1
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|
2
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
3
|
Megane Penalva YC, Paschkowsky S, Yang J, Recinto SJ, Cinkorpumin J, Hernandez MR, Xiao B, Nitu A, Yee-Li Wu H, Munter HM, Michalski B, Fahnestock M, Pastor W, Bennett DA, Munter LM. Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.579698. [PMID: 38464180 PMCID: PMC10925189 DOI: 10.1101/2024.02.22.579698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aβ peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBLD4 cleaves APP in HEK293T cells, leading to decreased total APP and Aβ. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4-/-) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and amyloidogenic processing when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNAseq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active β-catenin due to decreased proteasomal clearance. Decreased β-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of β-catenin, contributing to cognitive impairment.
Collapse
Affiliation(s)
- Ylauna Christine Megane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sherilyn Junelle Recinto
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | | | - Marina Ruelas Hernandez
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Bin Xiao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Albert Nitu
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Hans Markus Munter
- Department of Human Genetics, McGill University, Montreal, QC, Canada H3A 0C7
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - William Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 0B1
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
4
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
5
|
Sheikh AM, Tabassum S, Yano S, Abdullah FB, Wang R, Ikeue T, Nagai A. A Cationic Zn-Phthalocyanine Turns Alzheimer's Amyloid β Aggregates into Non-Toxic Oligomers and Inhibits Neurotoxicity in Culture. Int J Mol Sci 2024; 25:8931. [PMID: 39201616 PMCID: PMC11354870 DOI: 10.3390/ijms25168931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Amyloid β peptide (Aβ) aggregation and deposition are considered the main causes of Alzheimer's disease. In a previous study, we demonstrated that anionic Zn-phthalocyanine (ZnPc) can interact with the Aβ peptide and inhibit the fibril-formation process. However, due to the inability of anionic ZnPc to cross the intact blood-brain barrier, we decided to explore the interaction of cationic methylated Zn-phthalocyanine (cZnPc) with the peptide. Using a ThT fluorescence assay, we observed that cZnPc dose-dependently and time-dependently inhibited Aβ1-42 fibril levels under in vitro fibril-formation conditions. Electron microscopy revealed that it caused Aβ1-42 peptides to form small aggregates. Western blotting and dot immunoblot oligomer experiments demonstrated that cZnPc increased rather than decreased the levels of oligomers from the very early stages of incubation. A binding assay confirmed that cZnPc could bind with the peptide. Docking simulations indicated that the oligomer species of Aβ1-42 had a higher ability to interact with cZnPc. ANS fluorescence assay results indicated that cZnPc did not affect the hydrophobicity of the peptide. However, cZnPc significantly increased intrinsic tyrosine fluorescence of the peptide after 8 h of incubation in fibril-formation conditions. Importantly, cell culture experiments demonstrated that cZnPc did not exhibit any toxicity up to a concentration of 10 µM. Instead, it protected a neuronal cell line from Aβ1-42-induced toxicity. Thus, our results suggest that cZnPc can affect the aggregation process of Aβ1-42, rendering it non-toxic, which could be crucial for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Abdullah Md. Sheikh
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
| | - Shatera Tabassum
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
| | - Fatema Binte Abdullah
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (F.B.A.); (R.W.)
| | - Ruochen Wang
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (F.B.A.); (R.W.)
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan;
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (F.B.A.); (R.W.)
| |
Collapse
|
6
|
Jain S, Murmu A, Patel S. Elucidating the therapeutic mechanism of betanin in Alzheimer's Disease treatment through network pharmacology and bioinformatics analysis. Metab Brain Dis 2024; 39:1175-1187. [PMID: 38995496 DOI: 10.1007/s11011-024-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Betanin, a natural compound with anti-inflammatory and antioxidant properties, has shown promise in mitigating Alzheimer's disease (AD) by reducing amyloid plaque production. Employing network pharmacology, this study aimed to elucidate betanin's therapeutic mechanism in AD treatment. Through integrated analyses utilizing SwissTargetPrediction, STITCH, BindingDB, Therapeutic Target Database (TTD), and OMIM databases, potential protein targets of betanin in AD were predicted. Gene ontology analysis facilitated the identification of 49 putative AD targets. Subsequent gene enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed associations between these targets and AD. Network pharmacology techniques and molecular docking aided in prioritizing essential genes, with APP, CASP7, ITPR1, CASP8, CASP3, ITPR3, and NF-KB1 emerging as top candidates. The results provide novel insights into betanin's therapeutic efficacy, shedding light on its potential clinical application in AD treatment. By targeting key genes implicated in AD pathology, betanin demonstrates promise as a valuable addition to existing therapeutic strategies. This holistic approach emphasizes the relevance of network pharmacology and bioinformatics analysis in understanding natural chemical disease therapy processes.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, India
| | - Ankita Murmu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, India
| | - Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
7
|
Hernandez CM, McCuiston MA, Davis K, Halls Y, Carcamo Dal Zotto JP, Jackson NL, Dobrunz LE, King PH, McMahon LL. In a circuit necessary for cognition and emotional affect, Alzheimer's-like pathology associates with neuroinflammation, cognitive and motivational deficits in the young adult TgF344-AD rat. Brain Behav Immun Health 2024; 39:100798. [PMID: 39022628 PMCID: PMC11253229 DOI: 10.1016/j.bbih.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear. In this study, we employed a battery of cognitive and emotional tests in the young adult (5-7 mo) transgenic Fisher-344 AD (TgF344-AD; TgAD) rat model of AD. We also assessed whether markers of inflammation or AD-like pathology in the prelimbic cortex (PrL) of the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), or nucleus accumbens (NAc), all structures that directly support the aforementioned behaviors, were predictive of behavioral deficits. We found TgAD rats displayed maladaptive decision making, greater apathy, and impaired working memory that was indeed predicted by AD-like pathology in the relevant brain structures, even at an early age. Moreover, we report that the BLA is an early epicenter of inflammation, and notably, AD-like pathology in the PrL, BLA, and NAc was predictive of BLA inflammation. These results suggest that operant-based battery testing may be sensitive enough to determine pathology trajectories, including neuroinflammation, from early stages of AD.
Collapse
Affiliation(s)
- Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
| | - Macy A. McCuiston
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian Davis
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda Halls
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Pablo Carcamo Dal Zotto
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nateka L. Jackson
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Lynn E. Dobrunz
- Department of Neurobiology, The University of Alabama at Birmingham, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| |
Collapse
|
8
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2024:10.1038/s41380-024-02680-9. [PMID: 39043843 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
9
|
Rentsch P, Ganesan K, Langdon A, Konen LM, Vissel B. Toward the development of a sporadic model of Alzheimer's disease: comparing pathologies between humanized APP and the familial J20 mouse models. Front Aging Neurosci 2024; 16:1421900. [PMID: 39040546 PMCID: PMC11260812 DOI: 10.3389/fnagi.2024.1421900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
Background Finding successful therapies for individuals with Alzheimer's disease (AD) remains an ongoing challenge. One contributing factor is that the mouse models commonly used in preclinical research primarily mimic the familial form of AD, whereas the vast majority of human cases are sporadic. Accordingly, for a sporadic mouse model of AD, incorporating the multifactorial aspects of the disease is of utmost importance. Methods In the current study, we exposed humanized Aβ knock-in mice (hAβ-KI) to weekly low-dose lipopolysaccharide (LPS) injections until 24 weeks of age and compared the development of AD pathologies to the familial AD mouse model known as the J20 mice. Results At the early time point of 24 weeks, hAβ-KI mice and J20 mice exhibited spatial memory impairments in the Barnes maze. Strikingly, both hAβ-KI mice and J20 mice showed significant loss of dendritic spines when compared to WT controls, despite the absence of Aβ plaques in hAβ-KI mice at 24 weeks of age. Glial cell numbers remained unchanged in hAβ-KI mice compared to WT, and LPS exposure in hAβ-KI mice did not result in memory deficits and failed to exacerbate any other examined AD pathology. Conclusion The study highlights the potential of hAβ-KI mice as a model for sporadic AD, demonstrating early cognitive deficits and synaptic alterations despite no evidence of Aβ plaque formation. These findings underscore the importance of considering multifactorial influences in sporadic AD pathogenesis and the need for innovative models to advance our understanding and treatment strategies for this complex disease.
