Noishiki C, Trotsyuk AA, Kussie HC, Leeolou MC, Magbual NJ, Andrikopoulos S, Perrault DP, Barrera JA, Januszyk M, Gurtner GC. IQGAP1-mediated mechanical signaling promotes the foreign body response to biomedical implants. FASEB J 2022; 36:e22007. [PMID: 35051300 DOI: 10.1096/fj.202101354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
The aim of this study was to further elucidate the molecular mechanisms that mediate pathologic foreign body response (FBR) to biomedical implants. The longevity of biomedical implants is limited by the FBR, which leads to implant failure and patient morbidity. Since the specific molecular mechanisms underlying fibrotic responses to biomedical implants have yet to be fully described, there are currently no targeted approaches to reduce pathologic FBR. We utilized proteomics analysis of human FBR samples to identify potential molecular targets for therapeutic inhibition of FBR. We then employed a murine model of FBR to further evaluate the role of this potential target. We performed histological and immunohistochemical analysis on the murine FBR capsule tissue, as well as single-cell RNA sequencing (scRNA-seq) on cells isolated from the capsules. We identified IQ motif containing GTPase activating protein 1 (IQGAP1) as the most promising of several targets, serving as a central molecular mediator in human and murine FBR compared to control subcutaneous tissue. IQGAP1-deficient mice displayed a significantly reduced FBR compared to wild-type mice as evidenced by lower levels of collagen deposition and maturity. Our scRNA-seq analysis revealed that decreasing IQGAP1 resulted in diminished transcription of mechanotransduction, inflammation, and fibrosis-related genes, which was confirmed on the protein level with immunofluorescent staining. The deficiency of IQGAP1 significantly attenuates FBR by deactivating downstream mechanotransduction signaling, inflammation, and fibrotic pathways. IQGAP1 may be a promising target for rational therapeutic design to mitigate pathologic FBR around biomedical implants.
Collapse
Affiliation(s)
- Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Chikage Noishiki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hudson C Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Noah J Magbual
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sophia Andrikopoulos
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Janos A Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Gao M, Wang J, Zang J, An Y, Dong Y. The Mechanism of CD8 + T Cells for Reducing Myofibroblasts Accumulation during Renal Fibrosis. Biomolecules 2021; 11:biom11070990. [PMID: 34356613 PMCID: PMC8301885 DOI: 10.3390/biom11070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a hallmark of chronic kidney disease (CKD) and a common manifestation of end-stage renal disease that is associated with multiple types of renal insults and functional loss of the kidney. Unresolved renal inflammation triggers fibrotic processes by promoting the activation and expansion of extracellular matrix-producing fibroblasts and myofibroblasts. Growing evidence now indicates that diverse T cells and macrophage subpopulations play central roles in the inflammatory microenvironment and fibrotic process. The present review aims to elucidate the role of CD8+ T cells in renal fibrosis, and identify its possible mechanisms in the inflammatory microenvironment.
Collapse
|
19
|
Liu J, Yin J, Chen P, Liu D, He W, Li Y, Li M, Fu X, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discov 2021; 7:115. [PMID: 34006832 PMCID: PMC8131753 DOI: 10.1038/s41420-021-00501-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in aging males. It has been proven that the Hedgehog (HH) is implied as an effective and fundamental regulatory growth factor signal for organogenesis, homeostasis, and regeneration. Smoothened (SMO), as the major control point of HH signals, activates aberrantly in most human solid tumors. However, the specific function of SMO and its downstream glioma-associated oncogene (GLI) family in BPH has not been well understood. Here, we first revealed that the SMO cascade was upregulated in BPH tissues and was localized in both the stromal and the epithelium compartments of human prostate tissues. Cyclopamine, as a specific SMO inhibitor, was incubated with BPH-1 and WPMY-1, and intraperitoneally injected into a BPH rat model established by castration with testosterone supplementation. SMO inhibition could induce cell apoptosis, cell cycle arrest at the G0/G1 phase, and a reduction of tissue fibrosis markers, both in vitro and in vivo. Finally, a tissue microarray, containing 104 BPH specimens, was constructed to analyze the correlations between the expression of SMO cascade and clinical parameters. The GLI2 was correlated positively with nocturia and negatively with fPSA. The GLI3 was in a positive relationship with International Prostate Symptom Score and nocturia. In conclusion, our study suggested that SMO cascade could play important roles in the development of BPH and it might be rediscovered as a promising therapeutic target for BPH.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Chen X, Deng Z, Feng J, Chang Q, Lu F, Yuan Y. Necroptosis in Macrophage Foam Cells Promotes Fat Graft Fibrosis in Mice. Front Cell Dev Biol 2021; 9:651360. [PMID: 33842478 PMCID: PMC8027326 DOI: 10.3389/fcell.2021.651360] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Fibrosis is a major grafting-related complication that leads to fat tissue dysfunction. Macrophage-induced inflammation is related to the development of fat tissue fibrosis. Necroptosis is a recently discovered pathway of programmed cell necrosis that results in severe inflammation and subsequent tissue fibrosis. Thus, in this study, we investigated the role of macrophage necroptosis in fat graft fibrosis and the underlying mechanisms. Methods: Fibrosis and necroptosis were investigated in mouse fat tissue before and after grafting. An in vitro “crown-like” structure (CLS) cell culture model was developed by co-culturing RAW 264.7 macrophages with apoptotic adipocytes to reproduce in vivo CLS macrophage-adipocyte interactions. Lipid uptake and necroptosis in CLS macrophages were analyzed using Oil-Red-O staining, western blotting, and immunofluorescence. RAW264.7 macrophages were cultured alone or with apoptotic adipocytes and treated with a necroptosis inhibitor (Nec-1 or GSK872) to explore the paracrine effect of necroptotic CLS macrophages on collagen synthesis in fibroblasts in vitro. Mice were treated with Nec-1 to analyze the effect of blocking necroptosis on fat graft fibrosis. Results: Fibrosis was increased after grafting in fat grafts of mice. Macrophages clustered around apoptotic adipocytes or large oil droplets to form a typical CLS in fibrotic depots. This was accompanied by formation and necroptosis of macrophage foam cells (MFCs) in CLSs. RAW 264.7 macrophages co-cultured with apoptotic adipocytes induced CLS formation in vitro, and lipid accumulation in CLS macrophages resulted in the formation and necroptosis of MFCs. Necroptosis of MFCs altered the expression of collagen I and VI in fibroblasts via a paracrine mechanism involving inflammatory cytokines/chemokines, which was reversed by GSK872 or Nec-1 treatment. Furthermore, treatment with Nec-1 ameliorated fat graft fibrosis in mice. Conclusion: Apoptotic adipocytes induced necroptosis of MFCs, and necroptosis of these cells activated collagen synthesis in fibroblasts via a paracrine mechanism. Inhibition of necroptosis in macrophages is a potential approach to prevent fibrosis in fat grafts.
