1
|
Scott-McKean JJ, Matsuyama M, Guo CW, Ni L, Sassouni B, Kurup S, Nickells R, Matsuyama S. Cytoprotective Small Compound M109S Attenuated Retinal Ganglion Cell Degeneration Induced by Optic Nerve Crush in Mice. Cells 2024; 13:911. [PMID: 38891043 PMCID: PMC11172299 DOI: 10.3390/cells13110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
BAX plays an essential role in retinal ganglion cell (RGC) death induced by optic nerve injury. Recently, we developed M109S, an orally bioactive and cytoprotective small compound (CPSC) that inhibits BAX-mediated cell death. We examined whether M109S can protect RGC from optic nerve crush (ONC)-induced apoptosis. M109S was administered starting 5 h after ONC for 7 days. M109S was orally administered in two groups (5 mg/kg twice a day or 7.5 mg/kg once a day). The retina was stained with anti-BRN3A and cleaved Caspase-3 (active Caspase-3) that are the markers of RGC and apoptotic cells, respectively. ONC decreased the number of BRN3A-positive RGC and increased the number of active Caspase-3-expressing apoptotic cells. In ONC-treated retina, there were cells that were double stained with anti-BRN3A and ant-cleaved Caspase-3, indicating that apoptosis in BRN3A-positive RGCs occurred. M109S inhibited the decrease of BRN3A-positive cells whereas it inhibited the increase of active Caspase-3-positive cells in the retina of ONC-treated mice, suggesting that M109S inhibited apoptosis in RGCs. M109S did not induce detectable histological damage to the lungs or kidneys in mice, suggesting that M109S did not show toxicities in the lung or kidneys when the therapeutic dose was used. The present study suggests that M109S is effective in rescuing damaged RGCs. Since M109S is an orally bioactive small compound, M109S may become the basis for a portable patient-friendly medicine that can be used to prevent blindness by rescuing damaged optic nerve cells from death.
Collapse
Affiliation(s)
- Jonah J. Scott-McKean
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
| | - Mieko Matsuyama
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
| | - Charles W. Guo
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
| | - Lin Ni
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
| | - Brandon Sassouni
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
| | - Shree Kurup
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
| | - Robert Nickells
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Wisconsin (Madison), Madison, WI 53706, USA;
| | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (J.J.S.-M.); (C.W.G.); (B.S.); (S.K.)
- Division of Hematology and Oncology, Departments of Medicine, Pharmacology and Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Miyagishima KJ, Qiao F, Stasheff SF, Nadal-Nicolás FM. Visual Deficits and Diagnostic and Therapeutic Strategies for Neurofibromatosis Type 1: Bridging Science and Patient-Centered Care. Vision (Basel) 2024; 8:31. [PMID: 38804352 PMCID: PMC11130890 DOI: 10.3390/vision8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Individuals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are typically asymptomatic and benign, they can induce visual impairment in some patients. This review provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1 pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research to transform scientific laboratory discoveries to improved patient outcomes.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Fengyu Qiao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Steven F. Stasheff
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
- Center for Neuroscience and Behavioral Medicine, Gilbert Neurofibromatosis Institute, Children’s National Health System, Washington, DC 20010, USA
- Neurology Department, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Francisco M. Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| |
Collapse
|
3
|
Meng M, Chaqour B, O'Neill N, Dine K, Sarabu N, Ying GS, Shindler KS, Ross AG. Comparison of Brn3a and RBPMS Labeling to Assess Retinal Ganglion Cell Loss During Aging and in a Model of Optic Neuropathy. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38587440 PMCID: PMC11005068 DOI: 10.1167/iovs.65.4.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Retinal ganglion cell (RGC) loss provides the basis for diagnosis and stage determination of many optic neuropathies, and quantification of RGC survival is a critical outcome measure in models of optic neuropathy. This study examines the accuracy of manual RGC counting using two selective markers, Brn3a and RBPMS. Methods Retinal flat mounts from 1- to 18-month-old C57BL/6 mice, and from mice after microbead (MB)-induced intraocular pressure (IOP) elevation, are immunostained with Brn3a and/or RBPMS antibodies. Four individuals masked to the experimental conditions manually counted labeled RGCs in three copies of five images, and inter- and intra-person reliability was evaluated by the intraclass correlation coefficient (ICC). Results A larger population (approximately 10% higher) of RGCs are labeled with RBPMS than Brn3a antibody up to 6 months of age, but differences decrease to approximately 1% at older ages. Both RGC-labeled populations significantly decrease with age. MB-induced IOP elevation is associated with a significant decrease of both Brn3a- and RBPMS-positive RGCs. Notably, RGC labeling with Brn3a provides more consistent cell counts than RBPMS in interpersonal (ICC = 0.87 to 0.11, respectively) and intra-personal reliability (ICC = 0.97 to 0.66, respectively). Conclusions Brn3a and RBPMS markers are independently capable of detecting significant decreases of RGC number with age and in response to IOP elevation despite RPBMS detecting a larger number of RGCs up to 6 months of age. Brn3a labeling is less prone to manual cell counting variability than RBPMS labeling. Overall, either marker can be used as a single marker to detect significant changes in RGC survival, each offering distinct advantages.
Collapse
Affiliation(s)
- Miranda Meng
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nuala O'Neill
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Neha Sarabu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui-Shuang Ying
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ahmara G. Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Di Pierdomenico J, Gallego-Ortega A, Norte-Muñoz M, Vidal-Villegas B, Bravo I, Boluda-Ruiz M, Bernal-Garro JM, Fernandez-Bueno I, Pastor-Jimeno JC, Villegas-Pérez MP, Avilés-Trigueros M, de Los Ríos C, Vidal-Sanz M. Evaluation of the neuroprotective efficacy of the gramine derivative ITH12657 against NMDA-induced excitotoxicity in the rat retina. Front Neuroanat 2024; 18:1335176. [PMID: 38415017 PMCID: PMC10898249 DOI: 10.3389/fnana.2024.1335176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose The aim of this study was to investigate, the neuroprotective effects of a new Gramine derivative named: ITH12657, in a model of retinal excitotoxicity induced by intravitreal injection of NMDA. Methods Adult Sprague Dawley rats received an intravitreal injection of 100 mM NMDA in their left eye and were treated daily with subcutaneous injections of ITH12657 or vehicle. The best dose-response, therapeutic window study, and optimal treatment duration of ITH12657 were studied. Based on the best survival of Brn3a + RGCs obtained from the above-mentioned studies, the protective effects of ITH12657 were studied in vivo (retinal thickness and full-field Electroretinography), and ex vivo by quantifying the surviving population of Brn3a + RGCs, αRGCs and their subtypes α-ONsRGCs, α-ONtRGCs, and α-OFFRGCs. Results Administration of 10 mg/kg ITH12657, starting 12 h before NMDA injection and dispensed for 3 days, resulted in the best significant protection of Brn3a + RGCs against NMDA-induced excitotoxicity. In vivo, ITH12657-treated rats showed significant preservation of retinal thickness and functional protection against NMDA-induced retinal excitotoxicity. Ex vivo results showed that ITH12657 afforded a significant protection against NMDA-induced excitotoxicity for the populations of Brn3a + RGC, αRGC, and αONs-RGC, but not for the population of αOFF-RGC, while the population of α-ONtRGC was fully resistant to NMDA-induced excitotoxicity. Conclusion Subcutaneous administration of ITH12657 at 10 mg/kg, initiated 12 h before NMDA-induced retinal injury and continued for 3 days, resulted in the best protection of Brn3a + RGCs, αRGC, and αONs-RGC against excitotoxicity-induced RGC death. The population of αOFF-RGCs was extremely sensitive while α-ONtRGCs were fully resistant to NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
| | | | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| | | | - Isaac Bravo
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - María Boluda-Ruiz
- Departamento de Oftalmología, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| | | | - Iván Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, Valladolid, Spain
| | - Jose Carlos Pastor-Jimeno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, Valladolid, Spain
| | | | | | - Cristobal de Los Ríos
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
5
|
Caminos E, Murillo-Martínez M, García-Belando M, Cabanes-Sanchís JJ, Martinez-Galan JR. Robust expression of the TRPC1 channel associated with photoreceptor loss in the rat retina. Exp Eye Res 2023; 236:109655. [PMID: 37722585 DOI: 10.1016/j.exer.2023.109655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Baseline intracellular calcium levels are significantly higher in neuronal and glial cells of rat retinas with retinitis pigmentosa (RP). Although this situation could initiate multiple detrimental pathways that lead to cell death, we considered the possibility of TRPC1 being involved in maintaining calcium homeostasis in the retina by acting as a component of store-operated calcium (SOC) channels with special relevance during photoreceptor degeneration. In this study, we examined by Western blot the expression of TRPC1 in healthy control rat retinas (Sprague-Dawley, SD) and retinas with RP (P23H-1 rats). We also analyzed its specific cellular distribution by immunofluorescence to recognize changes during neurodegeneration and to determine whether its presence is consistent with high basal calcium levels and cellular survival in degenerating retinas. We found that TRPC1 immunostaining was widely distributed across the retina in both rat strains, SD and P23H, and its expression levels significantly increased in the retinas with advanced degeneration compared to the age-control SD rats. In the outer retina, TRPC1 immunoreactivity was distributed in pigment epithelium cells, the photoreceptor inner segments of older animals, and the outer plexiform layer. In the inner retina, TRPC1 labeling was detected in horizontal cells, specific somata of bipolar and amacrine cells, and cellular processes in all the strata of the inner plexiform layer. Somata and processes were also highly immunoreactive in the ganglion cell layer and astrocytes in the nerve fiber layer in all animals. In the P23H rat retinas, the TRPC1 distribution pattern changed according to advancing photoreceptor degeneration and the gliosis reaction, with TRPC1 immunoreactive Müller cells mainly in advanced stages of disease. The cellular TRPC1 immunoreactivity found in this work suggests different mechanisms of activation of these channels depending on the cell type. Furthermore, the results support the idea that photoreceptor loss due to RP is associated with robust TRPC1 protein expression in the rat inner retina and raise the possibility of TRPC1 channels contributing to maintain high basal calcium levels during neurodegeneration and/or maintenance processes of the inner retina.