Collapse
Affiliation(s)
- Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- UNSW St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- UNSW St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Pizzirusso G, Preka E, Goikolea J, Aguilar-Ruiz C, Rodriguez-Rodriguez P, Vazquez-Cabrera G, Laterza S, Latorre-Leal M, Eroli F, Blomgren K, Maioli S, Nilsson P, Fragkopoulou A, Fisahn A, Arroyo-García LE. Dynamic microglia alterations associate with hippocampal network impairments: A turning point in amyloid pathology progression. Brain Behav Immun 2024; 119:286-300. [PMID: 38608739 DOI: 10.1016/j.bbi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer's disease onset and progression. Characterizing the initial phase of Alzheimer's disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the AppNL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer's disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis- and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network's functionality. These results suggest that the early alteration of microglia dynamics could be a pivotal event in the progression of Alzheimer's disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.
Collapse
Affiliation(s)
- Giusy Pizzirusso
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Efthalia Preka
- Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Julen Goikolea
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Celia Aguilar-Ruiz
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | | | - Simona Laterza
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Maria Latorre-Leal
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Francesca Eroli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Sweden; Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | | | - André Fisahn
- Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| | - Luis Enrique Arroyo-García
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| |
Collapse
|
11
|
Shi Q, Sun X, Zhang H, Yang L, Fu Y, Wang G, Su Y, Li W, Li W. PLC-CN-NFAT1 signaling-mediated Aβ and IL-1β crosstalk synergistically promotes hippocampal neuronal damage. Int Immunopharmacol 2024; 134:112259. [PMID: 38749336 DOI: 10.1016/j.intimp.2024.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Neuronal calcium overload plays an important role in Aβ deposition and neuroinflammation, which are strongly associated with AD. However, the specific mechanisms by which calcium overload contributes to neuroinflammation and AD and the relationship between them have not been elucidated. Phospholipase C (PLC) is involved in regulation of calcium homeostasis, and CN-NFAT1 signaling is dependent on intracellular Ca2+ ([Ca2+]i) to regulate transcription of genes. Therefore, we hypothesized that the PLC-CN-NFAT1 signaling might mediate the interaction between Aβ and inflammation to promote neuronal injury in AD. In this experiment, the results showed that the levels of Aβ, IL-1β and [Ca2+]i in the hippocampal primary neurons of APP/PS1 mice (APP neurons) were significantly increased. IL-1β exposure also significantly increased Aβ and [Ca2+]i in HT22 cells, suggesting a close association between Aβ and IL-1β in the development of AD. Furthermore, PLC activation induced significant calcium homeostasis imbalance, cell apoptosis, Aβ and ROS production, and significantly increased expressions of CN and NFAT1, while PLC inhibitor significantly reversed these changes in APP neurons and IL-1β-induced HT22 cells. Further results indicated that PLC activation significantly increased the expressions of NOX2, APP, BACE1, and NCSTN, which were inhibited by PLC inhibitor in APP neurons and IL-1β-induced HT22 cells. All indications point to a synergistic interaction between Aβ and IL-1β by activating the PLC-CN-NFAT1 signal, ultimately causing a vicious cycle, resulting in neuronal damage in AD. The study may provide a new idea and target for treatment of AD.
Collapse
Affiliation(s)
- Qifeng Shi
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xiangyu Sun
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yinglin Fu
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Guohang Wang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Fotuhi SN, Khalaj-Kondori M. Imbalanced clearance of Aβ peptide cause presynaptic plaque formation. Int J Neurosci 2024; 134:66-70. [PMID: 35639020 DOI: 10.1080/00207454.2022.2085099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease is characterized by abnormal increase of Aβ peptide which is likely as the result of imbalanced homeostasis of its production and clearance mechanisms. Here, we briefly review that the uncleaned extracellular Aβ peptides are loaded into presynaptic neurons. The Aβ oligomers desperately affect pre- and post-synapse neuron activity and turn into plaques inside the presynaptic neurons over the time passes.
Collapse
Affiliation(s)
- Seyedeh Nahid Fotuhi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
14
|
Liu C, Cárdenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:78. [PMID: 38600598 PMCID: PMC11005245 DOI: 10.1186/s13195-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. METHODS We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccharide-induced neuroinflammation. RESULTS Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. CONCLUSIONS This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shayna Teitelbaum
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Austin Birmingham
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammed Alfadhel
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammad A Yaseen
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Jain SK, Stevens CM, Margret JJ, Levine SN. Alzheimer's Disease: A Review of Pathology, Current Treatments, and the Potential Therapeutic Effect of Decreasing Oxidative Stress by Combined Vitamin D and l-Cysteine Supplementation. Antioxid Redox Signal 2024; 40:663-678. [PMID: 37756366 PMCID: PMC11001507 DOI: 10.1089/ars.2023.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Significance: Excess oxidative stress and neuroinflammation are risk factors in the onset and progression of Alzheimer's disease (AD) and its association with amyloid-β plaque accumulation. Oxidative stress impairs acetylcholine (ACH) and N-methyl-d-aspartate receptor signaling in brain areas that function in memory and learning. Glutathione (GSH) antioxidant depletion positively correlates with the cognitive decline in AD subjects. Treatments that upregulate GSH and ACH levels, which simultaneously decrease oxidative stress and inflammation, may be beneficial for AD. Recent Advances: Some clinical trials have shown a benefit of monotherapy with vitamin D (VD), whose deficiency is linked to AD or with l-cysteine (LC), a precursor of GSH biosynthesis, in reducing mild cognitive impairment. Animal studies have shown a simultaneous decrease in ACH esterase (AChE) and increase in GSH; combined supplementation with VD and LC results in a greater decrease in oxidative stress and inflammation, and increase in GSH levels compared with monotherapy with VD or LC. Therefore, cosupplementation with VD and LC has the potential of increasing GSH, downregulation of oxidative stress, and decreased inflammation and AChE levels. Future Directions: Clinical trials are needed to determine whether safe low-cost dietary supplements, using combined VD+LC, have the potential to alleviate elevated AChE, oxidative stress, and inflammation levels, thereby halting the onset of AD. Goal of Review: The goal of this review is to highlight the pathological hallmarks and current Food and Drug Administration-approved treatments for AD, and discuss the potential therapeutic effect that cosupplementation with VD+LC could manifest by increasing GSH levels in patients. Antioxid. Redox Signal. 40, 663-678.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Christopher M. Stevens
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jeffrey Justin Margret
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Steven N. Levine
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
16
|
Pádua MS, Guil-Guerrero JL, Prates JAM, Lopes PA. Insights on the Use of Transgenic Mice Models in Alzheimer's Disease Research. Int J Mol Sci 2024; 25:2805. [PMID: 38474051 DOI: 10.3390/ijms25052805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, presents a significant global health challenge with no known cure to date. Central to our understanding of AD pathogenesis is the β-amyloid cascade hypothesis, which underlies drug research and discovery efforts. Despite extensive studies, no animal models of AD have completely validated this hypothesis. Effective AD models are essential for accurately replicating key pathological features of the disease, notably the formation of β-amyloid plaques and neurofibrillary tangles. These pathological markers are primarily driven by mutations in the amyloid precursor protein (APP) and presenilin 1 (PS1) genes in familial AD (FAD) and by tau protein mutations for the tangle pathology. Transgenic mice models have been instrumental in AD research, heavily relying on the overexpression of mutated APP genes to simulate disease conditions. However, these models do not entirely replicate the human condition of AD. This review aims to provide a comprehensive evaluation of the historical and ongoing research efforts in AD, particularly through the use of transgenic mice models. It is focused on the benefits gathered from these transgenic mice models in understanding β-amyloid toxicity and the broader biological underpinnings of AD. Additionally, the review critically assesses the application of these models in the preclinical testing of new therapeutic interventions, highlighting the gap between animal models and human clinical realities. This analysis underscores the need for refinement in AD research methodologies to bridge this gap and enhance the translational value of preclinical studies.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José L Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Paula Alexandra Lopes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
17
|
Ochi S, Yamada K, Saito T, Saido TC, Iinuma M, Azuma K, Kubo KY. Effects of early tooth loss on chronic stress and progression of neuropathogenesis of Alzheimer's disease in adult Alzheimer's model AppNL-G-F mice. Front Aging Neurosci 2024; 16:1361847. [PMID: 38469162 PMCID: PMC10925668 DOI: 10.3389/fnagi.2024.1361847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-β (Aβ) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aβ plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aβ deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.