Collapse
Affiliation(s)
- Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Ruetten H, Sandhu J, Mueller B, Wang P, Zhang HL, Wegner KA, Cadena M, Sandhu S, L Abler L, Zhu J, O'Driscoll CA, Chelgren B, Wang Z, Shen T, Barasch J, Bjorling DE, Vezina CM. A uropathogenic E. coli UTI89 model of prostatic inflammation and collagen accumulation for use in studying aberrant collagen production in the prostate. Am J Physiol Renal Physiol 2021; 320:F31-F46. [PMID: 33135480 PMCID: PMC7847049 DOI: 10.1152/ajprenal.00431.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark Cadena
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jonathan Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Chelsea A O'Driscoll
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Britta Chelgren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tian Shen
- Columbia University, Department of Medicine, New York, New York
| | | | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
22
|
Popovics P, Awadallah WN, Kohrt SE, Case TC, Miller NL, Ricke EA, Huang W, Ramirez-Solano M, Liu Q, Vezina CM, Matusik RJ, Ricke WA, Grabowska MM. Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate 2020; 80:731-741. [PMID: 32356572 PMCID: PMC7485377 DOI: 10.1002/pros.23986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Address correspondence and reprint requests to: Petra Popovics, University of Wisconsin, Department of Urology, WIMR 7128, 1111 Highland Avenue, Madison, WI 53705, Tel: +1 786 474 1086,
| | - Wisam N. Awadallah
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Kohrt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Thomas C. Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Emily A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Chad M. Vezina
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Comparative Biosciences, University of Wisconsin–Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin–Madison, WI
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
23
|
Farahmand S, O’Connor C, Macoska JA, Zarringhalam K. Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators. Nucleic Acids Res 2019; 47:11563-11573. [PMID: 31701125 PMCID: PMC7145661 DOI: 10.1093/nar/gkz1046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Inference of active regulatory mechanisms underlying specific molecular and environmental perturbations is essential for understanding cellular response. The success of inference algorithms relies on the quality and coverage of the underlying network of regulator-gene interactions. Several commercial platforms provide large and manually curated regulatory networks and functionality to perform inference on these networks. Adaptation of such platforms for open-source academic applications has been hindered by the lack of availability of accurate, high-coverage networks of regulatory interactions and integration of efficient causal inference algorithms. In this work, we present CIE, an integrated platform for causal inference of active regulatory mechanisms form differential gene expression data. Using a regularized Gaussian Graphical Model, we construct a transcriptional regulatory network by integrating publicly available ChIP-seq experiments with gene-expression data from tissue-specific RNA-seq experiments. Our GGM approach identifies high confidence transcription factor (TF)-gene interactions and annotates the interactions with information on mode of regulation (activation vs. repression). Benchmarks against manually curated databases of TF-gene interactions show that our method can accurately detect mode of regulation. We demonstrate the ability of our platform to identify active transcriptional regulators by using controlled in vitro overexpression and stem-cell differentiation studies and utilize our method to investigate transcriptional mechanisms of fibroblast phenotypic plasticity.
Collapse
Affiliation(s)
- Saman Farahmand
- Computational Sciences PhD program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Corey O’Connor
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Computational Sciences PhD program, University of Massachusetts Boston, Boston, MA 02125, USA
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
24
|
Macoska JA, Uchtmann KS, Leverson GE, McVary KT, Ricke WA. Prostate Transition Zone Fibrosis is Associated with Clinical Progression in the MTOPS Study. J Urol 2019; 202:1240-1247. [PMID: 31188728 PMCID: PMC7339116 DOI: 10.1097/ju.0000000000000385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Medications targeting androgen receptor activity (eg finasteride) or smooth muscle contractility (eg doxazosin) do not resolve lower urinary tract symptoms indicative of lower urinary tract dysfunction in an important subgroup of men. Recently fibrosis has been implicated as another pathobiology contributing to male lower urinary tract symptoms but to our knowledge no systematic studies have been done to assess fibrosis in the context of medical treatment. We determine whether fibrotic changes in the prostate transition zone are associated with an increased risk of clinical progression in participants treated with doxazosin, finasteride or finasteride plus doxazosin in the MTOPS (Medical Therapy of Prostatic Symptoms) study. MATERIALS AND METHODS Transition zone biopsy tissues from men who did or did not experience clinical progression on placebo, doxazosin, finasteride or combination therapy were assessed for collagen content and architectural changes using picrosirius red birefringence and CT-FIRE (Curvelet Transform-Fiber Extraction) analysis. Correlations were made with annotated demographic and clinical data. Statistical analyses were done with the Pearson correlation coefficient, ANOVA and the t-test. RESULTS High levels of wavy, aligned prostate transition zone collagen significantly correlated with an increased risk of clinical progression among MTOPS trial participants treated with doxazosin plus finasteride, particularly those with a high body mass index. CONCLUSIONS Fibrotic changes in the prostate transition zone are associated with an increased risk of clinical progression in men treated with doxazosin plus finasteride. Antifibrotic therapeutics might provide a new treatment approach in men with lower urinary tract dysfunction who do not respond to current medical treatment approaches.