Collapse
Affiliation(s)
- Elena Caminos
- University of Castilla-La Mancha, Department of Medical Science, Medical School of Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| | - Marina Murillo-Martínez
- University of Castilla-La Mancha, Department of Medical Science, Medical School of Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| | - María García-Belando
- University of Castilla-La Mancha, Department of Medical Science, Medical School of Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| | - José Julio Cabanes-Sanchís
- University of Castilla-La Mancha, Department of Medical Science, Medical School of Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| | - Juan R Martinez-Galan
- University of Castilla-La Mancha, Department of Medical Science, Medical School of Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| |
Collapse
|
6
|
Gao Y, Liu L, Zhang Z, Qin C, Yang B, Ke Y. TYRP1 Protects Against the Apoptosis and Oxidative Stress of Retinal Ganglion Cells by Binding to PMEL. Ocul Immunol Inflamm 2023; 31:1024-1034. [PMID: 35708352 DOI: 10.1080/09273948.2022.2081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This research aimed to dissect the function of TYRP1 and PMEL in glaucomatous animal and cell models. METHODS A chronic ocular hypertension (COH) rat model was induced in the right eyes of rats through the electrocoagulation of superficial iris veins. In addition, an oxygen-glucose deprivation (OGD)-retinal ganglion cell (RGC) model was constructed through OGD. TYRP1 and PMEL expression was altered in the animal and cell models to explore their effects. RESULTS TYRP1 and PMEL expression was poor in glaucoma patients, COH rats, and OGD-RGCs. Mechanistically, TYRP1 interacted with PMEL to upregulate PMEL in OGD-RGCs. TYRP1 overexpression enhanced viability and diminished apoptosis and oxidative stress of OGD-RGCs, which was abolished by PMEL knockdown. TYRP1 upregulation reduced intraocular pressure, RGC apoptosis, and oxidative stress in COH rats, which was reversed by PMEL knockdown. CONCLUSIONS TYRP1 elevates PMEL expression to reduce RGC apoptosis and oxidative stress in vivo and in vitro.
Collapse
Affiliation(s)
- Yanlin Gao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Lei Liu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Chunxiu Qin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, P.R. China
| | - Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| |
Collapse
|
7
|
Bastola T, Perkins GA, Kim KY, Choi S, Kwon JW, Shen Z, Strack S, Ju WK. Role of A-Kinase Anchoring Protein 1 in Retinal Ganglion Cells: Neurodegeneration and Neuroprotection. Cells 2023; 12:1539. [PMID: 37296658 PMCID: PMC10252895 DOI: 10.3390/cells12111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.
Collapse
Affiliation(s)
- Tonking Bastola
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Jin-Woo Kwon
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Ophthalmology and Visual Science, St. Vincent’s Hospital, Jungbu-daero 93, Paldal-gu, Suwon 16247, Republic of Korea
| | - Ziyao Shen
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Stefan Strack
- Department of Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| |
Collapse
|
8
|
Nadal-Nicolás FM, Galindo-Romero C, Lucas-Ruiz F, Marsh-Amstrong N, Li W, Vidal-Sanz M, Agudo-Barriuso M. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool Res 2023; 44:226-248. [PMID: 36594396 PMCID: PMC9841181 DOI: 10.24272/j.issn.2095-8137.2022.308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Nicholas Marsh-Amstrong
- Department of Ophthalmology and Vision Science, University of California, Davis, CA 95817, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| |
Collapse
|
9
|
Miralles de Imperial-Ollero JA, Vidal-Villegas B, Gallego-Ortega A, Nadal-Nicolás FM, Salinas-Navarro M, Norte-Muñoz M, Di Pierdomenico J, Galindo-Romero C, Agudo-Barriuso M, Vidal-Sanz M, Valiente-Soriano FJ. Methods to Identify Rat and Mouse Retinal Ganglion Cells in Retinal Flat-Mounts. Methods Mol Biol 2023; 2708:175-194. [PMID: 37558971 DOI: 10.1007/978-1-0716-3409-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The identification of distinct retinal ganglion cell (RGC) populations in flat-mounted retinas is key to investigating pathological or pharmacological effects in these cells. In this chapter, we review the main techniques for detecting the total population of RGCs and various of their subtypes in whole-mounted retinas of pigmented and albino rats and mice, four of the animal strains most studied by the scientific community in the retina field. These methods are based on the studies published by the Vidal-Sanz's laboratory.
Collapse
Affiliation(s)
- Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain.
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain.
| |
Collapse
|
10
|
Gallego-Ortega A, Norte-Muñoz M, Di Pierdomenico J, Avilés-Trigueros M, de la Villa P, Valiente-Soriano FJ, Vidal-Sanz M. Alpha retinal ganglion cells in pigmented mice retina: number and distribution. Front Neuroanat 2022; 16:1054849. [PMID: 36530520 PMCID: PMC9751430 DOI: 10.3389/fnana.2022.1054849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina.Methods: The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation.Results: The total mean number of αRGCs per retina is 2,252 ± 306 SMI32+αRGCs and 2,315 ± 175 OPN+αRGCs (n = 10), representing 5.08% and 5.22% of the total number of RGCs traced from the optic nerve, respectively. αRGCs are distributed throughout the retina, showing a higher density in the temporal hemiretina. ONs-αRGCs represent ≈36% [841 ± 110 cells (n = 10)] of all αRGCs and are located throughout the retina, with the highest density in the temporal region. ONt-αRGCs represent ≈34% [797 ± 146 cells (n = 10)] of all αRGCs and are mainly located in the central retinal region. OFF-αRGCs represent the remaining 32% of total αRGCs and are divided equally between OFFs-αRGCs and OFFt-αRGCs [363 ± 50 cells (n = 10) and 376 ± 36 cells (n = 10), respectively]. OFFs-αRGCs are mainly located in the supero-temporal peripheral region of the retina and OFFt-αRGCs in the mid-peripheral region of the retina, especially in the infero-temporal region.Conclusions: The combination of specific antibodies is a useful tool to identify and study αRGCs and their subtypes. αRGCs are distributed throughout the retina presenting higher density in the temporal area. The sustained ON and OFF response subtypes are mainly located in the periphery while the transient ON and OFF response subtypes are found in the central regions of the retina.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Johnny Di Pierdomenico
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Laboratory of Visual Neurophysiology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Francisco Javier Valiente-Soriano
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
- *Correspondence: Manuel Vidal-Sanz Francisco Javier Valiente-Soriano
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
- *Correspondence: Manuel Vidal-Sanz Francisco Javier Valiente-Soriano
| |
Collapse
|
11
|
Rodrigo MJ, Bravo-Osuna I, Subias M, Montolío A, Cegoñino J, Martinez-Rincón T, Mendez-Martinez S, Aragón-Navas A, Garcia-Herranz D, Pablo LE, Herrero-Vanrell R, del Palomar AP, Garcia-Martin E. Tunable degrees of neurodegeneration in rats based on microsphere-induced models of chronic glaucoma. Sci Rep 2022; 12:20622. [PMID: 36450772 PMCID: PMC9712621 DOI: 10.1038/s41598-022-24954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study compares four different animal models of chronic glaucoma against normal aging over 6 months. Chronic glaucoma was induced in 138 Long-Evans rats and compared against 43 aged-matched healthy rats. Twenty-five rats received episcleral vein sclerosis injections (EPIm cohort) while the rest were injected in the eye anterior chamber with a suspension of biodegradable microspheres: 25 rats received non-loaded microspheres (N-L Ms cohort), 45 rats received microspheres loaded with dexamethasone (MsDexa cohort), and 43 rats received microspheres co-loaded with dexamethasone and fibronectin (MsDexaFibro cohort). Intraocular pressure, neuroretinal function, structure and vitreous interface were evaluated. Each model caused different trends in intraocular pressure, produced specific retinal damage and vitreous signals. The steepest and strongest increase in intraocular pressure was seen in the EPIm cohort and microspheres models were more progressive. The EPIm cohort presented the highest vitreous intensity and percentage loss in the ganglion cell layer, the MsDexa cohort presented the greatest loss in the retinal nerve fiber layer, and the MsDexaFibro cohort presented the greatest loss in total retinal thickness. Function decreased differently among cohorts. Using biodegradable microspheres models it is possible to generate tuned neurodegeneration. These results support the multifactorial nature of glaucoma based on several noxa.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Irene Bravo-Osuna
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subias
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alberto Montolío
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Teresa Martinez-Rincón
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Silvia Mendez-Martinez
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alba Aragón-Navas
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis Emilio Pablo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Amaya Pérez del Palomar
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain ,C/Padre Arrupe, Servicio de Oftalmología, Edificio de Consultas Externas, Planta 1, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Galindo-Romero C, Norte-Muñoz M, Gallego-Ortega A, Rodríguez-Ramírez KT, Lucas-Ruiz F, González-Riquelme MJ, Vidal-Sanz M, Agudo-Barriuso M. The retina of the lab rat: focus on retinal ganglion cells and photoreceptors. Front Neuroanat 2022; 16:994890. [PMID: 36213609 PMCID: PMC9538360 DOI: 10.3389/fnana.2022.994890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Albino and pigmented rat strains are widely used in models to study retinal degeneration and to test new therapies. Here, we have summarized the main topographical and functional characteristics of the rat retina focussing on photoreceptors and retinal ganglion cells (RGCs), the beginning and end of the retinal circuitry, respectively. These neurons are very sensitive to injury and disease, and thus knowing their normal number, topography, and function is essential to accurately investigate on neuronal survival and protection.