Collapse
Affiliation(s)
- Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kumiko Yamada
- Department of Health and Nutrition, Faculty of Health Science, Nagoya Women's University, Nagoya, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Nagoya, Japan
| |
Collapse
|
18
|
Rybnicek J, Chen Y, Milic M, Tio ES, McLaurin J, Hohman TJ, De Jager PL, Schneider JA, Wang Y, Bennett DA, Tripathy S, Felsky D, Lambe EK. CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimer's disease. Transl Psychiatry 2024; 14:83. [PMID: 38331937 PMCID: PMC10853183 DOI: 10.1038/s41398-024-02785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical β-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against β-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.
Collapse
Affiliation(s)
- Jonas Rybnicek
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuxiao Chen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie A Schneider
- Department of Pathology, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Shreejoy Tripathy
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of OBGYN, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Maruyama H, Gomi M, Lwin TT, Yoneyama A, Sasaki T. [ 18F]-FDG uptake in brain slices prepared from an aged mouse model of Alzheimer's disease using a dynamic autoradiography technique. Ann Nucl Med 2024; 38:120-130. [PMID: 37921921 DOI: 10.1007/s12149-023-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023]
Abstract
OBJECTIVE 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography ([18F]-FDG-PET) is a imaging modality that has been used to measure of glucose metabolism in the brain in Alzheimer's disease (AD). Clinically, decreased glucose uptake has been reported in the brain of AD, although the precise underlying mechanisms have not yet been elucidated. To elucidate the mechanisms of decreased [18F]-FDG uptake in the AD by PET, [18F]-FDG uptake in the brain of aged model mouse of AD was investigated using a dynamic autoradiography technique "bioradiography". A X-ray phase-contrast imaging (X-PCI) and a histopathological evaluation were also investigated to elucidate the mechanisms underlying the relationships between decreased [18F]-FDG uptake and the pathological changes in the brain of AD mouse. METHODS In this study, AD model mouse (5XFAD, APP+/PS1+) were used. [18F]-FDG-bioradiography was conducted in fresh slices of brain tissue under the condition of resting (slices immersed in 5 mM K+ solution) and metabolically active (in 50 mM K+ solution). Amyloid β42 (Aβ42) deposition in the brain of AD mouse was confirmed by X-PCI. In addition, the positive cells of phosphated tau protein (P-tau) and deposition of Aβ42 were also examined by immunohistochemical staining. RESULTS No significant differences were observed between the two groups in the resting condition. In the activate condition of the brain, [18F]-FDG uptake was significantly decreased in AD mice compared to WT mice. In X-PCI showed Aβ deposition in the AD mouse, but not in the WT. The AD mouse also showed increased P-tau, accumulation of Aβ42, increase in neuronal apoptosis, and decrease in the number of neurons than that of the WT mouse. CONCLUSION Neuronal damage, and induction of neuronal apoptosis, decreased [18F]-FDG uptake, increased Aβ accumulation and P-tau induced neurofibrillary degeneration are observed in AD mouse. In clinical diagnosis, reduction of [18F]-FDG uptake by PET is one of the means of diagnosing the onset of AD. Our results suggest that decreased uptake of [18F]-FDG in the brains of AD may be associated with neuronal dysfunction and cell death in the brain.
Collapse
Affiliation(s)
- Hiroko Maruyama
- Cytopathology, Graduate School of Medical Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan.
| | - Misaki Gomi
- Cytopathology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Thet-Thet Lwin
- Molecular Imaging, Graduate School of Medical Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Akio Yoneyama
- SAGA Light Source, Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga, 841-0005, Japan
| | - Toru Sasaki
- Radiation Safety Management, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| |
Collapse
|
20
|
Català-Solsona J, Lutzu S, Lituma PJ, Fábregas-Ordoñez C, Siedlecki D, Giménez-Llort L, Miñano-Molina AJ, Saura CA, Castillo PE, Rodriguez-Álvarez J. Nr4a2 blocks oAβ-mediated synaptic plasticity dysfunction and ameliorates spatial memory deficits in the APP Sw,Ind mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577010. [PMID: 38328087 PMCID: PMC10849715 DOI: 10.1101/2024.01.24.577010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease AD is associated with disruptions in neuronal communication, especially in brain regions crucial for learning and memory, such as the hippocampus. The amyloid hypothesis suggests that the accumulation of amyloid-beta oligomers (oAβ) contributes to synaptic dysfunction by internalisation of synaptic AMPA receptors. Recently, it has been reported that Nr4a2, a member of the Nr4a family of orphan nuclear receptors, plays a role in hippocampal synaptic plasticity by regulating BDNF and synaptic AMPA receptors. Here, we demonstrate that oAβ inhibits activity-dependent Nr4a2 activation in hippocampal neurons, indicating a potential link between oAβ and Nr4a2 down-regulation. Furthermore, we have observed a reduction in Nr4a2 protein levels in postmortem hippocampal tissue samples from early AD stages. Pharmacological activation of Nr4a2 proves effective in preventing oAβ-mediated synaptic depression in the hippocampus. Notably, Nr4a2 overexpression in the hippocampus of AD mouse models ameliorates spatial learning and memory deficits. In conclusion, the findings suggest that oAβ may contribute to early cognitive impairment in AD by blocking Nr4a2 activation, leading to synaptic dysfunction. Thus, our results further support that Nr4a2 activation is a potential therapeutic target to mitigate oAβ-induced synaptic and cognitive impairments in the early stages of Alzheimer's disease.