Collapse
Affiliation(s)
- Jill A. Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- George M. O’Brien Center for Benign Urologic Research, University of Wisconsin, Madison, WI, USA
| | - Kristen S. Uchtmann
- George M. O’Brien Center for Benign Urologic Research, University of Wisconsin, Madison, WI, USA
- Department of Urology, The University of Wisconsin, Madison, WI, USA
| | - Glen E. Leverson
- Department of Urology, The University of Wisconsin, Madison, WI, USA
| | - Kevin T. McVary
- Department of Urology, Loyola University Medical Center, Maywood, IL, USA
| | - William A. Ricke
- George M. O’Brien Center for Benign Urologic Research, University of Wisconsin, Madison, WI, USA
- Department of Urology, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
25
|
Ma Z, Yu R, Zhu Q, Sun L, Jian L, Wang X, Zhao J, Li C, Liu X. CXCL16/CXCR6 axis promotes bleomycin-induced fibrotic process in MRC-5 cells via the PI3K/AKT/FOXO3a pathway. Int Immunopharmacol 2019; 81:106035. [PMID: 31753588 DOI: 10.1016/j.intimp.2019.106035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Interstitial lung disease (ILD) is a progressive and irreversible lung disease with very limited therapeutic options. Previous studies have found that chemokine ligands CXCL16 and CXCR6 play critical roles in organ fibrosis. However, whether CXCL16 and CXCR6 are also involved in the pathogenesis of ILD, as well as their regulatory role in pulmonary fibrosis, has not been reported. METHODS In this study, we detected CXCL16 levels in patients with rheumatoid arthritis-associated ILD (RA-ILD) and examined the critical role of the CXCL16/CXCR6 axis in the proliferation and collagen production of human pulmonary fibroblasts (MRC-5 cells). The effect of anti-CXCL16 antibody on the bleomycin-induced fibrogenesis in cultured MRC-5 cells was also evaluated. RESULTS Our results indicated that serum soluble CXCL16 was significantly higher in RA-ILD patients and also associated with the severity of lung fibrosis. CXCL16 facilitates fibrosis by enhancing proliferation, migration, and collagen production of MRC-5 cells. Furthermore, a synergistic fibrogenic effect of CXCL16 and bleomycin has been found. CXCL16 stimulated the activation of PI3K/AKT/FOXO3a signaling pathway in MRC-5 cells, and the inhibition by specific inhibitors Wortmannin and LY294002, or knockdown of CXCR6 by siRNA also suppressed the biological functions of MRC-5 cells mediated by CXCL16. Similarly, down-regulation of CXCR6 also partly blocked BLM-induced fibrogenesis in MRC-5 cells. CONCLUSIONS CXCL16/CXCR6 axis promotes proliferation and collagen production of MRC-5 cells by the PI3K/AKT/FOXO3a signaling pathway, and inhibition of the CXCL16/CXCR6 axis may provide a new therapeutic strategy targeting pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Ruohan Yu
- Department of Rheumatology and Immunology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Qiao Zhu
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Leilei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Xinyu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
26
|
Tsai CF, Chen JH, Yeh WL. Pulmonary fibroblasts-secreted CXCL10 polarizes alveolar macrophages under pro-inflammatory stimuli. Toxicol Appl Pharmacol 2019; 380:114698. [PMID: 31394157 DOI: 10.1016/j.taap.2019.114698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND During acute lung injury, lung fibroblasts produce chemokines that assist the activation and migration of resident macrophages. The interactions between pulmonary fibroblasts and alveolar macrophages demonstrate the early event in the recruitment of immune cells, and the production of chemokines appear to be central mediators of the initiation and progression of inflammatory responses. In this study, the aim was to investigate the signaling pathway leading to CXCL10 secretion and the effects of CXCL10 released by activated fibroblasts on regulating macrophage polarization in a pro-inflammatory microenvironment. METHODS The expression of chemokines CCL2, CCL5, CXCL10, and CXCL12, and the phosphorylation of signaling molecules STAT3, FAK, GSK3αβ and PKCδ were investigated by real time-PCR, ELISA, or Western blot on TNFα- or IL-1β-activated MRC-5 pulmonary fibroblasts. By collecting conditioned medium from TNFα-activated fibroblasts, the expression of iNOS and arginase I on MH-S alveolar macrophages were examined by real-time PCR. Surface markers CD86 and CD206 expressions on alveolar macrophages were also evaluated by flow cytometry. RESULTS We found that CXCL10 production was significantly elevated on MRC-5 fibroblasts under TNFα- or IL-1β treatment. In addition, we revealed that TNFα and IL-1β initiated phosphorylation of STAT3, FAK, GSK3αβ and PKCδ signaling cascade, leading to the elevation of CXCL10 expression. Moreover, conditioned medium collected from TNFα-activated MRC-5 fibroblasts increased iNOS and CD86 expressions and decreased arginase I and CD206 expressions on MH-S alveolar macrophages, and neutralization of CXCL10 abolished these observed phenomena. CONCLUSION These results suggest that CXCL10 is crucial in activated fibroblasts-promoted M1 phenotype polarization of alveolar macrophages. In this regard, targeting fibroblasts-released CXCL10 may be promising as anti-inflammatory therapy against acute lung injury.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
27
|
Urinary Biomarkers and Benign Prostatic Hyperplasia. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Middleton LW, Shen Z, Varma S, Pollack AS, Gong X, Zhu S, Zhu C, Foley JW, Vennam S, Sweeney RT, Tu K, Biscocho J, Eminaga O, Nolley R, Tibshirani R, Brooks JD, West RB, Pollack JR. Genomic analysis of benign prostatic hyperplasia implicates cellular re-landscaping in disease pathogenesis. JCI Insight 2019; 5:129749. [PMID: 31094703 DOI: 10.1172/jci.insight.129749] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms in men. Current treatments target prostate physiology rather than BPH pathophysiology and are only partially effective. Here, we applied next-generation sequencing to gain new insight into BPH. By RNAseq, we uncovered transcriptional heterogeneity among BPH cases, where a 65-gene BPH stromal signature correlated with symptom severity. Stromal signaling molecules BMP5 and CXCL13 were enriched in BPH while estrogen regulated pathways were depleted. Notably, BMP5 addition to cultured prostatic myofibroblasts altered their expression profile towards a BPH profile that included the BPH stromal signature. RNAseq also suggested an altered cellular milieu in BPH, which we verified by immunohistochemistry and single-cell RNAseq. In particular, BPH tissues exhibited enrichment of myofibroblast subsets, whilst depletion of neuroendocrine cells and an estrogen receptor (ESR1)-positive fibroblast cell type residing near epithelium. By whole-exome sequencing, we uncovered somatic single-nucleotide variants (SNVs) in BPH, of uncertain pathogenic significance but indicative of clonal cell expansions. Thus, genomic characterization of BPH has identified a clinically-relevant stromal signature and new candidate disease pathways (including a likely role for BMP5 signaling), and reveals BPH to be not merely a hyperplasia, but rather a fundamental re-landscaping of cell types.