Collapse
|
13
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
14
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
15
|
7,8-Dihydroxiflavone Maintains Retinal Functionality and Protects Various Types of RGCs in Adult Rats with Optic Nerve Transection. Int J Mol Sci 2021; 22:ijms222111815. [PMID: 34769247 PMCID: PMC8584116 DOI: 10.3390/ijms222111815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
To analyze the neuroprotective effects of 7,8-Dihydroxyflavone (DHF) in vivo and ex vivo, adult albino Sprague-Dawley rats were given a left intraorbital optic nerve transection (IONT) and were divided in two groups: One was treated daily with intraperitoneal (ip) DHF (5 mg/kg) (n = 24) and the other (n = 18) received ip vehicle (1% DMSO in 0.9% NaCl) from one day before IONT until processing. At 5, 7, 10, 12, 14, and 21 days (d) after IONT, full field electroretinograms (ERG) were recorded from both experimental and one additional naïve-control group (n = 6). Treated rats were analyzed 7 (n = 14), 14 (n = 14) or 21 d (n = 14) after IONT, and the retinas immune stained against Brn3a, Osteopontin (OPN) and the T-box transcription factor T-brain 2 (Tbr2) to identify surviving retinal ganglion cells (RGCs) (Brn3a+), α-like (OPN+), α-OFF like (OPN+Brn3a+) or M4-like/α-ON sustained RGCs (OPN+Tbr+). Naïve and right treated retinas showed normal ERG recordings. Left vehicle-treated retinas showed decreased amplitudes of the scotopic threshold response (pSTR) (as early as 5 d), the rod b-wave, the mixed response and the cone response (as early as 10 d), which did not recover with time. In these retinas, by day 7 the total numbers of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs decreased to less than one half and OPN+Brn3a+RGCs decreased to approximately 0.5%, and Brn3a+RGCs showed a progressive loss with time, while OPN+RGCs and OPN+Tbr2+RGCs did not diminish after seven days. Compared to vehicle-treated, the left DHF-treated retinas showed significantly greater amplitudes of the pSTR, normal b-wave values and significantly greater numbers of OPN+RGCs and OPN+Tbr2+RGCs for up to 14 d and of Brn3a+RGCs for up to 21 days. DHF affords significant rescue of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs, but not OPN+Brn3a+RGCs, and preserves functional ERG responses after IONT.
Collapse
|
16
|
Glycogen Synthase Kinase 3 Regulates the Genesis of Displaced Retinal Ganglion Cells3. eNeuro 2021; 8:ENEURO.0171-21.2021. [PMID: 34518365 PMCID: PMC8496207 DOI: 10.1523/eneuro.0171-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 01/13/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) proteins (GSK3α and GSK3β) are key mediators of signaling pathways, with crucial roles in coordinating fundamental biological processes during neural development. Here we show that the complete loss of GSK3 signaling in mouse retinal progenitors leads to microphthalmia with broad morphologic defects. A single wild-type allele of either Gsk3α or Gsk3β is able to rescue this phenotype. In this genetic context, all cell types are present in a functional retina. However, we unexpectedly detected a large number of cells in the inner nuclear layer expressing retinal ganglion cell (RGC)-specific markers (called displaced RGCs, dRGCs) when at least one allele of Gsk3α is expressed. The excess of dRGCs leads to an increased number of axons projecting into the ipsilateral medial terminal nucleus, an area of the brain belonging to the non-image-forming visual circuit and poorly targeted by RGCs in wild-type retina. Transcriptome analysis and optomotor response assay suggest that at least a subset of dRGCs in Gsk3 mutant mice are direction-selective RGCs. Our study thus uncovers a unique role of GSK3 in controlling the production of ganglion cells in the inner nuclear layer, which correspond to dRGCs, a rare and poorly characterized retinal cell type.
Collapse
|
17
|
Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies. J Transl Med 2021; 101:1289-1303. [PMID: 34253851 PMCID: PMC8753557 DOI: 10.1038/s41374-021-00637-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Retinal ganglion cell (RGC) death occurs after optic nerve injury due to acute trauma or chronic degenerative conditions such as optic neuropathies (e.g., glaucoma). Currently, there are no effective therapies to prevent permanent vision loss resulting from RGC death, underlining the need for research on the pathogenesis of RGC disorders. Modeling human RGC/optic nerve diseases in non-human primates is ideal because of their similarity to humans, but has practical limitations including high cost and ethical considerations. In addition, many retinal degenerative disorders are age-related making the study in primate models prohibitively slow. For these reasons, mice and rats are commonly used to model RGC injuries. However, as nocturnal mammals, these rodents have retinal structures that differ from primates - possessing less than one-tenth of the RGCs found in the primate retina. Here we report the diurnal thirteen-lined ground squirrel (TLGS) as an alternative model. Compared to other rodent models, the number and distribution of RGCs in the TLGS retina are closer to primates. The TLGS retina possesses ~600,000 RGCs with the highest density along the equatorial retina matching the location of the highest cone density (visual streak). TLGS and primate retinas also share a similar interlocking pattern between RGC axons and astrocyte processes in the retina nerve fiber layer (RNFL). In addition, using TLGS we establish a new partial optic nerve injury model that precisely controls the extent of injury while sparing a portion of the retina as an ideal internal control for investigating the pathophysiology of axon degeneration and RGC death. Moreover, in vivo optical coherence tomography (OCT) imaging and ex vivo microscopic examinations of the retina in optic nerve injured TLGS confirm RGC loss precedes proximal axon degeneration, recapitulating human pathology. Thus, the TLGS retina is an excellent model, for translational research in neurodegeneration and therapeutic neuroprotection.
Collapse
|
18
|
Cwerman-Thibault H, Lechauve C, Malko-Baverel V, Augustin S, Le Guilloux G, Reboussin É, Degardin-Chicaud J, Simonutti M, Debeir T, Corral-Debrinski M. Neuroglobin effectively halts vision loss in Harlequin mice at an advanced stage of optic nerve degeneration. Neurobiol Dis 2021; 159:105483. [PMID: 34400304 DOI: 10.1016/j.nbd.2021.105483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022] Open
Abstract
Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults. Despite the progress achieved on the identification of gene mutations causing mitochondrial pathologies, they cannot be cured so far. Harlequin mice, a relevant model of mitochondrial pathology due to apoptosis inducing factor depletion, suffer from progressive disappearance of retinal ganglion cells leading to optic neuropathy. In our previous work, we showed that administering adeno-associated virus encompassing the coding sequences for neuroglobin, (a neuroprotective molecule belonging to the globin family) or apoptosis-inducing factor, before neurodegeneration onset, prevented retinal ganglion cell loss and preserved visual function. One of the challenges to develop an effective treatment for optic neuropathies is to consider that by the time patients become aware of their handicap, a large amount of nerve fibers has already disappeared. Gene therapy was performed in Harlequin mice aged between 4 and 5 months with either a neuroglobin or an apoptosis-inducing factor vector to determine whether the increased abundance of either one of these proteins in retinas could preserve visual function at this advanced stage of the disease. We demonstrated that gene therapy, by preserving the connectivity of transduced retinal ganglion cells and optic nerve bioenergetics, results in the enhancement of visual cortex activity, ultimately rescuing visual impairment. This study demonstrates that: (a) An increased abundance of neuroglobin functionally overcomes apoptosis-inducing factor absence in Harlequin mouse retinas at a late stage of neuronal degeneration; (b) The beneficial effect for visual function could be mediated by neuroglobin localization to the mitochondria, thus contributing to the maintenance of the organelle homeostasis.
Collapse
Affiliation(s)
| | - Christophe Lechauve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Élodie Reboussin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Manuel Simonutti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | | |
Collapse
|
19
|
Schmitt HM, Fehrman RL, Maes ME, Yang H, Guo LW, Schlamp CL, Pelzel HR, Nickells RW. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34398198 PMCID: PMC8375002 DOI: 10.1167/iovs.62.10.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. Methods Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. Results Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. Conclusions Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Heather M. Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Rachel L. Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
| | - Margaret E. Maes
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Huan Yang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Cassandra L. Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Heather R. Pelzel
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Abbasi M, Gupta VK, Chitranshi N, Gupta V, Ranjbaran R, Rajput R, Pushpitha K, KB D, You Y, Salekdeh GH, Parton RG, Mirzaei M, Graham SL. Inner retinal injury in experimental glaucoma is prevented upon AAV mediated Shp2 silencing in a caveolin dependent manner. Am J Cancer Res 2021; 11:6154-6172. [PMID: 33995651 PMCID: PMC8120201 DOI: 10.7150/thno.55472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
SH2 domain containing tyrosine phosphatase 2 (Shp2; PTPN11) regulates several intracellular pathways downstream of multiple growth factor receptors. Our studies implicate that Shp2 interacts with Caveolin-1 (Cav-1) protein in retinal ganglion cells (RGCs) and negatively regulates BDNF/TrkB signaling. This study aimed to investigate the mechanisms underlying the protective effects of shp2 silencing in the RGCs in glaucomatous conditions. Methods: Shp2 was silenced in the Cav-1 deficient mice and the age matched wildtype littermates using adeno-associated viral (AAV) constructs. Shp2 expression modulation was performed in an acute and a chronic mouse model of experimental glaucoma. AAV2 expressing Shp2 eGFP-shRNA under a strong synthetic CAG promoter was administered intravitreally in the animals' eyes. The contralateral eye received AAV-eGFP-scramble-shRNA as control. Animals with Shp2 downregulation were subjected to either microbead injections or acute ocular hypertension experimental paradigm. Changes in inner retinal function were evaluated by measuring positive scotopic threshold response (pSTR) while structural and biochemical alterations were evaluated through H&E staining, western blotting and immunohistochemical analysis of the retinal tissues. Results: A greater loss of pSTR amplitudes was observed in the WT mice compared to Cav-1-/- retinas in both the models. Silencing of Shp2 phosphatase imparted protection against inner retinal function loss in chronic glaucoma model in WT mice. The functional rescue also translated to structural preservation of ganglion cell layer in the chronic glaucoma condition in WT mice which was not evident in Cav-1-/- mice retinas. Conclusions: This study indicates that protective effects of Shp2 ablation under chronic experimental glaucoma conditions are dependent on Cav-1 in the retina, suggesting in vivo interactions between the two proteins.