Collapse
|
21
|
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer's disease by capillary western blotting. Front Mol Neurosci 2024; 16:1338065. [PMID: 38299128 PMCID: PMC10828003 DOI: 10.3389/fnmol.2023.1338065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary P. Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Fang X, Fan F, Border JJ, Roman RJ. Cerebrovascular Dysfunction in Alzheimer's Disease and Transgenic Rodent Models. JOURNAL OF EXPERIMENTAL NEUROLOGY 2024; 5:42-64. [PMID: 38434588 PMCID: PMC10906803 DOI: 10.33696/neurol.5.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementia (ADRD) are the primary causes of dementia that has a devastating effect on the quality of life and is a tremendous economic burden on the healthcare system. The accumulation of extracellular beta-amyloid (Aβ) plaques and intracellular hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain are the hallmarks of AD. They are also thought to be the underlying cause of inflammation, neurodegeneration, brain atrophy, and cognitive impairments that accompany AD. The discovery of APP, PS1, and PS2 mutations that increase Aβ production in families with early onset familial AD led to the development of numerous transgenic rodent models of AD. These models have provided new insight into the role of Aβ in AD; however, they do not fully replicate AD pathology in patients. Familial AD patients with mutations that elevate the production of Aβ represent only a small fraction of dementia patients. In contrast, those with late-onset sporadic AD constitute the majority of cases. This observation, along with the failure of previous clinical trials targeting Aβ or Tau and the modest success of recent trials using Aβ monoclonal antibodies, has led to a reappraisal of the view that Aβ accumulation is the sole factor in the pathogenesis of AD. More recent studies have established that cerebral vascular dysfunction is one of the earliest changes seen in AD, and 67% of the candidate genes linked to AD are expressed in the cerebral vasculature. Thus, there is an increasing appreciation of the vascular contribution to AD, and the National Institute on Aging (NIA) and the Alzheimer's Disease Foundation recently prioritized it as a focused research area. This review summarizes the strengths and limitations of the most commonly used transgenic AD animal models and current views about the contribution of Aβ accumulation versus cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
24
|
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer's disease. Lab Anim Res 2023; 39:33. [PMID: 38082453 PMCID: PMC10712122 DOI: 10.1186/s42826-023-00184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-β deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-β 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAβ25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
25
|
Gómez-Carballa A, Navarro L, Pardo-Seco J, Bello X, Pischedda S, Viz-Lasheras S, Camino-Mera A, Currás MJ, Ferreirós I, Mallah N, Rey-Vázquez S, Redondo L, Dacosta-Urbieta A, Caamaño-Viña F, Rivero-Calle I, Rodriguez-Tenreiro C, Martinón-Torres F, Salas A. Music compensates for altered gene expression in age-related cognitive disorders. Sci Rep 2023; 13:21259. [PMID: 38040763 PMCID: PMC10692168 DOI: 10.1038/s41598-023-48094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Extensive literature has explored the beneficial effects of music in age-related cognitive disorders (ACD), but limited knowledge exists regarding its impact on gene expression. We analyzed transcriptomes of ACD patients and healthy controls, pre-post a music session (n = 60), and main genes/pathways were compared to those dysregulated in mild cognitive impairment (MCI) and Alzheimer's disease (AD) as revealed by a multi-cohort study (n = 1269 MCI/AD and controls). Music was associated with 2.3 times more whole-genome gene expression, particularly on neurodegeneration-related genes, in ACD than in controls. Co-expressed gene-modules and pathways analysis demonstrated that music impacted autophagy, vesicle and endosome organization, biological processes commonly dysregulated in MCI/AD. Notably, the data indicated a strong negative correlation between musically-modified genes/pathways in ACD and those dysregulated in MCI/AD. These findings highlight the compensatory effect of music on genes/biological processes affected in MCI/AD, providing insights into the molecular mechanisms underlying the benefits of music on these disorders.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Laura Navarro
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Alba Camino-Mera
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - María José Currás
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Isabel Ferreirós
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Narmeen Mallah
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
- Department of Preventive Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Sara Rey-Vázquez
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Lorenzo Redondo
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Fernando Caamaño-Viña
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain.
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.
| |
Collapse
|
26
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
27
|
Ueda S, Kuzuya A, Kawata M, Okawa K, Honjo C, Wada T, Matsumoto M, Goto K, Miyamoto M, Yonezawa A, Tanabe Y, Ikeda A, Kinoshita A, Takahashi R. Acute inhibition of AMPA receptors by perampanel reduces amyloid β-protein levels by suppressing β-cleavage of APP in Alzheimer's disease models. FASEB J 2023; 37:e23252. [PMID: 37850918 DOI: 10.1096/fj.202300837r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Hippocampal hyperexcitability is a promising therapeutic target to prevent Aβ deposition in AD since enhanced neuronal activity promotes presynaptic Aβ production and release. This article highlights the potential application of perampanel (PER), an AMPA receptor (AMPAR) antagonist approved for partial seizures, as a therapeutic agent for AD. Using transgenic AD mice combined with in vivo brain microdialysis and primary neurons under oligomeric Aβ-evoked neuronal hyperexcitability, the acute effects of PER on Aβ metabolism were investigated. A single oral administration of PER rapidly decreased ISF Aβ40 and Aβ42 levels in the hippocampus of J20, APP transgenic mice, without affecting the Aβ40 /Aβ42 ratio; 5 mg/kg PER resulted in declines of 20% and 31%, respectively. Moreover, PER-treated J20 manifested a marked decrease in hippocampal APP βCTF levels with increased FL-APP levels. Consistently, acute treatment of PER reduced sAPPβ levels, a direct byproduct of β-cleavage of APP, released to the medium in primary neuronal cultures under oligomeric Aβ-induced neuronal hyperexcitability. To further evaluate the effect of PER on ISF Aβ clearance, a γ-secretase inhibitor was administered to J20 1 h after PER treatment. PER did not influence the elimination of ISF Aβ, indicating that the acute effect of PER is predominantly on Aβ production. In conclusion, acute treatment of PER reduces Aβ production by suppressing β-cleavage of amyloid-β precursor protein effectively, indicating a potential effect of PER against Aβ pathology in AD.
Collapse
Affiliation(s)
- Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawata
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kohei Okawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Honjo
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Wada
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Matsumoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Goto
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Miyamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuto Tanabe
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayae Kinoshita
- School of Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Liu C, Cardenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562353. [PMID: 37905082 PMCID: PMC10614808 DOI: 10.1101/2023.10.16.562353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccaride-induced neuroinflammation. Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
|
29
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
30
|
Wright AL, Konen LM, Mockett BG, Morris GP, Singh A, Burbano LE, Milham L, Hoang M, Zinn R, Chesworth R, Tan RP, Royle GA, Clark I, Petrou S, Abraham WC, Vissel B. The Q/R editing site of AMPA receptor GluA2 subunit acts as an epigenetic switch regulating dendritic spines, neurodegeneration and cognitive deficits in Alzheimer's disease. Mol Neurodegener 2023; 18:65. [PMID: 37759260 PMCID: PMC10537207 DOI: 10.1186/s13024-023-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD. If true, then inhibiting expression of unedited GluA2(Q), while maintaining expression of GluA2(R), may be a novel strategy of preventing synapse loss and neurodegeneration in AD. METHODS We engineered mice with the 'edited' arginine codon (CGG) in place of the unedited glutamine codon (CAG) at position 607 of the Gria2 gene. We crossbred this line with the J20 mouse model of AD and conducted anatomical, electrophysiological and behavioural assays to determine the impact of eliminating unedited GluA2(Q) expression on AD-related phenotypes. RESULTS Eliminating unedited GluA2(Q) expression in AD mice prevented dendritic spine loss and hippocampal CA1 neurodegeneration as well as improved working and reference memory in the radial arm maze. These phenotypes were improved independently of Aβ pathology and ongoing seizure susceptibility. Surprisingly, our data also revealed increased spine density in non-AD mice with exonically encoded GluA2(R) as compared to their wild-type littermates, suggesting an unexpected and previously unknown role for unedited GluA2(Q) in regulating dendritic spines. CONCLUSION The Q/R editing site of the AMPA receptor subunit GluA2 may act as an epigenetic switch that regulates dendritic spines, neurodegeneration and memory deficits in AD.