Collapse
Affiliation(s)
| | | | | | | | - Xue Gong
- Department of Pathology.,Department of Urology
| | | | | | | | | | | | | | | | | | | | - Robert Tibshirani
- Department of Biomedical Data Science, and.,Department of Statistics, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
29
|
Macoska JA, Wang Z, Virta J, Zacharias N, Bjorling DE. Inhibition of the CXCL12/CXCR4 axis prevents periurethral collagen accumulation and lower urinary tract dysfunction in vivo. Prostate 2019; 79:757-767. [PMID: 30811623 PMCID: PMC7269149 DOI: 10.1002/pros.23781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies show that prostatic fibrosis is associated with male lower urinary tract dysfunction (LUTD). Development of fibrosis is typically attributed to signaling through the transforming growth factor β (TGF-β) pathway, but our laboratory has demonstrated that in vitro treatment of human prostatic fibroblasts with the C-X-C motif chemokine ligand 12 (CXCL12) chemokine stimulates myofibroblast phenoconversion and that CXCL12 has the capacity to activate profibrotic pathways in these cells in a TGF-β-independent manner. We have previously reported that feeding mice high-fat diet (HFD) results in obesity, type II diabetes, increased prostatic fibrosis, and urinary voiding dysfunction. The purpose of this study was to test the hypothesis that in vivo blockade of the CXCL12/CXCR4 axis would inhibit the development of fibrosis-mediated LUTD in HFD-fed mice. METHODS Two-month-old male senescence-accelerated mouse prone-6 mice were fed either a HFD or low-fat diet (LFD) for 8 months. Half of each dietary group were given constant access to normal water or water that contained the C-X-C chemokine receptor type 4 (CXCR4; CXCL12 receptor) antagonist CXCR4AIII. At the conclusion of the study, mice were weighed, subjected to oral glucose tolerance testing and cystometry, and lower urinary tract tissues collected and assessed for collagen content. RESULTS HFD-fed mice became significantly obese, insulin resistant, and hyperglycemic, consistent with acquisition of metabolic syndrome, compared with LFD-fed mice. Anesthetized cystometry demonstrated that HFD-fed mice experienced significantly longer intercontractile intervals and greater functional bladder capacity than LFD-fed mice. Immunohistochemistry demonstrated high levels of CXCR4 and CXCR7 staining in mouse prostate epithelial and stromal cells. Picrosirius red staining indicated significantly greater periurethral collagen deposition in the prostates of HFD than LFD-fed mice. Treatment with the CXCR4 antagonist CXCR4AIII did not affect acquisition of metabolic syndrome but did reduce both urinary voiding dysfunction and periurethral prostate collagen accumulation. CONCLUSIONS This is the first study to report that obesity-induced lower urinary tract fibrosis and voiding dysfunction can be repressed by antagonizing the activity of the CXCR4 chemokine receptor in vivo. These data suggest that targeting the CXCL12/CXCR4 signaling pathway may be a clinical option for the prevention or treatment of human male LUTD.
Collapse
Affiliation(s)
- Jill A. Macoska
- Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
| | - Zunyi Wang
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Johanna Virta
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Nicholas Zacharias
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Dale E. Bjorling
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| |
Collapse
|
30
|
Wegner KA, Mehta V, Johansson JA, Mueller BR, Keil KP, Abler LL, Marker PC, Taketo MM, Headon DJ, Vezina CM. Edar is a downstream target of beta-catenin and drives collagen accumulation in the mouse prostate. Biol Open 2019; 8:bio.037945. [PMID: 30745437 PMCID: PMC6451354 DOI: 10.1242/bio.037945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-catenin (CTNNB1) directs ectodermal appendage spacing by activating ectodysplasin A receptor (EDAR) transcription, but whether CTNNB1 acts by a similar mechanism in the prostate, an endoderm-derived tissue, is unclear. Here we examined the expression, function, and CTNNB1 dependence of the EDAR pathway during prostate development. In situ hybridization studies reveal EDAR pathway components including Wnt10b in the developing prostate and localize these factors to prostatic bud epithelium where CTNNB1 target genes are co-expressed. We used a genetic approach to ectopically activate CTNNB1 in developing mouse prostate and observed focal increases in Edar and Wnt10b mRNAs. We also used a genetic approach to test the prostatic consequences of activating or inhibiting Edar expression. Edar overexpression does not visibly alter prostatic bud formation or branching morphogenesis, and Edar expression is not necessary for either of these events. However, Edar overexpression is associated with an abnormally thick and collagen-rich stroma in adult mouse prostates. These results support CTNNB1 as a transcriptional activator of Edar and Wnt10b in the developing prostate and demonstrate Edar is not only important for ectodermal appendage patterning but also influences collagen organization in adult prostates. This article has an associated First Person interview with the first author of the paper. Summary: This study provides a rare connection between beta catenin and ectodysplasin A receptor in an endoderm derived tissue and presents a potential mechanism for collagen accumulation in the prostate.
Collapse
Affiliation(s)
- Kyle A Wegner
- Molecular and Environmental Toxicology Center University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vatsal Mehta
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeanette A Johansson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom.,MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, United Kingdom
| | - Brett R Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul C Marker
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University Yoshida-Konoé-cho, Sakyo, Kyoto 606-8501, Japan
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Bell-Cohn A, Mazur DJ, Hall C, Schaeffer AJ, Thumbikat P. Uropathogenic Escherichia coli-induced fibrosis, leading to lower urinary tract symptoms, is associated with type 2 cytokine signaling. Am J Physiol Renal Physiol 2019; 316:F682-F692. [PMID: 30623726 DOI: 10.1152/ajprenal.00222.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammation and prostate fibrosis have been identified as contributors to lower urinary tract symptoms (LUTS) pathophysiology in humans. It has been shown that transurethral infection of an Escherichia coli strain named CP1, which was isolated from a patient with chronic prostatitis, can lead to the develop of differential chronic inflammation and pain in certain mouse strains. Therefore, we hypothesized that differential inflammation would influence fibrotic response in the prostate. This study showed that while prostatic infection by CP1 causes the development of chronic tactile allodynia in NOD/ShiltJ (NOD) but not C57BL/6 (B6) mice, both mice developed evidence of prostate inflammation, prostate fibrosis, and urinary dysfunction. Fibrosis was confirmed by the upregulation of fibrosis-associated messenger RNAs (mRNAs), α-smooth muscle actin immunohistochemistry, and collagen staining with picrosirius red. These findings were mainly focused on the dorsolateral lobes of the prostate. Both mouse strains also developed smaller, more frequent voiding patterns postinfection, examined via cystometry. B6 mice responded to CP1 infection with type 2 cytokines (IL-4 and IL-13), while NOD mice did not, which may explain the differing tactile allodynia responses and level of collagen deposition. When mice lacking signal transducer and activator of transcription 6 (STAT6), a transcription factor known to be important for the production and signaling of IL-4 and IL-13, were infected with CP1, fibrosis was attenuated. This study provides a potential model for studying the development of infection-induced prostatic fibrosis and LUTS. This study also demonstrates that CP1-induced prostate fibrosis has a STAT6-dependent mechanism in B6 mice.