Collapse
|
21
|
Ruzafa N, Pereiro X, Fonollosa A, Araiz J, Acera A, Vecino E. The Effect of Plasma Rich in Growth Factors on Microglial Migration, Macroglial Gliosis and Proliferation, and Neuronal Survival. Front Pharmacol 2021; 12:606232. [PMID: 33716738 PMCID: PMC7953148 DOI: 10.3389/fphar.2021.606232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Plasma rich in growth factors (PRGF) is a subtype of platelet-rich plasma that has being employed in the clinic due to its capacity to accelerate tissue regeneration. Autologous PRGF has been used in ophthalmology to repair a range of retinal pathologies with some efficiency. In the present study, we have explored the role of PRGF and its effect on microglial motility, as well as its possible pro-inflammatory effects. Organotypic cultures from adult pig retinas were used to test the effect of the PRGF obtained from human as well as pig blood. Microglial migration, as well as gliosis, proliferation and the survival of retinal ganglion cells (RGCs) were analyzed by immunohistochemistry. The cytokines present in these PRGFs were analyzed by multiplex ELISA. In addition, we set out to determine if blocking some of the inflammatory components of PRGF alter its effect on microglial migration. In organotypic cultures, PRGF induces microglial migration to the outer nuclear layers as a sign of inflammation. This phenomenon could be due to the presence of several cytokines in PRGF that were quantified here, such as the major pro-inflammatory cytokines IL-1β, IL-6 and TNFα. Heterologous PRGF (human) and longer periods of cultured (3 days) induced more microglia migration than autologous porcine PRGF. Moreover, the migratory effect of microglia was partially mitigated by: 1) heat inactivation of the PRGF; 2) the presence of dexamethasone; or 3) anti-cytokine factors. Furthermore, PRGF seems not to affect gliosis, proliferation or RGC survival in organotypic cultures of adult porcine retinas. PRGF can trigger an inflammatory response as witnessed by the activation of microglial migration in the retina. This can be prevented by using autologous PRGF or if this is not possible due to autoimmune diseases, by mitigating its inflammatory effect. In addition, PRGF does not increase either the proliferation rate of microglial cells or the survival of neurons. We cannot discard the possible positive effect of microglial cells on retinal function. Further studies should be performed to warrant the use of PRGF on the nervous system.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Alex Fonollosa
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
- Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Javier Araiz
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Biodonostia Health Research Institute, Donostia Hospital, San Sebastian, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| |
Collapse
|
22
|
Orlowska-Feuer P, Allen AE, Brown TM, Szkudlarek HJ, Lucas RJ, Storchi R. Infra-slow modulation of fast beta/gamma oscillations in the mouse visual system. J Physiol 2021; 599:1631-1650. [PMID: 33428215 DOI: 10.1113/jp280030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Neurophysiological activity in the subcortical visual system fluctuates in both infra-slow and fast oscillatory ranges, but the level of co-occurrence and potential functional interaction of these rhythms is unknown. Analysing dark-adapted spontaneous activity in the mouse subcortical visual system, we find that these two types of oscillation interact uniquely through a population of neurons expressing both rhythms. Genetic ablation of rod/cone signalling potentiates infra-slow and abolishes fast beta/gamma oscillations while genetic ablation of melanopsin substantially diminishes the interaction between these two rhythms. Our results indicate that in an intact visual system the phase of infra-slow modulates fast beta/gamma oscillations. Thus one possible impact of infra-slow oscillations in vision is to guide visual processing by interacting with fast narrowband oscillations. ABSTRACT Infra-slow (<0.02 Hz) and fast beta/gamma (20-100 Hz) oscillations in neurophysiological activity have been widely found in the subcortical visual system. While it is well established that fast beta/gamma oscillations are involved in visual processing, the role (if any) of infra-slow oscillations is currently unknown. One possibility is that infra-slow oscillations exert influence by modulating the amplitude of fast oscillations, yet the extent to which these different oscillations arise independently and interact remains unknown. We addressed these questions by recording in vivo spontaneous activity from the subcortical visual system of visually intact mice, and animals whose retinal network was disrupted by advanced rod/cone degeneration (rd/rd cl) or melanopsin loss (Opn4-/- ). We found many neurons expressing only one type of oscillation, and indeed fast oscillations were absent in rd/rd cl. Conversely, neurons co-expressing the two oscillations were also common, and were encountered more often than expected by chance in visually intact but not Opn4-/- mice. Finally, where they co-occurred we found that beta/gamma amplitude was modulated by the infra-slow rhythm. Our data thus reveal that: (1) infra-slow and beta-gamma oscillations are separable phenomena; and (2) that they actively co-occur in a subset of neurones in which the phase of infra-slow oscillations defines beta-gamma oscillations amplitude. These findings suggest that infra-slow oscillations could influence vision by modulating beta-gamma oscillations, and raise the possibility that disruptions in these oscillatory behaviours contribute to vision dysfunction in retinal dystrophy.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, 30-387, Poland
| | - Annette Elisabeth Allen
- Division of Neuroscience and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Timothy Matthew Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hanna Jowita Szkudlarek
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, 30-387, Poland
| | - Robert James Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
23
|
Masin L, Claes M, Bergmans S, Cools L, Andries L, Davis BM, Moons L, De Groef L. A novel retinal ganglion cell quantification tool based on deep learning. Sci Rep 2021; 11:702. [PMID: 33436866 PMCID: PMC7804414 DOI: 10.1038/s41598-020-80308-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a disease associated with the loss of retinal ganglion cells (RGCs), and remains one of the primary causes of blindness worldwide. Major research efforts are presently directed towards the understanding of disease pathogenesis and the development of new therapies, with the help of rodent models as an important preclinical research tool. The ultimate goal is reaching neuroprotection of the RGCs, which requires a tool to reliably quantify RGC survival. Hence, we demonstrate a novel deep learning pipeline that enables fully automated RGC quantification in the entire murine retina. This software, called RGCode (Retinal Ganglion Cell quantification based On DEep learning), provides a user-friendly interface that requires the input of RBPMS-immunostained flatmounts and returns the total RGC count, retinal area and density, together with output images showing the computed counts and isodensity maps. The counting model was trained on RBPMS-stained healthy and glaucomatous retinas, obtained from mice subjected to microbead-induced ocular hypertension and optic nerve crush injury paradigms. RGCode demonstrates excellent performance in RGC quantification as compared to manual counts. Furthermore, we convincingly show that RGCode has potential for wider application, by retraining the model with a minimal set of training data to count FluoroGold-traced RGCs.
Collapse
Affiliation(s)
- Luca Masin
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Marie Claes
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Steven Bergmans
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lien Cools
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lien Andries
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Benjamin M. Davis
- grid.83440.3b0000000121901201Glaucoma and Retinal Neurodegenerative Disease Research Group, Institute of Ophthalmology, University College London, London, UK ,grid.496779.2Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire UK
| | - Lieve Moons
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Willett K, Khan RS, Dine K, Wessel H, Kirshner ZZ, Sauer JL, Ellis A, Brown LR, Shindler KS. Neuroprotection mediated by ST266 requires full complement of proteins secreted by amnion-derived multipotent progenitor cells. PLoS One 2021; 16:e0243862. [PMID: 33406093 PMCID: PMC7787369 DOI: 10.1371/journal.pone.0243862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
ST266 is the biological secretome of cultured Amnion-derived Multipotent Progenitor cells containing multiple growth factors and cytokines. While intranasally-administered ST266 improves the phenotype in experimental optic neuritis, specific ST266 components mediating these effects are not known. We compared the effects of ST266 with and without removal of large molecular weight proteins both in vitro and in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. Mice were treated daily with intranasal vehicle, ST266 or lower molecular weight fraction of ST266. Retinal ganglion cells were counted in isolated retinas, and optic nerves were assessed for inflammation and demyelination. ST266 treatment significantly improved retinal ganglion cell survival and reduced optic nerve demyelination in EAE mice. The lower molecular weight ST266 fraction significantly improved optic nerve demyelination, but only showed a trend towards improved retinal ganglion cell survival. ST266 fractions below 50kDa increased Schwann cell proliferation in vitro, but were less effective than non-fractionated ST266. Demyelination attenuation was partially associated with the lower molecular weight ST266 fraction, but removal of higher molecular weight biomolecules from ST266 diminishes its neuroprotective effects, suggesting at least some high molecular weight proteins play a role in ST266-mediated neuroprotection.