Collapse
Affiliation(s)
- Amanda L Wright
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Lisseth Estefania Burbano
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Luke Milham
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Kitchener, ON, N2G 1C5, Canada
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Richard P Tan
- Chronic Diseases, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Ian Clark
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Bryce Vissel
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
31
|
Zhang NK, Zhang SK, Zhang LI, Tao HW, Zhang GW. Sensory processing deficits and related cortical pathological changes in Alzheimer's disease. Front Aging Neurosci 2023; 15:1213379. [PMID: 37649717 PMCID: PMC10464619 DOI: 10.3389/fnagi.2023.1213379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily affecting cognitive functions. However, sensory deficits in AD start to draw attention due to their high prevalence and early onsets which suggest that they could potentially serve as diagnostic biomarkers and even contribute to the disease progression. This literature review examines the sensory deficits and cortical pathological changes observed in visual, auditory, olfactory, and somatosensory systems in AD patients, as well as in various AD animal models. Sensory deficits may emerge at the early stages of AD, or even precede the cognitive decline, which is accompanied by cortical pathological changes including amyloid-beta deposition, tauopathy, gliosis, and alterations in neuronal excitability, synaptic inputs, and functional plasticity. Notably, these changes are more pronounced in sensory association areas and superficial cortical layers, which may explain the relative preservation of basic sensory functions but early display of deficits of higher sensory functions. We propose that sensory impairment and the progression of AD may establish a cyclical relationship that mutually perpetuates each condition. This review highlights the significance of sensory deficits with or without cortical pathological changes in AD and emphasizes the need for further research to develop reliable early detection and intervention through sensory systems.
Collapse
Affiliation(s)
- Nicole K. Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Selena K. Zhang
- Biomedical Engineering Program, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Li I. Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Huizhong W. Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
32
|
Drew VJ, Wang C, Kim T. Progressive sleep disturbance in various transgenic mouse models of Alzheimer's disease. Front Aging Neurosci 2023; 15:1119810. [PMID: 37273656 PMCID: PMC10235623 DOI: 10.3389/fnagi.2023.1119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The relationship between AD and sleep dysfunction has received increased attention over the past decade. The use of genetically engineered mouse models with enhanced production of amyloid beta (Aβ) or hyperphosphorylated tau has played a critical role in the understanding of the pathophysiology of AD. However, their revelations regarding the progression of sleep impairment in AD have been highly dependent on the mouse model used and the specific techniques employed to examine sleep. Here, we discuss the sleep disturbances and general pathology of 15 mouse models of AD. Sleep disturbances covered in this review include changes to NREM and REM sleep duration, bout lengths, bout counts and power spectra. Our aim is to describe in detail the severity and chronology of sleep disturbances within individual mouse models of AD, as well as reveal broader trends of sleep deterioration that are shared among most models. This review also explores a variety of potential mechanisms relating Aβ accumulation and tau neurofibrillary tangles to the progressive deterioration of sleep observed in AD. Lastly, this review offers perspective on how study design might impact our current understanding of sleep disturbances in AD and provides strategies for future research.
Collapse
Affiliation(s)
- Victor J. Drew
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
33
|
Ying J, Reboreda A, Yoshida M, Brandon MP. Grid cell disruption in a mouse model of early Alzheimer's disease reflects reduced integration of self-motion cues. Curr Biol 2023:S0960-9822(23)00547-X. [PMID: 37220744 DOI: 10.1016/j.cub.2023.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.
Collapse
Affiliation(s)
- Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Antonio Reboreda
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg 39120, Germany
| | - Motoharu Yoshida
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
34
|
Irwin AB, Martina V, Jago SCS, Bahabry R, Schreiber AM, Lubin FD. The lncRNA Neat1 is associated with astrocyte reactivity and memory deficits in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539260. [PMID: 37205548 PMCID: PMC10187170 DOI: 10.1101/2023.05.03.539260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) have been associated with Alzheimer's disease (AD). However, the functional role of lncRNAs in AD remains unclear. Here, we report a crucial role for the lncRNA Neat1 in astrocyte dysfunction and memory deficits associated with AD. Transcriptomics analysis show abnormally high expression levels of NEAT1 in the brains of AD patients relative to aged-matched healthy controls, with the most significantly elevated levels in glial cells. In a human transgenic APP-J20 (J20) mouse model of AD, RNA-fluorescent in situ hybridization characterization of Neat1 expression in hippocampal astrocyte versus non-astrocyte cell populations revealed a significant increase in Neat1 expression in astrocytes of male, but not female, mice. This corresponded with increased seizure susceptibility in J20 male mice. Interestingly, Neat1 deficiency in the dCA1 in J20 male mice did not alter seizure threshold. Mechanistically, Neat1 deficiency in the dorsal area CA1 of the hippocampus (dCA1) J20 male mice significantly improved hippocampus-dependent memory. Neat1 deficiency also remarkably reduced astrocyte reactivity markers suggesting that Neat1 overexpression is associated with astrocyte dysfunction induced by hAPP/Aβ in the J20 mice. Together, these findings indicate that abnormal Neat1 overexpression may contribute to memory deficits in the J20 AD model not through altered neuronal activity, but through astrocyte dysfunction.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Verdion Martina
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Silvienne C Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Anna Maria Schreiber
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
35
|
Fujikawa R, Tsuda M. The Functions and Phenotypes of Microglia in Alzheimer's Disease. Cells 2023; 12:cells12081207. [PMID: 37190116 DOI: 10.3390/cells12081207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, but therapeutic strategies to slow down AD pathology and symptoms have not yet been successful. While attention has been focused on neurodegeneration in AD pathogenesis, recent decades have provided evidence of the importance of microglia, and resident immune cells in the central nervous system. In addition, new technologies, including single-cell RNA sequencing, have revealed heterogeneous cell states of microglia in AD. In this review, we systematically summarize the microglial response to amyloid-β and tau tangles, and the risk factor genes expressed in microglia. Furthermore, we discuss the characteristics of protective microglia that appear during AD pathology and the relationship between AD and microglia-induced inflammation during chronic pain. Understanding the diverse roles of microglia will help identify new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Kyushu University Institute for Advanced Study, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Oroszi T, Geerts E, Rajadhyaksha R, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-body vibration ameliorates glial pathological changes in the hippocampus of hAPP transgenic mice, but does not affect plaque load. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:5. [PMID: 36941713 PMCID: PMC10026461 DOI: 10.1186/s12993-023-00208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aβ) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aβ deposition and immunomarkers of astrocytes and microglia. RESULTS J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.
Collapse
Affiliation(s)
- Tamas Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary.
| | - Eva Geerts
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Reuben Rajadhyaksha
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis Univesity, Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
37
|
Cangalaya C, Wegmann S, Sun W, Diez L, Gottfried A, Richter K, Stoyanov S, Pakan J, Fischer KD, Dityatev A. Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain Behav Immun 2023; 110:245-259. [PMID: 36906076 DOI: 10.1016/j.bbi.2023.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
Remodeling of synapses by microglia is essential for synaptic plasticity in the brain. However, during neuroinflammation and neurodegenerative diseases, microglia can induce excessive synaptic loss, although the precise underlying mechanisms are unknown. To directly observe microglia-synapse interactions under inflammatory conditions, we performed in vivo two-photon time-lapse imaging of microglia-synapse interactions after bacterial lipopolysaccharide administration to model systemic inflammation, or after inoculation of Alzheimer's disease (AD) brain extracts to model disease-associated neuroinflammatory microglial response. Both treatments prolonged microglia-neuron contacts, decreased basal surveillance of synapses and promoted synaptic remodeling in response to synaptic stress induced by focal single-synapse photodamage. Spine elimination correlated with the expression of microglial complement system/phagocytic proteins and the occurrence of synaptic filopodia. Microglia were observed contacting spines, then stretching and phagocytosing spine head filopodia. Thus, in response to inflammatory stimuli microglia exacerbated spine remodeling through prolonged microglial contact and elimination of spines 'tagged' by synaptic filopodia.