Collapse
Affiliation(s)
- Ashlee Bell-Cohn
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Daniel J Mazur
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christel Hall
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
32
|
Ruetten H, Wegner KA, Romero MF, Wood MW, Marker PC, Strand D, Colopy SA, Vezina CM. Prostatic collagen architecture in neutered and intact canines. Prostate 2018; 78:839-848. [PMID: 29740846 PMCID: PMC6356104 DOI: 10.1002/pros.23641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate stiffness and increased collagen content both associate with the presence of urinary symptoms in men but mechanisms responsible, including impact of age and androgens, are unknown. Dogs develop prostate-related urinary dysfunction similar to humans, but mechanisms are also unknown. Mice have been used to examine how prostatic collagen accumulation affects voiding but whether mouse prostatic collagen organization resembles human or dog has not been evaluated. Here, we have constructed the first comprehensive, comparative maps of collagen architecture in canine, human, and mouse prostate and test whether canine prostatic collagen content is increased by aging and reduced by castration. METHODS Complete transverse prostate sections were stained with picrosirius red and imaged with confocal microscopy to reveal and compare collagen architecture across species. Canine prostatic collagen fiber length, diameter, and density in prostatic urethral, periurethral, peripheral, and capsular regions were quantified and compared among four experimental groups: young intact, young neutered, old intact, and old neutered dogs. RESULTS Surprisingly, the majority of collagen was localized to the prostatic urethra in canine, human, and mouse. In canine and human, capsular regions also featured a dense collagen network but it appeared less dense than around prostatic urethra. Older, intact male canines exhibited overall denser prostate collagen fibers and had thicker capsular fibers than young, intact males. Prostatic glandular regions undergo dramatic atrophy and regression following castration, and our finding of neutered animals having increased collagen fiber density in both periurethral and peripheral regions is consistent with glandular contraction and increased proportion of stroma. CONCLUSIONS Collagen architecture in dog appears similar to that in humans when cross sections are compared side-by-side. Canine collagen organization is affected by both age and androgen status, suggesting these factors may contribute to collagen accumulation in some males.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- George M. O'Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyle A Wegner
- George M. O'Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael F Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, George M. O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Michael W Wood
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul C Marker
- George M. O'Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sara A Colopy
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- George M. O'Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
33
|
Patalano S, Rodríguez-Nieves J, Colaneri C, Cotellessa J, Almanza D, Zhilin-Roth A, Riley T, Macoska J. CXCL12/CXCR4-Mediated Procollagen Secretion Is Coupled To Cullin-RING Ubiquitin Ligase Activation. Sci Rep 2018; 8:3499. [PMID: 29472636 PMCID: PMC5823879 DOI: 10.1038/s41598-018-21506-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tissue fibrosis is mediated by the actions of multiple pro-fibrotic proteins that can induce myofibroblast phenoconversion through diverse signaling pathways coupled predominantly to Smads or MEK/Erk proteins. The TGFβ/TGFβR and CXCL12/CXCR4 axes induce myofibroblast phenoconversion independently through Smads and MEK/Erk proteins, respectively. To investigate these mechanisms at the genetic level, we have now elucidated the TGFβ/TGFβR and CXCL12/CXCR4 transcriptomes in human fibroblasts. These transcriptomes are largely convergent, and up-regulate transcripts encoding proteins known to promote myofibroblast phenoconversion. These studies also revealed a molecular signature unique to CXCL12/CXCR4 axis activation for COPII vesicle formation, ubiquitination, and Golgi/ER localization/targeting. In particular, both CUL3 and KLHL12, key members of the Cullin-RING (CRL) ubiquitin ligase family of proteins involved in procollagen transport from the ER to the Golgi, were highly up-regulated in CXCL12-, but repressed in TGFβ-, treated cells. Up-regulation of CUL3 and KLHL12 was correlated with higher procollagen secretion by CXCL12-treated cells, and this affect was ablated upon treatment with inhibitors specific for CXCR4 or CUL3 and repressed by TGFβ/TGFβR axis activation. The results of these studies show that activation of the CXCL12/CXCR4 axis uniquely facilitates procollagen I secretion through a COPII-vesicle mediated mechanism to promote production of the ECM characteristic of fibrosis.
Collapse
Affiliation(s)
- Susan Patalano
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - José Rodríguez-Nieves
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Cory Colaneri
- Department of Biology, University of Massachusetts Boston, Boston, United States
| | - Justin Cotellessa
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Diego Almanza
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Alisa Zhilin-Roth
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Todd Riley
- Department of Biology, University of Massachusetts Boston, Boston, United States
| | - Jill Macoska
- Department of Biology, University of Massachusetts Boston, Boston, United States. .,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States.
| |
Collapse
|
34
|
Wegner KA, Cadena MT, Trevena R, Turco AE, Gottschalk A, Halberg RB, Guo J, McMahon JA, McMahon AP, Vezina CM. An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS One 2017; 12:e0188413. [PMID: 29145476 PMCID: PMC5690684 DOI: 10.1371/journal.pone.0188413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available.
Collapse
Affiliation(s)
- Kyle A. Wegner
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark T. Cadena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan Trevena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne E. Turco
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam Gottschalk
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Jill A. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Chad M. Vezina
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Purpose of Review This review provides a summary of recent insights into the role of the local white adipose tissue (WAT) in systemic sclerosis. Recent Findings Adipocytes located in an interfacial WAT area adjacent to fibrotic lesions have an intermediate phenotype and special properties implicated in fibrotic pathology in systemic sclerosis (SSc). The important role of these cells is recognized in different pathologies, such as wound healing, psoriasis, breast cancer, and prostate cancer. Additionally, both immature and mature adipocytes are involved in the appearance of fibroblast-like cells but exhibit different phenotypes and synthetic properties. Summary Adipocytes from interfacial WAT adjacent to the fibrotic area in SSc are phenotypically different from bulk adipocytes and are involved in pathogenesis of SSc. Immature and mature adipocytes from this WAT layer differentiate into various types of fibroblast-like cells, making the local ratio of immature to mature adipocytes in interfacial WAT of particular importance in SSc pathogenesis.