Collapse
Affiliation(s)
- Keirnan Willett
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Reas S. Khan
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kimberly Dine
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States of America
| | - Ziv Z. Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States of America
| | - Jodie L. Sauer
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States of America
| | - Ashley Ellis
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States of America
| | - Larry R. Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States of America
| | - Kenneth S. Shindler
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
25
|
Wu HJ, Kuchtey J, Kuchtey RW. Increased Susceptibility to Glaucomatous Damage in Microfibril Deficient Mice. Invest Ophthalmol Vis Sci 2021; 61:28. [PMID: 32797197 PMCID: PMC7441341 DOI: 10.1167/iovs.61.10.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To test whether mice with microfibril deficiency due to the Tsk mutation of fibrillin-1 (Fbn1Tsk/+) have increased susceptibility to pressure-induced retinal ganglion cell (RGC) degeneration. Methods Intraocular pressure (IOP) elevation was induced in Fbn1Tsk/+ and wild type (wt) mice by injecting microbeads into the anterior chamber. Mice were then followed up for four months, with IOP measurements every three to six days. Retinas were stained for Brn3a to determine RGC number. Optic nerve cross-sections were stained with p-phenylene diamine to determine nerve area, axon number, and caliber and thickness of the pia mater. Results Microbead injection induced significant IOP elevation that was significantly less for Fbn1Tsk/+ mice compared with wt. The optic nerves and optic nerve axons were larger, and the elastic fiber-rich pia mater was thinner in Fbn1Tsk/+ mice. Microbead injection resulted in reduced optic nerve size, thicker pia mater, and a slight decrease in axon size. Fbn1Tsk/+ mice had significantly greater loss of RGCs and optic nerve axons compared with wt (14.8% vs. 5.8%, P = 0.002, and 17.0% vs. 7.5%, P = 0.002, respectively). Conclusions Fbn1Tsk/+mice had altered optic nerve structure as indicated by larger optic nerves, larger optic nerve axons and thinner pia mater, consistent with our previous findings. Despite lower IOP elevation, Fbn1Tsk/+mice had greater loss of RGCs and optic nerve axons, suggesting increased susceptibility to IOP-induced optic nerve degeneration in microfibril-deficient mice.
Collapse
Affiliation(s)
- Hang-Jing Wu
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
26
|
Davis BM, Guo L, Ravindran N, Shamsher E, Baekelandt V, Mitchell H, Bharath AA, De Groef L, Cordeiro MF. Dynamic changes in cell size and corresponding cell fate after optic nerve injury. Sci Rep 2020; 10:21683. [PMID: 33303775 PMCID: PMC7730151 DOI: 10.1038/s41598-020-77760-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/10/2020] [Indexed: 01/21/2023] Open
Abstract
Identifying disease-specific patterns of retinal cell loss in pathological conditions has been highlighted by the emergence of techniques such as Detection of Apoptotic Retinal Cells and Adaptive Optics confocal Scanning Laser Ophthalmoscopy which have enabled single-cell visualisation in vivo. Cell size has previously been used to stratify Retinal Ganglion Cell (RGC) populations in histological samples of optic neuropathies, and early work in this field suggested that larger RGCs are more susceptible to early loss than smaller RGCs. More recently, however, it has been proposed that RGC soma and axon size may be dynamic and change in response to injury. To address this unresolved controversy, we applied recent advances in maximising information extraction from RGC populations in retinal whole mounts to evaluate the changes in RGC size distribution over time, using three well-established rodent models of optic nerve injury. In contrast to previous studies based on sampling approaches, we examined the whole Brn3a-positive RGC population at multiple time points over the natural history of these models. The morphology of over 4 million RGCs was thus assessed to glean novel insights from this dataset. RGC subpopulations were found to both increase and decrease in size over time, supporting the notion that RGC cell size is dynamic in response to injury. However, this study presents compelling evidence that smaller RGCs are lost more rapidly than larger RGCs despite the dynamism. Finally, using a bootstrap approach, the data strongly suggests that disease-associated changes in RGC spatial distribution and morphology could have potential as novel diagnostic indicators.
Collapse
Affiliation(s)
- Benjamin M Davis
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
- Western Eye Hospital, ICORG, Imperial College London, London, NW1 5QH, UK
| | - Li Guo
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Nivedita Ravindran
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Ehtesham Shamsher
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Hannah Mitchell
- School of Mathematics and Physics, Queens University Belfast, Belfast, Ireland
| | - Anil A Bharath
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000, Leuven, Belgium.
| | - M Francesca Cordeiro
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
- Western Eye Hospital, ICORG, Imperial College London, London, NW1 5QH, UK.
| |
Collapse
|
27
|
Photosensitive ganglion cells: A diminutive, yet essential population. ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA 2020; 96:299-315. [PMID: 34092284 DOI: 10.1016/j.oftale.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last two decades, when RGCs giving rise to this pathway were first discovered.
Collapse
|
28
|
Qian ZJ, Ricci AJ. Effects of cochlear hair cell ablation on spatial learning/memory. Sci Rep 2020; 10:20687. [PMID: 33244175 PMCID: PMC7692547 DOI: 10.1038/s41598-020-77803-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Current clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30-60 and underwent the RAM assay during P90-120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.
Collapse
MESH Headings
- Animals
- Cognition/physiology
- Deafness/metabolism
- Deafness/physiopathology
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Heparin-binding EGF-like Growth Factor/metabolism
- Memory/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Noise
- Spatial Learning/physiology
- Transcription Factor Brn-3C/metabolism
Collapse
Affiliation(s)
- Z Jason Qian
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 240 Pasteur Drive, Biomedical Innovations Building, R0551, Palo Alto, CA, 94304, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 240 Pasteur Drive, Biomedical Innovations Building, R0551, Palo Alto, CA, 94304, USA.
| |
Collapse
|
29
|
Chronobiotic effect of melatonin in experimental optic neuritis. Neuropharmacology 2020; 182:108401. [PMID: 33197466 DOI: 10.1016/j.neuropharm.2020.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Optic neuritis (ON) is an inflammatory condition of the optic nerve, which leads to retinal ganglion cell (RGC) loss. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system (NIFVS) functions such as pupillary light reflex (PLR) and circadian rhythms. Melatonin is a chronobiotic agent able to regulate the circadian system. We analyzed the effect of ON on the NIFVS, and the effect of melatonin on the NIFVS alterations induced by ON. For this purpose, optic nerves from male Wistar rats received vehicle or bacterial lipopolysaccharide (LPS), and one group of animals received a subcutaneous pellet of melatonin or a sham procedure. The NIFVS was analyzed in terms of: i) blue light-evoked PLR, ii) the communication between the retina and the suprachiasmatic nuclei (by anterograde transport, and ex vivo magnetic resonance images), iii) locomotor activity rhythm, and iv) Brn3a(+) and melanopsin(+) RGC number (by immunohistochemistry). Experimental ON significantly decreased the blue light-evoked PLR, induced a misconnection between the retina and the suprachiasmatic nuclei, decreased Brn3a(+) RGCs, but not melanopsin(+) RGC number. A bilateral injection of LPS significantly increased the light (but not dark) phase locomotor activity, rhythm periodicity, and time of offset activity. Melatonin prevented the decrease in blue light-evoked PLR, and locomotor activity rhythm alterations induced by ON. These results support that ON provoked alterations of the circadian physiology, and that melatonin could restore the circadian system misalignment.
Collapse
|
30
|
Plasma Rich in Growth Factors Enhances Cell Survival after in Situ Retinal Degeneration. Int J Mol Sci 2020; 21:ijms21207442. [PMID: 33050198 PMCID: PMC7590176 DOI: 10.3390/ijms21207442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of plasma rich in growth factors (PRGFs) under blue light conditions in an in vivo model of retinal degeneration. METHODS Male Wistar rats were exposed to dark/blue light conditions for 9 days. On day 7, right eyes were injected with saline and left eyes with PRGF. Electroretinography (ERG) and intraocular pressure (IoP) measurements were performed before and after the experiment. After sacrifice, retinal samples were collected. Hematoxylin and eosin staining was performed to analyze the structure of retinal sections. Immunofluorescence for brain-specific homeobox/POU domain protein 3A (Brn3a), choline acetyltransferase (ChAT), rhodopsin, heme oxygenase-1 (HO-1), and glial fibrillary acidic protein (GFAP) was performed to study the retinal conditions. RESULTS Retinal signaling measured by ERG was reduced by blue light and recovered with PRGF; however, IoP measurements did not show significant differences among treatments. Blue light reduced the expression for Brn3a, ChAT, and rhodopsin. Treatment with PRGF showed a recovery in their expressions. HO-1 and GFAP results showed that blue light increased their expression but the use of PRGF reduced the effect of light. CONCLUSIONS Blue light causes retinal degeneration. PRGF mitigated the injury, restoring the functionality of these cells and maintaining the tissue integrity.