Collapse
Affiliation(s)
- Carla Cangalaya
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany; ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Magdeburg, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Anna Gottfried
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Karin Richter
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Janelle Pakan
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
38
|
Zhou Y, Wang X, Liu Y, Gu Y, Gu R, Zhang G, Lin Q. Mechanisms of abnormal adult hippocampal neurogenesis in Alzheimer's disease. Front Neurosci 2023; 17:1125376. [PMID: 36875663 PMCID: PMC9975352 DOI: 10.3389/fnins.2023.1125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system, the most common type of dementia in old age, which causes progressive loss of cognitive functions such as thoughts, memory, reasoning, behavioral abilities and social skills, affecting the daily life of patients. The dentate gyrus of the hippocampus is a key area for learning and memory functions, and an important site of adult hippocampal neurogenesis (AHN) in normal mammals. AHN mainly consists of the proliferation, differentiation, survival and maturation of newborn neurons and occurs throughout adulthood, but the level of AHN decreases with age. In AD, the AHN will be affected to different degrees at different times, and its exact molecular mechanisms are increasingly elucidated. In this review, we summarize the changes of AHN in AD and its alteration mechanism, which will help lay the foundation for further research on the pathogenesis and diagnostic and therapeutic approaches of AD.
Collapse
Affiliation(s)
- Yujuan Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xu Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | - Yulu Gu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Geng Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
39
|
Dhungana A, Becchi S, Leake J, Morris G, Avgan N, Balleine BW, Vissel B, Bradfield LA. Goal-Directed Action Is Initially Impaired in a hAPP-J20 Mouse Model of Alzheimer's Disease. eNeuro 2023; 10:ENEURO.0363-22.2023. [PMID: 36650070 PMCID: PMC9927544 DOI: 10.1523/eneuro.0363-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Cognitive-behavioral testing in preclinical models of Alzheimer's disease has failed to capture deficits in goal-directed action control. Here, we provide the first comprehensive investigation of goal-directed action in a transgenic mouse model of Alzheimer's disease. Specifically, we tested outcome devaluation performance in male and female human amyloid precursor protein (hAPP)-J20 mice. Mice were first trained to press left and right levers for pellet and sucrose outcomes, respectively (counterbalanced), over 4 d. On test, mice were prefed one of the outcomes to satiety and given a choice between levers. Devaluation performance was intact for 36-week-old wild-types of both sexes, who responded more on the valued relative to the devalued lever (Valued > Devalued). By contrast, devaluation was impaired (Valued = Devalued) for J20 mice of both sexes, and for 52-week-old male mice regardless of genotype. After additional lever press training (i.e., 8-d lever pressing in total), devaluation was intact for all mice, demonstrating that the initial deficits were not a result of a nonspecific impairment in reward processing, depression, or locomotor activity in J20 or aging mice. Follow-up analyses revealed that microglial expression in the dorsal CA1 region of the hippocampus was associated with poorer outcome devaluation performance on initial, but not later tests. Together, these data demonstrate that goal-directed action is initially impaired in J20 mice of both sexes and in aging male mice regardless of genotype, and that this impairment is related to neuroinflammation in the dorsal CA1 hippocampal region.
Collapse
Affiliation(s)
- Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Serena Becchi
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Jessica Leake
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Gary Morris
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
- School of Clinical Medicine, University of New South Wales Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| |
Collapse
|
40
|
Analysis of the time-dependent changes of phospholipids in the brain regions of a mouse model of Alzheimer's disease. Brain Res 2023; 1800:148197. [PMID: 36481236 DOI: 10.1016/j.brainres.2022.148197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022]
Abstract
Phospholipid levels are reported to be decreased in Alzheimer's disease (AD). For a better understanding, we investigated the time-dependent changes of phospholipids species in a mouse model of AD. The levels of phospholipids in the hippocampus and prefrontal cortex of wild-type and APP-Tg (J20) mice were measured by LC-ESI-MS/MS. Compared to wild-type, total phosphatidylcholine (PC), phosphatidylethanolamine (PE), and lysophosphatidylcholine (LPC) were Increased at 3 months but decreased at 6 months in the cortex of J20 mice. Total lysophosphatidylethanolamine (LPE) was decreased both at 3 and 6 months. PC was decreased and LPC was increased at 6 months, resulting in an increased LPC/PC ratio in the hippocampus of J20 mice. At species levels, PCA analysis could discriminate wild-type and J20 based on PC and LPC distribution at 6 months. At 6 months, several highly abundant PC including PC (16:0/16:0), PC (16:0/18:0), PC (16:0/18:1), and PC (18:0/18:1) were decreased in the cortex and hippocampus of J20. Conversely, LPC species including LPC 16:0, LPC 18:1, and LPC 20:4 were increased especially in the hippocampal area. Increased activation of phospholipid-metabolizing enzyme cPLA2 was seen in the hippocampus and cortex of J20 mice at 9 months. On the other hand, ROS levels started to increase as early as 3 months. Compared to 3 months, ROS levels were higher at 6 months in J20 mice. Thus, we demonstrated here a time- and area-dependent alteration of phospholipid composition during the early stage of AD, which could be important in understanding the pathological process.