Collapse
|
36
|
Chiang HY, Chu PH, Lee TH. R1R2 peptide ameliorates pulmonary fibrosis in mice through fibrocyte migration and differentiation. PLoS One 2017; 12:e0185811. [PMID: 28968441 PMCID: PMC5624629 DOI: 10.1371/journal.pone.0185811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Circulating fibrocytes play a key role in the pathogenesis of pulmonary fibrosis. Fibrocytes are bone marrow-derived leukocytes, which enter the lungs in response to their chemoattractant CXCL12 and differentiate into fibroblasts or myofibroblasts, leading to excess deposition of the collagen-rich extracellular matrix. Matrix metalloproteinase (MMP)-9 and MMP-2, secreted by fibrocytes, degrade the subendothelial basement membrane and promote fibrocyte influx into the lungs. Here, we demonstrate that R1R2, a novel peptide derived from the bacterial adhesin SFS, attenuates pulmonary fibrosis by preventing the differentiation of fibrocytes into myofibroblasts and by reducing the invasion of fibrocytes through basement membrane-like proteins. Moreover, our findings reveal dual regulation of R1R2 on MMP-9 through reduced enzymatic activity on gelatin and increased cleavage of CXCL12. These data suggest that R1R2 has potent anti-fibrotic effects against pulmonary fibrosis.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Kim WH, Lillehoj HS, Lim Y, Min W, Sullivan YB, Kakach L, LaBresh JW. Development and characterization of mouse monoclonal antibodies reactive with chicken CXCLi2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:30-36. [PMID: 28223253 DOI: 10.1016/j.dci.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Interleukin-8(IL-8)/CXCL8 is a CXC-family chemokine that attracts lymphocytes to sites of tissue damage and plays a role in the inflammatory response and wound healing. Chicken chemotactic and angiogenic factor was referred to as chCXCLi2 and has been studied as one of human CXCL8 homologue for more than 20 years. However, no monoclonal antibodies (mAbs) that specifically detect chCXCLi2 have been developed. Here, we developed and characterized mouse mAbs against chCXCLi2 to define its immunological properties. Two mouse mAbs against chCXCLi2 were generated and confirmed to display specific binding with not only recombinants, but endogenous chCXCLi2 by Western blot analysis, ELISA, and immunocytochemistry. Inhibition of chCXCLi2-induced chemotactic activity on peripheral blood lymphocytes, proliferation of chicken macrophage cells and expression of alpha smooth-muscle actin in chicken embryonic fibroblast cells by antibodies indicate that these antibodies are capable of blocking chCXCLi2 bioactivity. These chCXCLi2 mAbs will be useful reagents for future investigations of inflammation in poultry.
Collapse
Affiliation(s)
- Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
| | - Yeaseul Lim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Research Institute of Life Science, Gyeongsang National University, Jinju 52828, South Korea
| | | | | | | |
Collapse
|
38
|
Rodríguez-Nieves JA, Patalano SC, Almanza D, Gharaee-Kermani M, Macoska JA. CXCL12/CXCR4 Axis Activation Mediates Prostate Myofibroblast Phenoconversion through Non-Canonical EGFR/MEK/ERK Signaling. PLoS One 2016; 11:e0159490. [PMID: 27434301 PMCID: PMC4951124 DOI: 10.1371/journal.pone.0159490] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Benign prostate hyperplasia (BPH), an enlargement of the prostate common in aging in men, is associated with urinary voiding dysfunction manifest as Lower Urinary Tract Symptoms (LUTS). Although inflammation and abnormal smooth muscle contractions are known to play key roles in the development of LUTS, tissue fibrosis may also be an important and previously unrecognized contributing factor. Tissue fibrosis arises from the unregulated differentiation of fibroblasts or other precursor cell types into myofibroblasts, which is usually accomplished by activation of the TGFβ/TGFβR axis. Previously we reported that the CXC-type chemokines, CXCL5, CXCL8 and CXCL12, which are up-regulated in the aging in the prostate, can drive this differentiation process as well in the absence of TGFβ. Based on this data we sought to elucidate the molecular mechanisms employed by CXCL12, and its receptor CXCR4, during prostate myofibroblast phenoconversion. The results of these studies suggest that CXCL12/CXCR4-mediated signaling events in prostate myofibroblast phenoconversion may proceed through non-canonical pathways that do not depend on TGFβ/TGFβR axis activation or Smad signaling. Here we report that CXCL12/CXCR4 axis activation promotes signaling through the EGFR and downstream MEK/ERK and PI3K/Akt pathways during myofibroblast phenoconversion, but not through TGFβ/TGFβR and downstream Smad signaling, in prostate fibroblasts undergoing myofibroblast phenoconversion. We document that EGFR transactivation is required for CXCL12-mediated signaling and expression of genes associate with myofibroblast phenoconversion (α-SMA, COL1a1). Our study successfully identified TGFβ/TGFβR-independent molecular mechanisms that promote CXCL12/CXCR4-induced myofibroblast phenoconversion. This information may be crucial for the development of novel therapies and potential biomarkers for prostatic fibrosis.
Collapse
Affiliation(s)
- José A. Rodríguez-Nieves
- Center for Personalized Cancer Therapy and Department of Biology, University of Massachusetts, Boston, Massachusetts
| | - Susan C. Patalano
- Center for Personalized Cancer Therapy and Department of Biology, University of Massachusetts, Boston, Massachusetts
| | - Diego Almanza
- Center for Personalized Cancer Therapy and Department of Biology, University of Massachusetts, Boston, Massachusetts
| | - Mehrnaz Gharaee-Kermani
- Center for Personalized Cancer Therapy and Department of Biology, University of Massachusetts, Boston, Massachusetts
| | - Jill A. Macoska
- Center for Personalized Cancer Therapy and Department of Biology, University of Massachusetts, Boston, Massachusetts
- * E-mail:
| |
Collapse
|
39
|
Gharaee-Kermani M, Moore BB, Macoska JA. Resveratrol-Mediated Repression and Reversion of Prostatic Myofibroblast Phenoconversion. PLoS One 2016; 11:e0158357. [PMID: 27367854 PMCID: PMC4930165 DOI: 10.1371/journal.pone.0158357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/14/2016] [Indexed: 02/07/2023] Open
Abstract
Background Resveratrol, a phytoalexin found in berries, peanuts, grapes, and red wine, inhibits oxidation, inflammation, and cell proliferation and collagen synthesis in multiple cell types and or animal models. It represses collagen deposition in the vasculature, heart, lung, kidney, liver, and esophagus in animal models and may have some utility as an anti-fibrotic. Recent studies have shown that increased collagen deposition and tissue stiffness in the peri-urethral area of the prostate are associated with lower urinary tract dysfunction (LUTD) and urinary obstructive symptoms. The aim of this study was to determine whether Resveratrol might be useful to inhibit or revert TGFβ- and/or CXCL12-mediated myofibroblast phenoconversion of prostate fibroblasts in vitro, and therefore whether the use of anti-fibrotic therapeutics might be efficacious for the treatment of LUTD. Methods Primary prostate and lung tissues were explanted and fibroblast monolayers expanded in vitro. Primary and N1 immortalized prostate stromal fibroblasts, as well as primary fibroblasts cultured from a normal lung and one affected by idiopathic pulmonary fibrosis (IPF) for comparison, were grown in serum–free defined media supplemented with vehicle, TGFβ or CXCL12, pre- or post-treatment with Resveratrol, and were evaluated using immunofluorescence for alpha smooth muscle actin (αSMA) and collagen I (COL1) protein expression and assessed for cell proliferation, apoptosis, and COL1 and EGR1 transcript expression. Results This study showed that low concentrations of Resveratrol (≤50 μM) had no effect on N1 or primary prostate fibroblast cell proliferation, apoptosis, or COL1 or EGR1 gene transcription but repressed and reversed myofibroblast phenoconversion. As expected, these same effects were observed for IPF lung fibroblasts though higher levels of Resveratrol (≥100uM) were required. Taken together, these data suggest that, like lung fibroblasts, prostate fibroblast to myofibroblast phenoconversion can be both repressed and reversed by Resveratrol treatment. Thus, anti-fibrotic therapeutics might be efficacious for the treatment of LUTD.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Department of Biology, Center for Personalized Cancer Therapy, The University of Massachusetts, Boston, 02125, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Jill A. Macoska
- Department of Biology, Center for Personalized Cancer Therapy, The University of Massachusetts, Boston, 02125, United States of America
- * E-mail:
| |
Collapse
|
40
|
|
41
|
Bolt CC, Negi S, Guimarães-Camboa N, Zhang H, Troy JM, Lu X, Kispert A, Evans SM, Stubbs L. Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate. PLoS One 2016; 11:e0154413. [PMID: 27120339 PMCID: PMC4847854 DOI: 10.1371/journal.pone.0154413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022] Open
Abstract
The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling.