Collapse
|
31
|
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W, Skup M. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci 2020; 21:ijms21176262. [PMID: 32872441 PMCID: PMC7504711 DOI: 10.3390/ijms21176262] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
- Mediq Clinic, 05-120 Legionowo, Poland
| | - Olga Gajewska-Woźniak
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Katarzyna Kordecka
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Paweł M. Boguszewski
- Laboratory of Behavioral Methods, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Wioletta Waleszczyk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
32
|
Abbasi M, Gupta VK, Chitranshi N, Gupta VB, Mirzaei M, Dheer Y, Garthwaite L, Zaw T, Parton RG, You Y, Graham SL. Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation. Mol Neurobiol 2020; 57:3759-3784. [PMID: 32578008 DOI: 10.1007/s12035-020-01948-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cell degeneration is a characteristic feature of glaucoma, and accordingly, protection of these cells constitutes a major therapeutic objective in the disease. Here, we demonstrate the key influence of caveolin (Cav) in regulating the inner retinal homeostasis in two models of experimentally elevated intraocular pressure (IOP). Two groups of Cav-1-/- and wild-type mice were used in the study. Animals were subjected to experimentally induced chronic and acutely elevated IOP and any changes in their retinal function were assessed by positive scotopic threshold response recordings. TUNEL and cleaved caspase-3 assays were performed to evaluate apoptotic changes in the retina while Brn3a immunostaining was used as a marker to assess and quantify ganglion cell layer (GCL) changes. H&E staining was carried out on retinal sections to evaluate histological differences in retinal laminar structure. Cav-1 ablation partially protected the inner retinal function in both chronic and acute models of elevated IOP. The protective effects of Cav-1 loss were also evident histologically by reduced loss of GCL density in both models. The phenotypic protection in Cav-1-/- glaucoma mice paralleled with increased TrkB phosphorylation and reduced endoplasmic reticulum stress markers and apoptotic activation in the inner retinas. This study corroborated previous findings of enhanced Shp2 phosphorylation in a chronic glaucoma model and established a novel role of Cav-1 in mediating activation of this phosphatase in the inner retina in vivo. Collectively, these findings highlight the critical involvement of Cav-1 regulatory mechanisms in ganglion cells in response to increased IOP, implicating Cav-1 as a potential therapeutic target in glaucoma.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Department of Molecular Science, Macquarie University, North Ryde, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Linda Garthwaite
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Thiri Zaw
- Department of Molecular Science, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
33
|
Boia R, Salinas-Navarro M, Gallego-Ortega A, Galindo-Romero C, Aires ID, Agudo-Barriuso M, Ambrósio AF, Vidal-Sanz M, Santiago AR. Activation of adenosine A 3 receptor protects retinal ganglion cells from degeneration induced by ocular hypertension. Cell Death Dis 2020; 11:401. [PMID: 32461578 PMCID: PMC7253479 DOI: 10.1038/s41419-020-2593-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Glaucoma is a progressive chronic retinal degenerative disease and a leading cause of global irreversible blindness. This disease is characterized by optic nerve damage and retinal ganglion cell (RGC) death. The current treatments available target the lowering of intraocular pressure (IOP), the main risk factor for disease onset and development. However, in some patients, vision loss progresses despite successful IOP control, indicating that new and effective treatments are needed, such as those targeting the neuroprotection of RGCs. Adenosine A3 receptor (A3R) activation confers protection to RGCs following an excitotoxic stimulus. In this work, we investigated whether the activation of A3R could also afford protection to RGCs in the laser-induced ocular hypertension (OHT) model, a well-characterized animal model of glaucoma. The intravitreal injection of 2-Cl-IB-MECA, a selective A3R agonist, abolished the alterations induced by OHT in the negative and positive components of scotopic threshold response (STR) without changing a- and b-wave amplitudes both in scotopic and photopic conditions. Moreover, the treatment of OHT eyes with the A3R agonist promoted the survival of RGCs, attenuated the impairment in retrograde axonal transport, and improved the structure of the optic nerve. Taking into consideration the beneficial effects afforded by 2-Cl-IB-MECA, we can envisage that A3R activation can be considered a good therapeutic strategy to protect RGCs from glaucomatous damage.
Collapse
Affiliation(s)
- Raquel Boia
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Manuel Salinas-Navarro
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Inês D Aires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - António Francisco Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Ana Raquel Santiago
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal. .,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal. .,Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal.
| |
Collapse
|
34
|
Guymer C, Damp L, Chidlow G, Wood J, Tang YF, Casson R. Software for Quantifying and Batch Processing Images of Brn3a and RBPMS Immunolabelled Retinal Ganglion Cells in Retinal Wholemounts. Transl Vis Sci Technol 2020; 9:28. [PMID: 32821525 PMCID: PMC7409150 DOI: 10.1167/tvst.9.6.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/01/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose The ability to accurately quantify immunohistochemically labeled retinal ganglion cells (RGCs) on wholemounts is an important histopathological determinant in experimental retinal research. Traditionally, this has been performed by manual or semi-automated counting of RGCs. Here, we describe an automated software that accurately and efficiently counts immunolabeled RGCs with the ability to batch process images and perform whole-retinal analysis to permit isodensity map generation. Methods Retinal wholemounts from control rat eyes, and eyes subjected to either chronic ocular hypertension or N-methyl-D-aspartate (NMDA)-induced excitotoxicity, were labeled by immunohistochemistry for two different RGC-specific markers, Brn3a and RNA-binding protein with multiple splicing (RBPMS). For feasibility of manual counting, images were sampled from predefined retinal sectors, totaling 160 images for Brn3a and 144 images for RBPMS. The automated program was initially calibrated for each antibody prior to batch analysis to ensure adequate cell capture. Blinded manual RGC counts were performed by three independent observers. Results The automated counts of RGCs labeled for Brn3a and RBPMS closely matched manual counts. The automated script accurately quantified both physiological and damaged retinas. Efficiency in counting labeled RGC wholemount images is accelerated 40-fold with the automated software. Whole-retinal analysis was demonstrated with integrated retinal isodensity map generation. Conclusions This automated cell counting software dramatically accelerates data acquisition while maintaining accurate RGC counts across different immunolabels, methods of injury, and spatial heterogeneity of RGC loss. This software likely has potential for wider application. Translational Relevance This study provides a valuable tool for preclinical RGC neuroprotection studies that facilitates the translation of neuroprotection to the clinic.
Collapse
Affiliation(s)
- Chelsea Guymer
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, Australia
| | | | - Glyn Chidlow
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, Australia
| | - John Wood
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, Australia
| | - Yi Fan Tang
- Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| | - Robert Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
35
|
Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium. Sci Rep 2020; 10:7273. [PMID: 32350384 PMCID: PMC7190639 DOI: 10.1038/s41598-020-64131-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
We have developed a new technique to study the integrity, morphology and functionality of the retinal neurons and the retinal pigment epithelium (RPE). Young and old control albino (Sprague-Dawley) and pigmented (Piebald Virol Glaxo) rats, and dystrophic albino (P23H-1) and pigmented (Royal College of Surgeons) rats received a single intravitreal injection of 3% Fluorogold (FG) and their retinas were analyzed from 5 minutes to 30 days later. Retinas were imaged in vivo with SD-OCT and ex vivo in flat-mounts and in cross-sections. Fifteen minutes and 24 hours after intravitreal administration of FG retinal neurons and the RPE, but no glial cells, were labeled with FG-filled vesicles. The tracer reached the RPE 15 minutes after FG administration, and this labeling remained up to 30 days. Tracing for 15 minutes or 24 hours did not cause oxidative stress. Intraretinal tracing delineated the pathological retinal remodelling occurring in the dystrophic strains. The RPE of the P23H-1 strain was highly altered in aged animals, while the RPE of the RCS strain, which is unable to phagocytose, did not accumulate the tracer even at young ages when the retinal neural circuit is still preserved. In both dystrophic strains, the RPE cells were pleomorphic and polymegathic.
Collapse
|
36
|
Oral administration of the iron chelator deferiprone protects against loss of retinal ganglion cells in a mouse model of glaucoma. Exp Eye Res 2020; 193:107961. [PMID: 32045598 DOI: 10.1016/j.exer.2020.107961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
Glaucoma is a progressive neurodegenerative process affecting the retinal ganglion cells (RGCs) and the optic nerve. Oxidative stress has been implicated in glaucoma pathogenesis, and iron is a potent generator of oxidative stress. The oral iron chelator deferiprone (DFP) is protective against retinal degenerations associated with oxidative stress. To test whether DFP could be protective in glaucoma, we used microbead injections to induce elevated intraocular pressure (IOP) in a cohort of 3-month old C57BL/6J mice. One eye of each animal was injected with magnetic microbeads resulting in ocular hypertension for >7 weeks while the fellow eye was injected with saline and served as a normotensive internal control. While half of the cohort received oral DFP (1 mg/ml in the drinking water), the other half did not and served as controls. After 8 weeks, Brn3a immunolabeling of flat-mounted retinas was used for manual RGC quantification. Axon counts were obtained from thin sections of optic nerves using the AxonJ plugin for ImageJ. DFP administration was protective against RGC and optic nerve loss in the setting of elevated IOP. These results suggest that iron chelation by DFP may provide glaucoma neuroprotection.
Collapse
|
37
|
Chiha W, Bartlett CA, Petratos S, Fitzgerald M, Harvey AR. Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol 2020; 326:113167. [PMID: 31904385 DOI: 10.1016/j.expneurol.2019.113167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
Secondary degeneration following an initial injury to the central nervous system (CNS) results in increased tissue loss and is associated with increasing functional impairment. Unilateral partial dorsal transection of the adult rat optic nerve (ON) has proved to be a useful experimental model in which to study factors that contribute to secondary degenerative events. Using this injury model, we here quantified the protective effects of intravitreally administered bi-cistronic adeno-associated viral (AAV2) vectors encoding either brain derived neurotrophic factor (BDNF) or a mutant, phospho-resistant, version of collapsin response mediator protein 2 (CRMP2T555A) on retinal ganglion cells (RGCs), their axons, and associated myelin. To test for potential synergistic interactions, some animals received combined injections of both vectors. Three months post-injury, all treatments maintained RGC numbers in central retina, but only AAV2-BDNF significantly protected ventrally located RGCs exclusively vulnerable to secondary degeneration. Behaviourally, treatments that involved AAV2-BDNF significantly restored the number of smooth-pursuit phases of optokinetic nystagmus. While all therapeutic regimens preserved axonal density and proportions of typical complexes, including heminodes and single nodes, BDNF treatments were generally more effective in maintaining the length of the node of Ranvier in myelin surrounding ventral ON axons after injury. Both AAV2-BDNF and AAV2-CRMP2T555A prevented injury-induced changes in G-ratio and overall myelin thickness, but only AAV2-BDNF administration protected against large-scale myelin decompaction in ventral ON. In summary, in a model of secondary CNS degeneration, both BDNF and CRMP2T555A vectors were neuroprotective, however different efficacies were observed for these overexpressed proteins in the retina and ON, suggesting disparate cellular and molecular targets driving responses for neural repair. The potential use of these vectors to treat other CNS injuries and pathologies is discussed.