Collapse
|
41
|
Wang X, Yang X, Hou Z, Tian S, Xu G, Li J, Wen L, Bi D, Gao F, Shen Y, Huang G. Whole-brain mapping of metabolic alterations in a mouse model of Alzheimer's disease by desorption electrospray ionization mass spectrometry imaging. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Lanooij SD, Eisel ULM, van der Zee EA, Kas MJH. Variation in Group Composition Alters an Early-Stage Social Phenotype in hAPP-Transgenic J20 Mice. J Alzheimers Dis 2023; 93:211-224. [PMID: 36970900 DOI: 10.3233/jad-221126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Altered social behavior is one of the symptoms of Alzheimer's disease (AD) that results in social withdrawal and loneliness and provides a major burden on patients and their relatives. Furthermore, loneliness is associated with an increased risk to develop AD and related dementias. OBJECTIVE We aimed to investigate if altered social behavior is an early indicator of amyloid-β (Aβ) pathology in J20 mice, and if co-housing with wild type (WT) mice can positively influence this social phenotype. METHODS The social phenotype of group-housed mice was assessed using an automated behavioral scoring system for longitudinal recordings. Female mice were housed in a same-genotype (4 J20 or WT mice per colony) or mixed-genotype (2 J20 mice + 2 WT mice) colony. At 10 weeks of age, their behavior was assessed for five consecutive days. RESULTS J20 mice showed increased locomotor activity and social sniffing, and reduced social contact compared to WT mice housed in same-genotype colonies. Mixed-genotype housing reduced the social sniffing duration of J20 mice, increased social contact frequency of J20 mice, and increased nest hide by WT mice. CONCLUSION Thus, altered social behavior can be used as an early indicator of Aβ-pathology in female J20 mice. Additionally, when co-housed with WT mice, their social sniffing phenotype is not expressed and their social contact phenotype is reduced. Our findings highlight the presence of a social phenotype in the early stages of AD and indicate a role for social environment variation in the expression of social behavior of WT and J20 mice.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Ortí-Casañ N, Wajant H, Kuiperij HB, Hooijsma A, Tromp L, Poortman IL, Tadema N, de Lange JH, Verbeek MM, De Deyn PP, Naudé PJ, Eisel UL. Activation of TNF Receptor 2 Improves Synaptic Plasticity and Enhances Amyloid-β Clearance in an Alzheimer's Disease Mouse Model with Humanized TNF Receptor 2. J Alzheimers Dis 2023; 94:977-991. [PMID: 37355890 PMCID: PMC10578215 DOI: 10.3233/jad-221230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) is a master cytokine involved in a variety of inflammatory and neurological diseases, including Alzheimer's disease (AD). Therapies that block TNF-α proved ineffective as therapeutic for neurodegenerative diseases, which might be explained by the opposing functions of the two receptors of TNF (TNFRs): while TNFR1 stimulation mediates inflammatory and apoptotic pathways, activation of TNFR2 is related to neuroprotection. Despite the success of targeting TNFR2 in a transgenic AD mouse model, research that better mimics the human context is lacking. OBJECTIVE The aim of this study is to investigate whether stimulation of TNFR2 with a TNFR2 agonist is effective in activating human TNFR2 and attenuating AD neuropathology in the J20xhuTNFR2-k/i mouse model. METHODS Transgenic amyloid-β (Aβ)-overexpressing mice containing a human extracellular TNFR2 domain (J20xhuTNFR2-k/i) were treated with a TNFR2 agonist (NewStar2). After treatment, different behavioral tests and immunohistochemical analysis were performed to assess different parameters, such as cognitive functions, plaque deposition, synaptic plasticity, or microglial phagocytosis. RESULTS Treatment with NewStar2 in J20xhuTNFR2-k/i mice resulted in a drastic decrease in plaque load and beta-secretase 1 (BACE-1) compared to controls. Moreover, TNFR2 stimulation increased microglial phagocytic activity, leading to enhanced Aβ clearance. Finally, activation of TNFR2 rescued cognitive impairments and improved synaptic plasticity. CONCLUSION Our findings demonstrate that activation of human TNFR2 ameliorates neuropathology and improves cognitive functions in an AD mouse model. Moreover, our study confirms that the J20xhuTNFR2-k/i mouse model is suitable for testing human TNFR2-specific compounds.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Harald Wajant
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Annelien Hooijsma
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leon Tromp
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Isabelle L. Poortman
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Norick Tadema
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Julia H.E. de Lange
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Petrus J.W. Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
iTRAQ-Based Proteomic Analysis of APP Transgenic Mouse Urine Exosomes. Int J Mol Sci 2022; 24:ijms24010672. [PMID: 36614115 PMCID: PMC9820663 DOI: 10.3390/ijms24010672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common dementia disease in the elderly. To get a better understanding of the pathophysiology, we performed a proteomic analysis of the urine exosomes (U-exo) in AD model mice (J20). The polymer precipitation method was used to isolate U-exo from the urine of 3-month-old J20 and wild-type (WT) mice. Neuron-derived exosome (N-exo) was isolated from U-exo by immunoprecipitation. iTRAQ-based MALDI TOF MS/MS was used for proteomic analysis. The results showed that compared to WT, the levels of 61 and 92 proteins were increased in the J20 U-exo and N-exo, respectively. Gene ontology enrichment analysis demonstrated that the sphingolipid catabolic process, ceramide catabolic process, membrane lipid catabolic process, Aβ clearance, and Aβ metabolic process were highly enriched in U-exo and N-exo. Among these, Asah1 was shown to be the key protein in lipid metabolism, and clusterin, ApoE, neprilysin, and ACE were related to Aβ metabolism and clearance. Furthermore, protein-protein interaction analysis identified four protein complexes where clusterin and ApoE participated as partner proteins. Thus, J20 U-exo and N-exo contain proteins related to lipid- and Aβ-metabolism in the early stages of AD, providing a new insight into the underlying pathological mechanism of early AD.
Collapse
|
45
|
Verma A, Shteinfer-Kuzmine A, Kamenetsky N, Pittala S, Paul A, Nahon Crystal E, Ouro A, Chalifa-Caspi V, Pandey SK, Monsengo A, Vardi N, Knafo S, Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl Neurodegener 2022; 11:58. [PMID: 36578022 PMCID: PMC9795455 DOI: 10.1186/s40035-022-00329-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS In neuronal cultures, amyloid-beta (Aβ)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aβ plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aβ-plaque load. CONCLUSIONS The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.
Collapse
Affiliation(s)
- Ankit Verma
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nikita Kamenetsky
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Srinivas Pittala
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Avijit Paul
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Edna Nahon Crystal
- grid.443007.40000 0004 0604 7694Achva Academic College, 79804 Shikmim, Israel
| | - Alberto Ouro
- grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.488911.d0000 0004 0408 4897Present Address: NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Vered Chalifa-Caspi
- grid.7489.20000 0004 1937 0511Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Swaroop Kumar Pandey
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Alon Monsengo
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noga Vardi
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Shira Knafo
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|
46
|
Brown JL, Hart DW, Boyle GE, Brown TG, LaCroix M, Baraibar AM, Pelzel R, Kim M, Sherman MA, Boes S, Sung M, Cole T, Lee MK, Araque A, Lesné SE. SNCA genetic lowering reveals differential cognitive function of alpha-synuclein dependent on sex. Acta Neuropathol Commun 2022; 10:180. [PMID: 36517890 PMCID: PMC9749314 DOI: 10.1186/s40478-022-01480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Antisense oligonucleotide (ASO) therapy for neurological disease has been successful in clinical settings and its potential has generated hope for Alzheimer's disease (AD). We previously described that ablating SNCA encoding for α-synuclein (αSyn) in a mouse model of AD was beneficial. Here, we sought to demonstrate whether transient reduction of αSyn expression using ASOSNCA could be therapeutic in a mouse model of AD. The efficacy of the ASOSNCA was measured via immunocytochemistry, RT-qPCR and western blotting. To assess spatial learning and memory, ASOSNCA or PBS-injected APP and non-transgenic (NTG) mice, and separate groups of SNCA-null mice, were tested on the Barnes circular maze. Hippocampal slice electrophysiology and transcriptomic profiling were used to explore synaptic function and differential gene expression between groups. Reduction of SNCA transcripts alleviated cognitive deficits in male transgenic animals, but surprisingly, not in females. To determine the functional cause of this differential effect, we assessed memory function in SNCA-null mice. Learning and memory were intact in male mice but impaired in female animals, revealing that the role of αSyn on cognitive function is sex-specific. Transcriptional analyses identified a differentially expressed gene network centered around EGR1, a central modulator of learning and memory, in the hippocampi of SNCA-null mice. Thus, these novel results demonstrate that the function of αSyn on memory differs between male and female brains.