Collapse
Affiliation(s)
- C. Chase Bolt
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Soumya Negi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Nuno Guimarães-Camboa
- Skaggs School of Pharmacy, Department of Medicine, and Department of Pharmacology, University of California San Diego, La Jolla, CA, United States of America, 92037
| | - Huimin Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Joseph M. Troy
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Xiaochen Lu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Sylvia M. Evans
- Skaggs School of Pharmacy, Department of Medicine, and Department of Pharmacology, University of California San Diego, La Jolla, CA, United States of America, 92037
| | - Lisa Stubbs
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- * E-mail:
| |
Collapse
|
42
|
He Q, Wang Z, Liu G, Daneshgari F, MacLennan GT, Gupta S. Metabolic syndrome, inflammation and lower urinary tract symptoms: possible translational links. Prostate Cancer Prostatic Dis 2016; 19:7-13. [PMID: 26391088 PMCID: PMC4747786 DOI: 10.1038/pcan.2015.43] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiological data suggest that lower urinary tract symptoms (LUTSs) may be associated with metabolic syndrome (MetS). Inflammation has been proposed as a candidate mechanism at the crossroad between these two clinical entities. The aim of this review article is to evaluate the role of MetS-induced inflammation in the pathogenesis and progression of LUTS. METHODS A systematic review was conducted using the keywords 'metabolic syndrome and lower urinary tract symptoms' within the title search engines including PubMed, Web of Science and the Cochrane Library for relevant research work published between 2000 and January 2015. The obtained literature was reviewed by the primary author (QH) and was assessed for eligibility and standard level of evidence. RESULTS Total of 52 articles met the eligibility criteria. On the basis of database search during the past 15 years and our systematic review of prospective and retrospective cohorts, case-control trials, observational studies and animal data identified a possible link between MetS-induced inflammation and LUTS including BPH, bladder outlet obstruction, overactive bladder, urinary incontinence and other possible urinary tract abnormalities. CONCLUSIONS There is convincing evidence to suggest that MetS and inflammation could be important contributors to LUTS in men, particularly in the development of BPH. However, the role of MetS-induced inflammation remains unclear in overactive bladder, urinary incontinence and etiology of LUTS progression.
Collapse
Affiliation(s)
- Qiqi He
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nephro-Urological Clinical Center, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhiping Wang
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nephro-Urological Clinical Center, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109
| | - Firouz Daneshgari
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109
| | - Gregory T. MacLennan
- Department of Pathology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
43
|
Role of PAR2 in the Development of Lower Urinary Tract Dysfunction. J Urol 2016; 196:588-98. [PMID: 26860791 DOI: 10.1016/j.juro.2016.01.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Lower urinary tract symptoms are a common finding in patients with chronic prostatitis/chronic pelvic pain syndrome. We previously reported that the mast cell-tryptase-PAR2 (protease activated receptor 2) axis has a critical role in the development of chronic pain in experimental autoimmune prostatitis, a mouse model of chronic prostatitis/chronic pelvic pain syndrome. Therefore, we examined whether PAR2 activation mediates lower urinary tract dysfunction. MATERIALS AND METHODS Functional cystometry was done in male B6 mice along with immunoblotting and immunohistochemistry for the expression of COL1A1 (collagen type I α I) and α-SMA (α-smooth muscle actin). Flow cytometry analysis was performed on single cell suspensions of the prostate, bladder, lymph nodes and spleen. RESULTS Experimental autoimmune prostatitis resulted in increased urinary voiding frequency and decreased bladder capacity 30 days after initiation. Concurrently, there was increased expression of COL1A1 and α-SMA in the prostates and bladders. In contrast, induction of experimental autoimmune prostatitis in PAR2 knockout mice did not result in altered urodynamics or increased markers of fibrosis in the prostate or the bladder. Single cell suspensions of the prostate, bladder, lymph nodes and spleen demonstrated that in the absence of PAR2 cellular inflammatory mechanisms were still initiated in experimental autoimmune prostatitis but PAR2 expression may be required to maintain chronic inflammation. Finally, antibody mediated PAR2 neutralization normalized urinary voiding frequency and bladder capacity, and attenuated chronic pelvic pain. CONCLUSIONS PAR2 activation in the prostate may contribute to the development of lower urinary tract dysfunction through proinflammatory as well as profibrotic pathways.