Collapse
Affiliation(s)
- Wissam Chiha
- School of Biological Sciences, The University of Western Australia, WA 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, WA 6102, Australia
| | - Carole A Bartlett
- School of Biological Sciences, The University of Western Australia, WA 6009, Australia
| | - Steven Petratos
- Department of Neuroscience, Monash University, VIC 3004, Australia
| | - Melinda Fitzgerald
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, WA 6102, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
38
|
Valiente-Soriano FJ, Ortín-Martínez A, Di Pierdomenico J, García-Ayuso D, Gallego-Ortega A, Miralles de Imperial-Ollero JA, Jiménez-López M, Villegas-Pérez MP, Wheeler LA, Vidal-Sanz M. Topical Brimonidine or Intravitreal BDNF, CNTF, or bFGF Protect Cones Against Phototoxicity. Transl Vis Sci Technol 2019; 8:36. [PMID: 31890348 PMCID: PMC6919195 DOI: 10.1167/tvst.8.6.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023] Open
Abstract
Purpose To develop a focal photoreceptor degeneration model by blue light-emitting diode (LED)-induced phototoxicity (LIP) and investigate the protective effects of topical brimonidine (BMD) or intravitreal brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), or basic fibroblast growth factor (bFGF). Methods In anesthetized, dark-adapted, adult female Swiss mice, the left eye was dilated and exposed to blue light (10 seconds, 200 lux). After LIP, full-field electroretinograms (ERG) and spectral-domain optical coherence tomography (SD-OCT) were obtained longitudinally, and reactive-Iba-1+monocytic cells, TUNEL+ cells and S-opsin+ cone outer segments were examined up to 7 days. Left eyes were treated topically with BMD (1%) or vehicle, before or right after LIP, or intravitreally with BDNF (2.5 μg), CNTF (0.2 μg), bFGF (0.5 μg), or corresponding vehicle right after LIP. At 7 days, S-opsin+ cone outer segments were counted within predetermined fixed-size areas (PFA) centered on the lesion in both flattened retinas. Results SD-OCT showed a circular region in the superior-temporal left retina with progressive thinning (207.9 ± 5.6 μm to 160.7 ± 6.8 μm [7 days], n = 8), increasing TUNEL+ cells (peak at 3 days), decreasing S-opsin+ cone outer segments, and strong microglia activation. ERGs were normal by 3 days. Total S-opsin+ cones in the PFA for LIP-treated and fellow-retinas were 2330 ± 262 and 5601 ± 583 (n = 8), respectively. All neuroprotectants (n = 7–11), including topical BMD pre- or post-LIP, or intravitreal BDNF, CNTF, and bFGF, showed significantly greater S-opsin+ cone survival than their corresponding vehicle-treated groups. Conclusions LIP is a reliable, quantifiable focal photoreceptor degeneration model. Topical BMD or intravitreal BDNF, CNTF, or bFGF protect against LIP-induced cone-photoreceptor loss. Translational Relevance Topical BMD or intravitreal BDNF, CNTF, or bFGF protect cones against phototoxicity.
Collapse
Affiliation(s)
- Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Present Address: Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Larry A Wheeler
- Ophthalmology and Visual Science, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
39
|
Boia R, Dias PA, Martins JM, Galindo-Romero C, Aires ID, Vidal-Sanz M, Agudo-Barriuso M, de Sousa HC, Ambrósio AF, Braga ME, Santiago AR. Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. J Control Release 2019; 316:331-348. [DOI: 10.1016/j.jconrel.2019.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023]
|
40
|
Neuronal Death in the Contralateral Un-Injured Retina after Unilateral Axotomy: Role of Microglial Cells. Int J Mol Sci 2019; 20:ijms20225733. [PMID: 31731684 PMCID: PMC6888632 DOI: 10.3390/ijms20225733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
For years it has been known that unilateral optic nerve lesions induce a bilateral response that causes an inflammatory and microglial response in the contralateral un-injured retinas. Whether this contralateral response involves retinal ganglion cell (RGC) loss is still unknown. We have analyzed the population of RGCs and the expression of several genes in both retinas of pigmented mice after a unilateral axotomy performed close to the optic nerve head (0.5 mm), or the furthest away that the optic nerve can be accessed intraorbitally in mice (2 mm). In both retinas, RGC-specific genes were down-regulated, whereas caspase 3 was up-regulated. In the contralateral retinas, there was a significant loss of 15% of RGCs that did not progress further and that occurred earlier when the axotomy was performed at 2 mm, that is, closer to the contralateral retina. Finally, the systemic treatment with minocycline, a tetracycline antibiotic that selectively inhibits microglial cells, or with meloxicam, a non-steroidal anti-inflammatory drug, rescued RGCs in the contralateral but not in the injured retina. In conclusion, a unilateral optic nerve axotomy triggers a bilateral response that kills RGCs in the un-injured retina, a death that is controlled by anti-inflammatory and anti-microglial treatments. Thus, contralateral retinas should not be used as controls.
Collapse
|
41
|
García-Ayuso D, Di Pierdomenico J, Valiente-Soriano FJ, Martínez-Vacas A, Agudo-Barriuso M, Vidal-Sanz M, Picaud S, Villegas-Pérez MP. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Exp Eye Res 2019; 188:107781. [PMID: 31473259 DOI: 10.1016/j.exer.2019.107781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
To study the effect of taurine depletion induced by β-alanine supplementation in the retinal nerve fiber layer (RNFL), and retinal ganglion cell (RGC) survival and axonal transport. Albino Sprague-Dawley rats were divided into two groups: one group received β-alanine supplementation (3%) in the drinking water during 2 months to induce taurine depletion, and the other group received regular water. After one month, half of the rats from each group were exposed to light. Retinas were analyzed in-vivo using Spectral-Domain Optical Coherence Tomography (SD-OCT). Prior to processing, RGCs were retrogradely traced with fluorogold (FG) applied to both superior colliculi, to assess the state of their retrograde axonal transport. Retinas were dissected as wholemounts, surviving RGCs were immunoidentified with Brn3a, and the RNFL with phosphorylated high-molecular-weight subunit of the neurofilament triplet (pNFH) antibodies. β-alanine supplementation decreases significantly taurine plasma levels and causes a significant reduction of the RNFL thickness that is increased after light exposure. An abnormal pNFH immunoreactivity in some RGC bodies, their proximal dendrites and axons, and a further diminution of the mean number of FG-traced RGCs compared with Brn3a+RGCs, indicate that their retrograde axonal transport is affected. In conclusion, taurine depletion causes RGC loss and axonal transport impairment. Finally, our results suggest that care should be taken when ingesting β-alanine supplements due to the limited understanding of their potential adverse effects.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Serge Picaud
- INSERM U968, Institut de la Vision, Paris, France; Sorbonnes Universités, INSERM U968, CNRS UMR 7210, Institut de la Vision, 75012, Paris, France
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
42
|
Hajdú RI, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, Radovits T, Mátyás C, Oláh A, Szél Á, Somfai GM, Dávid C, Lukáts Á. Detailed Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2019; 9:10463. [PMID: 31320684 PMCID: PMC6639371 DOI: 10.1038/s41598-019-46879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.
Collapse
Affiliation(s)
- Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Retinology Unit, Pallas Kliniken, Olten, Switzerland
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
43
|
Melanopsin +RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. Int J Mol Sci 2019; 20:ijms20123012. [PMID: 31226772 PMCID: PMC6627747 DOI: 10.3390/ijms20123012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.
Collapse
|
44
|
Miltner AM, Mercado-Ayon Y, Cheema SK, Zhang P, Zawadzki RJ, La Torre A. A Novel Reporter Mouse Uncovers Endogenous Brn3b Expression. Int J Mol Sci 2019; 20:E2903. [PMID: 31197108 PMCID: PMC6627301 DOI: 10.3390/ijms20122903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Brn3b (Pou4f2) is a class-4 POU domain transcription factor known to play central roles in the development of different neuronal populations of the Central Nervous System, including retinal ganglion cells (RGCs), the neurons that connect the retina with the visual centers of the brain. Here, we have used CRISPR-based genetic engineering to generate a Brn3b-mCherry reporter mouse without altering the endogenous expression of Brn3b. In our mouse line, mCherry faithfully recapitulates normal Brn3b expression in the retina, the optic tracts, the midbrain tectum, and the trigeminal ganglia. The high sensitivity of mCherry also revealed novel expression of Brn3b in the neuroectodermal cells of the optic stalk during early stages of eye development. Importantly, the fluorescent intensity of Brn3b-mCherry in our reporter mice allows for noninvasive live imaging of RGCs using Scanning Laser Ophthalmoscopy (SLO), providing a novel tool for longitudinal monitoring of RGCs.
Collapse
Affiliation(s)
- Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA.
| | - Yesica Mercado-Ayon
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA.
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA.
| | - Pengfei Zhang
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA.
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, University of California-Davis, Davis, CA 95616, USA.
| | - Robert J Zawadzki
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, University of California-Davis, Davis, CA 95616, USA.
- Department of Ophthalmology and Vision Science, University of California-Davis, Sacramento, CA 95817, USA.