Collapse
Affiliation(s)
- Jennifer L. Brown
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Damyan W. Hart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Gabriel E. Boyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
- Present Address: Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Taylor G. Brown
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Michael LaCroix
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
- Present Address: Medical Scientist Training Program, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Andrés M. Baraibar
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Present Address: Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ross Pelzel
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Minwoo Kim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Mathew A. Sherman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Samuel Boes
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Michelle Sung
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
- Present Address: Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Tracy Cole
- Ionis Pharmaceuticals Inc., Carlsbad, CA USA
- Present Address: n-Lorem Foundation, Carlsbad, CA 92010 USA
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| | - Alfonso Araque
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Sylvain E. Lesné
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414 USA
| |
Collapse
|
47
|
Maki T, Sawahata M, Akutsu I, Amaike S, Hiramatsu G, Uta D, Izuo N, Shimizu T, Irie K, Kume T. APP Knock-In Mice Produce E22P-Aβ Exhibiting an Alzheimer's Disease-like Phenotype with Dysregulation of Hypoxia-Inducible Factor Expression. Int J Mol Sci 2022; 23:13259. [PMID: 36362046 PMCID: PMC9654501 DOI: 10.3390/ijms232113259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that requires further pathological elucidation to establish effective treatment strategies. We previously showed that amyloid β (Aβ) toxic conformer with a turn at positions 22-23 is essential for forming highly toxic oligomers. In the present study, we evaluated phenotypic changes with aging in AD model AppNL-P-F/NL-P-F (NL-P-F) mice with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aβ, a mimic of toxic conformer utilizing the knock-in technique. Furthermore, the role of the toxic conformer in AD pathology was investigated. NL-P-F mice produced soluble toxic conformers from an early age. They showed impaired synaptic plasticity, glial cell activation, and cognitive decline, followed by the accumulation of Aβ plaques and tau hyperphosphorylation. In addition, the protein expression of hypoxia-inducible factor (HIF)-1α was increased, and gene expression of HIF-3α was decreased in NL-P-F mice. HIF dysregulation due to the production of soluble toxic conformers may be involved in AD pathology in NL-P-F mice. This study could reveal the role of a highly toxic Aβ on AD pathogenesis, thereby contributing to the development of a novel therapeutic strategy targeting the toxic conformer.
Collapse
Affiliation(s)
- Takahito Maki
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masahito Sawahata
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Ichiro Akutsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Shohei Amaike
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Kitashirakawa-Oiwake-Cho, Kyoto 606-8502, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
48
|
Flores J, Fillion ML, LeBlanc AC. Caspase-1 inhibition improves cognition without significantly altering amyloid and inflammation in aged Alzheimer disease mice. Cell Death Dis 2022; 13:864. [PMID: 36220815 PMCID: PMC9553979 DOI: 10.1038/s41419-022-05290-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Human genetic and animal model studies indicate that brain microglial inflammation is a primary driver of cognitive impairment in Alzheimer Disease (AD). Inflammasome-activated Caspase-1 (Casp1) is associated with both AD microglial inflammation and neuronal degeneration. In mice, Casp1 genetic ablation or VX-765 small molecule inhibition of Casp1 given at onset of cognitive deficits strongly supports the association between microglial inflammation and cognitive impairment. Here, VX-765 significantly improved episodic and spatial memory impairment eight months after the onset of cognitive impairment in aged AD mice with significant amyloid beta peptide (Aβ) accumulation and microglial inflammation. Unexpectedly, while cognitive improvement was associated with dendritic spine density and hippocampal synaptophysin level recovery, VX-765 only slightly decreased Aβ deposition and did not alter biochemically-measured Aβ levels. Furthermore, increased hippocampal Iba1+-microglia, GFAP+-astrocytes, IL-1β, and TNF-α levels were unaltered by VX-765. These results support the hypothesis that neuronal degeneration, not Aβ or microglial inflammation, drives cognitive impairment in AD.
Collapse
Affiliation(s)
- Joseph Flores
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Marie-Lyne Fillion
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Andréa C. LeBlanc
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
| |
Collapse
|
49
|
Azarafrouz F, Farhangian M, Chavoshinezhad S, Dargahi S, Nassiri-Asl M, Dargahi L. Interferon beta attenuates recognition memory impairment and improves brain glucose uptake in a rat model of Alzheimer's disease: Involvement of mitochondrial biogenesis and PI3K pathway. Neuropeptides 2022; 95:102262. [PMID: 35709657 DOI: 10.1016/j.npep.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022]
Abstract
Interferon beta (IFNβ) is a cytokine with anti-apoptotic and anti-inflammatory properties, and its beneficial effects on Alzheimer's disease (AD) have been recently shown. The alterations in cerebral glucose uptake are closely linked to memory deficit and AD progression. The current study was designed to determine if IFNβ can improve recognition memory and brain glucose uptake in a rat model of AD. The lentiviruses expressing mutant human amyloid precursor protein were injected bilaterally to the rat hippocampus. From day 23 after virus injection, rats were intranasally treated with recombinant IFNβ protein (68,000 IU/rat) every other day until day 50. Recognition memory performance was evaluated by novel object recognition test on days 46-49. The 18F-2- fluoro-deoxy-d-glucose positron emission tomography (18F-FDG-PET) was used to determine changes in brain glucose metabolism on day 50. The expression of the PI3K/Akt pathway components, neurotrophins and mitochondrial biogenesis factors were also measured by qPCR in the hippocampus. Our results showed that IFNβ treatment improves recognition memory performance in parallel with increased glucose uptake and neuronal survival in the hippocampus of the AD rats. The neuroprotective effect of IFNβ could be attributed, at least partly, to activation of PI3K-Akt-mTOR signaling pathway, increased expression of NGF, and mitochondrial biogenesis. Taken together, our findings suggest the therapeutic potential of IFNβ for AD.
Collapse
Affiliation(s)
- Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Saina Dargahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Walsh C, Ridler T, Margetts-Smith G, Garcia Garrido M, Witton J, Randall AD, Brown JT. β Bursting in the Retrosplenial Cortex Is a Neurophysiological Correlate of Environmental Novelty Which Is Disrupted in a Mouse Model of Alzheimer's Disease. J Neurosci 2022; 42:7094-7109. [PMID: 35927034 PMCID: PMC9480878 DOI: 10.1523/jneurosci.0890-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory and is functionally disrupted in the early stages of Alzheimer's disease (AD). In order to investigate neurophysiological correlates of spatial learning and memory in this region we employed in vivo electrophysiology in awake and freely moving male mice, comparing neural activity between wild-type and J20 mice, a transgenic model of AD-associated amyloidopathy. To determine the response of the RSC to environmental novelty local field potentials (LFPs) were recorded while mice explored novel and familiar recording arenas. In familiar environments we detected short, phasic bursts of β (20-30 Hz) oscillations (β bursts), which arose at a low but steady rate. Exposure to a novel environment rapidly initiated a dramatic increase in the rate, size and duration of β bursts. Additionally, θ-α/β cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the RSC was significantly enhanced during β bursts. Finally, excessive β bursting was seen in J20 mice, including increased β bursting during novelty and familiarity, yet a loss of coupling between β bursts and spiking activity. These findings support the concept that β bursting may be responsible for the activation and reactivation of neuronal ensembles underpinning the formation and maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie cognitive impairments seen in these animals.SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is thought to be involved in the formation, recall and consolidation of contextual memory. The discovery of bursts of β oscillations in this region, which are associated with increased neuronal spiking and strongly upregulated while mice explore novel environments, provides a potential mechanism for the activation of neuronal ensembles, which may underlie the formation of cortical representations of context. Excessive β bursting in the RSC of J20 mice, a mouse model of Alzheimer's disease (AD), alongside the disassociation of β bursting from neuronal spiking, may underlie spatial memory impairments previously shown in these mice. These findings introduce a novel neurophysiological correlate of spatial learning and memory, and a potentially new form of AD-related cortical dysfunction.
Collapse
Affiliation(s)
- Callum Walsh
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Thomas Ridler
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Gabriella Margetts-Smith
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Maria Garcia Garrido
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Jonathan Witton
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Andrew D Randall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| |
Collapse
|