Collapse
|
44
|
Tyagi P, Motley SS, Kashyap M, Pore S, Gingrich J, Wang Z, Yoshimura N, Fowke JH. Urine chemokines indicate pathogenic association of obesity with BPH/LUTS. Int Urol Nephrol 2015; 47:1051-8. [PMID: 25924782 DOI: 10.1007/s11255-015-0992-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVES High prevalence of lower urinary tract symptoms (LUTS) consistent with benign prostate hyperplasia (BPH) is associated with obesity and prostatic inflammation. Here, we investigated whether chemokines associated with obesity and prostatic inflammation can be measured in normally voided urine of BPH/LUTS patients to demonstrate the mechanistic association between obesity and BPH/LUTS. METHODS Frozen urine specimens of BPH/LUTS patients enrolled in the Nashville Men's Health Study were sent for blinded analysis to University of Pittsburgh. Thirty patients were blocked by their AUA-SI (>7 or ≤7) and prostatic enlargement (<40, 40-60, >60 cc). Clinical parameters including age, prostate size, and medications were derived from chart review. CXC chemokines (CXCL-1, CXCL-8, and CXCL-10), CC chemokines (CCL2 and CCL3), and sIL-1ra were measured in thawed urine using Luminex™ xMAP(®) technology and ELISA for NGF. RESULTS Urinary CCL2 levels were several fold higher compared with the other six proteins, of which CCL3 was detectable in less than one-fourth of patients. Urine levels of sIL-1ra and CXCL-8 were significantly associated with increasing BMI and waist circumference in BPH patients. CXCL-8 showed a marginal association with overall AUA-SI scores, as well as obstructive (p = 0.08) symptom subscores. Prostate volume was inversely and marginally associated with urinary CXCL-10 (p = 0.09). CONCLUSIONS Urine levels of CXCL-8, CXCL-10, and sIL-1ra were associated with varying degrees with LUTS severity, prostate size, and obesity, respectively. These findings in urine are consistent with past studies of chemokine levels from expressed prostatic secretions and demonstrate the potential of noninvasively measured chemokine in urine to objectively classify BPH/LUTS patients.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, E313 Montefiore Hospital, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Inflammation and prostate cancer: friends or foe? Inflamm Res 2015; 64:275-86. [PMID: 25788425 DOI: 10.1007/s00011-015-0812-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Prostate cancer is the most common non-cutaneous malignancy diagnosed in men. Moving from histological observations since a long time, it has been recognized that innate and adaptive immunity actively participates in the pathogenesis, surveillance, and progression of prostate cancer. MATERIALS AND METHODS A PubMed and Web of Science databases search was performed for studies providing evidence on the roles of the innate and adaptive immunity during the development and progression of prostate cancer. CONCLUSIONS There are growing evidences that chronic inflammation is involved in the regulation of cellular events in prostate carcinogenesis, including disruption of the immune response and regulation of the tumor microenvironment. This review discusses the role played by the innate and adaptive immune system in the local progression of prostate cancer, and the prognostic information that we can currently understand and exploit.
Collapse
|
46
|
RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A 2014; 111:16389-94. [PMID: 25313057 DOI: 10.1073/pnas.1407097111] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myofibroblasts are a key cell type in wound repair, cardiovascular disease, and fibrosis and in the tumor-promoting microenvironment. The high accumulation of myofibroblasts in reactive stroma is predictive of the rate of cancer progression in many different tumors, yet the cell types of origin and the mechanisms that regulate proliferation and differentiation are unknown. We report here, for the first time to our knowledge, the characterization of normal human prostate-derived mesenchymal stem cells (MSCs) and the TGF-β1-regulated pathways that modulate MSC proliferation and myofibroblast differentiation. Human prostate MSCs combined with prostate cancer cells expressing TGF-β1 resulted in commitment to myofibroblasts. TGF-β1-regulated runt-related transcription factor 1 (RUNX1) was required for cell cycle progression and proliferation of progenitors. RUNX1 also inhibited, yet did not block, differentiation. Knockdown of RUNX1 in prostate or bone marrow-derived MSCs resulted in cell cycle arrest, attenuated proliferation, and constitutive differentiation to myofibroblasts. These data show that RUNX1 is a key transcription factor for MSC proliferation and cell fate commitment in myofibroblast differentiation. This work also shows that the normal human prostate gland contains tissue-derived MSCs that exhibit multilineage differentiation similar to bone marrow-derived MSCs. Targeting RUNX1 pathways may represent a therapeutic approach to affect myofibroblast proliferation and biology in multiple disease states.
Collapse
|
47
|
Wong L, Hutson PR, Bushman W. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection. PLoS One 2014; 9:e100770. [PMID: 24950301 PMCID: PMC4065064 DOI: 10.1371/journal.pone.0100770] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/08/2014] [Indexed: 12/20/2022] Open
Abstract
Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show–for the first time–that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process.
Collapse
Affiliation(s)
- Letitia Wong
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul R. Hutson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wade Bushman
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
48
|
Gharaee-Kermani M, Macoska JA. Promising molecular targets and biomarkers for male BPH and LUTS. Curr Urol Rep 2014; 14:628-37. [PMID: 23913202 DOI: 10.1007/s11934-013-0368-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a major health concern for aging men. BPH is associated with urinary voiding dysfunction and lower urinary tract symptoms (LUTS), which negatively affects quality of life. Surgical resection and medical approaches have proven effective for improving urinary flow and relieving LUTS but are not effective for all men and can produce adverse effects that require termination of the therapeutic regimen. Thus, there is a need to explore other therapeutic targets to treat BPH/LUTS. Complicating the treatment of BPH/LUTS is the lack of biomarkers to effectively identify pathobiologies contributing to BPH/LUTS or to gauge successful response to therapy. This review will briefly discuss current knowledge and will highlight new studies that illuminate the pathobiologies contributing to BPH/LUTS, potential new therapeutic strategies for successfully treating BPH/LUTS, and new approaches for better defining these pathobiologies and response to therapeutics through the development of biomarkers and phenotyping strategies.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Center for Personalized Cancer Therapy and the Department of Biology, The University of Massachusetts, Boston, Boston, MA, 02125, USA
| | | |
Collapse
|
49
|
Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 2014; 5:123. [PMID: 24904424 PMCID: PMC4034148 DOI: 10.3389/fphar.2014.00123] [Citation(s) in RCA: 674] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM) characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of non-cancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve non-specific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.
Collapse
Affiliation(s)
- Ryan T Kendall
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
50
|
Broeckx SY, Maes S, Martinello T, Aerts D, Chiers K, Mariën T, Patruno M, Franco-Obregón A, Spaas JH. Equine Epidermis: A Source of Epithelial-Like Stem/Progenitor Cells with In Vitro and In Vivo Regenerative Capacities. Stem Cells Dev 2014; 23:1134-48. [DOI: 10.1089/scd.2013.0203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sarah Y. Broeckx
- Global Stem cell Technology, Meldert-Lummen, Belgium
- Pell Cell Medicals, Opglabbeek, Belgium
| | | | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tom Mariën
- Equitom Equine Hospital, Meldert-Lummen, Belgium
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Alfredo Franco-Obregón
- Department of Biomechanics, Swiss Federal Institute of Technology, ETH, Zürich, Switzerland
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan H. Spaas
- Global Stem cell Technology, Meldert-Lummen, Belgium
- Pell Cell Medicals, Opglabbeek, Belgium
| |
Collapse
|