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Ekicier Acar S, Sarıcaoğlu MS, Çolak A, Aktaş Z, Sepici Dinçel A. Neuroprotective effects of topical coenzyme Q10 + vitamin E in mechanic optic nerve injury model. Eur J Ophthalmol 2019; 30:714-722. [PMID: 30852912 DOI: 10.1177/1120672119833271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE We aimed to create mechanic optic nerve injury model in rats and investigate the neuroprotective effects of topical Coenzyme Q10 + Vitamin E (CoQ + Vit.E) molecules on retinal ganglion cells. METHODS Mechanic optic nerve injury model was created in the right eyes of rats (n = 12). Rats were divided into two groups: glaucoma model with sham treatment and topical CoQ + Vit.E treatment. Treatment was applied for 4 weeks. Glial fibrillary acidic protein, Brn-3a antibody, and anti-Iba1 were examined by immunohistochemistry. Glial fibrillary acidic protein, Bax, Bcl-xL, and Tfam protein expression were measured by Western blot analysis. RESULTS The number of Brn-3a-positive retinal ganglion cell was 15.0 ± 1.0 (min: 14, max: 16) in sham treatment group and 22.2 ± 4.8 (min: 18, max: 29) in topical CoQ10 + Vit.E treatment group. The protection of Brn-3a in CoQ10 + Vit.E was statistically significant (p < 0.05). Glial fibrillary acidic protein-positive astroglial counts were recorded as 11.7 ± 2.1 (min: 10, max: 14) in sham treatment and 2.5 ± 1.5 (min: 1, max: 4) in topical CoQ10 + Vit.E treatment group (p < 0.05). Topical CoQ10 + Vit.E treatment also decreased Iba1 expression in the retina of mechanic optic nerve injury groups. CoQ10 + Vit.E treatment prevented apoptotic cell death by increasing Bcl-xL protein expression. Also, CoQ10 + Vit.E preserved Tfam protein expression in the retina. CONCLUSION This study has shown that in glaucoma treatment the neuron protecting effect of topical CoQ10 + Vit.E molecules can be valuable.
Collapse
Affiliation(s)
| | - M Sinan Sarıcaoğlu
- Eye Clinic, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Aysel Çolak
- Pathology Clinic, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Zeynep Aktaş
- Department of Ophthalmology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
46
|
Arranz-Romera A, Davis B, Bravo-Osuna I, Esteban-Pérez S, Molina-Martínez I, Shamsher E, Ravindran N, Guo L, Cordeiro M, Herrero-Vanrell R. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release 2019; 297:26-38. [DOI: 10.1016/j.jconrel.2019.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/05/2023]
|
47
|
Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma. Doc Ophthalmol 2019; 138:125-135. [PMID: 30756213 DOI: 10.1007/s10633-019-09676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Glaucoma is a common chronic neurodegenerative disease, which could lead to visual loss. In this study, we aimed to investigate whether fisetin, a natural flavone with anti-inflammatory and antioxidant properties, is able to alleviate glaucoma. METHODS We employed a DBA/2J mouse model which was treated with or without fisetin. Pattern electroretinogram (P-ERG), visual evoked potentials (VEPs) and intraocular pressure (IOP) were evaluated. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) were used to measure the expression levels of TNF-α, IL-1β and IL-6. Western blotting was performed to assess the activation of nuclear factor kappa-B (NF-κB). RESULTS We found that DBA/2J mice treated with fisetin (10-30 mg/kg) showed improved P-ERG and VEP amplitudes and reduced IOP compared to untreated DBA/2J mice. In addition, there were more survived retinal ganglion cells (RGCs) and less activated microglia in fisetin-treated DBA/2J mice than those in untreated mice. Furthermore, secreted protein levels and mRNA levels of TNF-α, IL-1β and IL-6 were significantly repressed by fisetin. The phosphorylated p65 level in the nucleus was dramatically reduced in fisetin-treated mice compared to it in untreated mice. Our results demonstrate that fisetin may exert its function through regulating cytokine productions and inhibiting NF-κB activation in the retina. CONCLUSION In conclusion, fisetin is able to promote the visual functions of DBA/2J mice by inhibiting NF-κB activation.
Collapse
|
48
|
Ren C, Wu H, Li D, Yang Y, Gao Y, Jizhang Y, Liu D, Ji X, Zhang X. Remote Ischemic Conditioning Protects Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats via Anti-Inflammation and Antioxidation. Aging Dis 2018; 9:1122-1133. [PMID: 30574423 PMCID: PMC6284762 DOI: 10.14336/ad.2018.0711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemic conditioning inhibits oxidative stress and inflammatory response in diabetes. However, whether limb remote ischemic conditioning (LRIC) has beneficial effects on diabetic retinopathy (DR) remains unknown. This study aims to investigate the protective effects of LRIC in retinal ganglion cell in streptozotocin (STZ) induced Type 1 diabetic rats. A total of 48 healthy male Sprague-Dawley (200-220g) rats were randomly assigned to the normal group, normal+LRIC group, diabetes mellitus (DM) group and DM+LRIC group. Streptozotocin (STZ, 60 mg/kg) was intraperitoneally injected into the rats to establish the diabetic model. LRIC was conducted by tightening a tourniquet around the upper thigh and releasing for three cycles daily (10 mins x 3 cycles). Retinas were harvested after 12 weeks of LRIC treatment for histopathologic, Western blot and ELISA analysis. Plasma were collected at the same time for ELISA analysis. LRIC alleviated diabetic retinopathy symptoms as evidenced by the increased number of retinal ganglion cells (P<0.01) and decreased glial fibrillary acidic protein (GFAP) expression level (P<0.01) in the rat retina. LRIC in DM rats exhibited anti-inflammatory and antioxidative effects as confirmed by the down-regulation of pro-inflammatory cytokine: interleukin-6 (IL-6), and the up-regulation of antioxidants: superoxide dismutase (SOD), and glutathione (GSH)/oxidized glutathione (GSSG). Furthermore, LRIC significantly downregulated VEGF protein expression in the retina (P<0.01). These results suggest that the antioxidative and anti-inflammatory activities of LRIC may be important mechanisms involved in the protective effect of LRIC in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Changhong Ren
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Hang Wu
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongjie Li
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- 3Department of Herbal Formula Science Medicine, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Gao
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunneng Jizhang
- 4Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Dachuan Liu
- 2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Xuxiang Zhang
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Wilson AM, Mazzaferri J, Bergeron É, Patskovsky S, Marcoux-Valiquette P, Costantino S, Sapieha P, Meunier M. In Vivo Laser-Mediated Retinal Ganglion Cell Optoporation Using K V1.1 Conjugated Gold Nanoparticles. NANO LETTERS 2018; 18:6981-6988. [PMID: 30285455 DOI: 10.1021/acs.nanolett.8b02896] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vision loss caused by retinal diseases affects hundreds of millions of individuals worldwide. The retina is a delicate central nervous system tissue stratified into layers of cells with distinct roles. Currently, there is a void in treatments that selectively target diseased retinal cells, and current therapeutic paradigms present complications associated with off-target effects. Herein, as a proof of concept, we introduce an in vivo method using a femtosecond laser to locally optoporate retinal ganglion cells (RGCs) targeted with functionalized gold nanoparticles (AuNPs). We provide evidence that AuNPs functionalized with an antibody toward the cell-surface voltage-gated K+ channel subunit KV1.1 can selectively deliver fluorescently tagged siRNAs or fluorescein isothiocyanate-dextran dye into retinal cells when irradiated with an 800 nm 100 fs laser. Importantly, neither AuNP administration nor irradiation resulted in RGC death. This system provides a novel, non-viral-based approach that has the potential to selectively target retinal cells in diseased regions while sparing healthy areas and may be harnessed in future cell-specific therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ariel M Wilson
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | - Éric Bergeron
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Sergiy Patskovsky
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Paule Marcoux-Valiquette
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | | | - Michel Meunier
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| |
Collapse
|
50
|
Enlarged Optic Nerve Axons and Reduced Visual Function in Mice with Defective Microfibrils. eNeuro 2018; 5:eN-NWR-0260-18. [PMID: 30406200 PMCID: PMC6220594 DOI: 10.1523/eneuro.0260-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a leading cause of irreversible vision loss due to retinal ganglion cell (RGC) degeneration that develops slowly with age. Elevated intraocular pressure (IOP) is a significant risk factor, although many patients develop glaucoma with IOP in the normal range. Mutations in microfibril-associated genes cause glaucoma in animal models, suggesting the hypothesis that microfibril defects contribute to glaucoma. To test this hypothesis, we investigated IOP and functional/structural correlates of RGC degeneration in mice of either sex with abnormal microfibrils due to heterozygous Tsk mutation of the fibrilin-1 gene (Fbn1Tsk/+). Although IOP was not affected, Fbn1Tsk/+ mice developed functional deficits at advanced age consistent with glaucoma, including reduced RGC responses in electroretinogram (ERG) experiments. While RGC density in the retina was not affected, the density of RGC axons in the optic nerve was significantly reduced in Fbn1Tsk/+ mice. However, reduced axon density correlated with expanded optic nerves, resulting in similar numbers of axons in Fbn1Tsk/+ and control nerves. Axons in the optic nerves of Fbn1Tsk/+ mice were significantly enlarged and axon diameter was strongly correlated with optic nerve area, as has been reported in early pathogenesis of the DBA/2J mouse model of glaucoma. Our results suggest that microfibril abnormalities can lead to phenotypes found in early-stage glaucomatous neurodegeneration. Thinning of the elastic fiber-rich pia mater was found in Fbn1Tsk/+ mice, suggesting mechanisms allowing for optic nerve expansion and a possible biomechanical contribution to determination of axon caliber.
Collapse
|